151
|
Resilience to drought of dryland wetlands threatened by climate change. Sci Rep 2020; 10:13232. [PMID: 32764646 PMCID: PMC7414121 DOI: 10.1038/s41598-020-70087-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/01/2020] [Indexed: 11/08/2022] Open
Abstract
Dryland wetlands are resilient ecosystems that can adapt to extreme periodic drought–flood episodes. Climate change projections show increased drought severity in drylands that could compromise wetland resilience and reduce important habitat services. These recognized risks have been difficult to evaluate due to our limited capacity to establish comprehensive relationships between flood–drought episodes and vegetation responses at the relevant spatiotemporal scales. We address this issue by integrating detailed spatiotemporal flood–drought simulations with remotely sensed vegetation responses to water regimes in a dryland wetland known for its highly variable inundation. We show that a combination of drought tolerance and dormancy strategies allow wetland vegetation to recover after droughts and recolonize areas invaded by terrestrial species. However, climate change scenarios show widespread degradation during drought and limited recovery after floods. Importantly, the combination of degradation extent and increase in drought duration is critical for the habitat services wetland systems provide for waterbirds and fish.
Collapse
|
152
|
Polvi LE, Lind L, Persson H, Miranda-Melo A, Pilotto F, Su X, Nilsson C. Facets and scales in river restoration: Nestedness and interdependence of hydrological, geomorphic, ecological, and biogeochemical processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110288. [PMID: 32421567 DOI: 10.1016/j.jenvman.2020.110288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/15/2020] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
Although river restoration has increased rapidly, observations of successful ecological recovery are rare, mostly due to a discrepancy in the spatial scale of the impact and the restoration. Rivers and their ecological communities are a product of four river facets-hydrology, geomorphology, ecology and biogeochemistry-that act and interact on several spatial scales, from the sub-reach to the reach and catchment scales. The four river facets usually affect one another in predictable pathways (e.g., hydrology commonly controls geomorphology), but we show that the order in which they affect each other and can be restored varies depending on ecoregion and hydroclimatic regime. Similarly, processes at different spatial scales can be nested or independent of those at larger scales. Although some restoration practices are dependent of those at higher scales, other reach-scale restoration efforts are independent and can be carried out prior to or concurrently with larger-scale restoration. We introduce a checklist using the four river facets to prioritize restoration at three spatial scales in order to have the largest positive effect on the entire catchment. We apply this checklist to two contrasting regions-in northern Sweden and in southern Brazil-with different anthropogenic effects and interactions between facets and scales. In the case of nested processes that are dependent on larger spatial scales, reach-scale restoration in the absence of restoration of catchment-scale processes can frankly be a waste of money, providing little ecological return. However, depending on the scale-interdependence of processes of the river facets, restoration at smaller scales may be sufficient. This means that the most appropriate government agency should be assigned (i.e., national vs. county) to most effectively oversee river restoration at the appropriate scale; however, this first requires a catchment-scale analysis of feedbacks between facets and spatial scale interdependence.
Collapse
Affiliation(s)
- Lina E Polvi
- Landscape Ecology Group, Department of Ecology & Environmental Science, Umeå University, 901 87 Umeå, Sweden.
| | - Lovisa Lind
- Landscape Ecology Group, Department of Ecology & Environmental Science, Umeå University, 901 87 Umeå, Sweden; Department of Environmental and Life Sciences, Karlstad University, 651 88 Karlstad, Sweden.
| | - Henrik Persson
- Landscape Ecology Group, Department of Ecology & Environmental Science, Umeå University, 901 87 Umeå, Sweden.
| | - Aneliza Miranda-Melo
- Landscape Ecology Group, Department of Ecology & Environmental Science, Umeå University, 901 87 Umeå, Sweden; State Forest Institute (IEF), Government of Minas Gerais State, Avenue José Avenue José Corrêa Machado, 900, Ibituruna, 39401 - 832, Montes Claros, Brazil.
| | - Francesca Pilotto
- Landscape Ecology Group, Department of Ecology & Environmental Science, Umeå University, 901 87 Umeå, Sweden; Environmental Archaeology Lab, Department of Historical, Philosophical and Religious Studies, Umeå University, Umeå, Sweden.
| | - Xiaolei Su
- Landscape Ecology Group, Department of Ecology & Environmental Science, Umeå University, 901 87 Umeå, Sweden; Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, PR China.
| | - Christer Nilsson
- Landscape Ecology Group, Department of Ecology & Environmental Science, Umeå University, 901 87 Umeå, Sweden; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| |
Collapse
|
153
|
Walters DM, Cross W, Kennedy T, Baxter C, Hall R, Rosi E. Food web controls on mercury fluxes and fate in the Colorado River, Grand Canyon. SCIENCE ADVANCES 2020; 6:eaaz4880. [PMID: 32440546 PMCID: PMC7228746 DOI: 10.1126/sciadv.aaz4880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/03/2020] [Indexed: 05/16/2023]
Abstract
Mercury (Hg) biomagnification in aquatic food webs is a global concern; yet, the ways species traits and interactions mediate these fluxes remain poorly understood. Few pathways dominated Hg flux in the Colorado River despite large spatial differences in food web complexity, and fluxes were mediated by one functional trait, predation resistance. New Zealand mudsnails are predator resistant and a trophic dead end for Hg in food webs we studied. Fishes preferred blackflies, which accounted for 56 to 80% of Hg flux to fishes, even where blackflies were rare. Food web properties, i.e., match/mismatch between insect production and fish consumption, governed amounts of Hg retained in the river versus exported to land. An experimental flood redistributed Hg fluxes in the simplified tailwater food web, but not in complex downstream food webs. Recognizing that species traits, species interactions, and disturbance mediate contaminant exposure can improve risk management of linked aquatic-terrestrial ecosystems.
Collapse
Affiliation(s)
- D. M. Walters
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
- Corresponding author.
| | - W.F. Cross
- Department of Ecology, Montana State University, Bozeman, MT 59717, USA
| | - T.A. Kennedy
- U.S. Geological Survey, Grand Canyon Monitoring and Research Center, Flagstaff, AZ 86001, USA
| | - C.V. Baxter
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| | - R.O. Hall
- Flathead Lake Biological Station, University of Montana, Polson, MT 59860 USA
| | - E.J. Rosi
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| |
Collapse
|
154
|
Lag in Hydrologic Recovery Following Extreme Meteorological Drought Events: Implications for Ecological Water Requirements. WATER 2020. [DOI: 10.3390/w12030837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrological regimes, being strongly impacted by climate change, play a vital role in maintaining the integrity of aquatic river habitats. We investigated lag in hydrologic recovery following extreme meteorological drought events, and we also discussed its implications in the assessment of ecological environment flow. We used monthly anomalies of three specific hydrometeorological variables (precipitation, streamflow, and baseflow) to identify drought, while we used the Chapman–Maxwell method (the CM filter) with recession constant calculated from Automatic Baseflow Identification Technique (ABIT) to separate baseflow. Results showed that: (i) Compared to the default recession parameter (α = 0.925), the CM filter with the ABIT estimate (α = 0.984) separated baseflow more accurately. (ii) Hydrological drought, resulting from meteorological drought, reflected the duration and intensity of meteorological drought; namely, longer meteorological drought periods resulted in longer hydrological drought periods. Interestingly, the time lag in streamflow and baseflow indicated that aquatic ecosystem habitat recovery also lagged behind meteorological drought. (iii) Assessing environmental flow by quantifying drought provided greater detail on hydrological regimes compared to abrupt changes, such as the increased hydrological periods and the different environment flows obtained. Taken together, our results indicated that the hydrological response in streamflow and baseflow (e.g., the time lag and the precipitation recovery rate (Pr)) played a vital role in the assessment of environmental flow.
Collapse
|
155
|
Net Ecosystem Production of a River Relying on Hydrology, Hydrodynamics and Water Quality Monitoring Stations. WATER 2020. [DOI: 10.3390/w12030783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Flow and water quality of rivers are highly dynamic. Water quantity and quality are subjected to simultaneous physical, chemical and biological processes making it difficult to accurately assess lotic ecosystems. Our study investigated net ecosystem production (NEP) relying on high-frequency data of hydrology, hydrodynamics and water quality. The Kanawha River, West Virginia was investigated along 52.8 km to estimate NEP. Water quality data were collected along the river using three distributed multiprobe sondes that measured water temperature, dissolved oxygen, dissolved oxygen saturation, specific conductance, turbidity and ORP hourly for 71 days. Flows along the river were predicted by means of the hydrologic and hydrodynamic models in Hydrologic Simulation Program in Fortran (HSPF). It was found that urban local inflows were correlated with NEP. However, under hypoxic conditions, local inflows were correlated with specific conductance. Thus, our approach represents an effort for the systematic integration of data derived from models and field measurements with the aim of providing an improved assessment of lotic ecosystems.
Collapse
|
156
|
Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc Natl Acad Sci U S A 2020; 117:3648-3655. [PMID: 32015125 PMCID: PMC7035475 DOI: 10.1073/pnas.1912776117] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Freshwater fish are highly threatened by dams that disrupt the longitudinal connectivity of rivers and may consequently impede fish movements to feeding and spawning grounds. In a comprehensive global analysis covering ∼10,000 freshwater fish species and ∼40,000 existing large dams we identified the most disconnected geographical ranges for species in the United States, Europe, South Africa, India, and China. The completion of near-future plans for ∼3,700 large hydropower dams will greatly increase habitat fragmentation in (sub)tropical river basins, where many livelihoods depend on inland fisheries. Our assessment can support infrastructure planning on multiple scales and assist in setting conservation priorities for species and basins at risk. Dams contribute to water security, energy supply, and flood protection but also fragment habitats of freshwater species. Yet, a global species-level assessment of dam-induced fragmentation is lacking. Here, we assessed the degree of fragmentation of the occurrence ranges of ∼10,000 lotic fish species worldwide due to ∼40,000 existing large dams and ∼3,700 additional future large hydropower dams. Per river basin, we quantified a connectivity index (CI) for each fish species by combining its occurrence range with a high-resolution hydrography and the locations of the dams. Ranges of nondiadromous fish species were more fragmented (less connected) (CI = 73 ± 28%; mean ± SD) than ranges of diadromous species (CI = 86 ± 19%). Current levels of fragmentation were highest in the United States, Europe, South Africa, India, and China. Increases in fragmentation due to future dams were especially high in the tropics, with declines in CI of ∼20 to 40 percentage points on average across the species in the Amazon, Niger, Congo, Salween, and Mekong basins. Our assessment can guide river management at multiple scales and in various domains, including strategic hydropower planning, identification of species and basins at risk, and prioritization of restoration measures, such as dam removal and construction of fish bypasses.
Collapse
|