151
|
McGilvray PT, Anghel SA, Sundaram A, Zhong F, Trnka MJ, Fuller JR, Hu H, Burlingame AL, Keenan RJ. An ER translocon for multi-pass membrane protein biogenesis. eLife 2020; 9:e56889. [PMID: 32820719 PMCID: PMC7505659 DOI: 10.7554/elife.56889] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
Membrane proteins with multiple transmembrane domains play critical roles in cell physiology, but little is known about the machinery coordinating their biogenesis at the endoplasmic reticulum. Here we describe a ~ 360 kDa ribosome-associated complex comprising the core Sec61 channel and five accessory factors: TMCO1, CCDC47 and the Nicalin-TMEM147-NOMO complex. Cryo-electron microscopy reveals a large assembly at the ribosome exit tunnel organized around a central membrane cavity. Similar to protein-conducting channels that facilitate movement of transmembrane segments, cytosolic and luminal funnels in TMCO1 and TMEM147, respectively, suggest routes into the central membrane cavity. High-throughput mRNA sequencing shows selective translocon engagement with hundreds of different multi-pass membrane proteins. Consistent with a role in multi-pass membrane protein biogenesis, cells lacking different accessory components show reduced levels of one such client, the glutamate transporter EAAT1. These results identify a new human translocon and provide a molecular framework for understanding its role in multi-pass membrane protein biogenesis.
Collapse
Affiliation(s)
- Philip T McGilvray
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | - S Andrei Anghel
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
- Department of Molecular Genetics and Cell Biology, The University of ChicagoChicagoUnited States
| | - Arunkumar Sundaram
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | - Frank Zhong
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
- Department of Molecular Genetics and Cell Biology, The University of ChicagoChicagoUnited States
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - James R Fuller
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | - Hong Hu
- Center for Research Informatics, The University of ChicagoChicagoUnited States
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| |
Collapse
|
152
|
Chitwood PJ, Hegde RS. An intramembrane chaperone complex facilitates membrane protein biogenesis. Nature 2020; 584:630-634. [PMID: 32814900 DOI: 10.1038/s41586-020-2624-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022]
Abstract
Integral membrane proteins are encoded by approximately 25% of all protein-coding genes1. In eukaryotes, the majority of membrane proteins are inserted, modified and folded at the endoplasmic reticulum (ER)2. Research over the past several decades has determined how membrane proteins are targeted to the ER and how individual transmembrane domains (TMDs) are inserted into the lipid bilayer3. By contrast, very little is known about how multi-spanning membrane proteins with several TMDs are assembled within the membrane. During the assembly of TMDs, interactions between polar or charged amino acids typically stabilize the final folded configuration4-8. TMDs with hydrophilic amino acids are likely to be chaperoned during the co-translational biogenesis of membrane proteins; however, ER-resident intramembrane chaperones are poorly defined. Here we identify the PAT complex, an abundant obligate heterodimer of the widely conserved ER-resident membrane proteins CCDC47 and Asterix. The PAT complex engages nascent TMDs that contain unshielded hydrophilic side chains within the lipid bilayer, and it disengages concomitant with substrate folding. Cells that lack either subunit of the PAT complex show reduced biogenesis of numerous multi-spanning membrane proteins. Thus, the PAT complex is an intramembrane chaperone that protects TMDs during assembly to minimize misfolding of multi-spanning membrane proteins and maintain cellular protein homeostasis.
Collapse
|
153
|
Ding L, Lin X, Lin Z, Wu Y, Liu X, Liu J, Wu M, Zhang X, Zeng Y. Cancer Cell-Targeted Photosensitizer and Therapeutic Protein Co-Delivery Nanoplatform Based on a Metal-Organic Framework for Enhanced Synergistic Photodynamic and Protein Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36906-36916. [PMID: 32706242 DOI: 10.1021/acsami.0c09657] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Efficient and cancer cell-targeted delivery of photosensitizer (PS) and therapeutic protein has great potentiality for improving the anticancer effects. Herein, zeolitic imidazolate framework-8 (ZIF-8) nanoparticles, one of the most attractive metal-organic framework materials, were used for coencapsulating the chlorin e6 (Ce6, a potent PS) and cytochrome c (Cyt c, a protein apoptosis inducer); then the nanoparticle was subsequently decorated with the hyaluronic acid (HA) shell to form cancer cell-active targeted nanoplatform (Ce6/Cyt c@ZIF-8/HA). The in vitro and in vivo experiments show the cancer cell targeting capability and pH-responsive decomposition and the release behavior of Ce6/Cyt c@ZIF-8/HA. Upon light irradiation, the released Ce6 produced cytotoxic reactive oxygen species for photodynamic therapy. Meanwhile, the released Cyt c-induced programmed cell death for protein therapy. Furthermore, the Cyt c worked normally under hypoxia conditions and could decompose H2O2 to O2 (with peroxidase-/catalase-like activity), resulting in synergistically improved therapeutic efficiency. These small molecules and protein codelivery nanoplatforms would promote the development of complementary and synergetic modes for biomedical applications.
Collapse
Affiliation(s)
- Lei Ding
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
| | - Xiao Lin
- Department of Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
| | - Ziguo Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
| | - Yanni Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaolong Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jingfeng Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
| | - Ming Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaolong Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yongyi Zeng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
| |
Collapse
|
154
|
The ER Membrane Protein Complex Promotes Biogenesis of Dengue and Zika Virus Non-structural Multi-pass Transmembrane Proteins to Support Infection. Cell Rep 2020; 27:1666-1674.e4. [PMID: 31067454 PMCID: PMC6521869 DOI: 10.1016/j.celrep.2019.04.051] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 03/05/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023] Open
Abstract
Although flaviviruses co-opt the function of the host endoplasmic reticulum (ER) membrane protein complex (EMC) during infection, a mechanistic explanation for this observation remains unclear. Here, we show that the EMC promotes biogenesis of dengue virus (DENV) and Zika virus (ZIKV) non-structural multi-pass transmembrane proteins NS4A and NS4B, which are necessary for viral replication. The EMC binds to NS4B and colocalizes with the DENV replication organelle. Mapping analysis reveals that the two N-terminal marginally hydrophobic domains of NS4B confer EMC dependency. Furthermore, altering the hydrophobicity of these two marginally hydrophobic domains relieves NS4B’s EMC dependency. We demonstrate that NS4B biogenesis, but not its stability, is reduced in EMC-depleted cells. Our data suggest that the EMC acts as a multi-pass transmembrane chaperone required for expression of at least two virally encoded proteins essential for flavivirus infection and point to a shared vulnerability during the viral life cycle that could be exploited for antiviral therapy. Multiple genetic screens have identified the ER membrane protein complex (EMC) as essential for infection by dengue and Zika flaviviruses. Lin et al. demonstrate that efficient biogenesis of the viral non-structural proteins NS4A and NS4B requires the EMC.
Collapse
|
155
|
Chua NK, Coates HW, Brown AJ. Squalene monooxygenase: a journey to the heart of cholesterol synthesis. Prog Lipid Res 2020; 79:101033. [DOI: 10.1016/j.plipres.2020.101033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
|
156
|
Xu C, Ma W, Wang K, He K, Chen Z, Liu J, Yang K, Yuan B. Correlation between Single-Molecule Dynamics and Biological Functions of Antimicrobial Peptide Melittin. J Phys Chem Lett 2020; 11:4834-4841. [PMID: 32478521 DOI: 10.1021/acs.jpclett.0c01169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many fundamental biological processes occur on cell membranes, and a typical example is the membrane permeabilization by peptides for an antimicrobial purpose. Previous studies of the underlying mechanism mostly focus on structural changes of membranes and peptides during their interactions. Herein, from a new perspective of single-molecule dynamics, the real-time three-dimensional motions of individual phospholipid and peptide molecules were monitored, and specifically, their correlation with the membrane poration function of melittin, a most representative natural antimicrobial peptide, was studied. We found that the adsorption and accumulation of melittin on the membrane surface significantly sped up the lateral diffusion of lipids surrounding the peptides, which in turn facilitated the peptide insertion at such heterogeneous regions. A unique "U"-bending pathway of melittin during membrane insertion and the ultimate formation of toroidal pores with dynamical translocations of peptides and lipids with several metastable states between the two leaflets of bilayer were observed.
Collapse
Affiliation(s)
- Cheng Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Wendong Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Kang Wang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Kejie He
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Zhonglan Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Jiaojiao Liu
- College of Physics and Electronic Engineering & Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, P. R. China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
157
|
Bai L, You Q, Feng X, Kovach A, Li H. Structure of the ER membrane complex, a transmembrane-domain insertase. Nature 2020; 584:475-478. [PMID: 32494008 PMCID: PMC7442705 DOI: 10.1038/s41586-020-2389-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/07/2020] [Indexed: 11/24/2022]
Abstract
The ER membrane complex (EMC) cooperates with the Sec61 translocon to co-translationally insert a transmembrane helix (TMH) of many multi-pass integral membrane proteins into the ER membrane, and it is also responsible for inserting the TMH of some tail-anchored proteins 1–3. How EMC accomplishes this feat has been unclear. Here we report the first cryo-EM structure of the eukaryotic EMC. We found that the Saccharomyces cerevisiae EMC contains eight subunits (Emc1–6, 7, and 10); has a large lumenal region and a smaller cytosolic region; and has a transmembrane region formed by Emc4, 5, and 6 plus the transmembrane domains (TMDs) of Emc1 and 3. We identified a 5-TMH fold centered around Emc3 that resembles the prokaryotic insertase YidC and that delineates a largely hydrophilic client pocket. The TMD of Emc4 tilts away from the main transmembrane region of EMC and is partially mobile. Mutational studies demonstrated that Emc4 flexibility and the hydrophilicity of the client pocket are required for EMC function. The EMC structure reveals a remarkable evolutionary conservation with the prokaryotic insertases 4,5; suggests a similar mechanism of TMH insertion; and provides a framework for detailed understanding of membrane insertion for numerous eukaryotic integral membrane proteins and tail-anchored proteins.
Collapse
Affiliation(s)
- Lin Bai
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA.
| | - Qinglong You
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Xiang Feng
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Amanda Kovach
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
158
|
O'Donnell JP, Phillips BP, Yagita Y, Juszkiewicz S, Wagner A, Malinverni D, Keenan RJ, Miller EA, Hegde RS. The architecture of EMC reveals a path for membrane protein insertion. eLife 2020; 9:e57887. [PMID: 32459176 PMCID: PMC7292650 DOI: 10.7554/elife.57887] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/26/2020] [Indexed: 12/29/2022] Open
Abstract
Approximately 25% of eukaryotic genes code for integral membrane proteins that are assembled at the endoplasmic reticulum. An abundant and widely conserved multi-protein complex termed EMC has been implicated in membrane protein biogenesis, but its mechanism of action is poorly understood. Here, we define the composition and architecture of human EMC using biochemical assays, crystallography of individual subunits, site-specific photocrosslinking, and cryo-EM reconstruction. Our results suggest that EMC's cytosolic domain contains a large, moderately hydrophobic vestibule that can bind a substrate's transmembrane domain (TMD). The cytosolic vestibule leads into a lumenally-sealed, lipid-exposed intramembrane groove large enough to accommodate a single substrate TMD. A gap between the cytosolic vestibule and intramembrane groove provides a potential path for substrate egress from EMC. These findings suggest how EMC facilitates energy-independent membrane insertion of TMDs, explain why only short lumenal domains are translocated by EMC, and constrain models of EMC's proposed chaperone function.
Collapse
Affiliation(s)
| | - Ben P Phillips
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Yuichi Yagita
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | | | | | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | | | | |
Collapse
|
159
|
Pleiner T, Tomaleri GP, Januszyk K, Inglis AJ, Hazu M, Voorhees RM. Structural basis for membrane insertion by the human ER membrane protein complex. Science 2020; 369:433-436. [PMID: 32439656 DOI: 10.1126/science.abb5008] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/12/2020] [Indexed: 12/23/2022]
Abstract
A defining step in the biogenesis of a membrane protein is the insertion of its hydrophobic transmembrane helices into the lipid bilayer. The nine-subunit endoplasmic reticulum (ER) membrane protein complex (EMC) is a conserved co- and posttranslational insertase at the ER. We determined the structure of the human EMC in a lipid nanodisc to an overall resolution of 3.4 angstroms by cryo-electron microscopy, permitting building of a nearly complete atomic model. We used structure-guided mutagenesis to demonstrate that substrate insertion requires a methionine-rich cytosolic loop and occurs via an enclosed hydrophilic vestibule within the membrane formed by the subunits EMC3 and EMC6. We propose that the EMC uses local membrane thinning and a positively charged patch to decrease the energetic barrier for insertion into the bilayer.
Collapse
Affiliation(s)
- Tino Pleiner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Giovani Pinton Tomaleri
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Kurt Januszyk
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Alison J Inglis
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA.
| |
Collapse
|
160
|
Janezic EM, Lauer SML, Williams RG, Chungyoun M, Lee KS, Navaluna E, Lau HT, Ong SE, Hague C. N-glycosylation of α 1D-adrenergic receptor N-terminal domain is required for correct trafficking, function, and biogenesis. Sci Rep 2020; 10:7209. [PMID: 32350295 PMCID: PMC7190626 DOI: 10.1038/s41598-020-64102-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/09/2020] [Indexed: 01/21/2023] Open
Abstract
G protein-coupled receptor (GPCR) biogenesis, trafficking, and function are regulated by post-translational modifications, including N-glycosylation of asparagine residues. α1D-adrenergic receptors (α1D-ARs) - key regulators of central and autonomic nervous system function - contain two putative N-glycosylation sites within the large N-terminal domain at N65 and N82. However, determining the glycosylation state of this receptor has proven challenging. Towards understanding the role of these putative glycosylation sites, site-directed mutagenesis and lectin affinity purification identified N65 and N82 as bona fide acceptors for N-glycans. Surprisingly, we also report that simultaneously mutating N65 and N82 causes early termination of α1D-AR between transmembrane domain 2 and 3. Label-free dynamic mass redistribution and cell surface trafficking assays revealed that single and double glycosylation deficient mutants display limited function with impaired plasma membrane expression. Confocal microscopy imaging analysis and SNAP-tag sucrose density fractionation assays revealed the dual glycosylation mutant α1D-AR is widely distributed throughout the cytosol and nucleus. Based on these novel findings, we propose α1D-AR transmembrane domain 2 acts as an ER localization signal during active protein biogenesis, and that α1D-AR N-terminal glycosylation is required for complete translation of nascent, functional receptor.
Collapse
Affiliation(s)
- Eric M Janezic
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Sophia My-Linh Lauer
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Robert George Williams
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Michael Chungyoun
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Kyung-Soon Lee
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Edelmar Navaluna
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Ho-Tak Lau
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Shao-En Ong
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Chris Hague
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA.
| |
Collapse
|
161
|
Volkmar N, Christianson JC. Squaring the EMC - how promoting membrane protein biogenesis impacts cellular functions and organismal homeostasis. J Cell Sci 2020; 133:133/8/jcs243519. [PMID: 32332093 PMCID: PMC7188443 DOI: 10.1242/jcs.243519] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Integral membrane proteins play key functional roles at organelles and the plasma membrane, necessitating their efficient and accurate biogenesis to ensure appropriate targeting and activity. The endoplasmic reticulum membrane protein complex (EMC) has recently emerged as an important eukaryotic complex for biogenesis of integral membrane proteins by promoting insertion and stability of atypical and sub-optimal transmembrane domains (TMDs). Although confirmed as a bona fide complex almost a decade ago, light is just now being shed on the mechanism and selectivity underlying the cellular responsibilities of the EMC. In this Review, we revisit the myriad of functions attributed the EMC through the lens of these new mechanistic insights, to address questions of the cellular and organismal roles the EMC has evolved to undertake. Summary: The EMC is an important factor facilitating membrane protein biogenesis. Here we discuss the broad cellular and organismal responsibilities overseen by client proteins requiring the EMC for maturation.
Collapse
Affiliation(s)
- Norbert Volkmar
- Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - John C Christianson
- Oxford Centre for Translational Myeloma Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Botnar Research Centre, Headington, Oxford OX3 7LD, UK
| |
Collapse
|
162
|
Zhang M, Liu L, Lin X, Wang Y, Li Y, Guo Q, Li S, Sun Y, Tao X, Zhang D, Lv X, Zheng L, Ge L. A Translocation Pathway for Vesicle-Mediated Unconventional Protein Secretion. Cell 2020; 181:637-652.e15. [PMID: 32272059 DOI: 10.1016/j.cell.2020.03.031] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/22/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Many cytosolic proteins lacking a signal peptide, called leaderless cargoes, are secreted through unconventional secretion. Vesicle trafficking is a major pathway involved. It is unclear how leaderless cargoes enter into the vesicle. Here, we find a translocation pathway regulating vesicle entry and secretion of leaderless cargoes. We identify TMED10 as a protein channel for the vesicle entry and secretion of many leaderless cargoes. The interaction of TMED10 C-terminal region with a motif in the cargo accounts for the selective release of the cargoes. In an in vitro reconstitution assay, TMED10 directly mediates the membrane translocation of leaderless cargoes into the liposome, which is dependent on protein unfolding and enhanced by HSP90s. In the cell, TMED10 localizes on the endoplasmic reticulum (ER)-Golgi intermediate compartment and directs the entry of cargoes into this compartment. Furthermore, cargo induces the formation of TMED10 homo-oligomers which may act as a protein channel for cargo translocation.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qing Guo
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuxin Sun
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuan Tao
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Di Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiachen Lv
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Zheng
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
163
|
Leznicki P, High S. SGTA associates with nascent membrane protein precursors. EMBO Rep 2020; 21:e48835. [PMID: 32216016 PMCID: PMC7202230 DOI: 10.15252/embr.201948835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 01/15/2023] Open
Abstract
The endoplasmic reticulum (ER) is a major site for membrane protein synthesis in eukaryotes. The majority of integral membrane proteins are delivered to the ER membrane via the co‐translational, signal recognition particle (SRP)‐dependent route. However, tail‐anchored proteins employ an alternative, post‐translational route(s) that relies on distinct factors such as a cytosolic protein quality control component, SGTA. We now show that SGTA is selectively recruited to ribosomes synthesising a diverse range of membrane proteins, suggesting that its biosynthetic client base also includes precursors on the co‐translational ER delivery pathway. Strikingly, SGTA is recruited to nascent membrane proteins before their transmembrane domain emerges from the ribosome. Hence, SGTA is ideally placed to capture these aggregation prone regions shortly after their synthesis. For nascent membrane proteins on the co‐translational pathway, SGTA complements the role of SRP by reducing the co‐translational ubiquitination of clients with multiple hydrophobic signal sequences. On this basis, we propose that SGTA acts to mask specific transmembrane domains located in complex membrane proteins until they can engage the ER translocon and become membrane inserted.
Collapse
Affiliation(s)
- Pawel Leznicki
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
164
|
Labeau A, Simon-Loriere E, Hafirassou ML, Bonnet-Madin L, Tessier S, Zamborlini A, Dupré T, Seta N, Schwartz O, Chaix ML, Delaugerre C, Amara A, Meertens L. A Genome-Wide CRISPR-Cas9 Screen Identifies the Dolichol-Phosphate Mannose Synthase Complex as a Host Dependency Factor for Dengue Virus Infection. J Virol 2020; 94:e01751-19. [PMID: 31915280 PMCID: PMC7081898 DOI: 10.1128/jvi.01751-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus responsible for dengue disease, a major human health concern for which no specific therapies are available. Like other viruses, DENV relies heavily on the host cellular machinery for productive infection. In this study, we performed a genome-wide CRISPR-Cas9 screen using haploid HAP1 cells to identify host genes important for DENV infection. We identified DPM1 and -3, two subunits of the endoplasmic reticulum (ER) resident dolichol-phosphate mannose synthase (DPMS) complex, as host dependency factors for DENV and other related flaviviruses, such as Zika virus (ZIKV). The DPMS complex catalyzes the synthesis of dolichol-phosphate mannose (DPM), which serves as mannosyl donor in pathways leading to N-glycosylation, glycosylphosphatidylinositol (GPI) anchor biosynthesis, and C- or O-mannosylation of proteins in the ER lumen. Mutation in the DXD motif of DPM1, which is essential for its catalytic activity, abolished DPMS-mediated DENV infection. Similarly, genetic ablation of ALG3, a mannosyltransferase that transfers mannose to lipid-linked oligosaccharide (LLO), rendered cells poorly susceptible to DENV. We also established that in cells deficient for DPMS activity, viral RNA amplification is hampered and truncated oligosaccharides are transferred to the viral prM and E glycoproteins, affecting their proper folding. Overall, our study provides new insights into the host-dependent mechanisms of DENV infection and supports current therapeutic approaches using glycosylation inhibitors to treat DENV infection.IMPORTANCE Dengue disease, which is caused by dengue virus (DENV), has emerged as the most important mosquito-borne viral disease in humans and is a major global health concern. DENV encodes only few proteins and relies on the host cell machinery to accomplish its life cycle. The identification of the host factors important for DENV infection is needed to propose new targets for antiviral intervention. Using a genome-wide CRISPR-Cas9 screen, we identified DPM1 and -3, two subunits of the DPMS complex, as important host factors for the replication of DENV as well as other related viruses such as Zika virus. We established that DPMS complex plays dual roles during viral infection, both regulating viral RNA replication and promoting viral structural glycoprotein folding/stability. These results provide insights into the host molecules exploited by DENV and other flaviviruses to facilitate their life cycle.
Collapse
Affiliation(s)
- Athena Labeau
- INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| | | | - Mohamed-Lamine Hafirassou
- INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Lucie Bonnet-Madin
- INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Sarah Tessier
- INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Alessia Zamborlini
- INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thierry Dupré
- Laboratoire de Biochimie, Hôpital Bichat-Claude Bernard, Paris, France
| | - Nathalie Seta
- Laboratoire de Biochimie, Hôpital Bichat-Claude Bernard, Paris, France
| | - Olivier Schwartz
- Institut Pasteur, Virus and Immunity Unit, CNRS-UMR3569, Paris, France
| | - Marie-Laure Chaix
- INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
- Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, APHP, Paris, France
| | - Constance Delaugerre
- INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
- Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, APHP, Paris, France
| | - Ali Amara
- INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Laurent Meertens
- INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
165
|
Selective EMC subunits act as molecular tethers of intracellular organelles exploited during viral entry. Nat Commun 2020; 11:1127. [PMID: 32111841 PMCID: PMC7048770 DOI: 10.1038/s41467-020-14967-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/10/2020] [Indexed: 12/22/2022] Open
Abstract
Although viruses must navigate the complex host endomembrane system to infect cells, the strategies used to achieve this is unclear. During entry, polyomavirus SV40 is sorted from the late endosome (LE) to the endoplasmic reticulum (ER) to cause infection, yet how this is accomplished remains enigmatic. Here we find that EMC4 and EMC7, two ER membrane protein complex (EMC) subunits, support SV40 infection by promoting LE-to-ER targeting of the virus. They do this by engaging LE-associated Rab7, presumably to stabilize contact between the LE and ER. These EMC subunits also bind to the ER-resident fusion machinery component syntaxin18, which is required for SV40-arrival to the ER. Our data suggest that EMC4 and EMC7 act as molecular tethers, inter-connecting two intracellular compartments to enable efficient transport of a virus between these compartments. As LE-to-ER transport of cellular cargos is unclear, our results have broad implications for illuminating inter-organelle cargo transport. The endoplasmic reticulum membrane protein complex (EMC) is known to play a role in SV40 viral infection but precise mechanisms are unclear. Here, the authors report that the EMC acts as tether of late endosome–endoplasmic reticulum interorganellar membrane contact sites to promote SV40 viral infection.
Collapse
|
166
|
Luesch H, Paavilainen VO. Natural products as modulators of eukaryotic protein secretion. Nat Prod Rep 2020; 37:717-736. [PMID: 32067014 DOI: 10.1039/c9np00066f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: up to the end of 2019Diverse natural product small molecules have allowed critical insights into processes that govern eukaryotic cells' ability to secrete cytosolically synthesized secretory proteins into their surroundings or to insert newly synthesized integral membrane proteins into the lipid bilayer of the endoplasmic reticulum. In addition, many components of the endoplasmic reticulum, required for protein homeostasis or other processes such as lipid metabolism or maintenance of calcium homeostasis, are being investigated for their potential in modulating human disease conditions such as cancer, neurodegenerative conditions and diabetes. In this review, we cover recent findings up to the end of 2019 on natural products that influence protein secretion or impact ER protein homeostasis, and serve as powerful chemical tools to understand protein flux through the mammalian secretory pathway and as leads for the discovery of new therapeutics.
Collapse
Affiliation(s)
- Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, P.O. Box 100485, Gainesville, Florida 32610, USA.
| | | |
Collapse
|
167
|
Ito K, Shimokawa-Chiba N, Chiba S. Sec translocon has an insertase-like function in addition to polypeptide conduction through the channel. F1000Res 2020; 8. [PMID: 32025287 PMCID: PMC6971846 DOI: 10.12688/f1000research.21065.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 11/20/2022] Open
Abstract
The Sec translocon provides a polypeptide-conducting channel, which is insulated from the hydrophobic lipidic environment of the membrane, for translocation of hydrophilic passenger polypeptides. Its lateral gate allows a downstream hydrophobic segment (stop-transfer sequence) to exit the channel laterally for integration into the lipid phase. We note that this channel model only partly accounts for the translocon function. The other essential role of translocon is to facilitate de novo insertion of the N-terminal topogenic segment of a substrate polypeptide into the membrane. Recent structural studies suggest that de novo insertion does not use the polypeptide-conducting channel; instead, it takes place directly at the lateral gate, which is prone to opening. We propose that the de novo insertion process, in concept, is similar to that of insertases (such as YidC in bacteria and EMC3 in eukaryotes), in which an intramembrane surface of the machinery provides the halfway point of insertion.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Naomi Shimokawa-Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
168
|
Abstract
The endoplasmic reticulum (ER) translocon complex is the main gate into the secretory pathway, facilitating the translocation of nascent peptides into the ER lumen or their integration into the lipid membrane. Protein biogenesis in the ER involves additional processes, many of them occurring co-translationally while the nascent protein resides at the translocon complex, including recruitment of ER-targeted ribosome-nascent-chain complexes, glycosylation, signal peptide cleavage, membrane protein topogenesis and folding. To perform such varied functions on a broad range of substrates, the ER translocon complex has different accessory components that associate with it either stably or transiently. Here, we review recent structural and functional insights into this dynamically constituted central hub in the ER and its components. Recent cryo-electron microscopy (EM) studies have dissected the molecular organization of the co-translational ER translocon complex, comprising the Sec61 protein-conducting channel, the translocon-associated protein complex and the oligosaccharyl transferase complex. Complemented by structural characterization of the post-translational import machinery, key molecular principles emerge that distinguish co- and post-translational protein import and biogenesis. Further cryo-EM structures promise to expand our mechanistic understanding of the various biochemical functions involving protein biogenesis and quality control in the ER.
Collapse
Affiliation(s)
- Max Gemmer
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Friedrich Förster
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
169
|
Abstract
Due to their topology tail-anchored (TA) proteins must target to the membrane independently of the co-translational route defined by the signal sequence recognition particle (SRP), its receptor and the translocon Sec61. More than a decade of work has extensively characterized a highly conserved pathway, the yeast GET or mammalian TRC40 pathway, which is capable of countering the biogenetic challenge posed by the C-terminal TA anchor. In this review we briefly summarize current models of this targeting route and focus on emerging aspects such as the intricate interplay with the proteostatic network of cells and with other targeting pathways. Importantly, we consider the lessons provided by the in vivo analysis of the pathway in different model organisms and by the consideration of its full client spectrum in more recent studies. This analysis of the state of the field highlights directions in which the current models may be experimentally probed and conceptually extended.
Collapse
Affiliation(s)
- Nica Borgese
- Institute of Neuroscience and BIOMETRA Department, Consiglio Nazionale delle Ricerche and Università degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy.
| | - Javier Coy-Vergara
- Department of Molecular Biology, University of Göttingen Medical Centre, Humboldtallee 23, 37073, Göttingen, Germany
| | - Sara Francesca Colombo
- Institute of Neuroscience and BIOMETRA Department, Consiglio Nazionale delle Ricerche and Università degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Blanche Schwappach
- Department of Molecular Biology, University of Göttingen Medical Centre, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
170
|
Lakshminarayan R, Phillips BP, Binnian IL, Gomez-Navarro N, Escudero-Urquijo N, Warren AJ, Miller EA. Pre-emptive Quality Control of a Misfolded Membrane Protein by Ribosome-Driven Effects. Curr Biol 2020; 30:854-864.e5. [PMID: 31956032 PMCID: PMC7063571 DOI: 10.1016/j.cub.2019.12.060] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/02/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022]
Abstract
Cells possess multiple mechanisms that protect against the accumulation of toxic aggregation-prone proteins. Here, we identify a pre-emptive pathway that reduces synthesis of membrane proteins that have failed to properly assemble in the endoplasmic reticulum (ER). We show that loss of the ER membrane complex (EMC) or mutation of the Sec61 translocon causes reduced synthesis of misfolded forms of the yeast ABC transporter Yor1. Synthesis defects are rescued by various ribosomal mutations, as well as by reducing cellular ribosome abundance. Genetic and biochemical evidence point to a ribosome-associated quality-control pathway triggered by ribosome collisions when membrane domain insertion and/or folding fails. In support of this model, translation initiation also contributes to synthesis defects, likely by modulating ribosome abundance on the message. Examination of translation efficiency across the yeast membrane proteome revealed that polytopic membrane proteins have relatively low ribosome abundance, providing evidence for translational tuning to balance protein synthesis and folding. We propose that by modulating translation rates of poorly folded proteins, cells can pre-emptively protect themselves from potentially toxic aberrant transmembrane proteins. Yor1-ΔF shows synthesis defects when Sec61 or EMC function is compromised Synthesis defects are suppressed by ribosomal and RQC mutants Translation initiation is a second point of potential regulation Pre-emptive quality control on the ER might protect the cell from aberrant proteins
Collapse
Affiliation(s)
- Ramya Lakshminarayan
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave., New York, NY 10027, USA
| | - Ben P Phillips
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave., Cambridge CB2 0QH, UK
| | - Imogen L Binnian
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave., Cambridge CB2 0QH, UK
| | - Natalia Gomez-Navarro
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave., Cambridge CB2 0QH, UK
| | - Norberto Escudero-Urquijo
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Puddicomb Way, Cambridge CB2 0AW, UK
| | - Alan J Warren
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Puddicomb Way, Cambridge CB2 0AW, UK
| | - Elizabeth A Miller
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave., New York, NY 10027, USA; Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave., Cambridge CB2 0QH, UK.
| |
Collapse
|
171
|
Shan SO. Guiding tail-anchored membrane proteins to the endoplasmic reticulum in a chaperone cascade. J Biol Chem 2019; 294:16577-16586. [PMID: 31575659 PMCID: PMC6851334 DOI: 10.1074/jbc.rev119.006197] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Newly synthesized integral membrane proteins must traverse the aqueous cytosolic environment before arrival at their membrane destination and are prone to aggregation, misfolding, and mislocalization during this process. The biogenesis of integral membrane proteins therefore poses acute challenges to protein homeostasis within a cell and requires the action of effective molecular chaperones. Chaperones that mediate membrane protein targeting not only need to protect the nascent transmembrane domains from improper exposure in the cytosol, but also need to accurately select client proteins and actively guide their clients to the appropriate target membrane. The mechanisms by which cellular chaperones work together to coordinate this complex process are only beginning to be delineated. Here, we summarize recent advances in studies of the tail-anchored membrane protein targeting pathway, which revealed a network of chaperones, cochaperones, and targeting factors that together drive and regulate this essential process. This pathway is emerging as an excellent model system to decipher the mechanism by which molecular chaperones overcome the multiple challenges during post-translational membrane protein biogenesis and to gain insights into the functional organization of multicomponent chaperone networks.
Collapse
Affiliation(s)
- Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
172
|
Hegde RS, Zavodszky E. Recognition and Degradation of Mislocalized Proteins in Health and Disease. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033902. [PMID: 30833453 DOI: 10.1101/cshperspect.a033902] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A defining feature of eukaryotic cells is the segregation of complex biochemical processes among different intracellular compartments. The protein targeting, translocation, and trafficking pathways that sustain compartmentalization must recognize a diverse range of clients via degenerate signals. This recognition is imperfect, resulting in polypeptides at incorrect cellular locations. Cells have evolved mechanisms to selectively recognize mislocalized proteins and triage them for degradation or rescue. These spatial quality control pathways maintain cellular protein homeostasis, become especially important during organelle stress, and might contribute to disease when they are impaired or overwhelmed.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Eszter Zavodszky
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
173
|
Morgens DW, Chan C, Kane AJ, Weir NR, Li A, Dubreuil MM, Tsui CK, Hess GT, Lavertu A, Han K, Polyakov N, Zhou J, Handy EL, Alabi P, Dombroski A, Yao D, Altman RB, Sello JK, Denic V, Bassik MC. Retro-2 protects cells from ricin toxicity by inhibiting ASNA1-mediated ER targeting and insertion of tail-anchored proteins. eLife 2019; 8:48434. [PMID: 31674906 PMCID: PMC6858068 DOI: 10.7554/elife.48434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
The small molecule Retro-2 prevents ricin toxicity through a poorly-defined mechanism of action (MOA), which involves halting retrograde vesicle transport to the endoplasmic reticulum (ER). CRISPRi genetic interaction analysis revealed Retro-2 activity resembles disruption of the transmembrane domain recognition complex (TRC) pathway, which mediates post-translational ER-targeting and insertion of tail-anchored (TA) proteins, including SNAREs required for retrograde transport. Cell-based and in vitro assays show that Retro-2 blocks delivery of newly-synthesized TA-proteins to the ER-targeting factor ASNA1 (TRC40). An ASNA1 point mutant identified using CRISPR-mediated mutagenesis abolishes both the cytoprotective effect of Retro-2 against ricin and its inhibitory effect on ASNA1-mediated ER-targeting. Together, our work explains how Retro-2 prevents retrograde trafficking of toxins by inhibiting TA-protein targeting, describes a general CRISPR strategy for predicting the MOA of small molecules, and paves the way for drugging the TRC pathway to treat broad classes of viruses known to be inhibited by Retro-2.
Collapse
Affiliation(s)
- David W Morgens
- Department of Genetics, Stanford University, Stanford, United States
| | - Charlene Chan
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Andrew J Kane
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Nicholas R Weir
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Amy Li
- Department of Genetics, Stanford University, Stanford, United States
| | | | - C Kimberly Tsui
- Department of Genetics, Stanford University, Stanford, United States
| | - Gaelen T Hess
- Department of Genetics, Stanford University, Stanford, United States
| | - Adam Lavertu
- Biomedical Informatics Training Program, Stanford University, Stanford, United States
| | - Kyuho Han
- Department of Genetics, Stanford University, Stanford, United States
| | - Nicole Polyakov
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Jing Zhou
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Emma L Handy
- Department of Chemistry, Brown University, Providence, United States
| | - Philip Alabi
- Department of Chemistry, Brown University, Providence, United States
| | - Amanda Dombroski
- Department of Chemistry, Brown University, Providence, United States
| | - David Yao
- Department of Genetics, Stanford University, Stanford, United States
| | - Russ B Altman
- Department of Genetics, Stanford University, Stanford, United States.,Bioengineering, Stanford University, Stanford, United States
| | - Jason K Sello
- Department of Chemistry, Brown University, Providence, United States
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, United States.,Program in Cancer Biology, Stanford University, Stanford, United States.,Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, United States
| |
Collapse
|
174
|
Abstract
A subset of membrane proteins is targeted to and inserted into the membrane via a hydrophobic transmembrane domain (TMD) that is positioned at the very C terminus of the protein. The biogenesis of these so-called tail-anchored proteins (TAMPs) has been studied in detail in eukaryotic cells. Various partly redundant pathways were identified, the choice for which depends in part on the hydrophobicity of the TMD. Much less is known about bacterial TAMPs. The significance of our research is in identifying the role of TMD hydrophobicity in the routing of E. coli TAMPs. Our data suggest that both the nature of the TMD and its role in routing can be very different for TAMPs versus “regular” membrane proteins. Elucidating these position-specific effects of TMDs will increase our understanding of how prokaryotic cells face the challenge of producing a wide variety of membrane proteins. Tail-anchored membrane proteins (TAMPs) are a distinct subset of inner membrane proteins (IMPs) characterized by a single C-terminal transmembrane domain (TMD) that is responsible for both targeting and anchoring. Little is known about the routing of TAMPs in bacteria. Here, we have investigated the role of TMD hydrophobicity in tail-anchor function in Escherichia coli and its influence on the choice of targeting/insertion pathway. We created a set of synthetic, fluorescent TAMPs that vary in the hydrophobicity of their TMDs and corresponding control polypeptides that are extended at their C terminus to create regular type II IMPs. Surprisingly, we observed that TAMPs have a much lower TMD hydrophobicity threshold for efficient targeting and membrane insertion than their type II counterparts. Using strains conditional for the expression of known membrane-targeting and insertion factors, we show that TAMPs with strongly hydrophobic TMDs require the signal recognition particle (SRP) for targeting. Neither the SecYEG translocon nor YidC appears to be essential for the membrane insertion of any of the TAMPs studied. In contrast, corresponding type II IMPs with a TMD of sufficient hydrophobicity to promote membrane insertion followed an SRP- and SecYEG translocon-dependent pathway. Together, these data indicate that the capacity of a TMD to promote the biogenesis of E. coli IMPs is strongly dependent upon the polypeptide context in which it is presented.
Collapse
|
175
|
Yokoo H, Kagechika H, Ohsaki A, Hirano T. A Polarity‐Sensitive Fluorescent Amino Acid and its Incorporation into Peptides for the Ratiometric Detection of Biomolecular Interactions. Chempluschem 2019; 84:1716-1719. [DOI: 10.1002/cplu.201900489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/04/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Hidetomo Yokoo
- Institute of Biomaterials and BioengineeringTokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and BioengineeringTokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Ayumi Ohsaki
- College of Humanities and SciencesNihon University 3-25-40 Sakurajosui, Setagaya-ku Tokyo 156-8550 Japan
| | - Tomoya Hirano
- Osaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| |
Collapse
|
176
|
Abstract
One-fourth of eukaryotic genes code for integral membrane proteins, nearly all of which are inserted and assembled at the endoplasmic reticulum (ER). The defining feature of membrane proteins is one or more transmembrane domains (TMDs). During membrane protein biogenesis, TMDs are selectively recognized, shielded, and chaperoned into the lipid bilayer, where they often assemble with other TMDs. If maturation fails, exposed TMDs serve as a cue for engagement of degradation pathways. Thus, TMD-recognition factors in the cytosol and ER are essential for membrane protein biogenesis and quality control. Here, we discuss the growing assortment of cytosolic and membrane-embedded TMD-recognition factors, the pathways within which they operate, and mechanistic principles of recognition.
Collapse
|
177
|
Busby BP, Niktab E, Roberts CA, Sheridan JP, Coorey NV, Senanayake DS, Connor LM, Munkacsi AB, Atkinson PH. Genetic interaction networks mediate individual statin drug response in Saccharomyces cerevisiae. NPJ Syst Biol Appl 2019; 5:35. [PMID: 31602312 PMCID: PMC6776536 DOI: 10.1038/s41540-019-0112-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/20/2019] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic genetic interaction networks (GINs) are extensively described in the Saccharomyces cerevisiae S288C model using deletion libraries, yet being limited to this one genetic background, not informative to individual drug response. Here we created deletion libraries in three additional genetic backgrounds. Statin response was probed with five queries against four genetic backgrounds. The 20 resultant GINs representing drug-gene and gene-gene interactions were not conserved by functional enrichment, hierarchical clustering, and topology-based community partitioning. An unfolded protein response (UPR) community exhibited genetic background variation including different betweenness genes that were network bottlenecks, and we experimentally validated this UPR community via measurements of the UPR that were differentially activated and regulated in statin-resistant strains relative to the statin-sensitive S288C background. These network analyses by topology and function provide insight into the complexity of drug response influenced by genetic background.
Collapse
Affiliation(s)
- Bede P. Busby
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Eliatan Niktab
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Christina A. Roberts
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jeffrey P. Sheridan
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Namal V. Coorey
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Dinindu S. Senanayake
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Lisa M. Connor
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Andrew B. Munkacsi
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Paul H. Atkinson
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
178
|
Wang S, Jomaa A, Jaskolowski M, Yang CI, Ban N, Shan SO. The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA. Nat Struct Mol Biol 2019; 26:919-929. [PMID: 31570874 PMCID: PMC6858539 DOI: 10.1038/s41594-019-0297-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022]
Abstract
Cotranslational protein targeting is a conserved process for membrane protein biogenesis. In Escherichia coli, the essential ATPase SecA was found to cotranslationally target a subset of nascent membrane proteins to the SecYEG translocase at the plasma membrane. The molecular mechanism of this pathway remains unclear. Here we use biochemical and cryoelectron microscopy analyses to show that the amino-terminal amphipathic helix of SecA and the ribosomal protein uL23 form a composite binding site for the transmembrane domain (TMD) on the nascent protein. This binding mode further enables recognition of charged residues flanking the nascent TMD and thus explains the specificity of SecA recognition. Finally, we show that membrane-embedded SecYEG promotes handover of the translating ribosome from SecA to the translocase via a concerted mechanism. Our work provides a molecular description of the SecA-mediated cotranslational targeting pathway and demonstrates an unprecedented role of the ribosome in shielding nascent TMDs.
Collapse
Affiliation(s)
- Shuai Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Chien-I Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
179
|
Hiramatsu N, Tago T, Satoh T, Satoh AK. ER membrane protein complex is required for the insertions of late-synthesized transmembrane helices of Rh1 in Drosophila photoreceptors. Mol Biol Cell 2019; 30:2890-2900. [PMID: 31553680 PMCID: PMC6822582 DOI: 10.1091/mbc.e19-08-0434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Most membrane proteins are synthesized on and inserted into the membrane of the endoplasmic reticulum (ER), in eukaryote. The widely conserved ER membrane protein complex (EMC) facilitates the biogenesis of a wide range of membrane proteins. In this study, we investigated the EMC function using Drosophila photoreceptor as a model system. We found that the EMC was necessary only for the biogenesis of a subset of multipass membrane proteins such as rhodopsin (Rh1), TRP, TRPL, Csat, Cni, SERCA, and Na+K+ATPase α, but not for that of secretory or single-pass membrane proteins. Additionally, in EMC-deficient cells, Rh1 was translated to its C terminus but degraded independently from ER-associated degradation. Thus, EMC exerted its effect after translation but before or during the membrane integration of transmembrane domains (TMDs). Finally, we found that EMC was not required for the stable expression of the first three TMDs of Rh1 but was required for that of the fourth and fifth TMDs. Our results suggested that EMC is required for the ER membrane insertion of succeeding TMDs of multipass membrane proteins.
Collapse
Affiliation(s)
- Naoki Hiramatsu
- Program of Life and Environmental Sciences, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Tatsuya Tago
- Program of Life and Environmental Sciences, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Takunori Satoh
- Program of Life and Environmental Sciences, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Sciences, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
180
|
Ngo AM, Shurtleff MJ, Popova KD, Kulsuptrakul J, Weissman JS, Puschnik AS. The ER membrane protein complex is required to ensure correct topology and stable expression of flavivirus polyproteins. eLife 2019; 8:48469. [PMID: 31516121 PMCID: PMC6756788 DOI: 10.7554/elife.48469] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/13/2019] [Indexed: 12/27/2022] Open
Abstract
Flaviviruses translate their genomes as multi-pass transmembrane proteins at the endoplasmic reticulum (ER) membrane. Here, we show that the ER membrane protein complex (EMC) is indispensable for the expression of viral polyproteins. We demonstrated that EMC was essential for accurate folding and post-translational stability rather than translation efficiency. Specifically, we revealed degradation of NS4A-NS4B, a region rich in transmembrane domains, in absence of EMC. Orthogonally, by serial passaging of virus on EMC-deficient cells, we identified two non-synonymous point mutations in NS4A and NS4B, which rescued viral replication. Finally, we showed a physical interaction between EMC and viral NS4B and that the NS4A-4B region adopts an aberrant topology in the absence of the EMC leading to degradation. Together, our data highlight how flaviviruses hijack the EMC for transmembrane protein biogenesis to achieve optimal expression of their polyproteins, which reinforces a role for the EMC in stabilizing challenging transmembrane proteins during synthesis.
Collapse
Affiliation(s)
- Ashley M Ngo
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Matthew J Shurtleff
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Katerina D Popova
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | | | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | | |
Collapse
|
181
|
Rothan HA, Kumar M. Role of Endoplasmic Reticulum-Associated Proteins in Flavivirus Replication and Assembly Complexes. Pathogens 2019; 8:E148. [PMID: 31547236 PMCID: PMC6789530 DOI: 10.3390/pathogens8030148] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/29/2023] Open
Abstract
Flavivirus replication in host cells requires the formation of replication and assembly complexes on the cytoplasmic side of the endoplasmic reticulum (ER) membrane. These complexes consist of an ER membrane, viral proteins, and host proteins. Genome-wide investigations have identified a number of ER multiprotein complexes as vital factors for flavivirus replication. The detailed mechanisms of the role of ER complexes in flavivirus replication are still largely elusive. This review highlights the fact that the ER multiprotein complexes are crucial for the formation of flavivirus replication and assembly complexes, and the ER complexes could be considered as a target for developing successful broad-spectrum anti-flavivirus drugs.
Collapse
Affiliation(s)
- Hussin A Rothan
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
182
|
Verhagen JMA, van den Born M, van der Linde HC, G J Nikkels P, Verdijk RM, Kivlen MH, van Unen LMA, Baas AF, Ter Heide H, van Osch-Gevers L, Hoogeveen-Westerveld M, Herkert JC, Bertoli-Avella AM, van Slegtenhorst MA, Wessels MW, Verheijen FW, Hassel D, Hofstra RMW, Hegde RS, van Hasselt PM, van Ham TJ, van de Laar IMBH. Biallelic Variants in ASNA1, Encoding a Cytosolic Targeting Factor of Tail-Anchored Proteins, Cause Rapidly Progressive Pediatric Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:397-406. [PMID: 31461301 PMCID: PMC7205403 DOI: 10.1161/circgen.119.002507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Pediatric cardiomyopathies are a clinically and genetically heterogeneous group of heart muscle disorders associated with high morbidity and mortality. Although knowledge of the genetic basis of pediatric cardiomyopathy has improved considerably, the underlying cause remains elusive in a substantial proportion of cases.
Collapse
Affiliation(s)
- Judith M A Verhagen
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Myrthe van den Born
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Herma C van der Linde
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Peter G J Nikkels
- Department of Pathology (P.G.J.N.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Rob M Verdijk
- Department of Pathology (R.M.V.), Erasmus MC, University Medical Center Rotterdam
| | - Maryann H Kivlen
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, United Kingdom (M.H.K., R.S.H.)
| | - Leontine M A van Unen
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Annette F Baas
- Department of Genetics (A.F.B.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Henriette Ter Heide
- Department of Pediatric Cardiology (H.t.H.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Lennie van Osch-Gevers
- Department of Pediatric Cardiology (L.v.O.-G.), Erasmus MC, University Medical Center Rotterdam
| | - Marianne Hoogeveen-Westerveld
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Johanna C Herkert
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (J.C.H.)
| | | | - Marjon A van Slegtenhorst
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Marja W Wessels
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Frans W Verheijen
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - David Hassel
- Department of Medicine III, University Hospital Heidelberg, Germany (D.H.)
| | - Robert M W Hofstra
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, United Kingdom (M.H.K., R.S.H.)
| | - Peter M van Hasselt
- Department of Pediatrics (P.M.v.H.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| | - Ingrid M B H van de Laar
- Department of Clinical Genetics (J.M.A.V., M.v.d.B., H.C.v.d.L., L.M.A.v.U., M.H.-W., M.A.v.S., M.W.W., F.W.V., R.M.W.H., T.J.v.H., I.M.B.H.v.d.L.), Erasmus MC, University Medical Center Rotterdam
| |
Collapse
|
183
|
Talbot BE, Vandorpe DH, Stotter BR, Alper SL, Schlondorff JS. Transmembrane insertases and N-glycosylation critically determine synthesis, trafficking, and activity of the nonselective cation channel TRPC6. J Biol Chem 2019; 294:12655-12669. [PMID: 31266804 PMCID: PMC6709635 DOI: 10.1074/jbc.ra119.008299] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential cation channel subfamily C member 6 (TRPC6) is a widely expressed ion channel. Gain-of-function mutations in the human TRPC6 channel cause autosomal-dominant focal segmental glomerulosclerosis, but the molecular components involved in disease development remain unclear. Here, we found that overexpression of gain-of-function TRPC6 channel variants is cytotoxic in cultured cells. Exploiting this phenotype in a genome-wide CRISPR/Cas screen for genes whose inactivation rescues cells from TRPC6-associated cytotoxicity, we identified several proteins essential for TRPC6 protein expression, including the endoplasmic reticulum (ER) membrane protein complex transmembrane insertase. We also identified transmembrane protein 208 (TMEM208), a putative component of a signal recognition particle-independent (SND) ER protein-targeting pathway, as being necessary for expression of TRPC6 and several other ion channels and transporters. TRPC6 expression was also diminished by loss of the previously uncharacterized WD repeat domain 83 opposite strand (WDR83OS), which interacted with both TRPC6 and TMEM208. Additionally enriched among the screen hits were genes involved in N-linked protein glycosylation. Deletion of the mannosyl (α-1,3-)-glycoprotein β-1,2-N-acetylglucosaminyltransferase (MGAT1), necessary for the generation of complex N-linked glycans, abrogated TRPC6 gain-of-function variant-mediated Ca2+ influx and extracellular signal-regulated kinase activation in HEK cells, but failed to diminish cytotoxicity in cultured podocytes. However, mutating the two TRPC6 N-glycosylation sites abrogated the cytotoxicity of mutant TRPC6 and reduced its surface expression. These results expand the targets of TMEM208-mediated ER translocation to include multipass transmembrane proteins and suggest that TRPC6 N-glycosylation plays multiple roles in modulating channel trafficking and activity.
Collapse
Affiliation(s)
- Brianna E Talbot
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - David H Vandorpe
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Brian R Stotter
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Seth L Alper
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Johannes S Schlondorff
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
184
|
Carvalho HJF, Del Bondio A, Maltecca F, Colombo SF, Borgese N. The WRB Subunit of the Get3 Receptor is Required for the Correct Integration of its Partner CAML into the ER. Sci Rep 2019; 9:11887. [PMID: 31417168 PMCID: PMC6695381 DOI: 10.1038/s41598-019-48363-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/02/2019] [Indexed: 11/24/2022] Open
Abstract
Calcium-modulating cyclophilin ligand (CAML), together with Tryptophan rich basic protein (WRB, Get1 in yeast), constitutes the mammalian receptor for the Transmembrane Recognition Complex subunit of 40 kDa (TRC40, Get3 in yeast), a cytosolic ATPase with a central role in the post-translational targeting pathway of tail-anchored (TA) proteins to the endoplasmic reticulum (ER) membrane. CAML has also been implicated in other cell-specific processes, notably in immune cell survival, and has been found in molar excess over WRB in different cell types. Notwithstanding the stoichiometric imbalance, WRB and CAML depend strictly on each other for expression. Here, we investigated the mechanism by which WRB impacts CAML levels. We demonstrate that CAML, generated in the presence of sufficient WRB levels, is inserted into the ER membrane with three transmembrane segments (TMs) in its C-terminal region. By contrast, without sufficient levels of WRB, CAML fails to adopt this topology, and is instead incompletely integrated to generate two aberrant topoforms; these congregate in ER-associated clusters and are degraded by the proteasome. Our results suggest that WRB, a member of the recently proposed Oxa1 superfamily, acts catalytically to assist the topogenesis of CAML and may have wider functions in membrane biogenesis than previously appreciated.
Collapse
Affiliation(s)
- Hugo J F Carvalho
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano, I-20129, Milan, Italy.,Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Andrea Del Bondio
- Division of Neuroscience, Ospedale San Raffaele, I-20132, Milan, Italy
| | | | - Sara F Colombo
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano, I-20129, Milan, Italy.
| | - Nica Borgese
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano, I-20129, Milan, Italy.
| |
Collapse
|
185
|
iPla2β Deficiency Suppresses Hepatic ER UPR, Fxr, and Phospholipids in Mice Fed with MCD Diet, Resulting in Exacerbated Hepatic Bile Acids and Biliary Cell Proliferation. Cells 2019; 8:cells8080879. [PMID: 31409057 PMCID: PMC6721660 DOI: 10.3390/cells8080879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022] Open
Abstract
Background: Group VIA calcium-independent phospholipase A2 (iPla2β) regulates homeostasis and remodeling of phospholipids (PL). We previously showed that iPla2β-/- mice fed with a methionine-choline-deficient diet (MCD) exhibited exaggerated liver fibrosis. As iPla2β is located in the endoplasmic reticulum (ER), we investigated the mechanisms for this by focusing on hepatic ER unfolded protein response (UPR), ER PL, and enterohepatic bile acids (BA). Methods: Female WT (wild-type) and iPla2β-/- mice were fed with chow or MCD for 5 weeks. PL and BA profiles were measured by liquid chromatography-mass spectrometry. Gene expression analyses were performed. Results: MCD feeding of WT mice caused a decrease of ER PL subclasses, which were further decreased by iPla2β deficiency. This deficiency alone or combined with MCD downregulated the expression of liver ER UPR proteins and farnesoid X-activated receptor. The downregulation under MCD was concomitant with an elevation of BA in the liver and peripheral blood and an increase of biliary epithelial cell proliferation measured by cytokeratin 19. Conclusion: iPla2β deficiency combined with MCD severely disturbed ER PL composition and caused inactivation of UPR, leading to downregulated Fxr, exacerbated BA, and ductular proliferation. Our study provides insights into iPla2β inactivation for injury susceptibility under normal conditions and liver fibrosis and cholangiopathies during MCD feeding.
Collapse
|
186
|
Barrows NJ, Anglero-Rodriguez Y, Kim B, Jamison SF, Le Sommer C, McGee CE, Pearson JL, Dimopoulos G, Ascano M, Bradrick SS, Garcia-Blanco MA. Dual roles for the ER membrane protein complex in flavivirus infection: viral entry and protein biogenesis. Sci Rep 2019; 9:9711. [PMID: 31273220 PMCID: PMC6609633 DOI: 10.1038/s41598-019-45910-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
Hundreds of cellular host factors are required to support dengue virus infection, but their identity and roles are incompletely characterized. Here, we identify human host dependency factors required for efficient dengue virus-2 (DENV2) infection of human cells. We focused on two, TTC35 and TMEM111, which we previously demonstrated to be required for yellow fever virus (YFV) infection and others subsequently showed were also required by other flaviviruses. These proteins are components of the human endoplasmic reticulum membrane protein complex (EMC), which has roles in ER-associated protein biogenesis and lipid metabolism. We report that DENV, YFV and Zika virus (ZIKV) infections were strikingly inhibited, while West Nile virus infection was unchanged, in cells that lack EMC subunit 4. Furthermore, targeted depletion of EMC subunits in live mosquitoes significantly reduced DENV2 propagation in vivo. Using a novel uncoating assay, which measures interactions between host RNA-binding proteins and incoming viral RNA, we show that EMC is required at or prior to virus uncoating. Importantly, we uncovered a second and important role for the EMC. The complex is required for viral protein accumulation in a cell line harboring a ZIKV replicon, indicating that EMC participates in the complex process of viral protein biogenesis.
Collapse
Affiliation(s)
- Nicholas J Barrows
- Department of Microbiology and Molecular Genetics, and Center for RNA Biology, Duke University, Durham, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, USA
| | - Yesseinia Anglero-Rodriguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Byungil Kim
- Department of Biochemistry, Vanderbilt University, Nashville, USA
| | - Sharon F Jamison
- Department of Microbiology and Molecular Genetics, and Center for RNA Biology, Duke University, Durham, USA
| | - Caroline Le Sommer
- Department of Microbiology and Molecular Genetics, and Center for RNA Biology, Duke University, Durham, USA
| | | | - James L Pearson
- Department of Microbiology and Molecular Genetics, and Center for RNA Biology, Duke University, Durham, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University, Nashville, USA
| | - Shelton S Bradrick
- Department of Microbiology and Molecular Genetics, and Center for RNA Biology, Duke University, Durham, USA. .,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, USA.
| | - Mariano A Garcia-Blanco
- Department of Microbiology and Molecular Genetics, and Center for RNA Biology, Duke University, Durham, USA. .,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, USA. .,Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
187
|
Becker T, Song J, Pfanner N. Versatility of Preprotein Transfer from the Cytosol to Mitochondria. Trends Cell Biol 2019; 29:534-548. [PMID: 31030976 DOI: 10.1016/j.tcb.2019.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022]
Abstract
Mitochondrial biogenesis requires the import of a large number of precursor proteins from the cytosol. Although specific membrane-bound preprotein translocases have been characterized in detail, it was assumed that protein transfer from the cytosol to mitochondria mainly involved unselective binding to molecular chaperones. Recent findings suggest an unexpected versatility of protein transfer to mitochondria. Cytosolic factors have been identified that bind to selected subsets of preproteins and guide them to mitochondrial receptors in a post-translational manner. Cotranslational import processes are emerging. Mechanisms for crosstalk between protein targeting to mitochondria and other cell organelles, in particular the endoplasmic reticulum (ER) and peroxisomes, have been uncovered. We discuss how a network of cytosolic machineries and targeting pathways promote and regulate preprotein transfer into mitochondria.
Collapse
Affiliation(s)
- Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
188
|
Xiong L, Zhang L, Yang Y, Li N, Lai W, Wang F, Zhu X, Wang T. ER complex proteins are required for rhodopsin biosynthesis and photoreceptor survival in Drosophila and mice. Cell Death Differ 2019; 27:646-661. [PMID: 31263175 PMCID: PMC7206144 DOI: 10.1038/s41418-019-0378-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022] Open
Abstract
Defective rhodopsin homeostasis is one of the major causes of retinal degeneration, including the disease Retinitis pigmentosa. To identify cellular factors required for the biosynthesis of rhodopsin, we performed a genome-wide genetic screen in Drosophila for mutants with reduced levels of rhodopsin. We isolated loss-of-function alleles in endoplasmic reticulum membrane protein complex 3 (emc3), emc5, and emc6, each of which exhibited defective phototransduction and photoreceptor cell degeneration. EMC3, EMC5, and EMC6 were essential for rhodopsin synthesis independent of the ER associated degradation (ERAD) pathway, which eliminates misfolded proteins. We generated null mutations for all EMC subunits, and further demonstrated that different EMC subunits play roles in different cellular functions. Conditional knockout of the Emc3 gene in mice led to mislocalization of rhodopsin protein and death of cone and rod photoreceptor cells. These data indicate conserved roles for EMC subunits in maintaining rhodopsin homeostasis and photoreceptor function, and suggest that retinal degeneration may also be caused by defects in early biosynthesis of rhodopsin.
Collapse
Affiliation(s)
- Liangyao Xiong
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, 100871, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Lin Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Na Li
- Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Wenjia Lai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100871, China
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China. .,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China. .,Chinese Academy of Sciences Sichuan Translational Medicine Hospital, Chengdu, China. .,Department of Ophthalmology, First People's Hospital of Shangqiu, Shangqiu, Henan, China.
| | - Tao Wang
- National Institute of Biological Sciences, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100871, China.
| |
Collapse
|
189
|
Coy-Vergara J, Rivera-Monroy J, Urlaub H, Lenz C, Schwappach B. A trap mutant reveals the physiological client spectrum of TRC40. J Cell Sci 2019; 132:jcs.230094. [PMID: 31182645 PMCID: PMC6633398 DOI: 10.1242/jcs.230094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
The transmembrane recognition complex (TRC) pathway targets tail-anchored (TA) proteins to the membrane of the endoplasmic reticulum (ER). While many TA proteins are known to be able to use this pathway, it is essential for the targeting of only a few. Here, we uncover a large number of TA proteins that engage with TRC40 when other targeting machineries are fully operational. We use a dominant-negative ATPase-impaired mutant of TRC40 in which aspartate 74 was replaced by a glutamate residue to trap TA proteins in the cytoplasm. Manipulation of the hydrophobic TA-binding groove in TRC40 (also known as ASNA1) reduces interaction with most, but not all, substrates suggesting that co-purification may also reflect interactions unrelated to precursor protein targeting. We confirm known TRC40 substrates and identify many additional TA proteins interacting with TRC40. By using the trap approach in combination with quantitative mass spectrometry, we show that Golgi-resident TA proteins such as the golgins golgin-84, CASP and giantin as well as the vesicle-associated membrane-protein-associated proteins VAPA and VAPB interact with TRC40. Thus, our results provide new avenues to assess the essential role of TRC40 in metazoan organisms. This article has an associated First Person interview with the first author of the paper. Summary: A strategy to decipher which tail-anchored proteins do (as opposed to can or must) use the TRC pathway in intact cells generates a comprehensive list of human TRC40 clients.
Collapse
Affiliation(s)
- Javier Coy-Vergara
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Jhon Rivera-Monroy
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany.,Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany.,Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen 37073, Germany .,Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
190
|
Membrane phospholipid alteration causes chronic ER stress through early degradation of homeostatic ER-resident proteins. Sci Rep 2019; 9:8637. [PMID: 31201345 PMCID: PMC6572771 DOI: 10.1038/s41598-019-45020-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Phospholipid homeostasis in biological membranes is essential to maintain functions of organelles such as the endoplasmic reticulum. Phospholipid perturbation has been associated to cellular stress responses. However, in most cases, the implication of membrane lipid changes to homeostatic cellular response has not been clearly defined. Previously, we reported that Saccharomyces cerevisiae adapts to lipid bilayer stress by upregulating several protein quality control pathways such as the endoplasmic reticulum-associated degradation (ERAD) pathway and the unfolded protein response (UPR). Surprisingly, we observed certain ER-resident transmembrane proteins, which form part of the UPR programme, to be destabilised under lipid bilayer stress. Among these, the protein translocon subunit Sbh1 was prematurely degraded by membrane stiffening at the ER. Moreover, our findings suggest that the Doa10 complex recognises free Sbh1 that becomes increasingly accessible during lipid bilayer stress, perhaps due to the change in ER membrane properties. Premature removal of key ER-resident transmembrane proteins might be an underlying cause of chronic ER stress as a result of lipid bilayer stress.
Collapse
|
191
|
Dederer V, Khmelinskii A, Huhn AG, Okreglak V, Knop M, Lemberg MK. Cooperation of mitochondrial and ER factors in quality control of tail-anchored proteins. eLife 2019; 8:45506. [PMID: 31172943 PMCID: PMC6586462 DOI: 10.7554/elife.45506] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/06/2019] [Indexed: 01/04/2023] Open
Abstract
Tail-anchored (TA) proteins insert post-translationally into the endoplasmic reticulum (ER), the outer mitochondrial membrane (OMM) and peroxisomes. Whereas the GET pathway controls ER-targeting, no dedicated factors are known for OMM insertion, posing the question of how accuracy is achieved. The mitochondrial AAA-ATPase Msp1 removes mislocalized TA proteins from the OMM, but it is unclear, how Msp1 clients are targeted for degradation. Here we screened for factors involved in degradation of TA proteins mislocalized to mitochondria. We show that the ER-associated degradation (ERAD) E3 ubiquitin ligase Doa10 controls cytoplasmic level of Msp1 clients. Furthermore, we identified the uncharacterized OMM protein Fmp32 and the ectopically expressed subunit of the ER-mitochondria encounter structure (ERMES) complex Gem1 as native clients for Msp1 and Doa10. We propose that productive localization of TA proteins to the OMM is ensured by complex assembly, while orphan subunits are extracted by Msp1 and eventually degraded by Doa10.
Collapse
Affiliation(s)
- Verena Dederer
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Anton Khmelinskii
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Institute of Molecular Biology (IMB), Mainz, Germany
| | - Anna Gesine Huhn
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Voytek Okreglak
- Calico Life Sciences LLC, South San Francisco, United States
| | - Michael Knop
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marius K Lemberg
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
192
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
193
|
Li R, Wang X, Zhang X, Yu J, Feng J, Lv P, Lou Y, Chen Y. Ad5-EMC6 mediates antitumor activity in gastric cancer cells through the mitochondrial apoptosis pathway. Biochem Biophys Res Commun 2019; 513:663-668. [PMID: 30982575 DOI: 10.1016/j.bbrc.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/03/2019] [Indexed: 12/30/2022]
Abstract
Endoplasmic reticulum membrane protein complex subunit 6 (EMC6), also known as transmembrane protein 93 (transmembrane protein 93, TMEM93), is an autophagy-related protein. EMC6 overexpression inhibits cancer cell growth and induces apoptosis, but the interaction partners of EMC6 and its cellular responsibilities remain incompletely understood. In this study, we report that adenovirus-mediated ectopic overexpression of EMC6 (Ad5-EMC6) in BGC823 and SGC7901 gastric cancer cells decreases the activity of ERK1/2, down-regulates the levels of BCL-2 protein and phosphorylated BCL-2, increases the expression of tBID and BAX, and decreases mitochondrial membrane potential and subsequently leading to cell apoptosis. In a xenograft tumor model, we found that Ad5-EMC6 impairs the tumorigenesis of SGC7901 gastric cancer cells in nude mice. Additionally, Ad5-EMC6 enhances the sensitivity of gastric cancer cells to the chemotherapeutic drug etoposide. Collectively, these results demonstrate that EMC6-induced apoptosis of gastric cancer cells occurs at least partially through the mitochondrial-mediated apoptosis pathway. Our study suggests a rational basis for the potential clinical application of Ad5-EMC6 in gastric cancer.
Collapse
Affiliation(s)
- Riyong Li
- Department of Immunology, Peking University School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Xiaokun Wang
- Functional Testing of Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Xuan Zhang
- Department of Immunology, Peking University School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Jiahong Yu
- Department of Immunology, Peking University School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Jinqiu Feng
- Department of Immunology, Peking University School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Ping Lv
- Department of Immunology, Peking University School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Yaxin Lou
- Medical and Healthy Analytical Center, Peking University, Beijing, 100191, China.
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
| |
Collapse
|
194
|
Lackner LL. The Expanding and Unexpected Functions of Mitochondria Contact Sites. Trends Cell Biol 2019; 29:580-590. [PMID: 30929794 DOI: 10.1016/j.tcb.2019.02.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
Mitochondria make functionally relevant contacts with most, if not all, other organelles in the cell. These contacts impact on mitochondrial behavior and function as well as on a wide variety of cellular functions. Many recent advances have been made in the rapidly growing field of mitochondria contact site biology, and these advances have expanded the known functions of mitochondria contact sites in exciting and unexpected ways.
Collapse
Affiliation(s)
- Laura L Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
195
|
Exner T, Romero-Brey I, Yifrach E, Rivera-Monroy J, Schrul B, Zouboulis CC, Stremmel W, Honsho M, Bartenschlager R, Zalckvar E, Poppelreuther M, Füllekrug J. An alternative membrane topology permits lipid droplet localization of peroxisomal fatty acyl-CoA reductase 1. J Cell Sci 2019; 132:jcs.223016. [PMID: 30745342 DOI: 10.1242/jcs.223016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/01/2019] [Indexed: 01/02/2023] Open
Abstract
Fatty acyl-CoA reductase 1 (Far1) is a ubiquitously expressed peroxisomal membrane protein that generates the fatty alcohols required for the biosynthesis of ether lipids. Lipid droplet localization of exogenously expressed and endogenous human Far1 was observed by fluorescence microscopy under conditions of increased triglyceride synthesis in tissue culture cells. This unexpected finding was supported further by correlative light electron microscopy and subcellular fractionation. Selective permeabilization, protease sensitivity and N-glycosylation tagging suggested that Far1 is able to assume two different membrane topologies, differing in the orientation of the short hydrophilic C-terminus towards the lumen or the cytosol, respectively. Two closely spaced hydrophobic domains are contained within the C-terminal region. When analyzed separately, the second domain was sufficient for the localization of a fluorescent reporter to lipid droplets. Targeting of Far1 to lipid droplets was not impaired in either Pex19 or ASNA1 (also known as TRC40) CRISPR/Cas9 knockout cells. In conclusion, our data suggest that Far1 is a novel member of the rather exclusive group of dual topology membrane proteins. At the same time, Far1 shows lipid metabolism-dependent differential subcellular localizations to peroxisomes and lipid droplets.
Collapse
Affiliation(s)
- Tarik Exner
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, 69120 Heidelberg, Germany
| | - Inés Romero-Brey
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Eden Yifrach
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Jhon Rivera-Monroy
- Department of Molecular Biology, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Bianca Schrul
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg/Saar, Germany
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, 06847 Dessau, Germany
| | - Wolfgang Stremmel
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, 69120 Heidelberg, Germany
| | - Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, 812-8582 Fukuoka, Japan
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Margarete Poppelreuther
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, 69120 Heidelberg, Germany
| | - Joachim Füllekrug
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
196
|
Li L, Zheng J, Wu X, Jiang H. Mitochondrial AAA-ATPase Msp1 detects mislocalized tail-anchored proteins through a dual-recognition mechanism. EMBO Rep 2019; 20:embr.201846989. [PMID: 30858337 DOI: 10.15252/embr.201846989] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/28/2019] [Accepted: 02/11/2019] [Indexed: 01/09/2023] Open
Abstract
The conserved AAA-ATPase Msp1 is embedded in the outer mitochondrial membrane and removes mislocalized tail-anchored (TA) proteins upon dysfunction of the guided entry of tail-anchored (GET) pathway. It remains unclear how Msp1 recognizes its substrates. Here, we extensively characterize Msp1 and its substrates, including the mitochondrially targeted Pex15Δ30, and full-length Pex15, which mislocalizes to mitochondria upon dysfunction of Pex19 but not the GET pathway. Moreover, we identify two new substrates, Frt1 and Ysy6. Our results suggest that mislocalized TA proteins expose hydrophobic surfaces in the cytoplasm and are recognized by Msp1 through conserved hydrophobic residues. Introducing a hydrophobic patch into mitochondrial TA proteins transforms them into Msp1 substrates. In addition, Pex15Δ30 and Frt1 contain basic inter-membrane space (IMS) residues critical for their mitochondrial mistargeting. Remarkably, Msp1 recognizes this feature through the acidic D12 residue in its IMS domain. This dual-recognition mechanism involving interactions at the cytoplasmic and IMS domains of Msp1 and substrates greatly facilitates substrate recognition and is required by Msp1 to safeguard mitochondrial functions.
Collapse
Affiliation(s)
- Lanlan Li
- College of Life Sciences, Beijing Normal University, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China
| | - Jing Zheng
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Xi Wu
- National Institute of Biological Sciences, Beijing, China
| | - Hui Jiang
- National Institute of Biological Sciences, Beijing, China .,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
197
|
Chitwood PJ, Hegde RS. The Role of EMC during Membrane Protein Biogenesis. Trends Cell Biol 2019; 29:371-384. [PMID: 30826214 DOI: 10.1016/j.tcb.2019.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Ten years ago, high-throughput genetic interaction analyses revealed an abundant and widely conserved protein complex residing in the endoplasmic reticulum (ER) membrane. Dubbed the ER membrane protein complex (EMC), its disruption has since been found to affect wide-ranging processes, including protein trafficking, organelle communication, ER stress, viral maturation, lipid homeostasis, and others. However, its molecular function has remained enigmatic. Recent studies suggest a role for EMC during membrane protein biogenesis. Biochemical reconstitution experiments show that EMC can directly mediate the insertion of transmembrane domains (TMDs) into the lipid bilayer. Given the large proportion of genes encoding membrane proteins, a central role for EMC as a TMD insertion factor can explain its high abundance, wide conservation, and pleiotropic phenotypes.
Collapse
Affiliation(s)
- Patrick J Chitwood
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB20QH, UK
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB20QH, UK.
| |
Collapse
|
198
|
Coelho JPL, Stahl M, Bloemeke N, Meighen-Berger K, Alvira CP, Zhang ZR, Sieber SA, Feige MJ. A network of chaperones prevents and detects failures in membrane protein lipid bilayer integration. Nat Commun 2019; 10:672. [PMID: 30737405 PMCID: PMC6368539 DOI: 10.1038/s41467-019-08632-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
A fundamental step in membrane protein biogenesis is their integration into the lipid bilayer with a defined orientation of each transmembrane segment. Despite this, it remains unclear how cells detect and handle failures in this process. Here we show that single point mutations in the membrane protein connexin 32 (Cx32), which cause Charcot-Marie-Tooth disease, can cause failures in membrane integration. This leads to Cx32 transport defects and rapid degradation. Our data show that multiple chaperones detect and remedy this aberrant behavior: the ER-membrane complex (EMC) aids in membrane integration of low-hydrophobicity transmembrane segments. If they fail to integrate, these are recognized by the ER-lumenal chaperone BiP. Ultimately, the E3 ligase gp78 ubiquitinates Cx32 proteins, targeting them for degradation. Thus, cells use a coordinated system of chaperones for the complex task of membrane protein biogenesis, which can be compromised by single point mutations, causing human disease.
Collapse
Affiliation(s)
- João P L Coelho
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Matthias Stahl
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
- SciLifeLab, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Nicolas Bloemeke
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Kevin Meighen-Berger
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Carlos Piedrafita Alvira
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Stephan A Sieber
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Matthias J Feige
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany.
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstr. 2a, 85748, Garching, Germany.
| |
Collapse
|
199
|
Affiliation(s)
- Jeremy G Carlton
- Division of Cancer Studies, Guy's Hospital, King's College London, London SE1 1UL, UK .,The Francis Crick Institute, London NW1 1AT, UK
| | - Benoît Kornmann
- Institute of Biochemistry, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
200
|
Volkmar N, Thezenas ML, Louie SM, Juszkiewicz S, Nomura DK, Hegde RS, Kessler BM, Christianson JC. The ER membrane protein complex promotes biogenesis of sterol-related enzymes maintaining cholesterol homeostasis. J Cell Sci 2019; 132:jcs.223453. [PMID: 30578317 PMCID: PMC6362398 DOI: 10.1242/jcs.223453] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022] Open
Abstract
The eukaryotic endoplasmic reticulum (ER) membrane contains essential complexes that oversee protein biogenesis and lipid metabolism, impacting nearly all aspects of cell physiology. The ER membrane protein complex (EMC) is a newly described transmembrane domain (TMD) insertase linked with various phenotypes, but whose clients and cellular responsibilities remain incompletely understood. We report that EMC deficiency limits the cellular boundaries defining cholesterol tolerance, reflected by diminished viability with limiting or excessive extracellular cholesterol. Lipidomic and proteomic analyses revealed defective biogenesis and concomitant loss of the TMD-containing ER-resident enzymes sterol-O-acyltransferase 1 (SOAT1) and squalene synthase (SQS, also known as FDFT1), which serve strategic roles in the adaptation of cells to changes in cholesterol availability. Insertion of the weakly hydrophobic tail-anchor (TA) of SQS into the ER membrane by the EMC ensures sufficient flux through the sterol biosynthetic pathway while biogenesis of polytopic SOAT1 promoted by the EMC provides cells with the ability to store free cholesterol as inert cholesteryl esters. By facilitating insertion of TMDs that permit essential mammalian sterol-regulating enzymes to mature accurately, the EMC is an important biogenic determinant of cellular robustness to fluctuations in cholesterol availability. This article has an associated First Person interview with the first author of the paper. Highlighted Article: The ER membrane protein complex promotes biogenesis of key membrane-bound enzymes responsible for regulation of cholesterol biosynthesis and storage, an important determinant of mammalian cell viability.
Collapse
Affiliation(s)
- Norbert Volkmar
- Ludwig Institute for Cancer Research, University of Oxford, ORCRB, Headington, Oxford, OX3 7DQ, UK
| | - Maria-Laetitia Thezenas
- Target Discovery Institute (TDI) Mass Spectrometry Laboratory, Nuffield Department of Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Sharon M Louie
- Dept. of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Szymon Juszkiewicz
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Daniel K Nomura
- Dept. of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Benedikt M Kessler
- Target Discovery Institute (TDI) Mass Spectrometry Laboratory, Nuffield Department of Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - John C Christianson
- Ludwig Institute for Cancer Research, University of Oxford, ORCRB, Headington, Oxford, OX3 7DQ, UK .,Oxford Centre for Translational Myeloma Research, NDORMS, University of Oxford, Botnar Research Centre, Headington, Oxford, OX3 7LD, UK
| |
Collapse
|