151
|
Capsule Production and Glucose Metabolism Dictate Fitness during Serratia marcescens Bacteremia. mBio 2017; 8:mBio.00740-17. [PMID: 28536292 PMCID: PMC5442460 DOI: 10.1128/mbio.00740-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Serratia marcescens is an opportunistic pathogen that causes a range of human infections, including bacteremia, keratitis, wound infections, and urinary tract infections. Compared to other members of the Enterobacteriaceae family, the genetic factors that facilitate Serratia proliferation within the mammalian host are less well defined. An in vivo screen of transposon insertion mutants identified 212 S. marcescens fitness genes that contribute to bacterial survival in a murine model of bloodstream infection. Among those identified, 11 genes were located within an 18-gene cluster encoding predicted extracellular polysaccharide biosynthesis proteins. A mutation in the wzx gene contained within this locus conferred a loss of fitness in competition infections with the wild-type strain and a reduction in extracellular uronic acids correlating with capsule loss. A second gene, pgm, encoding a phosphoglucomutase exhibited similar capsule-deficient phenotypes, linking central glucose metabolism with capsule production and fitness of Serratia during mammalian infection. Further evidence of the importance of central metabolism was obtained with a pfkA glycolytic mutant that demonstrated reduced replication in human serum and during murine infection. An MgtB magnesium transporter homolog was also among the fitness factors identified, and an S. marcescens mgtB mutant exhibited decreased growth in defined medium containing low concentrations of magnesium and was outcompeted ~10-fold by wild-type bacteria in mice. Together, these newly identified genes provide a more complete understanding of the specific requirements for S. marcescens survival in the mammalian host and provide a framework for further investigation of the means by which S. marcescens causes opportunistic infections. Serratia marcescens is a remarkably prolific organism that replicates in diverse environments, including as an opportunistic pathogen in human bacteremia. The genetic requirements for S. marcescens survival in the mammalian bloodstream were defined in this work by transposon insertion sequencing. In total, 212 genes that contribute to bacterial fitness were identified. When sorted via biological function, two of the major fitness categories identified herein were genes encoding capsule polysaccharide biogenesis functions and genes involved in glucose utilization. Further investigation determined that certain glucose metabolism fitness genes are also important for the generation of extracellular polysaccharides. Together, these results identify critical biological processes that allow S. marcescens to colonize the mammalian bloodstream.
Collapse
|
152
|
Khan AU, Maryam L, Zarrilli R. Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol 2017; 17:101. [PMID: 28449650 PMCID: PMC5408368 DOI: 10.1186/s12866-017-1012-8] [Citation(s) in RCA: 355] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/14/2017] [Indexed: 01/07/2023] Open
Abstract
Background The emergence of carbapenemase producing bacteria, especially New Delhi metallo-β-lactamase (NDM-1) and its variants, worldwide, has raised amajor public health concern. NDM-1 hydrolyzes a wide range of β-lactam antibiotics, including carbapenems, which are the last resort of antibiotics for the treatment of infections caused by resistant strain of bacteria. Main body In this review, we have discussed blaNDM-1variants, its genetic analysis including type of specific mutation, origin of country and spread among several type of bacterial species. Wide members of enterobacteriaceae, most commonly Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, and gram-negative non-fermenters Pseudomonas spp. and Acinetobacter baumannii were found to carry these markers. Moreover, at least seventeen variants of blaNDM-type gene differing into one or two residues of amino acids at distinct positions have been reported so far among different species of bacteria from different countries. The genetic and structural studies of these variants are important to understand the mechanism of antibiotic hydrolysis as well as to design new molecules with inhibitory activity against antibiotics. Conclusion This review provides a comprehensive view of structural differences among NDM-1 variants, which are a driving force behind their spread across the globe. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1012-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Asad U Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| | - Lubna Maryam
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Raffaele Zarrilli
- Department of Public Health, University of Napoli Federico II, Italy, Naples, Italy. .,CEINGE Biotecnologie Avanzate, Naples, Italy.
| |
Collapse
|
153
|
Importance of Clonal Complex 258 and IncF K2-like Plasmids among a Global Collection of Klebsiella pneumoniae with blaKPC. Antimicrob Agents Chemother 2017; 61:AAC.02610-16. [PMID: 28167556 DOI: 10.1128/aac.02610-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/03/2017] [Indexed: 01/10/2023] Open
Abstract
This study was designed to determine the global distribution of clonal complex (CC) 258 and IncFIIK2-like plasmids with blaKPC among 522 global Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae isolates. CC258 (i.e., ST258 [clades I and II], ST11, ST340, and ST512) and ST147 were statistically associated with IncFIIK2-like KPC-containing plasmids and may possess an epidemiological advantage over isolates that harbored non-IncF KPC-harboring plasmids.
Collapse
|
154
|
Maraki S, Vardakas KZ, Mavromanolaki VE, Kyriakidou M, Spais G, Kofteridis DP, Samonis G, Falagas ME. In vitro susceptibility and resistance phenotypes in contemporary Citrobacter isolates in a University Hospital in Crete, Greece. Infect Dis (Lond) 2017; 49:532-539. [PMID: 28276281 DOI: 10.1080/23744235.2017.1297896] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Data on Citrobacter spp. susceptibility are scarce. We sought to study the evolution in the susceptibility of 385 Citrobacter spp. at the University Hospital of Heraklion, Crete, Greece during a six-year period (2010-2015). METHODS Non-duplicate strains isolated from inpatients (intensive care unit, oncology, surgery, internal medicine, paediatrics) and outpatients were studied using Vitek 2. Phenotypic confirmatory tests were applied for detection of β-lactamases and aminoglycoside modifying enzymes. RESULTS C. freundii (172, 44.7%) and C. koseri (166, 43.1%) were the most commonly isolated species. C. braakii (34), C. amalonaticus (6), C. youngae (6) and C. sedlakii (1) were the remaining isolates. Colistin and fosfomycin were the most active antibiotics (both 99.2%) followed by carbapenems (99%) aminoglycosides (96.6-98.4%), tigecycline (96.1%), cefepime (94.8%), ciprofloxacin (94.3%), tetracycline (92.7%), trimethoprim/sulphamethoxazole (91.4%), chloramphenicol (88.1%), piperacillin/tazobactam (86.5%) and 3rd generation cephalosporins (85.7%). C. freundii were more resistant than C. koseri. Antibiotic resistance did not increase during the study period for most antibiotics. Lower susceptibility to all antibiotics was observed among multi-drug resistant (MDR) strains. AmpC was the most common resistant mechanism (10.9%); carbapenemases (1.3%) and aminoglycoside modifying enzymes (2.9%) were also detected. All AmpC producers were resistant to cephalosporins but not to carbapenems. In all but one isolates aminoglycoside resistance was accompanied by acquired β-lactamases. CONCLUSIONS Although Citrobacter species in general were susceptible, antibiotic susceptibility testing is required for the detection of resistant isolates.
Collapse
Affiliation(s)
- Sofia Maraki
- a Department of Clinical Microbiology , University Hospital of Heraklion , Heraklion , Greece
| | - Konstantinos Z Vardakas
- b Alfa Institute of Biomedical Sciences (AIBS) , Athens , Greece.,c Department of Internal Medicine-Infectious Diseases , Iaso General Hospital , Athens , Greece
| | | | - Margarita Kyriakidou
- e Department of Applied Mathematics and Physics , National Technical University of Athens , Athens , Greece
| | - George Spais
- e Department of Applied Mathematics and Physics , National Technical University of Athens , Athens , Greece
| | - Diamantis P Kofteridis
- d Department of Internal Medicine , University of Crete School of Medicine , Heraklion , Greece
| | - George Samonis
- d Department of Internal Medicine , University of Crete School of Medicine , Heraklion , Greece
| | - Matthew E Falagas
- b Alfa Institute of Biomedical Sciences (AIBS) , Athens , Greece.,c Department of Internal Medicine-Infectious Diseases , Iaso General Hospital , Athens , Greece.,f Department of Medicine , Tufts University School of Medicine , Boston , MA , USA
| |
Collapse
|
155
|
Bush K, Page MGP. What we may expect from novel antibacterial agents in the pipeline with respect to resistance and pharmacodynamic principles. J Pharmacokinet Pharmacodyn 2017; 44:113-132. [DOI: 10.1007/s10928-017-9506-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/20/2017] [Indexed: 12/25/2022]
|
156
|
Hsu LY, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A, Tambyah PA. Carbapenem-Resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev 2017; 30:1-22. [PMID: 27795305 PMCID: PMC5217790 DOI: 10.1128/cmr.masthead.30-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Carbapenem-resistant Gram-negative bacteria, in particular the Acinetobacter baumannii-calcoaceticus complex and Enterobacteriaceae, are escalating global public health threats. We review the epidemiology and prevalence of these carbapenem-resistant Gram-negative bacteria among countries in South and Southeast Asia, where the rates of resistance are some of the highest in the world. These countries house more than a third of the world's population, and several are also major medical tourism destinations. There are significant data gaps, and the almost universal lack of comprehensive surveillance programs that include molecular epidemiologic testing has made it difficult to understand the origins and extent of the problem in depth. A complex combination of factors such as inappropriate prescription of antibiotics, overstretched health systems, and international travel (including the phenomenon of medical tourism) probably led to the rapid rise and spread of these bacteria in hospitals in South and Southeast Asia. In India, Pakistan, and Vietnam, carbapenem-resistant Enterobacteriaceae have also been found in the environment and community, likely as a consequence of poor environmental hygiene and sanitation. Considerable political will and effort, including from countries outside these regions, are vital in order to reduce the prevalence of such bacteria in South and Southeast Asia and prevent their global spread.
Collapse
Affiliation(s)
- Li-Yang Hsu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Tan Tock Seng Hospital, Singapore
| | | | - Erum Khan
- Aga Khan University, Karachi, Pakistan
| | - Nuntra Suwantarat
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | | | | |
Collapse
|
157
|
Escandón-Vargas K, Reyes S, Gutiérrez S, Villegas MV. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther 2016; 15:277-297. [PMID: 27915487 DOI: 10.1080/14787210.2017.1268918] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Enterobacteriaceae, Pseudomonas spp., and Acinetobacter spp. infections are major causes of morbidity and mortality, especially due to the emergence and spread of β-lactamases. Carbapenemases, which are β-lactamases with the capacity to hydrolyze or inactivate carbapenems, have become a serious concern as they have the largest hydrolytic spectrum and therefore limit the utility of most β-lactam antibiotics. Areas covered: Here, we present an update of the current status of carbapenemases in Latin America and the Caribbean. Expert commentary: The increased frequency of reports on carbapenemases in Latin America and the Caribbean shows that they have successfully spread and have even become endemic in some countries. Countries such as Brazil, Colombia, Argentina, and Mexico account for the majority of these reports. Early suspicion and detection along with implementation of antimicrobial stewardship programs in all healthcare settings are crucial for the control and prevention of carbapenemase-producing bacteria.
Collapse
Affiliation(s)
- Kevin Escandón-Vargas
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - Sergio Reyes
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - Sergio Gutiérrez
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - María Virginia Villegas
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia.,b Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics , Universidad El Bosque , Bogotá , Colombia
| |
Collapse
|
158
|
Falco A, Ramos Y, Franco E, Guzmán A, Takiff H. A cluster of KPC-2 and VIM-2-producing Klebsiella pneumoniae ST833 isolates from the pediatric service of a Venezuelan Hospital. BMC Infect Dis 2016; 16:595. [PMID: 27770796 PMCID: PMC5075218 DOI: 10.1186/s12879-016-1927-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 10/12/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a bacterial pathogen that has developed resistance to multiple antibiotics and is a major cause of nosocomial infections worldwide. Carbapenemase-producing Klebsiella pneumoniae have been isolated in many hospitals in Venezuela, but they have not been well-studied. The aim of this study was to characterize carbapenem-resistant Klebsiella pneumoniae isolates from the pediatric service of a hospital located in Anzoategui State, in the eastern part of Venezuela. METHODS Nineteen Klebsiella pneumoniae strains isolated in the hospital from April to July 2014 were evaluated phenotypically and molecularly for the presence of carbapenemases blaKPC, blaIMP and blaVIM. Molecular epidemiology was performed with Repetitive Extragenic Palindromic-PCR (REP-PCR) and Multilocus Sequence Typing (MLST). They were also studied for phenotypic and molecular resistance to a quaternary ammonium compound (QAC) disinfectant. RESULTS All 19 isolates contained both bla VIM-2 and bla KPC-2 genes, and the bla KPC-2 gene was associated with Tn4401b. All isolates were phenotypically sensitive to QACs and contained qacΔE and addA2 genes typical of class 1 integrons. Analysis by REP-PCR and MLST showed that all isolates had identical profiles characteristic of sequence type ST833. CONCLUSION All 19 strains are bla VIM-2 and bla KPC-2-producing ST833 K. pneumoniae sensitive to QACs. This analysis may help to understand the routes of dissemination and confirms that QAC disinfectants can be used to help control their spread.
Collapse
Affiliation(s)
- Aura Falco
- Laboratorio de Genética Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Yusibeska Ramos
- Laboratorio B, Dirección de Energía y Ambiente, Instituto de Estudios Avanzados, Caracas, Venezuela
| | - Esther Franco
- Servicio de Laboratorio Clínico del anexo pediátrico "Dr. Rafael Tobías Guevara" del Complejo Hospitalario Universitario "Dr. Luis Razetti", Barcelona, Venezuela
| | - Alegría Guzmán
- Servicio de Laboratorio Clínico del anexo pediátrico "Dr. Rafael Tobías Guevara" del Complejo Hospitalario Universitario "Dr. Luis Razetti", Barcelona, Venezuela
| | - Howard Takiff
- Laboratorio de Genética Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| |
Collapse
|
159
|
Carbapenem-Resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev 2016. [PMID: 27795305 DOI: 10.1128/cmr.00042-16] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Carbapenem-resistant Gram-negative bacteria, in particular the Acinetobacter baumannii-calcoaceticus complex and Enterobacteriaceae, are escalating global public health threats. We review the epidemiology and prevalence of these carbapenem-resistant Gram-negative bacteria among countries in South and Southeast Asia, where the rates of resistance are some of the highest in the world. These countries house more than a third of the world's population, and several are also major medical tourism destinations. There are significant data gaps, and the almost universal lack of comprehensive surveillance programs that include molecular epidemiologic testing has made it difficult to understand the origins and extent of the problem in depth. A complex combination of factors such as inappropriate prescription of antibiotics, overstretched health systems, and international travel (including the phenomenon of medical tourism) probably led to the rapid rise and spread of these bacteria in hospitals in South and Southeast Asia. In India, Pakistan, and Vietnam, carbapenem-resistant Enterobacteriaceae have also been found in the environment and community, likely as a consequence of poor environmental hygiene and sanitation. Considerable political will and effort, including from countries outside these regions, are vital in order to reduce the prevalence of such bacteria in South and Southeast Asia and prevent their global spread.
Collapse
|
160
|
Coexistence of mcr-1 and blaNDM-1 in Escherichia coli from Venezuela. Antimicrob Agents Chemother 2016; 60:6356-8. [PMID: 27431212 DOI: 10.1128/aac.01319-16] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/08/2016] [Indexed: 11/20/2022] Open
Abstract
We studied the presence of the mobile colistin resistance gene mcr-1 in human, animal, and environmental Enterobacteriaceae samples from Cumana, Venezuela, that were collected in 2015. The mcr-1 gene was detected in 2/93 Escherichia coli isolates from swine (novel ST452) and human (ST19) samples that were resistant to colistin. Whole-genome sequencing and transformation experiments identified mcr-1 on an IncI2 plasmid. One of the isolates also bore the widely spread carbapenemase NDM-1. A One Health approach is necessary to further elucidate the flux of these high-risk genes.
Collapse
|
161
|
Potter RF, D'Souza AW, Dantas G. The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resist Updat 2016; 29:30-46. [PMID: 27912842 DOI: 10.1016/j.drup.2016.09.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023]
Abstract
Carbapenems, our one-time silver bullet for multidrug resistant bacterial infections, are now threatened by widespread dissemination of carbapenem-resistant Enterobacteriaceae (CRE). Successful expansion of Enterobacteriaceae clonal groups and frequent horizontal gene transfer of carbapenemase expressing plasmids are causing increasing carbapenem resistance. Recent advances in genetic and phenotypic detection facilitate global surveillance of CRE diversity and prevalence. In particular, whole genome sequencing enabled efficient tracking, annotation, and study of genetic elements colocalized with carbapenemase genes on chromosomes and on plasmids. Improved characterization helps detail the co-occurrence of other antibiotic resistance genes in CRE isolates and helps identify pan-drug resistance mechanisms. The novel β-lactamase inhibitor, avibactam, combined with ceftazidime or aztreonam, is a promising CRE treatment compared to current colistin or tigecycline regimens. To halt increasing CRE-associated morbidity and mortality, we must continue quality, cooperative monitoring and urgently investigate novel treatments.
Collapse
Affiliation(s)
- Robert F Potter
- Center for Genome Sciences and System Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO 63110, USA
| | - Alaric W D'Souza
- Center for Genome Sciences and System Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO 63110, USA
| | - Gautam Dantas
- Center for Genome Sciences and System Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Ave, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, 1 Brookings Drive, St. Louis, MO 63130, USA; Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA.
| |
Collapse
|
162
|
Successful Treatment of Bloodstream Infection Due to Metallo-β-Lactamase-Producing Stenotrophomonas maltophilia in a Renal Transplant Patient. Antimicrob Agents Chemother 2016; 60:5130-4. [PMID: 27551008 DOI: 10.1128/aac.00264-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stenotrophomonas maltophilia is an emerging multidrug-resistant (MDR) opportunistic pathogen for which new antibiotic options are urgently needed. We report our clinical experience treating a 19-year-old renal transplant recipient who developed prolonged bacteremia due to metallo-β-lactamase-producing S. maltophilia refractory to conventional treatment. The infection recurred despite a prolonged course of colistimethate sodium (colistin) but resolved with the use of a novel drug combination with clinical efficacy against the patient's S. maltophilia isolate.
Collapse
|
163
|
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) are an important and increasing threat to global health. Both clonal spread and plasmid-mediated transmission contribute to the ongoing rise in incidence of these bacteria. Among the 4 classes of β-lactamases defined by the Ambler classification system, the carbapenemases that confer carbapenem resistance in Enterobacteriaceae belong to 3 of them: Class A (K. pneumoniae carbapenemases, KPC), Class B (metallo-β-lactamases, MBL including New Delhi metallo-β-lactamases, NDM) and Class D (OXA-48-like carbapenemases). KPC-producing CPE are the most commonly occurring CPE in the United States. MBL-producing CPE have been most commonly associated with the Indian Subcontinent as well as with specific countries in Europe, including Romania, Denmark, Spain, and Hungary. The epicenter of OXA-48-like-producing is in Turkey and surrounding countries. Detailed knowledge of the epidemiology and molecular characteristics of CPE is essential to stem the spread of these pathogens.
Collapse
Affiliation(s)
- David van Duin
- a Division of Infectious Diseases , University of North Carolina , Chapel Hill , NC , USA
| | - Yohei Doi
- b Division of Infectious Diseases , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| |
Collapse
|
164
|
In Vitro Susceptibility to Ceftazidime-Avibactam of Carbapenem-Nonsusceptible Enterobacteriaceae Isolates Collected during the INFORM Global Surveillance Study (2012 to 2014). Antimicrob Agents Chemother 2016; 60:3163-9. [PMID: 26926648 DOI: 10.1128/aac.03042-15] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/18/2016] [Indexed: 12/26/2022] Open
Abstract
The activity of ceftazidime-avibactam was assessed against 961 isolates of meropenem-nonsusceptible Enterobacteriaceae Most meropenem-nonsusceptible metallo-β-lactamase (MBL)-negative isolates (97.7%) were susceptible to ceftazidime-avibactam. Isolates that carried KPC or OXA-48-like β-lactamases, both alone and in combination with extended-spectrum β-lactamases (ESBLs) and/or AmpC β-lactamases, were 98.7% and 98.5% susceptible to ceftazidime-avibactam, respectively. Meropenem-nonsusceptible, carbapenemase-negative isolates demonstrated 94.7% susceptibility to ceftazidime-avibactam. Ceftazidime-avibactam activity was compromised only in isolates for which carbapenem resistance was mediated through metallo-β-lactamases.
Collapse
|
165
|
Thomson GK, Snyder JW, McElheny CL, Thomson KS, Doi Y. Coproduction of KPC-18 and VIM-1 Carbapenemases by Enterobacter cloacae: Implications for Newer β-Lactam-β-Lactamase Inhibitor Combinations. J Clin Microbiol 2016; 54:791-4. [PMID: 26719440 PMCID: PMC4767958 DOI: 10.1128/jcm.02739-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/22/2015] [Indexed: 01/04/2023] Open
Abstract
Enterobacter cloacae strain G6809 with reduced susceptibility to carbapenems was identified from a patient in a long-term acute care hospital in Kentucky. G6809 belonged to sequence type (ST) 88 and carried two carbapenemase genes, bla(KPC-18) and bla(VIM-1). Whole-genome sequencing localized bla(KPC-18) to the chromosome and bla(VIM-1) to a 58-kb plasmid. The strain was highly resistant to ceftazidime-avibactam. Insidious coproduction of metallo-β-lactamase with KPC-type carbapenemase has implications for the use of next-generation β-lactam-β-lactamase inhibitor combinations.
Collapse
Affiliation(s)
- Gina K Thomson
- Department of Microbiology, University of Louisville Hospital, Louisville, Kentucky, USA Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky, USA
| | - James W Snyder
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Christi L McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kenneth S Thomson
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|