151
|
Pérez-Trallero E, Marimon JM, Iglesias L, Larruskain J. Fluoroquinolone and macrolide treatment failure in pneumococcal pneumonia and selection of multidrug-resistant isolates. Emerg Infect Dis 2003; 9:1159-62. [PMID: 14519256 PMCID: PMC3016791 DOI: 10.3201/eid0909.020810] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Streptococcus pneumoniae serotype 3, isolated from a penicillin-allergic patient and initially susceptible to fluoroquinolones, macrolides, lincosamides, quinupristin-dalfopristin, and telithromycin, became resistant to all these drugs during treatment. Mutations in the parC and gyrA and in the 23S rRNA and the ribosomal protein L22 genes were detected in the resistant isolates.
Collapse
|
152
|
Clark JP, Langston E. Ketolides: a new class of antibacterial agents for treatment of community-acquired respiratory tract infections in a primary care setting. Mayo Clin Proc 2003; 78:1113-24. [PMID: 12962166 DOI: 10.4065/78.9.1113] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pathogens implicated in community-acquired respiratory tract infections are becoming increasingly resistant to anti-bacterial therapies. Thus, there is an urgent need for new agents with activity against current resistant respiratory tract pathogens and a low potential to select for resistance or induce cross-resistance to existing antibacterial agents. Telithromycin, the first ketolide antibacterial agent to undergo clinical development, has enhanced binding to bacterial ribosomal RNA. Through its unique structure, telithromycin retains activity against resistant respiratory pathogens and has shown high efficacy in the treatment of respiratory tract infections. On the basis of phase 3 clinical trial experience, telithromycin appears safe and well tolerated across various patient populations, including high-risk groups.
Collapse
|
153
|
Dunne MW, Khurana C, Mohs AA, Rodriguez A, Arrieta A, McLinn S, Krogstad JA, Blatter M, Schwartz R, Vargas SL, Emparanza P, Fernandez P, Gooch WM, Aspin M, Podgore J, Roine I, Blumer JL, Ehrlich GD, Chow J. Efficacy of single-dose azithromycin in treatment of acute otitis media in children after a baseline tympanocentesis. Antimicrob Agents Chemother 2003; 47:2663-5. [PMID: 12878537 PMCID: PMC166097 DOI: 10.1128/aac.47.8.2663-2665.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Children with acute otitis media underwent tympanocentesis and were given a single dose of 30 mg of azithromycin/kg of body weight. At day 28, the overall clinical cure rate was 206 of 242 (85%). Clinical cure rates for patients infected with Streptococcus pneumoniae (67 of 76; 88%) and Haemophilus influenzae (28 of 44; 64%) were consistent with historical rates for the 5-day dosing regimen.
Collapse
Affiliation(s)
- Michael W Dunne
- Pfizer Global Research & Development, New London, Connecticut 06320, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Reinert RR, Wild A, Appelbaum P, Lütticken R, Cil MY, Al-Lahham A. Ribosomal mutations conferring resistance to macrolides in Streptococcus pneumoniae clinical strains isolated in Germany. Antimicrob Agents Chemother 2003; 47:2319-22. [PMID: 12821488 PMCID: PMC161879 DOI: 10.1128/aac.47.7.2319-2322.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among a collection of 4281 pneumococcal isolates, 7 strains isolated in Germany had an unusual macrolide resistance phenotype. The isolates were found to have multiple mutations in the 23S rRNA and alterations in the L4 ribosomal protein. One strain had an amino acid alteration in the L22 ribosomal protein.
Collapse
Affiliation(s)
- Ralf René Reinert
- Institute of Medical Microbiology, National Reference Center for Streptococci, Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
155
|
Boneca IG, Chiosis G. Vancomycin resistance: occurrence, mechanisms and strategies to combat it. Expert Opin Ther Targets 2003; 7:311-28. [PMID: 12783569 DOI: 10.1517/14728222.7.3.311] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vancomycin has long been considered the antibiotic of last resort against serious and multi-drug-resistant infections caused by Gram-positive bacteria. However, vancomycin resistance has emerged, first in enterococci and, more recently, in Staphylococcus aureus. Here, the authors attempt to review the prevalence and the mechanisms of such resistance. Furthermore, they focus on strategies that have been developed or are under current investigation to overcome infections caused by vancomycin-resistant strains. Among these are glycopeptide derivatives with higher potency than vancomycin, small molecules that resensitise bacteria to the antibiotic and novel non-glycopeptide antibiotics. These agents are targeted to interfere with protein and/or peptidoglycan (PG) synthesis and integrity or with membrane permeability. Whilst most of these agents are still in clinical or preclinical development, some have entered the clinic and currently represent the only option for treating vancomycin-resistant enterococci (VRE).
Collapse
Affiliation(s)
- Ivo G Boneca
- Unité de Pathogénie Bactérienne des Muqueuses, Institut Pasteur, 25 - 28 Rue du Docteur Roux, 75724 Paris cedex 15, France.
| | | |
Collapse
|
156
|
Farrell DJ, Douthwaite S, Morrissey I, Bakker S, Poehlsgaard J, Jakobsen L, Felmingham D. Macrolide resistance by ribosomal mutation in clinical isolates of Streptococcus pneumoniae from the PROTEKT 1999-2000 study. Antimicrob Agents Chemother 2003; 47:1777-83. [PMID: 12760848 PMCID: PMC155854 DOI: 10.1128/aac.47.6.1777-1783.2003] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sixteen (1.5%) of the 1,043 clinical macrolide-resistant Streptococcus pneumoniae isolates collected and analyzed in the 1999-2000 PROTEKT (Prospective Resistant Organism Tracking and Epidemiology for the Ketolide Telithromycin) study have resistance mechanisms other than rRNA methylation or efflux. We have determined the macrolide resistance mechanisms in all 16 isolates by sequencing the L4 and L22 riboprotein genes, plus relevant segments of the four genes for 23S rRNA, and the expression of mutant rRNAs was analyzed by primer extension. Isolates from Canada (n = 4), Japan (n = 3), and Australia (n = 1) were found to have an A2059G mutation in all four 23S rRNA alleles. The Japanese isolates additionally had a G95D mutation in riboprotein L22; all of these originated from the same collection center and were clonal. Three of the Canadian isolates were also clonal; the rest were not genetically related. Four German isolates had A2059G in one, two, and three 23S rRNA alleles and A2058G in two 23S rRNA alleles, respectively. An isolate from the United States had C2611G in three 23S rRNA alleles, one isolate from Poland had A2058G in three 23S rRNA alleles, one isolate from Turkey had A2058G in four 23S rRNA alleles, and one isolate from Canada had A2059G in two 23S rRNA alleles. Erythromycin and clindamycin resistance gradually increased with the number of A2059G alleles, whereas going from one to two mutant alleles caused sharp rises in the azithromycin, roxithromycin, and rokitamycin MICs. Comparisons of mutation dosage with rRNA expression indicates that not all alleles are equally expressed. Despite their high levels of macrolide resistance, all 16 isolates remained susceptible to the ketolide telithromycin (MICs, 0.015 to 0.25 microg/ml).
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Drug Resistance, Bacterial
- Electrophoresis, Gel, Pulsed-Field
- Humans
- Macrolides
- Pneumococcal Infections/microbiology
- Point Mutation/genetics
- Polymerase Chain Reaction
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Sequence Analysis, DNA
- Streptococcus pneumoniae/drug effects
- Streptococcus pneumoniae/genetics
- Streptococcus pneumoniae/metabolism
Collapse
|
157
|
Pihlajamäki M, Jalava J, Huovinen P, Kotilainen P. Antimicrobial resistance of invasive pneumococci in Finland in 1999-2000. Antimicrob Agents Chemother 2003; 47:1832-5. [PMID: 12760855 PMCID: PMC155848 DOI: 10.1128/aac.47.6.1832-1835.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The resistance patterns and macrolide resistance mechanisms of 910 Finnish invasive pneumococci isolated during 1999 and 2000 were studied. Macrolide resistance was detected in 6.9% of isolates. Penicillin resistance was detected in 1.5% of isolates, and penicillin intermediate resistance was detected in 4.0% of isolates. Active macrolide efflux, mediated by the mef(A) gene, was the most common macrolide resistance mechanism. Four macrolide-resistant isolates had mutations in rRNA or ribosomal protein L22.
Collapse
Affiliation(s)
- Marja Pihlajamäki
- Antimicrobial Research Laboratory, National Public Health Institute, Turku, Finland.
| | | | | | | |
Collapse
|
158
|
Peric M, Bozdogan B, Jacobs MR, Appelbaum PC. Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Antimicrob Agents Chemother 2003; 47:1017-22. [PMID: 12604536 PMCID: PMC149331 DOI: 10.1128/aac.47.3.1017-1022.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study investigated macrolide resistance mechanisms in clinical Haemophilus influenzae strains with different levels of susceptibility to macrolides. A total of 6,382 isolates were collected during the Alexander Project from 1997 to 2000. For 96.9% of these isolates, the azithromycin MICs were 0.25 to 4 micro g/ml, and these were defined as baseline strains. For 1.8% of the isolates, the azithromycin MICs were lower (<0.25 micro g/ml), and for 1.3% of the isolates, the MICs were higher (>4 micro g/ml). These isolates were defined as hypersusceptible and high-level macrolide-resistant strains, respectively. To identify the mechanisms associated with these three susceptibility patterns, representative strains were studied for the presence of macrolide efflux pumps and for ribosomal alterations. Macrolide efflux was studied by measuring the accumulation of radioactive azithromycin and clarithromycin in the presence or absence of carbonyl cyanide m-chlorophenylhydrazone (CCCP), a protonophore. Treatment with CCCP increased the accumulation of macrolides in baseline as well as high-level resistant strains, demonstrating the presence of an efflux mechanism, but not in the 20 hypersusceptible strains tested. Among the 31 strains studied that showed high-level resistance to both azithromycin and clarithromycin, 28 had ribosomal alterations, 7 had mutations in ribosomal protein L4, 11 had mutations in L22, 2 had mutations in 23S rRNA, 8 had multiple mutations, and 3 had no mutations. From these results, we conclude that the vast majority (>98%) of H. influenzae strains have a macrolide efflux mechanism, with a few of these being hyperresistant (1.3%) due to one or several ribosomal mutations. Occasional hypersusceptible strains (1.8%) were found and had no macrolide resistance mechanisms and appeared to be the only truly macrolide-susceptible variants of H. influenzae.
Collapse
Affiliation(s)
- Mihaela Peric
- Department of Pathology, Hershey Medical Center, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
159
|
Bartkus JM, Juni BA, Ehresmann K, Miller CA, Sanden GN, Cassiday PK, Saubolle M, Lee B, Long J, Harrison AR, Besser JM. Identification of a mutation associated with erythromycin resistance in Bordetella pertussis: implications for surveillance of antimicrobial resistance. J Clin Microbiol 2003; 41:1167-72. [PMID: 12624047 PMCID: PMC150313 DOI: 10.1128/jcm.41.3.1167-1172.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythromycin treatment failures and in vitro resistance of Bordetella pertussis have been reported on several occasions in the past few years, but the mechanism of resistance has not been described. One potential mechanism, genetic modification of the erythromycin-binding site on the 23S rRNA of the 50S ribosomal subunit, has been observed in other bacteria. To explore this possibility, we amplified the portion of the 23S rRNA gene encoding the central loop of domain V. DNA sequencing and restriction fragment length polymorphism of the PCR products showed that each of the four erythromycin-resistant B. pertussis strains tested contained an A-to-G transition mutation at position 2058 (Escherichia coli numbering) of the 23S rRNA gene. The mutation was not found in seven erythromycin-susceptible isolates tested. Two of the resistant isolates were heterozygous, containing at least one mutant copy and one wild-type copy of the 23S rRNA gene. These results indicate that erythromycin resistance in these strains is likely due to a mutation of the erythromycin-binding site in the 23S rRNA gene. Identification of the resistance mechanism will facilitate development of molecular susceptibility testing methods that can be used directly on clinical specimens in the absence of an isolate.
Collapse
Affiliation(s)
- J M Bartkus
- Minnesota Department of Health, Minneapolis. Crossroads Medical Center, Chaska, Minnesota, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Reinert RR, Lütticken R, Bryskier A, Al-Lahham A. Macrolide-resistant Streptococcus pneumoniae and Streptococcus pyogenes in the pediatric population in Germany during 2000-2001. Antimicrob Agents Chemother 2003; 47:489-93. [PMID: 12543648 PMCID: PMC151724 DOI: 10.1128/aac.47.2.489-493.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a nationwide study in Germany covering 13 clinical microbiology laboratories, a total of 307 Streptococcus pyogenes (mainly pharyngitis) and 333 Streptococcus pneumoniae (respiratory tract infections) strains were collected from outpatients less than 16 years of age. The MICs of penicillin G, amoxicillin, cefotaxime, erythromycin A, clindamycin, levofloxacin, and telithromycin were determined by the microdilution method. In S. pyogenes isolates, resistance rates were as follows: penicillin, 0%; erythromycin A, 13.7%; and levofloxacin, 0%. Telithromycin showed good activity against S. pyogenes isolates (MIC(90) = 0.25 micro g/ml; MIC range, 0.016 to 16 micro g/ml). Three strains were found to be telithromycin-resistant (MIC >/= 4 micro g/ml). Erythromycin-resistant strains were characterized for the underlying resistance genotype, with 40.5% having the efflux type mef(A), 38.1% having the erm(A), and 9.5% having the erm(B) genotypes. emm typing of macrolide-resistant S. pyogenes isolates showed emm types 4 (45.2%), 77 (26.2%), and 12 (11.9%) to be predominant. In S. pneumoniae, resistance rates were as follows: penicillin intermediate, 7.5%; penicillin resistant, 0%; erythromycin A, 17.4%; and levofloxacin, 0%. Telithromycin was highly active against pneumococcal isolates (MIC(90) </= 0.016 micro g/ml; range, 0.016 to 0.5 micro g/ml). The overall resistance profile of streptococcal respiratory tract isolates is still favorable, but macrolide resistance is of growing concern in Germany.
Collapse
Affiliation(s)
- Ralf René Reinert
- National Reference Center for Streptococci, Institute for Medical Microbiology, University Hospital, D-52057 Aachen, Germany.
| | | | | | | |
Collapse
|
161
|
Drugeon H, Juvin M, Bensalah A, Moniot-Ville N. Épidémiologie de la résistance aux antibiotiques des pathogènes respiratoires en France en 2000-2001 ; apport de la télithromycine. Med Mal Infect 2003. [DOI: 10.1016/s0399-077x(03)00021-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
162
|
Butler JC, Lennox JL, McDougal LK, Sutcliffe JA, Tait-Kamradt A, Tenover FC. Macrolide-resistant pneumococcal endocarditis and epidural abscess that develop during erythromycin therapy. Clin Infect Dis 2003; 36:e19-25. [PMID: 12522763 DOI: 10.1086/344965] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2002] [Accepted: 09/12/2002] [Indexed: 11/04/2022] Open
Abstract
Suppurative complications of Streptococcus pneumoniae infections have become uncommon in the antibiotic era. We report a case of pneumococcal bacteremia and pneumonia complicated with epidural abscess and endocarditis in which macrolide resistance (the MLS(B) phenotype) emerged during erythromycin therapy. Genetic determinants known to mediate the most common mechanisms of macrolide resistance (methylation of the 23S rRNA and antibiotic efflux) were not detected by polymerase chain reaction or DNA hybridization. Sequence analysis of the DNA encoding the 23S rRNA of the macrolide-resistant isolate from the patient demonstrated the replacement of adenine by thymine at position 2058 (A2058T) in 2 of 4 alleles. Clinicians should be alert to the possibility of the emergence of resistance during macrolide therapy for community-acquired pneumonia, particularly if suppurative complications of pneumococcal infection are suspected.
Collapse
Affiliation(s)
- Jay C Butler
- Arctic Investigations Program, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, Alaska 99508, USA.
| | | | | | | | | | | |
Collapse
|
163
|
Montanari MP, Mingoia M, Cochetti I, Varaldo PE. Phenotypes and genotypes of erythromycin-resistant pneumococci in Italy. J Clin Microbiol 2003; 41:428-31. [PMID: 12517885 PMCID: PMC149635 DOI: 10.1128/jcm.41.1.428-431.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Of 120 erythromycin-resistant pneumococci isolated in Italian hospitals, 39 (32.5%) were M-type isolates, carrying the mef gene alone. The mef gene was also detected, together with erm(AM), in one constitutively resistant isolate and in five isolates of the partially inducible phenotype. Among the 45 mef-positive isolates, 25 (55.6%) carried mef(A) and 20 (44.4%) carried mef(E) as observed from PCR-restriction fragment length polymorphism analysis of a 1,743-bp amplicon. The same result was obtained by a similar method applied to a more common 348-bp amplicon.
Collapse
Affiliation(s)
- Maria Pia Montanari
- Department of Microbiology and Biomedical Sciences, University of Ancona Medical School, 60131 Ancona, Italy
| | | | | | | |
Collapse
|
164
|
Giovanetti E, Brenciani A, Burioni R, Varaldo PE. A novel efflux system in inducibly erythromycin-resistant strains of Streptococcus pyogenes. Antimicrob Agents Chemother 2002; 46:3750-5. [PMID: 12435672 PMCID: PMC132784 DOI: 10.1128/aac.46.12.3750-3755.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes strains inducibly resistant (iMLS phenotype) to macrolide, lincosamide, and streptogramin B (MLS) antibiotics can be subdivided into three phenotypes: iMLS-A, iMLS-B, and iMLS-C. This study focused on inducibly erythromycin-resistant S. pyogenes strains of the iMLS-B and iMLS-C types, which are very similar and virtually indistinguishable in a number of phenotypic and genotypic features but differ clearly in their degree of resistance to MLS antibiotics (high in the iMLS-B type and low in the iMLS-C type). As expected, the iMLS-B and iMLS-C test strains had the erm(A) methylase gene; the iMLS-A and the constitutively resistant (cMLS) isolates had the erm(B) methylase gene; and a control M isolate had the mef(A) efflux gene. mre(A) and msr(A), i.e., other macrolide efflux genes described in gram-positive cocci, were not detected in any test strain. With a radiolabeled erythromycin method for determination of the intracellular accumulation of the drug in the absence or presence of an efflux pump inhibitor, active efflux of erythromycin was observed in the iMLS-B isolates as well as in the M isolate, whereas no efflux was demonstrated in the iMLS-C isolates. By the triple-disk (erythromycin plus clindamycin and josamycin) test, performed both in normal test medium and in the same medium supplemented with the efflux pump inhibitor, under the latter conditions iMLS-B and iMLS-C strains were no longer distinguishable, all exhibiting an iMLS-C phenotype. In conjugation experiments with an iMLS-B isolate as the donor and a Rif(r) Fus(r) derivative of an iMLS-C isolate as the recipient, transconjugants which shared the iMLS-B type of the donor under all respects, including the presence of an efflux pump, were obtained. These results indicate the existence of a novel, transferable efflux system, not associated with mef(A) or with other known macrolide efflux genes, that is peculiar to iMLS-B strains. Whereas the low-level resistance of iMLS-C strains to MLS antibiotics is apparently due to erm(A)-encoded methylase activity, the high-level resistance of iMLS-B strains appears to depend on the same methylase activity plus the new efflux system.
Collapse
Affiliation(s)
- Eleonora Giovanetti
- Department of Microbiology and Biomedical Sciences, University of Ancona Medical School, 60131 Ancona, Italy
| | | | | | | |
Collapse
|
165
|
Pereyre S, Gonzalez P, De Barbeyrac B, Darnige A, Renaudin H, Charron A, Raherison S, Bébéar C, Bébéar CM. Mutations in 23S rRNA account for intrinsic resistance to macrolides in Mycoplasma hominis and Mycoplasma fermentans and for acquired resistance to macrolides in M. hominis. Antimicrob Agents Chemother 2002; 46:3142-50. [PMID: 12234836 PMCID: PMC128781 DOI: 10.1128/aac.46.10.3142-3150.2002] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of intrinsic resistance of Mycoplasma hominis to 14- and 15-membered macrolides were investigated in comparison with those of M. pneumoniae, which is naturally susceptible to macrolides. Radiolabeled erythromycin was not accumulated by M. hominis PG21, but addition of an ABC transporter inhibitor increased the level of erythromycin uptake more than two times, suggesting the existence of an active efflux process. The affinity of [(14)C]erythromycin to ribosomes isolated from M. hominis was dramatically reduced relative to that to ribosomes isolated from M. pneumoniae. The nucleotide sequences of 23S rRNA of both ribosomal operons rrnA and rrnB and ribosomal proteins L4 and L22 of M. hominis were obtained. Compared to the sequence of M. pneumoniae, M. hominis harbored a G2057A transition in its 23S rRNA sequence, as did M. fermentans, another mycoplasma that is erythromycin resistant. An additional C2610U change was also found in the sequence of M. hominis. Moreover, two M. hominis clinical isolates with acquired resistance to 16-membered macrolides were examined for mutations in domain II and domain V of 23S rRNA and in ribosomal proteins L4 and L22. Compared to the sequence of reference strain PG21, one isolate harbored a A2059G transition and a C2611U transition in one of the two rrn operons, while the other one was mutated only at position 2059, also on the same operon. No mutation was found in the two ribosomal protein sequences. Overall, the present study is an exhaustive characterization of the intrinsic resistance of M. hominis to 14- and 15-membered macrolides and the first description of mycoplasma clinical isolates resistant to macrolide, lincosamide, and streptogramin antibiotics harboring a mutation at position 2611 in the 23S rRNA.
Collapse
Affiliation(s)
- S Pereyre
- Laboratoire de Bactériologie, Université Victor Segalen Bordeaux 2, 33076 Bordeaux Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Zhanel GG, Walters M, Noreddin A, Vercaigne LM, Wierzbowski A, Embil JM, Gin AS, Douthwaite S, Hoban DJ. The ketolides: a critical review. Drugs 2002; 62:1771-804. [PMID: 12149046 DOI: 10.2165/00003495-200262120-00006] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ketolides are a new class of macrolides designed particularly to combat respiratory tract pathogens that have acquired resistance to macrolides. The ketolides are semi-synthetic derivatives of the 14-membered macrolide erythromycin A, and retain the erythromycin macrolactone ring structure as well as the D-desosamine sugar attached at position 5. The defining characteristic of the ketolides is the removal of the neutral sugar, L-cladinose from the 3 position of the ring and the subsequent oxidation of the 3-hydroxyl to a 3-keto functional group. The ketolides presently under development additionally contain an 11, 12 cyclic carbamate linkage in place of the two hydroxyl groups of erythromycin A and an arylalkyl or an arylallyl chain, imparting in vitro activity equal to or better than the newer macrolides. Telithromycin is the first member of this new class to be approved for clinical use, while ABT-773 is presently in phase III of development. Ketolides have a mechanism of action very similar to erythromycin A from which they have been derived. They potently inhibit protein synthesis by interacting close to the peptidyl transferase site of the bacterial 50S ribosomal subunit. Ketolides bind to ribosomes with higher affinity than macrolides. The ketolides exhibit good activity against Gram-positive aerobes and some Gram-negative aerobes, and have excellent activity against drug-resistant Streptococcus pneumoniae, including macrolide-resistant (mefA and ermB strains of S. pneumoniae). Ketolides such as telithromycin display excellent pharmacokinetics allowing once daily dose administration and extensive tissue distribution relative to serum. Evidence suggests the ketolides are primarily metabolised in the liver and that elimination is by a combination of biliary, hepatic and urinary excretion. Pharmacodynamically, ketolides display an element of concentration dependent killing unlike macrolides which are considered time dependent killers. Clinical trial data are only available for telithromycin and have focused on respiratory infections including community-acquired pneumonia, acute exacerbations of chronic bronchitis, sinusitis and streptococcal pharyngitis. Bacteriological and clinical cure rates have been similar to comparators. Limited data suggest very good eradication of macrolide-resistant and penicillin-resistant S. pneumoniae. As a class, the macrolides are well tolerated and can be used safely. Limited clinical trial data suggest that ketolides have similar safety profiles to the newer macrolides. Telithromycin interacts with the cytochrome P450 enzyme system (specifically CYP 3A4) in a reversible fashion and limited clinically significant drug interactions occur. In summary, clinical trials support the clinical efficacy of the ketolides in upper and lower respiratory tract infections caused by typical and atypical pathogens including strains resistant to penicillins and macrolides. Considerations such as local epidemiology, patterns of resistance and ketolide adverse effects, drug interactions and cost relative to existing agents will define the role of these agents. The addition of the ketolides in the era of antibacterial resistance provides clinicians with more options in the treatment of respiratory infections.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Prunier AL, Malbruny B, Tandé D, Picard B, Leclercq R. Clinical isolates of Staphylococcus aureus with ribosomal mutations conferring resistance to macrolides. Antimicrob Agents Chemother 2002; 46:3054-6. [PMID: 12183270 PMCID: PMC127407 DOI: 10.1128/aac.46.9.3054-3056.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Six strains of Staphylococcus aureus isolated from cystic fibrosis patients after treatment with azithromycin were cross-resistant to azithromycin and erythromycin. None of the isolates contained erm or msr(A) genes, but they all carried either A2058G/U or A2059G mutations within the rrl genes, with a majority of the rRNA copies bearing the mutation. One strain displayed an additional mutation in the rplV gene, encoding the L22 ribosomal protein.
Collapse
|
168
|
Leclercq R, Courvalin P. Resistance to macrolides and related antibiotics in Streptococcus pneumoniae. Antimicrob Agents Chemother 2002; 46:2727-34. [PMID: 12183222 PMCID: PMC127415 DOI: 10.1128/aac.46.9.2727-2734.2002] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
169
|
Ng LK, Martin I, Liu G, Bryden L. Mutation in 23S rRNA associated with macrolide resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 2002; 46:3020-5. [PMID: 12183262 PMCID: PMC127397 DOI: 10.1128/aac.46.9.3020-3025.2002] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fifty-six azithromycin-resistant (MICs, 2.0 to 4.0 micro g/ml) Neisseria gonorrhoeae strains with cross-resistance to erythromycin (MICs, 2.0 to 64.0 micro g/ml), isolated in Canada between 1997 and 1999, were characterized, and their mechanisms of azithromycin resistance were determined. Most (58.9%) of them belonged to auxotype-serotype class NR/IB-03, with a 2.6-mDa plasmid. Based on resistance to crystal violet (MICs >or= 1 micro g/ml), 96.4% of these macrolide-resistant strains appeared to have increased efflux. Nine of the eleven strains selected for further characterization were found to have a promoter region mtrR mutation, a single-base-pair (A) deletion in the 13-bp inverted repeat, which is believed to cause overexpression of the mtrCDE-encoded efflux pump. The two remaining macrolide-resistant strains (erythromycin MIC, 64.0 micro g/ml; azithromycin MIC, 4.0 micro g/ml), which did not have the mutation in the mtrR promoter region, were found to have a C2611T mutation (Escherichia coli numbering) in the peptidyltransferase loop in domain V of the 23S rRNA alleles. Although mutations in domain V of 23S rRNA alleles had been reported in other bacteria, including E. coli, Streptococcus pneumoniae, and Helicobacter pylori, this is the first observation of these mutations associated with macrolide resistance in N. gonorrhoeae.
Collapse
Affiliation(s)
- Lai-King Ng
- National Laboratory for Sexually Transmitted Diseases, National Microbiology Laboratory, Population and Public Health Branch, Health Canada, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
170
|
Kozlov RS, Bogdanovitch TM, Appelbaum PC, Ednie L, Stratchounski LS, Jacobs MR, Bozdogan B. Antistreptococcal activity of telithromycin compared with seven other drugs in relation to macrolide resistance mechanisms in Russia. Antimicrob Agents Chemother 2002; 46:2963-8. [PMID: 12183254 PMCID: PMC127395 DOI: 10.1128/aac.46.9.2963-2968.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The susceptibilities of 468 recent Russian clinical Streptococcus pneumoniae isolates and 600 Streptococcus pyogenes isolates, from 14 centers in Russia, to telithromycin, erythromycin, azithromycin, clarithromycin, clindamycin, levofloxacin, quinupristin-dalfopristin, and penicillin G were tested. Penicillin-nonsusceptible S. pneumoniae strains were rare except in Siberia, where their prevalence rate was 13.5%: most were penicillin intermediate, but for three strains (two from Smolensk and one from Novosibirsk) the MICs of penicillin G were 4 or 8 micro g/ml. Overall, 2.5% of S. pneumoniae isolates were resistant to erythromycin. Efflux was the prevalent resistance mechanism (five strains; 41.7%), followed by ribosomal methylation encoded by constitutive erm(B), which was found in four isolates. Ribosomal mutation was the mechanism of macrolide resistance in three isolates; one erythromycin-resistant S. pneumoniae isolate had an A2059G mutation in 23S rRNA, and two isolates had substitution of GTG by TPS at positions 69 to 71 in ribosomal protein L4. All S. pyogenes isolates were susceptible to penicillin, and 11% were erythromycin resistant. Ribosomal methylation was the most common resistance mechanism for S. pyogenes (89.4%). These methylases were encoded by erm(A) [subclass erm(TR)] genes, and their expression was inducible in 96.6% of isolates. The rest of the erythromycin-resistant Russian S. pyogenes isolates (7.6%) had an efflux resistance mechanism. Telithromycin was active against 100% of pneumococci and 99.2% of S. pyogenes, and levofloxacin and quinupristin-dalfopristin were active against all isolates of both species.
Collapse
Affiliation(s)
- Roman S Kozlov
- Institute of Antimicrobial Chemotherapy, Smolensk, Russia
| | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
The increasing prevalence of resistance to penicillin and other drugs among pneumococci has considerably complicated the empirical treatment of community-acquired pneumonia. Penicillin resistance has become widespread and is a worldwide occurrence. Resistance to other classes of antibiotics traditionally used as alternatives in the treatment of pneumococcal infections has also increased markedly during recent years. In some areas of the USA, Europe, and east Asia a prevalence of macrolide resistance as high as 35% or more has been reported recently. From the clinical standpoint, a growing number of failures following the use of these agents has been described. Resistance to fluoroquinolones remains low but several failures have been reported in different parts of the world. Pharmacokinetic/pharmacodynamic parameters have become essential at the time of making a rational choice and calculation of dosage. Penicillin G remains the mainstay of therapy for the treatment of penicillin-susceptible pneumococcal pneumonia. Penicillin-resistant pneumococcal pneumonia (minimum inhibitory concentration <4 microg/mL) can be safely treated with adequate betalactams at the right dosage. The new fluoroquinolones are very active and effective in pneumococcal pneumonia. Caution should be exercised in the widespread prescription of these drugs if we are to limit the rate of resistance to these agents.
Collapse
Affiliation(s)
- Javier Garau
- Department of Medicine, Hospital Mutua de Terrassa, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
172
|
Kays MB, Wack MF, Smith DW, Denys GA. Azithromycin treatment failure in community-acquired pneumonia caused by Streptococcus pneumoniae resistant to macrolides by a 23S rRNA mutation. Diagn Microbiol Infect Dis 2002; 43:163-5. [PMID: 12088625 DOI: 10.1016/s0732-8893(02)00379-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this report, we describe an azithromycin treatment failure in community-acquired pneumonia. During the first three days of azithromycin, the patient's symptoms worsened, and she was subsequently admitted to the hospital. Blood cultures were positive for a penicillin-susceptible, macrolide-resistant S. pneumoniae. DNA sequencing revealed an A2059G mutation in domain V of the 23S rRNA. To our knowledge, this is the first clinical report of an azithromycin failure in the treatment of S. pneumoniae resistant to macrolides by this mechanism.
Collapse
Affiliation(s)
- Michael B Kays
- Department of Pharmacy Practice, Purdue University School of Pharmacy and Pharmacal Sciences, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
173
|
Bingen E, Leclercq R, Fitoussi F, Brahimi N, Malbruny B, Deforche D, Cohen R. Emergence of group A streptococcus strains with different mechanisms of macrolide resistance. Antimicrob Agents Chemother 2002; 46:1199-203. [PMID: 11959545 PMCID: PMC127159 DOI: 10.1128/aac.46.5.1199-1203.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of resistance to macrolides in seven group A streptococcal (Streptococcus pyogenes) isolates that were the cause of pharyngitis in children who were unsuccessfully treated with azithromycin (10 mg/kg of body weight/day for 3 days) were evaluated. All posttreatment strains were found to be genetically related to the pretreatment isolates by random amplified polymorphism DNA analysis and pulsed-field gel electrophoresis. Two isolates had acquired either a mef(A) or an erm(B) gene, responsible for macrolide efflux and ribosomal modification, respectively. Three isolates displayed mutations in the gene encoding the L4 ribosomal protein that is part of the exit tunnel within the 50S subunit of the bacterial ribosome. In the two remaining posttreatment strains, the mechanisms of macrolide resistance could not be elucidated.
Collapse
Affiliation(s)
- Edouard Bingen
- Service de Microbiologie, Hôpital Robert Debré, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
174
|
Low DE, de Azavedo J, Weiss K, Mazzulli T, Kuhn M, Church D, Forward K, Zhanel G, Simor A, McGeer A. Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in Canada during 2000. Antimicrob Agents Chemother 2002; 46:1295-301. [PMID: 11959559 PMCID: PMC127188 DOI: 10.1128/aac.46.5.1295-1301.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 2,245 clinical isolates of Streptococcus pneumoniae were collected from 63 microbiology laboratories from across Canada during 2000 and characterized at a central laboratory. Of these isolates, 12.4% were not susceptible to penicillin (penicillin MIC, >or=0.12 microg/ml) and 5.8% were resistant (MIC, >or=2 microg/ml). Resistance rates among non-beta-lactam agents were the following: macrolides, 11.1%; clindamycin, 5.7%; chloramphenicol, 2.2%; levofloxacin, 0.9%; gatifloxacin, 0.8%; moxifloxacin, 0.4%; and trimethoprim-sulfamethoxazole, 11.3%. The MICs at which 90% of the isolates were inhibited (MIC90s) of the fluoroquinolones were the following: gemifloxacin, 0.03 microg/ml; BMS-284756, 0.06 microg/ml; moxifloxacin, 0.12 microg/ml; gatifloxacin, 0.25 microg/ml; levofloxacin, 1 microg/ml; and ciprofloxacin, 1 microg/ml. Of 578 isolates from the lower respiratory tract, 21 (3.6%) were inhibited at ciprofloxacin MICs of >or=4 microg/ml. None of the 768 isolates from children were inhibited at ciprofloxacin MICs of >or=4 microg/ml, compared to 3 of 731 (0.6%) from those ages 15 to 64 (all of these >60 years old), and 27 of 707 (3.8%) from those over 65. The MIC90s for ABT-773 and telithromycin were 0.015 microg/ml for macrolide-susceptible isolates and 0.12 and 0.5 microg/ml, respectively, for macrolide-resistant isolates. The MIC of linezolid was <or=2 microg/ml for all isolates. Many of the new antimicrobial agents tested in this study appear to have potential for the treatment of multidrug-resistant strains of pneumococci.
Collapse
Affiliation(s)
- Donald E Low
- Department of Microbiology, Toronto Medical Laboratories and Mount Sinai Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Abstract
The macrolide class of antibiotics is well established and often recommended for use in the treatment of community-acquired respiratory tract infections. A number of agents with varying antimicrobial activity have been developed via chemical modification of the core macrolide structure, a macrocyclic lactam ring. Although structurally diverse, the macrolides share a common ability to bind to the bacterial 50S ribosome subunit and inhibit protein synthesis, thereby preventing bacterial multiplication. Resistance in the clinic is due to modification of the 50S subunit in the area of the peptidyl transferase center or to an efflux pump. The newer macrolides, and in particular azithromycin, with their broad-spectrum microbiological profile have extended the therapeutic uses of this class of antibiotics and ensured that they remain an integral part of the clinician's armamentarium.
Collapse
Affiliation(s)
- J Retsema
- Pfizer Global Research and Development, Pfizer Central Research, Groton, CT 06340, USA.
| | | |
Collapse
|
176
|
Abstract
OBJECTIVE To review the chemistry, spectrum of activity, pharmacology, clinical efficacy, and safety of telithromycin. DATA SOURCES A MEDLINE search from 1966 to December 2000 was performed via OVID and PubMed using the following search terms: HMR 3647, HMR3647, Ketek, RU 66647, and telithromycin. An extensive review of retrieved literature, abstracts from international scientific conferences, and minutes from regulatory authority meetings was also performed. DATA EXTRACTION Medicinal chemistry, in vitro, animal, and human trials were reviewed for information on the antimicrobial activity, clinical efficacy, pharmacology, and safety of telithromycin. DATA SYNTHESIS Several chemical modifications to the macrolide structure have led to the development of telithromycin, the first ketolide antimicrobial that demonstrates improved activity against penicillin- and macrolide/azalide-resistant Streptococcus pneumoniae due to its unique binding to the ribosomal target site. Although telithromycin may be useful in the treatment of community-acquired respiratory tract infections due to its activity against common typical and atypical pathogens, questions concerning its reliable activity against Haemophilus influenzae need to be addressed. Telithromycin's pharmacokinetics permit once-daily dosing for abbreviated periods and good distribution into lung tissue and phagocytic cells. Clinical and bacteriologic cure rates have been similar to those of comparator agents in human efficacy trials; however, the incidence of adverse gastrointestinal events were generally higher with telithromycin patients. Like other macrolides and many newer fluoroquinolones, telithromycin's ability to prolong the QTc interval is a potential safety issue, especially in elderly patients with predisposing conditions or those who are concurrently receiving drugs that are substrates for CYP2D6 and 3A4. Liver function test elevations demonstrated during clinical trials, although not overtly severe, may warrant monitoring in some patients taking multiple hepatically metabolized/cleared agents. CONCLUSIONS Telithromycin offers potential advantages over traditional macrolides/azalides for community-acquired respiratory tract infections caused by macrolide-resistant pathogens. Further studies are needed to elucidate its clinical efficacy against H. influenzae, potential drug interactions, and safety in various subpopulations.
Collapse
Affiliation(s)
- Christopher S Shain
- Clinical Pharmacology Research Center, Bassett Healthcare, Cooperstown, NY 13326-1394, USA
| | | |
Collapse
|
177
|
Roberts MC. Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes. Mol Biotechnol 2002; 20:261-83. [PMID: 11936257 DOI: 10.1385/mb:20:3:261] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The discovery and use of antimicrobial agents in the last 50 yr has been one of medicine's greatest achievements. These agents have reduced morbidity and mortality of humans and animals and have directly contributed to human's increased life span. However, bacteria are becoming increasingly resistant to these agents by mutations, which alter existing bacterial proteins, and/or acquisition of new genes, which provide new proteins. The latter are often associated with mobile elements that can be exchanged quickly across bacterial populations and may carry multiple antibiotic genes for resistance. In some case, virulence factors are also found on these same mobile elements. There is mounting evidence that antimicrobial use in agriculture, both plant and animal, and for environmental purposes does influence the antimicrobial resistant development in bacteria important in humans and in reverse. In this article, we will examine the genes which confer resistance to tetracycline, macrolide-lincosamide-streptogramin (MLS), trimethoprim, and sulfonamide.
Collapse
Affiliation(s)
- Marilyn C Roberts
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle 98195, USA.
| |
Collapse
|
178
|
Shortridge VD, Zhong P, Cao Z, Beyer JM, Almer LS, Ramer NC, Doktor SZ, Flamm RK. Comparison of in vitro activities of ABT-773 and telithromycin against macrolide-susceptible and -resistant streptococci and staphylococci. Antimicrob Agents Chemother 2002; 46:783-6. [PMID: 11850262 PMCID: PMC127460 DOI: 10.1128/aac.46.3.783-786.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activity of a new ketolide, ABT-773, was compared to the activity of the ketolide telithromycin (HMR-3647) against over 600 gram-positive clinical isolates, including 356 Streptococcus pneumoniae, 167 Staphylococcus aureus, and 136 Streptococcus pyogenes isolates. Macrolide-susceptible isolates as well as macrolide-resistant isolates with ribosomal methylase (Erm), macrolide efflux (Mef), and ribosomal mutations were tested using the NCCLS reference broth microdilution method. Both compounds were extremely active against macrolide-susceptible isolates, with the minimum inhibitory concentrations at which 90% of the isolates tested were inhibited (MIC90s) for susceptible streptococci and staphylococci ranging from 0.002 to 0.03 microg/ml for ABT-773 and 0.008 to 0.06 microg/ml for telithromycin. ABT-773 had increased activities against macrolide-resistant S. pneumoniae (Erm MIC90, 0.015 microg/ml; Mef MIC90, 0.12 microg/ml) compared to those of telithromycin (Erm MIC90, 0.12 microg/ml; Mef MIC90, 1 microg/ml). Both compounds were active against strains with rRNA or ribosomal protein mutations (MIC90, 0.12 microg/ml). ABT-773 was also more active against macrolide-resistant S. pyogenes (ABT-773 Erm MIC90, 0.5 microg/ml; ABT-773 Mef MIC90, 0.12 microg/ml; telithromycin Erm MIC90, >8 microg/ml; telithromycin Mef MIC90, 1.0 microg/ml). Both compounds lacked activity against constitutive macrolide-resistant Staphylococcus aureus but had good activities against inducibly resistant Staphylococcus aureus (ABT-773 MIC90, 0.06 microg/ml; telithromycin MIC90, 0.5 microg/ml). ABT-773 has superior activity against macrolide-resistant streptococci compared to that of telithromycin.
Collapse
Affiliation(s)
- Virginia D Shortridge
- Discovery and Clinical Microbiology, Infectious Diseases Research, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Abstract
The ketolides are a new class of macrolides specifically designed to combat respiratory tract pathogens that have acquired resistance to macrolides. The ketolides are semi-synthetic derivatives of the 14-membered macrolide erythromycin A. There are currently two ketolides in the late stages of clinical development in the US (telithromycin [HMR-364, Kelek; Aventis] and ABT-773 [Abbot Laboratories]), as well as newer compounds in earlier stages of testing. Ketolides have a mechanism of action very similar to that of erythromycin A. They potently inhibit protein synthesis by interacting close to the peptidyl transferase site of the bacterial 50S ribosomal subunit. Ketolides bind to ribosomes with higher affinity than macrolides. The ketolides exhibit good activity against Gram-positive and some Gram-negative aerobes and have are active against macrolide-resistant Streptococcus species, including most mef A and erm B strains of Streptococcus pneumoniae. Ketolides have pharmacokinetics which allow once-daily dosing and extensive tissue distribution with very high uptake into respiratory tissues and fluids relative to serum. Evidence suggests the ketolides are primarily metabolised by the cytochrome P450 (CYP) enzyme system in the liver and that elimination is a combination of biliary, hepatic and urinary excretion. Clinical trial data are only available for telithromycin and have focused on respiratory tract infections (RTIs) including community-acquired pneumonia (CAP), acute exacerbations of chronic bronchitis (AECB), sinusitis and streptococcal pharyngitis. Bacteriological and clinical cure rates have been similar to comparators. Ketolides have similar safety profiles to the newer macrolides. In summary, early clinical trials support the clinical efficacy of the ketolides in common RTIs, including activity against macrolide-resistant pathogens.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Canada.
| | | |
Collapse
|
180
|
Pihlajamäki M, Kataja J, Seppälä H, Elliot J, Leinonen M, Huovinen P, Jalava J. Ribosomal mutations in Streptococcus pneumoniae clinical isolates. Antimicrob Agents Chemother 2002; 46:654-8. [PMID: 11850244 PMCID: PMC127486 DOI: 10.1128/aac.46.3.654-658.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eleven clinical isolates of Streptococcus pneumoniae, isolated in Finland during 1996 to 2000, had an unusual macrolide resistance phenotype. They were resistant to macrolides and streptogramin B but susceptible, intermediate, or low-level resistant to lincosamides. No acquired macrolide resistance genes were detected from the strains. The isolates were found to have mutations in domain V of the 23S rRNA or ribosomal protein L4. Seven isolates had an A2059C mutation in two to four out of the four alleles encoding the 23S rRNA, two isolates had an A2059G mutation in two alleles, one isolate had a C2611G mutation in all four alleles, and one isolate had a 69GTG71-to-69TPS71 substitution in ribosomal protein L4.
Collapse
Affiliation(s)
- Marja Pihlajamäki
- Antimicrobial Research Laboratory, National Public Health Institute, Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
181
|
|
182
|
Nagai K, Appelbaum PC, Davies TA, Kelly LM, Hoellman DB, Andrasevic AT, Drukalska L, Hryniewicz W, Jacobs MR, Kolman J, Miciuleviciene J, Pana M, Setchanova L, Thege MK, Hupkova H, Trupl J, Urbaskova P. Susceptibilities to telithromycin and six other agents and prevalence of macrolide resistance due to L4 ribosomal protein mutation among 992 Pneumococci from 10 central and Eastern European countries. Antimicrob Agents Chemother 2002; 46:371-7. [PMID: 11796344 PMCID: PMC127073 DOI: 10.1128/aac.46.2.371-377.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The macrolide and levofloxacin susceptibilities of 992 isolates of Streptococcus pneumoniae from clinical specimens collected in 1999 and 2000 were determined in 10 centers in Central and Eastern European countries. The prevalences of penicillin G-intermediate (MICs, 0.125 to 1 microg/ml) and penicillin-resistant (MICs, < or =2 microg/ml) Streptococcus pneumoniae isolates were 14.3 and 16.6%, respectively. The MICs at which 50% of isolates are inhibited (MIC(50)s) and the MIC(90)s of telithromycin were 0.016 and 0.06 microg/ml, respectively; those of erythromycin were 0.06 and >64 microg/ml, respectively; those of azithromycin were 0.125 and >64 microg/ml, respectively; those of clarithromycin were 0.03 and >64 microg/ml, respectively; and those of clindamycin were 0.06 and >64 microg/ml, respectively. Erythromycin resistance was found in 180 S. pneumoniae isolates (18.1%); the highest prevalence of erythromycin-resistant S. pneumoniae was observed in Hungary (35.5%). Among erythromycin-resistant S. pneumoniae isolates, strains harboring erm(B) genes (125 strains [69.4%]) were found to be predominant over strains with mef(E) genes (25 strains [13.4%]), L4 protein mutations (28 strains [15.6%]), and erm(A) genes (2 strains [1.1%]). Similar pulsed-field gel electrophoresis patterns suggested that some strains containing L4 mutations from the Slovak Republic, Bulgaria, and Latvia were clonally related. Of nine strains highly resistant to levofloxacin (MICs, >8 microg/ml) six were isolated from Zagreb, Croatia. Telithromycin at < or =0.5 microg/ml was active against 99.8% of S. pneumoniae isolates tested and may be useful for the treatment of respiratory tract infections caused by macrolide-resistant S. pneumoniae isolates.
Collapse
Affiliation(s)
- Kensuke Nagai
- Department of Pathology, Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Lee SY, Ning Y, Fenno JC. 23S rRNA point mutation associated with erythromycin resistance in Treponema denticola. FEMS Microbiol Lett 2002; 207:39-42. [PMID: 11886748 DOI: 10.1111/j.1574-6968.2002.tb11025.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mechanisms and occurrence of macrolide resistance in the periodontal pathogen Treponema denticola have received little attention. In this study, erythromycin resistance due to mutations in the genes encoding T. denticola 23S rRNA was investigated. The T. denticola genome was shown to contain two copies of 23S rDNA. 23S rRNA genes of nine erythromycin-resistant isolates derived from T. denticola were amplified and sequences were analyzed. All the erythromycin-resistant strains had at least one A-->G transition mutation at the 23S rRNA gene sequence cognate to position A2058 in Escherichia coli 23S rDNA. This suggests that antibiotic pressure is sufficient to select for point mutations that confer resistance in this organism.
Collapse
Affiliation(s)
- Si Young Lee
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA.
| | | | | |
Collapse
|
184
|
Canu A, Malbruny B, Coquemont M, Davies TA, Appelbaum PC, Leclercq R. Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniae. Antimicrob Agents Chemother 2002; 46:125-31. [PMID: 11751122 PMCID: PMC126998 DOI: 10.1128/aac.46.1.125-131.2002] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mechanisms of resistance were studied in 22 macrolide-resistant mutants selected in vitro from 5 parental strains of macrolide-susceptible Streptococcus pneumoniae by serial passage in various macrolides (T. A. Davies, B. E. Dewasse, M. R. Jacobs, and P. C. Appelbaum, Antimicrob. Agents Chemother., 44:414-417, 2000). Portions of genes encoding ribosomal proteins L22 and L4 and 23S rRNA (domains II and V) were amplified by PCR and analyzed by single-strand conformational polymorphism analysis to screen for mutations. The DNA sequences of amplicons from mutants that differed from those of parental strains by their electrophoretic migration profiles were determined. In six mutants, point mutations were detected in the L22 gene (G95D, P99Q, A93E, P91S, and G83E). The only mutant selected by telithromycin (for which the MIC increased from 0.008 to 0.25 microg/ml) contained a combination of three mutations in the L22 gene (A93E, P91S, and G83E). L22 mutations were combined with an L4 mutation (G71R) in one strain and with a 23S rRNA mutation (C2611A) in another strain. Nine other strains selected by various macrolides had A2058G (n = 1), A2058U (n = 2), A2059G (n = 1), C2610U (n = 1), and C2611U (n = 4) mutations (Escherichia coli numbering) in domain V of 23S rRNA. One mutant selected by clarithromycin and resistant to all macrolides tested (MIC, >32 microg/ml) and telithromycin (MIC, 4 microg/ml) had a single base deletion (A752) in domain II. In six remaining mutants, no mutations in L22, L4, or 23S rRNA could be detected.
Collapse
Affiliation(s)
- Annie Canu
- UFR des Sciences Pharmaceutiques, Caen, France
| | | | | | | | | | | |
Collapse
|
185
|
Garza-Ramos G, Xiong L, Zhong P, Mankin A. Binding site of macrolide antibiotics on the ribosome: new resistance mutation identifies a specific interaction of ketolides with rRNA. J Bacteriol 2001; 183:6898-907. [PMID: 11698379 PMCID: PMC95531 DOI: 10.1128/jb.183.23.6898-6907.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrolides represent a clinically important class of antibiotics that block protein synthesis by interacting with the large ribosomal subunit. The macrolide binding site is composed primarily of rRNA. However, the mode of interaction of macrolides with rRNA and the exact location of the drug binding site have yet to be described. A new class of macrolide antibiotics, known as ketolides, show improved activity against organisms that have developed resistance to previously used macrolides. The biochemical reasons for increased potency of ketolides remain unknown. Here we describe the first mutation that confers resistance to ketolide antibiotics while leaving cells sensitive to other types of macrolides. A transition of U to C at position 2609 of 23S rRNA rendered E. coli cells resistant to two different types of ketolides, telithromycin and ABT-773, but increased slightly the sensitivity to erythromycin, azithromycin, and a cladinose-containing derivative of telithromycin. Ribosomes isolated from the mutant cells had reduced affinity for ketolides, while their affinity for erythromycin was not diminished. Possible direct interaction of ketolides with position 2609 in 23S rRNA was further confirmed by RNA footprinting. The newly isolated ketolide-resistance mutation, as well as 23S rRNA positions shown previously to be involved in interaction with macrolide antibiotics, have been modeled in the crystallographic structure of the large ribosomal subunit. The location of the macrolide binding site in the nascent peptide exit tunnel at some distance from the peptidyl transferase center agrees with the proposed model of macrolide inhibitory action and explains the dominant nature of macrolide resistance mutations. Spatial separation of the rRNA residues involved in universal contacts with macrolides from those believed to participate in structure-specific interactions with ketolides provides the structural basis for the improved activity of the broader spectrum group of macrolide antibiotics.
Collapse
Affiliation(s)
- G Garza-Ramos
- Center for Pharmaceutical Biotechnology, University of Illinois, 900 S. Ashland Ave., Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
186
|
Aberg JA, Wong MK, Flamm R, Notario GF, Jacobson MA. Presence of macrolide resistance in respiratory flora of HIV-Infected patients receiving either clarithromycin or azithromycin for Mycobacterium avium complex prophylaxis. HIV CLINICAL TRIALS 2001; 2:453-9. [PMID: 11742432 DOI: 10.1310/13gy-1lby-355n-89hf] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Clarithromycin 500 mg po bid or azithromycin 1200 mg po weekly is recommended as first line prophylaxis for Mycobacterium avium complex (MAC) in patients with HIV infection whose CD4 counts are <50 cells/microL. HIV-infected patients with CD4+ T-cell counts <200 cells/microL were randomized to receive either clarithromycin 500 mg po bid or azithromycin 1200 mg po weekly for 12 weeks. Nasopharyngeal swabs for Streptococcus pneumoniae and Haemophilus influenzae plus an anterior nare culture for Staphylococcus aureus were obtained at pretreatment, at 6 weeks, and at 12 weeks. A throat culture for oral flora was obtained for susceptibility testing against erythromycin. Minimum inhibitory concentrations (MICs) for clarithromycin and azithromycin were performed on all S. pneumoniae, H. influenzae, and S. aureus isolates. The study was terminated after respiratory flora, from all participants, revealed macrolide resistance. Because results of recent randomized trials indicate minimal efficacy of continuing MAC prophylaxis in patients who respond to potent combination antiretroviral therapy, the observed high incidence of macrolide-resistant bacterial colonization of the respiratory tract in this trial supports the discontinuation of macrolide prophylaxis in all AIDS patients whose CD4 counts have risen above 100 cells/microL.
Collapse
Affiliation(s)
- J A Aberg
- Department of Medicine, University of California, San Francisco, USA.
| | | | | | | | | |
Collapse
|
187
|
Schmitz FJ, Perdikouli M, Beeck A, Verhoef J, Fluit AC. Molecular surveillance of macrolide, tetracycline and quinolone resistance mechanisms in 1191 clinical European Streptococcus pneumoniae isolates. Int J Antimicrob Agents 2001; 18:433-6. [PMID: 11711257 DOI: 10.1016/s0924-8579(01)00427-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae isolates (n=1191) were collected during a 1997-1999 European surveillance study. In addition to susceptibility data, a molecular epidemiological survey of their mechanisms of resistance to macrolides, tetracyclines, and quinolones was provided. Of the isolates tested, 72.6% were penicillin-susceptible, 19.9% penicillin-intermediate and 7.5% penicillin-resistant. There was an obvious relationship between resistance to penicillin and resistance to erythromycin (19% of all isolates), clindamycin (14%) and tetracycline (23%). Only one isolate was resistant to levofloxacin. Seventy-three percent of the European S. pneumoniae isolates resistant to erythromycin (n=229) carried the erm(B) gene, while the remaining 27% possessed the mef(A) gene. No mutations were detected in 23S rRNA or in ribosomal proteins L4 and L22. All tetracycline-resistant isolates (n=277) carried the tet(M) gene; none carried the tet(O) gene. Classical mutations in gyrA (Ser 81-Phe or Tyr) and parC (Ser 79-Phe and Asp 83-Asn) and efflux contributed to the decreased quinolone susceptibility. This study of recent European S. pneumoniae isolates can be used to recognize any changes in susceptibility patterns and resistance mechanisms that may occur in the future.
Collapse
Affiliation(s)
- F J Schmitz
- Institute for Medical Microbiology and Virology, Heinrich-Heine Universität, Dusseldorf, Germany
| | | | | | | | | |
Collapse
|
188
|
Nagai K, Davies TA, Ednie LM, Bryskier A, Palavecino E, Jacobs MR, Appelbaum PC. Activities of a new fluoroketolide, HMR 3787, and its (des)-fluor derivative RU 64399 compared to those of telithromycin, erythromycin A, azithromycin, clarithromycin, and clindamycin against macrolide-susceptible or -resistant Streptococcus pneumoniae and S. pyogenes. Antimicrob Agents Chemother 2001; 45:3242-5. [PMID: 11600391 PMCID: PMC90817 DOI: 10.1128/aac.45.11.3242-3245.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activities of HMR 3787 and RU 64399 were compared to those of three macrolides, telithromycin, and clindamycin against 175 Streptococcus pneumoniae isolates and 121 Streptococcus pyogenes isolates. HMR3787 and telithromycin were the most active compounds tested against pneumococci. Telithromycin and RU 64399 were equally active against macrolide-susceptible (MICs, 0.008 to 0.06 microg/ml) and -resistant S. pyogenes isolates, but HMR 3787 had lower MICs for ermB strains.
Collapse
Affiliation(s)
- K Nagai
- Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | |
Collapse
|
189
|
Fluit AC, Visser MR, Schmitz FJ. Molecular detection of antimicrobial resistance. Clin Microbiol Rev 2001; 14:836-71, table of contents. [PMID: 11585788 PMCID: PMC89006 DOI: 10.1128/cmr.14.4.836-871.2001] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The determination of antimicrobial susceptibility of a clinical isolate, especially with increasing resistance, is often crucial for the optimal antimicrobial therapy of infected patients. Nucleic acid-based assays for the detection of resistance may offer advantages over phenotypic assays. Examples are the detection of the methicillin resistance-encoding mecA gene in staphylococci, rifampin resistance in Mycobacterium tuberculosis, and the spread of resistance determinants across the globe. However, molecular assays for the detection of resistance have a number of limitations. New resistance mechanisms may be missed, and in some cases the number of different genes makes generating an assay too costly to compete with phenotypic assays. In addition, proper quality control for molecular assays poses a problem for many laboratories, and this results in questionable results at best. The development of new molecular techniques, e.g., PCR using molecular beacons and DNA chips, expands the possibilities for monitoring resistance. Although molecular techniques for the detection of antimicrobial resistance clearly are winning a place in routine diagnostics, phenotypic assays are still the method of choice for most resistance determinations. In this review, we describe the applications of molecular techniques for the detection of antimicrobial resistance and the current state of the art.
Collapse
Affiliation(s)
- A C Fluit
- Eijkman-Winkler Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
190
|
Abstract
Translation of specific short peptides can render the ribosome resistant to macrolide antibiotics such as erythromycin. Peptides act in cis upon the ribosome on which they have been translated. Amino acid sequence and size are critical for peptide activity. Pentapeptides with different consensus sequences confer resistance to structurally different macrolide antibiotics, suggesting direct interaction between the peptide and the drug on the ribosome. Translation of resistance peptides may result in expulsion of the macrolide antibiotics from the ribosome. The consensus sequence of peptides conferring erythromycin resistance is similar to the sequence of the leader peptide involved in translational attenuation of erythromycin resistance genes, indicating that a similar type of interaction between the nascent peptide and antibiotics can occur in both cases.
Collapse
Affiliation(s)
- T Tenson
- Institute of Molecular and Cell Biology, Tartu University, Riia 23, Tartu 51010, Estonia.
| | | |
Collapse
|
191
|
Fitoussi F, Loukil C, Gros I, Clermont O, Mariani P, Bonacorsi S, Le Thomas I, Deforche D, Bingen E. Mechanisms of macrolide resistance in clinical group B streptococci isolated in France. Antimicrob Agents Chemother 2001; 45:1889-91. [PMID: 11353645 PMCID: PMC90565 DOI: 10.1128/aac.45.6.1889-1891.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrolide susceptibility was investigated in clinical group B streptococci obtained from neonates or pregnant women in 2000 in France. Of 490 consecutive isolates, 18% were resistant to erythromycin. The erm(B), erm(A) subclass erm(TR), and mef(A) genes were harbored by 47, 45, and 6% of these strains, respectively. Two isolates did not harbor erm or mef genes.
Collapse
Affiliation(s)
- F Fitoussi
- Service de Microbiologie, Hôpital Robert Debré, 75019 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Morosini MI, Cantón R, Loza E, Negri MC, Galán JC, Almaraz F, Baquero F. In vitro activity of telithromycin against Spanish Streptococcus pneumoniae isolates with characterized macrolide resistance mechanisms. Antimicrob Agents Chemother 2001; 45:2427-31. [PMID: 11502509 PMCID: PMC90672 DOI: 10.1128/aac.45.9.2427-2431.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The susceptibilities to telithromycin of 203 Streptococcus pneumoniae isolates prospectively collected during 1999 and 2000 from 14 different geographical areas in Spain were tested and compared with those to erythromycin A, clindamycin, quinupristin-dalfopristin, penicillin G, cefotaxime, and levofloxacin. Telithromycin was active against 98.9% of isolates (MICs, < or =0.5 microg/ml), with MICs at which 90% of isolates are inhibited being 0.06 microg/ml, irrespective of the resistance genotype. The corresponding values for erythromycin were 61.0% (MICs, < or =0.25 microg/ml) and >64 microg/ml. The erm(B) gene (macrolide-lincosamide-streptogramin B resistance phenotype) was detected in 36.4% (n = 74) of the isolates, which corresponded to 93.6% of erythromycin-intermediate and -resistant isolates, whereas the mef(A) gene (M phenotype [resistance to erythromycin and susceptibility to clindamycin and spiramycin without blunting]) was present in only 2.4% (n = 5) of the isolates. One of the latter isolates also carried erm(B). Interestingly, in one isolate for which the erythromycin MIC was 2 microg/ml, none of these resistance genes could be detected. Erythromycin MICs for S. pneumoniae erm(B)-positive isolates were higher (range, 0.5 to >64 microg/ml) than those for erm(B)- and mef(A)-negative isolates (range, 0.008 to 2 microg/ml). The corresponding values for telithromycin were lower for both groups, with ranges of 0.004 to 1 and 0.002 to 0.06 microg/ml, respectively. The erythromycin MIC was high for a large number of erm(B)-positive isolates, but the telithromycin MIC was low for these isolates. These results indicate the potential usefulness of telithromycin for the treatment of infections caused by erythromycin-susceptible and -resistant S. pneumoniae isolates when macrolides are indicated.
Collapse
Affiliation(s)
- M I Morosini
- Servicio de Microbiología, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
193
|
Gregory ST, Cate JH, Dahlberg AE. Spontaneous erythromycin resistance mutation in a 23S rRNA gene, rrlA, of the extreme thermophile Thermus thermophilus IB-21. J Bacteriol 2001; 183:4382-5. [PMID: 11418580 PMCID: PMC95329 DOI: 10.1128/jb.183.14.4382-4385.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spontaneous, erythromycin-resistant mutants of Thermus thermophilus IB-21 were isolated and found to carry the mutation A2058G in one of two 23S rRNA operons. The heterozygosity of these mutants indicates that A2058G confers a dominant or codominant phenotype in this organism. This mutation provides a valuable tool for the genetic manipulation of the 23S rRNA genes of Thermus.
Collapse
Affiliation(s)
- S T Gregory
- J. W. Wilson Laboratory, Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
194
|
Gabashvili IS, Gregory ST, Valle M, Grassucci R, Worbs M, Wahl MC, Dahlberg AE, Frank J. The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol Cell 2001; 8:181-8. [PMID: 11511371 DOI: 10.1016/s1097-2765(01)00293-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Variations in the inner ribosomal landscape determining the topology of nascent protein transport have been studied by three-dimensional cryo-electron microscopy of erythromycin-resistant Escherichia coli 70S ribosomes. Significant differences in the mouth of the 50S subunit tunnel system visualized in the present study support a simple steric-hindrance explanation for the action of the drug. Examination of ribosomes in different functional states suggests that opening and closing of the main tunnel are dynamic features of the large subunit, possibly accompanied by changes in the L7/L12 stalk region. The existence and dynamic behavior of side tunnels suggest that ribosomal proteins L4 and L22 might be involved in the regulation of a multiple exit system facilitating cotranslational processing (or folding or directing) of nascent proteins.
Collapse
Affiliation(s)
- I S Gabashvili
- Wadsworth Center, State University of New York at Albany, P.O. Box 509, Albany, NY 12201, USA
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Dinos GP, Michelinaki M, Kalpaxis DL. Insights into the Mechanism of Azithromycin Interaction with anEscherichia coli Functional Ribosomal Complex. Mol Pharmacol 2001; 59:1441-5. [PMID: 11353804 DOI: 10.1124/mol.59.6.1441] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Azithromycin, a derivative of erythromycin with improved activity against Gram-negative bacteria, exhibits a marginal inhibition effect in a model system derived from Escherichia coli, in which a peptide bond is formed between puromycin and AcPhe-tRNA bound at the P-site of poly(U)-programmed ribosomes. This renders the study of azithromycin interaction with Ac[(3)H]Phe-tRNA. poly(U). 70S ribosome complex (complex C) impossible, if we analyze its effect on peptide bond formation. To overcome this problem, we have used an alternative approach to investigate kinetically the azithromycin interaction with complex C and to compare the azithromycin binding properties with those of erythromycin. This approach was based on the ability of azithromycin to compete with tylosin, a macrolide antibiotic strongly inhibiting the puromycin reaction. Detailed kinetic analysis revealed that the encounter complex CA between complex C and azithromycin (A) undergoes a slow isomerization to a tighter complex C*A, which remains active toward puromycin. The determination of inhibition and isomerization rate constants enabled us to classify azithromycin as a slow-binding ligand of ribosomes. Compared with erythromycin, azithromycin is a better inducer and stabilizer of the C*A complex. This finding may explain the superiority of azithromycin as inhibitor of translation in E. coli cells and many other Gram-negative bacteria.
Collapse
Affiliation(s)
- G P Dinos
- Laboratory of Biochemistry, School of Medicine, University of Patras, GR-26500 Patras, Greece
| | | | | |
Collapse
|
196
|
Ip M, Lyon DJ, Yung RW, Chan C, Cheng AF. Macrolide resistance in Streptococcus pneumoniae in Hong Kong. Antimicrob Agents Chemother 2001; 45:1578-80. [PMID: 11302833 PMCID: PMC90511 DOI: 10.1128/aac.45.5.1578-1580.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythromycin resistance rates among penicillin-susceptible Streptococcus pneumoniae were 38 and 92% among penicillin-intermediate and -resistant S. pneumoniae isolates from Hong Kong, respectively, and 27% (43 of 158) of the isolates showed the MLS(B) phenotype, and the majority carried the ermB gene; 73% (115 of 158) displayed the M phenotype, and all possessed the mef gene. The MLS(B) phenotype was predominant in penicillin-susceptible, macrolide-resistant isolates and in penicillin-nonsusceptible isolates of serotype 6B, whilst the M phenotype was predominant in penicillin-intermediate or -resistant isolates belonging to serotype 23F or 19F. Extensive spread of clones of drug-resistant pneumococci has led to the widespread presence of macrolide resistance in S. pneumoniae in Hong Kong.
Collapse
Affiliation(s)
- M Ip
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.
| | | | | | | | | |
Collapse
|
197
|
McGee L, Klugman KP, Wasas A, Capper T, Brink A. Serotype 19f multiresistant pneumococcal clone harboring two erythromycin resistance determinants (erm(B) and mef(A)) in South Africa. Antimicrob Agents Chemother 2001; 45:1595-8. [PMID: 11302838 PMCID: PMC90516 DOI: 10.1128/aac.45.5.1595-1598.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2000] [Accepted: 01/24/2001] [Indexed: 11/20/2022] Open
Abstract
One hundred eighteen erythromycin-resistant Streptococcus pneumoniae (ERSP) strains (MICs of > or = 0.5 microg/ml) from five laboratories serving the private sector in South Africa were analyzed for the genes encoding resistance to macrolides. Sixty-seven ERSP strains (56.8%) contained the erm(B) gene, and 15 isolates (12.7%) contained the mef(A) gene. Thirty-six isolates (30.5%) harbored both the erm(B) and mef(A) genes and were highly resistant to erythromycin and clindamycin. DNA fingerprinting by BOX-PCR and pulsed-field gel electrophoresis identified 83% of these strains as belonging to a single multiresistant serotype 19F clone.
Collapse
Affiliation(s)
- L McGee
- MRC/SAIMR/WITS Pneumococcal Diseases Research Unit, South African Institute for Medical Research, Johannesburg, South Africa.
| | | | | | | | | |
Collapse
|
198
|
Reinert RR, Simic S, Al-Lahham A, Reinert S, Lemperle M, Lütticken R. Antimicrobial resistance of Streptococcus pneumoniae recovered from outpatients with respiratory tract infections in Germany from 1998 to 1999: results of a national surveillance study. J Clin Microbiol 2001; 39:1187-9. [PMID: 11230456 PMCID: PMC87902 DOI: 10.1128/jcm.39.3.1187-1189.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinically significant pneumococcal isolates were prospectively collected from outpatients with respiratory tract infections by 19 different clinical microbiology laboratories in Germany. Resistance rates in a total of 961 isolates were as follows: penicillin, 6.6%; clarithromycin, 10.6%; tetracycline, 13.9%; and levofloxacin, 0.1%. Among 324 isolates from children, pneumococcal serotypes 19F (17.0%), 23F (13.0%), and 6B (11.7%) were the predominant types.
Collapse
Affiliation(s)
- R R Reinert
- Institute of Medical Microbiology, National Reference Center for Streptococci, University Hospital, Pauwelstr. 30, D-52057 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
199
|
Jalava J, Kataja J, Seppälä H, Huovinen P. In vitro activities of the novel ketolide telithromycin (HMR 3647) against erythromycin-resistant Streptococcus species. Antimicrob Agents Chemother 2001; 45:789-93. [PMID: 11181362 PMCID: PMC90375 DOI: 10.1128/aac.45.3.789-793.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro susceptibilities of 184 erythromycin-resistant streptococci to a novel ketolide, telithromycin (HMR 3647), were tested. These clinical isolates included 111 Streptococcus pyogenes, 18 group C streptococcus, 18 group G streptococcus, and 37 Streptococcus pneumoniae strains. The MICs for all but eight S. pyogenes strains were < or =0.5 microg/ml, indicating that telithromycin is active in vitro against erythromycin-resistant Streptococcus strains. All strains for which MICs were > or =1 microg/ml had an erm(B) resistance gene and six strains for which MICs were > or =4 microg/ml had a constitutive erm(B) gene (MIC range, 4 to 64 microg/ml). Interestingly, for S. pneumoniae strains with a constitutive erm(B) gene, MICs were < or =0.25 microg/ml (MIC range, < or =0.008 to 0.25 microg/ml). Our in vitro data show that for S. pyogenes strains which constitutively express the erm(B) methylase gene, MICs are so high that the strains might be clinically resistant to telithromycin.
Collapse
Affiliation(s)
- J Jalava
- Antimicrobial Research Laboratory, National Public Health Institute, Turku, Finland.
| | | | | | | |
Collapse
|
200
|
Fitoussi F, Doit C, Geslin P, Brahimi N, Bingen E. Mechanisms of macrolide resistance in clinical pneumococcal isolates in France. Antimicrob Agents Chemother 2001; 45:636-8. [PMID: 11158772 PMCID: PMC90344 DOI: 10.1128/aac.45.2.636-638.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic basis of macrolide resistance was investigated in a collection of 48 genotypically unrelated clinical isolates of Streptococcus pneumoniae obtained between 1987 and 1997 in France. All strains were resistant to erythromycin, clindamycin, and streptogramin B, exhibiting a macrolide-lincosamide-streptogramin B resistance phenotype, and harbored the erm(B) gene. None of the strains carried the mef(A) or erm(A) subclass erm(TR) gene.
Collapse
Affiliation(s)
- F Fitoussi
- Service de Microbiologie, Hôpital Robert Debré, 75019 Paris, France
| | | | | | | | | |
Collapse
|