151
|
Angelidou E, Kostoulas P, Leontides L. Bayesian estimation of sensitivity and specificity of a commercial serum/milk ELISA against the Mycobacterium avium subsp. Paratuberculosis (MAP) antibody response for each lactation stage in Greek dairy sheep. Prev Vet Med 2015; 124:102-5. [PMID: 26754926 DOI: 10.1016/j.prevetmed.2015.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 11/29/2022]
Abstract
A total of 854 paired milk and blood samples were collected from ewes of a Greek flock and used to estimate the sensitivity and specificity of a commercial ELISA for detection of Mycobacterium avium subsp. paratuberculosis (MAP) specific antibodies in each stage of lactation. We implemented Bayesian mixture models to derive the distributions of the test response for the healthy and the infected ewes. In the colostrum period, early, mid and late lactation stage the median values of the area under the curves (AUC) were 0.61 (95% credible interval: 0.50; 0.84), 0.61 (0.51;0.84), 0.65 (0.51;0.91), 0.65(0.51;0.89) for the serum ELISA and and 0.60 (0.50; 0.84), 0.61 (0.50; 0.84), 0.67(0.51; 0.91), 0.66(0.50; 0.90) for the milk ELISA, respectively. Both serum and milk ELISA had low to average overall discriminatory ability as measured by the area under the curves and comparable sensitivities and specificities at the recommended cutoffs.
Collapse
Affiliation(s)
- Elisavet Angelidou
- Laboratory of Epidemiology, Biostatistics and Animal Health Economics, Faculty of Veterinary Medicine, University of Thessaly, Trikalon 224, GR-43100 Karditsa, Greece.
| | - Polychronis Kostoulas
- Laboratory of Epidemiology, Biostatistics and Animal Health Economics, Faculty of Veterinary Medicine, University of Thessaly, Trikalon 224, GR-43100 Karditsa, Greece
| | - Leonidas Leontides
- Laboratory of Epidemiology, Biostatistics and Animal Health Economics, Faculty of Veterinary Medicine, University of Thessaly, Trikalon 224, GR-43100 Karditsa, Greece
| |
Collapse
|
152
|
Rana A, Akhter Y. A multi-subunit based, thermodynamically stable model vaccine using combined immunoinformatics and protein structure based approach. Immunobiology 2015; 221:544-57. [PMID: 26707618 DOI: 10.1016/j.imbio.2015.12.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 10/22/2022]
Abstract
Immunizations with the conventional vaccines have failed to effectively inhibit the incidences and further dissemination of the infections. To address it, we have implemented protein structure based strategies to design an efficient multi-epitope subunit vaccine against Mycobacterium avium subsp. paratuberculosis (MAP). Previously reported immunodominant peptide epitope sequences from MAP1611 protein were conjugated together with a stretch of conserved amino acid residues of heparin-binding hemagglutinin, reported as a TLR4 agonist and was employed as an adjuvant to polarize the cellular responses toward host protective Th1 responses. These three types of component peptides were combined with the help of relevant linkers for efficient separation to improve and intensify the antigen processing and presentation. The primary structures of these multi peptides were 3-dimensional homology modeled to yield the final chimeric vaccine. Further, its conformational correctness and stability enhancement was assessed using molecular dynamics (MD) simulations. Finally, disulfide engineering in the most flexible regions of the molecule yielded three potential mutants, Y593C-E610C, Q631C-A634C and a double mutant Q631C-A634C/Y593C-E610C. The double mutant represents thermodynamically most stable version among them. It is potentially highly antigenic, soluble and non-allergen molecule interacting with the TLR receptor expressed on the immune cells. This vaccine contains both T-cell and several B-cell epitopes and an adjuvant which potentially possess protective cellular and humoral immune responses triggering properties. The presented vaccine strategy will be proven a promising pathogen specific candidate with wide therapeutic application against MAP which may be extended to other prevalent infections in future.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh 176206, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh 176206, India.
| |
Collapse
|
153
|
Mortier RA, Barkema HW, Orsel K, Muench GP, Bystrom JM, Illanes O, De Buck J. Longitudinal evaluation of diagnostics in experimentally infected young calves during subclinical and clinical paratuberculosis. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2015; 56:1266-1270. [PMID: 26663923 PMCID: PMC4668818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Five calves were inoculated orally at 2 weeks of age with a dose of 5 × 10(9) colony-forming units of Mycobacterium avium subspecies paratuberculosis (MAP) on 2 consecutive days. Two calves developed clinical Johne's disease at 12 and 16 months of age after being consistently positive for MAP on fecal culture and antibody enzyme-linked immunosorbent assay (ELISA), starting 2 to 3 weeks and 4 to 5 months after inoculation, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeroen De Buck
- Address all correspondence to Dr. Jeroen De Buck; e-mail:
| |
Collapse
|
154
|
Wei G, Huang M, Wang G, Huo F, Dong L, Li Y, Huang H. Antimicrobial susceptibility testing and genotyping of Mycobacterium avium isolates of two tertiary tuberculosis designated hospital, China. INFECTION GENETICS AND EVOLUTION 2015; 36:141-146. [DOI: 10.1016/j.meegid.2015.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022]
|
155
|
Selim AM, Gaede W. Comparative Evaluation of PCR Assay for Direct Detection of Mycobacterium avium subsp. paratuberculosis in Ruminant. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajava.2015.761.771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
156
|
Oh SY, Mead PJ, Sharma BS, Quinton VM, Boermans HJ, Smith TK, Swamy HVLN, Karrow NA. Effect of Penicillium mycotoxins on the cytokine gene expression, reactive oxygen species production, and phagocytosis of bovine macrophage (BoMacs) function. Toxicol In Vitro 2015; 30:446-53. [PMID: 26394380 DOI: 10.1016/j.tiv.2015.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/07/2015] [Accepted: 09/18/2015] [Indexed: 01/21/2023]
Abstract
Bovine macrophages (BoMacs) were exposed to the following Penicillium mycotoxins (PM): citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA) and penicillic acid (PA). PM exposure at the concentration that inhibits proliferation by 25% (IC25) differentially for 24h altered the gene expression of various cytokines. OTA significantly induced IL-1α expression (p<0.05), while the expression of IL-6 was suppressed (p<0.01). MPA significantly induced the expression of IL-1α (p<0.05) and reduced the expression of IL-12α (p<0.01) and IL-10 (p<0.01). PAT significantly suppressed the expression of IL-23 (p<0.01), IL-10 (p<0.05) and TGF-β (p<0.05). Some PMs also affected reactive oxygen species (ROS) and phagocytosis of Mycobacterium avium ssp. Paratuberculosis (MAP) at higher concentrations. PAT and PA for example, significantly decreased the percent phagocytosis of MAP at 5.0 (p<0.01) and 15.6 μM (p<0.01), respectively, but only PA significantly suppressed PAM-3-stimulated ROS production at 62.5 (p<0.05) and 250.0 μM (p<0.01). OTA significantly increased the percent phagocytosis of MAP at 6.3 (p<0.05) and 12.5 μM (p<0.01). These findings suggest that exposure to sub-lethal concentrations of PMs can affect macrophage function, which could affect immunoregulation and innate disease resistance to pathogens.
Collapse
Affiliation(s)
- Se-Young Oh
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Philip J Mead
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bhawani S Sharma
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON N1G 2W1, Canada
| | - V Margaret Quinton
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Herman J Boermans
- Department of Biomedical Science, Ontario Veterinary College (OVC), University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Trevor K Smith
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON N1G 2W1, Canada
| | - H V L N Swamy
- Devenish Nutrition Ltd, Bengaluru, Karnataka State 560024, India
| | - Niel A Karrow
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
157
|
Host responses to the pathogen Mycobacterium avium subsp. paratuberculosis and beneficial microbes exhibit host sex specificity. Appl Environ Microbiol 2015; 80:4481-90. [PMID: 24814797 DOI: 10.1128/aem.01229-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Differences between microbial pathogenesis in male and female hosts are well characterized in disease conditions connected to sexual transmission. However, limited biological insight is available on variances attributed to sex specificity in host-microbe interactions, and it is most often a minimized variable outside these transmission events. In this work, we studied two gut microbes-a pathogen, Mycobacterium avium subsp. paratuberculosis, and a probiotic, Lactobacillus animalis NP-51-and the interaction between each agent and the male and female gastrointestinal systems. This trial was conducted in BALB/c mice (n=5 per experimental group and per sex at a given time point), with analysis at four time points over 180 days. Host responses to M.avium subsp. paratuberculosis and L. animalis were sensitive to sex. Cytokines that were significantly different (P ≤ 0.05) betweenthe sexes included interleukin-1α/β (IL-1α/β), IL-17, IL-6, IL-10, IL-12, and gamma interferon (IFN-) and were dependent on experimental conditions. However, granulocyte-macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), and IL-13/23 showed no sex specificity. A metabolomics study indicated a 0.5- to 2.0-fold (log2 scale) increase in short-chain fatty acids (butyrate and acetate) in males and greater increases in o-phosphocholine or histidine from female colon tissues; variances distinct to each sex were observed with age or long-term probiotic consumption. Two genera, Staphylococcus and Roseburia, were consistently overrepresented in females compared to males; other species were specific to one sex but fluctuated depending on experimental conditions. The differences observed suggest that male and female gut tissues and microbiota respond to newly introduced microorganisms differently and that gut-associated microorganisms with host immune system responses and metabolic activity are supported by biology distinct to the host sex.
Collapse
|
158
|
Ganusov VV, Klinkenberg D, Bakker D, Koets AP. Evaluating contribution of the cellular and humoral immune responses to the control of shedding of Mycobacterium avium spp. paratuberculosis in cattle. Vet Res 2015; 46:62. [PMID: 26092254 PMCID: PMC4474352 DOI: 10.1186/s13567-015-0204-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/03/2015] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium avium spp. paratuberculosis (MAP) causes a persistent infection and chronic inflammation of the gut in ruminants leading to bacterial shedding in feces in many infected animals. Although there are often strong MAP-specific immune responses in infected animals, immunological correlates of protection against progression to disease remain poorly defined. Analysis of cross-sectional data has suggested that the cellular immune response observed early in infection is effective at containing bacterial growth and shedding, in contrast to humoral immune responses. In this study, 20 MAP-infected calves were followed for nearly 5 years during which MAP shedding, antigen-specific cellular (LPT) and humoral (ELISA) immune responses were measured. We found that MAP-specific cellular immune response developed slowly, with the peak of the immune response occurring one year post infection. MAP-specific humoral immunity expanded only in a subset of animals. Only in a subset of animals there was a statistically significant negative correlation between the amount of MAP shedding and magnitude of the MAP-specific cellular immune response. Direct fitting of simple mechanistic mathematical models to the shedding data suggested that MAP-specific immune responses contributed significantly to the kinetics of MAP shedding in most animals. However, whereas the MAP-specific cellular immune response was predicted to suppress shedding in some animals, in other animals it was predicted to increase shedding. In contrast, MAP-specific humoral response was always predicted to increase shedding. Our results illustrate the use of mathematical methods to understand relationships between mycobacteria and immunity in vivo but also highlight problems with establishing cause-effect links from observational data.
Collapse
Affiliation(s)
- Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Don Klinkenberg
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | - Douwe Bakker
- Department of Bacteriology and TSE, Central Veterinary Institute part of Wageningen UR, Lelystad, The Netherlands.
| | - Ad P Koets
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands. .,Department of Bacteriology and TSE, Central Veterinary Institute part of Wageningen UR, Lelystad, The Netherlands.
| |
Collapse
|
159
|
Bannantine JP, Stabel JR, Laws E, D. Cardieri MC, Souza CD. Mycobacterium avium Subspecies paratuberculosis Recombinant Proteins Modulate Antimycobacterial Functions of Bovine Macrophages. PLoS One 2015; 10:e0128966. [PMID: 26076028 PMCID: PMC4468122 DOI: 10.1371/journal.pone.0128966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/04/2015] [Indexed: 01/14/2023] Open
Abstract
It has been shown that Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) activates the Mitogen Activated Protein Kinase (MAPK) p38 pathway, yet it is unclear which components of M. paratuberculosis are involved in the process. Therefore, a set of 42 M. paratuberculosis recombinant proteins expressed from coding sequences annotated as lipoproteins were screened for their ability to induce IL-10 expression, an indicator of MAPKp38 activation, in bovine monocyte-derived macrophages. A recombinant lipoprotein, designated as MAP3837c, was among a group of 6 proteins that strongly induced IL-10 gene transcription in bovine macrophages, averaging a 3.1-fold increase compared to non-stimulated macrophages. However, a parallel increase in expression of IL-12 and TNF-α was only observed in macrophages exposed to a subset of these 6 proteins. Selected recombinant proteins were further analyzed for their ability to enhance survival of M. avium within bovine macrophages as measured by recovered viable bacteria and nitrite production. All 6 IL-10 inducing MAP recombinant proteins along with M. paratuberculosis cells significantly enhanced phosphorylation of MAPK-p38 in bovine macrophages. Although these proteins are likely not post translationally lipidated in E. coli and thus is a limitation in this study, these results form the foundation of how the protein component of the lipoprotein interacts with the immune system. Collectively, these data reveal M. paratuberculosis proteins that might play a role in MAPK-p38 pathway activation and hence in survival of this organism within bovine macrophages.
Collapse
Affiliation(s)
- John P. Bannantine
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, Iowa, United States of America
| | - Judith R. Stabel
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, Iowa, United States of America
| | - Elizabeth Laws
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
| | - Maria Clara D. Cardieri
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
| | - Cleverson D. Souza
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
160
|
Detection of paratuberculosis using histopathology, immunohistochemistry, and ELISA in West Algeria. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s00580-015-2126-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
161
|
Eckelt E, Meißner T, Meens J, Laarmann K, Nerlich A, Jarek M, Weiss S, Gerlach GF, Goethe R. FurA contributes to the oxidative stress response regulation of Mycobacterium avium ssp. paratuberculosis. Front Microbiol 2015; 6:16. [PMID: 25705205 PMCID: PMC4319475 DOI: 10.3389/fmicb.2015.00016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/07/2015] [Indexed: 11/13/2022] Open
Abstract
The ferric uptake regulator A (FurA) is known to be involved in iron homeostasis and stress response in many bacteria. In mycobacteria the precise role of FurA is still unclear. In the presented study, we addressed the functional role of FurA in the ruminant pathogen Mycobacterium avium ssp. paratuberculosis (MAP) by construction of a furA deletion strain (MAPΔfurA). RNA deep sequencing revealed that the FurA regulon consists of repressed and activated genes associated to stress response or intracellular survival. Not a single gene related to metal homeostasis was affected by furA deletion. A decisive role of FurA during intracellular survival in macrophages was shown by significantly enhanced survival of MAPΔfurA compared to the wildtype, indicating that a principal task of mycobacterial FurA is oxidative stress response regulation in macrophages. This resistance was not associated with altered survival of mice after long term infection with MAP. Our results demonstrate for the first time, that mycobacterial FurA is not involved in the regulation of iron homeostasis. However, they provide strong evidence that FurA contributes to intracellular survival as an oxidative stress sensing regulator.
Collapse
Affiliation(s)
- Elke Eckelt
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover Hannover, Germany
| | - Thorsten Meißner
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover Hannover, Germany
| | - Jochen Meens
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover Hannover, Germany
| | - Kristin Laarmann
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover Hannover, Germany
| | - Andreas Nerlich
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover Hannover, Germany
| | - Michael Jarek
- Genome Analytics, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Siegfried Weiss
- Molecular Immunology, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Gerald-F Gerlach
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover Hannover, Germany
| |
Collapse
|
162
|
Mitchell RM, Whitlock RH, Gröhn YT, Schukken YH. Back to the real world: connecting models with data. Prev Vet Med 2014; 118:215-25. [PMID: 25583453 DOI: 10.1016/j.prevetmed.2014.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 11/30/2014] [Accepted: 12/06/2014] [Indexed: 11/18/2022]
Abstract
Mathematical models for infectious disease are often used to improve our understanding of infection biology or to evaluate the potential efficacy of intervention programs. Here, we develop a mathematical model that aims to describe infection dynamics of Mycobacterium avium subspecies paratuberculosis (MAP). The model was developed using current knowledge of infection biology and also includes some components of MAP infection dynamics that are currently still hypothetical. The objective was to show methods for parameter estimation of state transition models and to connect simulation models with detailed real life data. Thereby making model predictions and results of simulations more reflective and predictive of real world situations. Longitudinal field data from a large observational study are used to estimate parameter values. It is shown that precise data, including molecular diagnostics on the obtained MAP strains, results in more precise and realistic parameter estimates. It is argued that modeling of infection disease dynamics is of great value to understand the patho-biology, epidemiology and control of infectious diseases. The quality of conclusions drawn from model studies depend on two key issues; first, the quality of biology that has gone in the process of developing the model structure; second the quality of the data that go into the estimation of the parameters and the quality and quantity of the data that go into model validation. The more real world data that are used in the model building process, the more likely that modeling studies will provide novel, innovative and valid results.
Collapse
Affiliation(s)
- Rebecca M Mitchell
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA; Centers for Disease Control and Prevention, Division of Parasitology and Malaria, GA, USA
| | - Robert H Whitlock
- New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ynte H Schukken
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA; GD Animal Health, Deventer, The Netherlands.
| |
Collapse
|
163
|
Alpay F, Zare Y, Kamalludin MH, Huang X, Shi X, Shook GE, Collins MT, Kirkpatrick BW. Genome-wide association study of susceptibility to infection by Mycobacterium avium subspecies paratuberculosis in Holstein cattle. PLoS One 2014; 9:e111704. [PMID: 25473852 PMCID: PMC4256300 DOI: 10.1371/journal.pone.0111704] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/26/2014] [Indexed: 02/07/2023] Open
Abstract
Paratuberculosis, or Johne's disease, is a chronic, granulomatous, gastrointestinal tract disease of cattle and other ruminants caused by the bacterium Mycobacterium avium, subspecies paratuberculosis (MAP). Control of Johne's disease is based on programs of testing and culling animals positive for infection with MAP while concurrently modifying management to reduce the likelihood of infection. The current study is motivated by the hypothesis that genetic variation in host susceptibility to MAP infection can be dissected and quantifiable associations with genetic markers identified. For this purpose, a case-control, genome-wide association study was conducted using US Holstein cattle phenotyped for MAP infection using a serum ELISA and/or fecal culture test. Cases included cows positive for either serum ELISA, fecal culture or both. Controls consisted of animals negative for the serum ELISA test or both serum ELISA and fecal culture when both were available. Controls were matched by herd and proximal birth date with cases. A total of 856 cows (451 cases and 405 controls) were used in initial discovery analyses, and an additional 263 cows (159 cases and 104 controls) from the same herds were used as a validation data set. Data were analyzed in a single marker analysis controlling for relatedness of individuals (GRAMMAR-GC) and also in a Bayesian analysis in which multiple marker effects were estimated simultaneously (GenSel). For the latter, effects of non-overlapping 1 Mb marker windows across the genome were estimated. Results from the two discovery analyses were generally concordant; however, discovery results were generally not well supported in analysis of the validation data set. A combined analysis of discovery and validation data sets provided strongest support for SNPs and 1 Mb windows on chromosomes 1, 2, 6, 7, 17 and 29.
Collapse
Affiliation(s)
- Fazli Alpay
- Department of Animal Science, Faculty of Veterinary Medicine, Uludag University, Bursa, 16059, Turkey
| | - Yalda Zare
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Mamat H. Kamalludin
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
- Department of Animal Science, Faculty of Agriculture, Universiti Putra, UPM Serdang, Selangor, Malaysia
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Xianwei Shi
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - George E. Shook
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Michael T. Collins
- Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Brian W. Kirkpatrick
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
- * E-mail:
| |
Collapse
|
164
|
Estimation of flock/herd-level true Mycobacterium avium subspecies paratuberculosis prevalence on sheep, beef cattle and deer farms in New Zealand using a novel Bayesian model. Prev Vet Med 2014; 117:447-55. [DOI: 10.1016/j.prevetmed.2014.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/03/2014] [Accepted: 10/04/2014] [Indexed: 11/20/2022]
|
165
|
de Silva K, M Plain K, J Begg D, C Purdie A, J Whittington R. CD4⁺ T-cells, γδ T-cells and B-cells are associated with lack of vaccine protection in Mycobacterium avium subspecies paratuberculosis infection. Vaccine 2014; 33:149-55. [PMID: 25444806 DOI: 10.1016/j.vaccine.2014.10.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/22/2014] [Accepted: 10/30/2014] [Indexed: 11/25/2022]
Abstract
Vaccination is one of the strategies used to control the spread of Mycobacterium avium subspecies paratuberculosis (MAP) infection in livestock. Gudair(®) is a widely-used vaccine in sheep and goats and is the only vaccine approved for use in sheep in Australia and New Zealand. This vaccine reduces mortality due to MAP-infection by up to 90% but some sheep remain infectious by shedding MAP in faeces, despite vaccination. In this study, using an experimental infection model in sheep, our aim was to assess differences in immune parameters between vaccinated MAP-exposed sheep in which the vaccine was effective compared to those in which it failed to protect against infection. We assessed immune parameters such as MAP-specific IFNγ, IL-10 and lymphocyte proliferative responses and serum antibody levels. At the end of the trial, 72% of non-vaccinated sheep and 24% of vaccinated sheep were infected, as defined by the detection of viable MAP in intestinal tissues when the trial was terminated at 49 weeks post exposure. There were significant differences in the proliferation of CD4(+), B and γδ T-cells over time in vaccinated sheep in which the vaccine failed to protect against infection compared to the non-infected vaccinated sheep. There were no significant differences in the IFNγ response or serum antibody levels between the vaccinated infected and vaccinated non-infected sheep. These results emphasise the importance of specific lymphocyte subsets in protecting against MAP-infection, especially in vaccinated sheep, and that immune parameters other than the commonly used IFNγ and antibody tests are required when assessing vaccine efficacy.
Collapse
Affiliation(s)
- Kumudika de Silva
- Faculty of Veterinary Science, University of Sydney, 425 Werombi Road, Camden 2570, NSW, Australia.
| | - Karren M Plain
- Faculty of Veterinary Science, University of Sydney, 425 Werombi Road, Camden 2570, NSW, Australia
| | - Douglas J Begg
- Faculty of Veterinary Science, University of Sydney, 425 Werombi Road, Camden 2570, NSW, Australia
| | - Auriol C Purdie
- Faculty of Veterinary Science, University of Sydney, 425 Werombi Road, Camden 2570, NSW, Australia
| | - Richard J Whittington
- Faculty of Veterinary Science, University of Sydney, 425 Werombi Road, Camden 2570, NSW, Australia
| |
Collapse
|
166
|
Salgado M, Alfaro M, Salazar F, Badilla X, Troncoso E, Zambrano A, González M, Mitchell RM, Collins MT. Application of cattle slurry containing Mycobacterium avium subsp. paratuberculosis (MAP) to grassland soil and its effect on the relationship between MAP and free-living amoeba. Vet Microbiol 2014; 175:26-34. [PMID: 25448447 DOI: 10.1016/j.vetmic.2014.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/30/2014] [Accepted: 09/23/2014] [Indexed: 11/28/2022]
Abstract
Slurry from dairy farms is commonly used to fertilize crops and pastures. This mixture of manure, urine and water can harbor multiple microbial pathogens among which Mycobacterium avium subsp. paratuberculosis (MAP) is a major concern. Persistence of MAP in soil and infection of soil Acanthamoeba was evaluated by culture, real-time IS900 PCR, and by staining of amoeba with acid-fast and vital stains comparing soils irrigated with MAP-spiked or control dairy farm slurry. MAP DNA was detected in soil for the 8 month study duration. MAP was detected by PCR from more soil samples for plots receiving MAP-spiked slurry (n=61/66) than from soils receiving control slurry (n=10/66 samples). Vital stains verified that intracellular MAP in amoeba was viable. More MAP was found in amoeba at the end of the study than immediately after slurry application. There was no relationship between MAP presence in soil and in amoeba over time. Infection of amoeba by MAP provides a protected niche for the persistence and even possibly the replication of MAP in soils. As others have suggested, MAP-infected amoeba may act like a "Trojan horse" providing a means for persistence in soils and potentially a source of infection for grazing animals.
Collapse
Affiliation(s)
- M Salgado
- Department of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile.
| | - M Alfaro
- Institute for Agricultural Research (INIA), Remehue Research Centre, Osorno, Chile.
| | - F Salazar
- Institute for Agricultural Research (INIA), Remehue Research Centre, Osorno, Chile.
| | - X Badilla
- Department of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile.
| | - E Troncoso
- Department of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile.
| | - A Zambrano
- Department of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile.
| | - M González
- Clinical Microbiology Department, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
| | - R M Mitchell
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA.
| | - M T Collins
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, USA.
| |
Collapse
|
167
|
Bull TJ, Vrettou C, Linedale R, McGuinnes C, Strain S, McNair J, Gilbert SC, Hope JC. Immunity, safety and protection of an Adenovirus 5 prime--Modified Vaccinia virus Ankara boost subunit vaccine against Mycobacterium avium subspecies paratuberculosis infection in calves. Vet Res 2014; 45:112. [PMID: 25480162 PMCID: PMC4258034 DOI: 10.1186/s13567-014-0112-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/10/2014] [Indexed: 01/24/2023] Open
Abstract
Vaccination is the most cost effective control measure for Johne’s disease caused by Mycobacterium avium subspecies paratuberculosis (MAP) but currently available whole cell killed formulations have limited efficacy and are incompatible with the diagnosis of bovine tuberculosis by tuberculin skin test. We have evaluated the utility of a viral delivery regimen of non-replicative human Adenovirus 5 and Modified Vaccinia virus Ankara recombinant for early entry MAP specific antigens (HAV) to show protection against challenge in a calf model and extensively screened for differential immunological markers associated with protection. We have shown that HAV vaccination was well tolerated, could be detected using a differentiation of infected and vaccinated animals (DIVA) test, showed no cross-reactivity with tuberculin and provided a degree of protection against challenge evidenced by a lack of faecal shedding in vaccinated animals that persisted throughout the 7 month infection period. Calves given HAV vaccination had significant priming and boosting of MAP derived antigen (PPD-J) specific CD4+, CD8+ IFN-γ producing T-cell populations and, upon challenge, developed early specific Th17 related immune responses, enhanced IFN-γ responses and retained a high MAP killing capacity in blood. During later phases post MAP challenge, PPD-J antigen specific IFN-γ and Th17 responses in HAV vaccinated animals corresponded with improvements in peripheral bacteraemia. By contrast a lack of IFN-γ, induction of FoxP3+ T cells and increased IL-1β and IL-10 secretion were indicative of progressive infection in Sham vaccinated animals. We conclude that HAV vaccination shows excellent promise as a new tool for improving control of MAP infection in cattle.
Collapse
Affiliation(s)
- Tim J Bull
- Institute of Infection and Immunity, St, George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Roussey JA, Steibel JP, Coussens PM. Regulatory T Cell Activity and Signs of T Cell Unresponsiveness in Bovine Paratuberculosis. Front Vet Sci 2014; 1:20. [PMID: 26664919 PMCID: PMC4668878 DOI: 10.3389/fvets.2014.00020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/05/2014] [Indexed: 12/28/2022] Open
Abstract
Johne's disease, caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP), is a wasting disease of ruminants displaying a long subclinical stage of infection followed by clinical disease characterized by severe diarrhea, wasting, and premature death. Immunologically, subclinical disease is characterized by a Th1 response effective at controlling intracellular infections such as that caused by MAP. In late subclinical disease, the Th1 response subsides and a non-protective Th2 response becomes prominent. One hypothesis for this shift in immune paradigm is that a population of MAP-reactive regulatory T cells (Tregs) develops during subclinical infection, limiting Th1-type responses to MAP antigens. To investigate this, we sought to accomplish the following: (1) determine if CD4(+)CD25(-) T cells exposed to MAP-infected macrophages develop a Treg phenotype, (2) develop a method to expand the relative abundance of Tregs in bovine peripheral blood lymphocyte populations, and (3) identify functional activities of expanded Tregs when combined with autologous peripheral blood mononuclear cells (PBMCs) and live MAP. We found that CD4(+)CD25(-) T cells exposed to MAP-infected macrophages from cows with Johne's disease do not show signs of a Treg phenotype and appear unresponsive to MAP antigens. A method for Treg expansion was successfully developed; however, based on results obtained in the subsequent functional studies it appears that these Tregs are not MAP-specific. Overall, it seems that T cell unresponsiveness, rather than Treg activity, is driving the Th1-to-Th2 immune shift observed during Johne's disease. Further, we have successfully developed a method to enrich non-specific bovine Tregs that exert suppressive effects against Th1 cytokine production.
Collapse
Affiliation(s)
- Jonathan A Roussey
- Comparative Medicine and Integrative Biology Program, Michigan State University , East Lansing, MI , USA
| | - Juan P Steibel
- Department of Animal Science, Michigan State University , East Lansing, MI , USA
| | - Paul M Coussens
- Department of Animal Science, Michigan State University , East Lansing, MI , USA
| |
Collapse
|
169
|
Meißner T, Eckelt E, Basler T, Meens J, Heinzmann J, Suwandi A, Oelemann WMR, Trenkamp S, Holst O, Weiss S, Bunk B, Spröer C, Gerlach GF, Goethe R. The Mycobacterium avium ssp. paratuberculosis specific mptD gene is required for maintenance of the metabolic homeostasis necessary for full virulence in mouse infections. Front Cell Infect Microbiol 2014; 4:110. [PMID: 25177550 PMCID: PMC4132290 DOI: 10.3389/fcimb.2014.00110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/25/2014] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease, a chronic granulomatous enteritis in ruminants. Furthermore, infections of humans with MAP have been reported and a possible association with Crohn's disease and diabetes type I is currently discussed. MAP owns large sequence polymorphisms (LSPs) that were exclusively found in this mycobacteria species. The relevance of these LSPs in the pathobiology of MAP is still unclear. The mptD gene (MAP3733c) of MAP belongs to a small group of functionally uncharacterized genes, which are not present in any other sequenced mycobacteria species. mptD is part of a predicted operon (mptABCDEF), encoding a putative ATP binding cassette-transporter, located on the MAP-specific LSP14. In the present study, we generated an mptD knockout strain (MAPΔmptD) by specialized transduction. In order to investigate the potential role of mptD in the host, we performed infection experiments with macrophages. By this, we observed a significantly reduced cell number of MAPΔmptD early after infection, indicating that the mutant was hampered with respect to adaptation to the early macrophage environment. This important role of mptD was supported in mouse infection experiments where MAPΔmptD was significantly attenuated after peritoneal challenge. Metabolic profiling was performed to determine the cause for the reduced virulence and identified profound metabolic disorders especially in the lipid metabolism of MAPΔmptD. Overall our data revealed the mptD gene to be an important factor for the metabolic adaptation of MAP required for persistence in the host.
Collapse
Affiliation(s)
- Thorsten Meißner
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover Hannover, Germany
| | - Elke Eckelt
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover Hannover, Germany
| | - Tina Basler
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover Hannover, Germany
| | - Jochen Meens
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover Hannover, Germany
| | - Julia Heinzmann
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover Hannover, Germany
| | - Abdulhadi Suwandi
- Helmholtz Centre for Infection Research, Molecular Immunology Braunschweig, Germany
| | - Walter M R Oelemann
- Departamento de Imunologia, Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro, Brazil ; Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences Borstel, Germany
| | | | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences Borstel, Germany
| | - Siegfried Weiss
- Helmholtz Centre for Infection Research, Molecular Immunology Braunschweig, Germany
| | - Boyke Bunk
- Bioinformatics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures Braunschweig, Germany ; German Centre of Infection Research, Partner Site Hannover-Braunschweig Braunschweig, Germany
| | - Cathrin Spröer
- Bioinformatics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures Braunschweig, Germany ; German Centre of Infection Research, Partner Site Hannover-Braunschweig Braunschweig, Germany
| | - Gerald-F Gerlach
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover Hannover, Germany
| | - Ralph Goethe
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover Hannover, Germany
| |
Collapse
|
170
|
Mycobacterium Avium subsp. paratuberculosis isolates induce in vitro granuloma formation and show successful survival phenotype, common anti-inflammatory and antiapoptotic responses within ovine macrophages regardless of genotype or host of origin. PLoS One 2014; 9:e104238. [PMID: 25111300 PMCID: PMC4128652 DOI: 10.1371/journal.pone.0104238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/09/2014] [Indexed: 11/19/2022] Open
Abstract
The analysis of the early macrophage responses, including bacterial growth within macrophages, represents a powerful tool to characterize the virulence of clinical isolates of Mycobcaterium avium susbp. paratuberculosis (Map). The present study represents the first assessment of the intracellular behaviour in ovine monocyte-derived macrophages (MDMs) of Map isolates representing distinct genotypes (C, S and B), and isolated from cattle, sheep, goat, fallow deer, deer, and wild boar. Intracellular growth and survival of the selected isolates in ovine MDMs was assessed by quantification of CFUs inside of the host cells at 2 h p.i. (day 0) and 7 d p. i. using an automatic liquid culture system (Bactec MGIT 960). Variations in bacterial counts over 7 days from the baseline were small, in a range between 1.63 to 1.05-fold. After 7 d of infection, variations in the estimated log10 CFUs between all the tested isolates were not statistically significant. In addition, ovine MDMs exhibited enhanced anti-inflammatory, antiapoptotic and antidestructive responses when infected with two ovine isolates of distinct genotype (C and S) or with two C-type isolates from distinct hosts (cattle and sheep); which correlated with the successful survival of these isolates within ovine MDMs. A second objective was to study, based on an in vitro granuloma model, latter stages of the infection by investigating the capacity of two Map isolates from cattle and sheep to trigger formation of microgranulomas. Upon 10 d p.i., both Map isolates were able to induce the formation of granulomas comparable to the granulomas observed in clinical specimens with respect to the cellular components involved. In summary, our results demonstrated that Map isolates from cattle, sheep, goats, deer, fallow-deer and wild boar were able not only to initiate but also to establish a successful infection in ovine macrophages regardless of genotype.
Collapse
|
171
|
Atreya R, Bülte M, Gerlach GF, Goethe R, Hornef MW, Köhler H, Meens J, Möbius P, Roeb E, Weiss S. Facts, myths and hypotheses on the zoonotic nature of Mycobacterium avium subspecies paratuberculosis. Int J Med Microbiol 2014; 304:858-67. [PMID: 25128370 DOI: 10.1016/j.ijmm.2014.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of paratuberculosis (Johne's disease [JD]), a chronic granulomatous enteritis in ruminants. JD is one of the most widespread bacterial diseases of domestic animals with significant economic impact. The histopathological picture of JD resembles that of Crohn's disease (CD), a human chronic inflammatory bowel disease of still unresolved aetiology. An aetiological relevance of MAP for CD has been proposed. This and the ambiguity of other published epidemiological findings raise the question whether MAP represents a zoonotic agent. In this review, we will discuss evidence that MAP has zoonotic capacity.
Collapse
Affiliation(s)
- Raja Atreya
- Medical Clinic 1, University of Erlangen-Nuermberg, Ulmenweg 18, D-91054 Erlangen, Germany
| | - Michael Bülte
- Institute of Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University, Frankfurter Straße 92, 35392 Gießen, Germany
| | | | - Ralph Goethe
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany.
| | - Mathias W Hornef
- Department of Microbiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Heike Köhler
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - Jochen Meens
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Petra Möbius
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - Elke Roeb
- Justus-Liebig-University Giessen, Department of Gastroenterology, Klinikstr.33, 35392 Giessen, Germany
| | - Siegfried Weiss
- Helmholtz Centre for Infection Research, Molecular Immunology, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | | |
Collapse
|
172
|
Karunasena E, McMahon KW, Kurkure PC, Brashears MM. A comparison of cell mediators and serum cytokines transcript expression between male and female mice infected with Mycobacterium avium subspecies paratuberculosis and/or consuming probiotics. Pathog Dis 2014; 72:104-10. [PMID: 25044984 DOI: 10.1111/2049-632x.12193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 12/31/2022] Open
Abstract
The gut immune system is complex, and dysregulation leads to a number of disorders including inflammatory bowel syndrome and (in livestock) Johne's disease. Previous work has demonstrated that males and females respond differently to treatment with pathologic and probiotic microorganisms, suggesting that a 'one-size-fits-all' approach to treat GIT inflammation may be inadequate. While we had observed significant differences between males and females in terms of cytokine production, it remains unclear how these changes occur. To better understand the mechanisms, transcript expression of genes important to gut immunoregulation were monitored from male and female BALB/c mice consuming the probiotic Lactobacillus animalis (1 × 10(6) CFU g(-1) ) and infected with the gut pathogen, Mycobacterium avium subspecies paratuberculosis (1 × 10(7) CFU). Expression of transcripts analyzed included those important to the immune system, intestinal cell differentiation, and/or regulation. Males generally displayed increased expression of Th 2 and B-cell mediators, and females showed repressed cytokine expression after MAP infection (IL-6, TNF-α, IL-1 among others). Additionally, regulation of pro-inflammatory mediators in female mice consuming probiotics suggests females responded positively to L. animalis when compared to males. Therefore, we speculate that studying mechanistic changes associated with sex and immunoregulation in gastrointestinal tissues could further elucidate host response to microorganisms.
Collapse
Affiliation(s)
- Enusha Karunasena
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | | |
Collapse
|
173
|
Begum J, Das P, Lingaraju MC, Ranjanna S, Irungbam K, Mohan A, Syam R. Evaluation of efficacy of saponin and freund's incomplete adjuvanted paratuberculosis vaccine in murine model. Vet World 2014. [DOI: 10.14202/vetworld.2014.528-535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
174
|
Basra S, Anany H, Brovko L, Kropinski AM, Griffiths MW. Isolation and characterization of a novel bacteriophage against Mycobacterium avium subspecies paratuberculosis. Arch Virol 2014; 159:2659-74. [PMID: 24903601 DOI: 10.1007/s00705-014-2122-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/13/2014] [Indexed: 11/29/2022]
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne's disease, has a doubling time of 24 hours, making rapid detection very difficult. Mycobacteriophages can be used in the detection of disease-causing mycobacteria such as MAP. Isolation and sequencing the genomes of lytic MAP bacteriophages are important preliminary steps towards designing phage-based rapid detection assays for this bacterium. A simple optimized protocol was developed to allow reproducible production of confluent growth of MAP on plates within four to six weeks of incubation at 30 °C. This protocol was applied to the screening of environmental and fecal samples for bacteriophages inhibiting the growth of MAP. As a result, a lytic phage, vB_MapS_FF47, was isolated from bovine feces. FF47 contains a double-stranded DNA genome ~48 kb in length with 73 protein coding sequences. It does not carry temperate or known virulence genes. This phage was shown to be most closely related to Mycobacterium phage Muddy, isolated in South Africa, and Gordonia phage GTE2; however, it could not infect any of the tested Gordonia, Rhodococcus, or Nocardia spp. that GTE2 could. The protocols that were developed for growth and phage isolation have potential applications in a high-throughput screening for compounds inhibiting the growth of MAP. This work describes the first time that a phage was isolated against M. paratuberculosis.
Collapse
Affiliation(s)
- Simone Basra
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, N1G 2W1, Canada,
| | | | | | | | | |
Collapse
|
175
|
ElSayed MSAE. LCD array and IS900 efficiency in relation to traditional diagnostic techniques for diagnosis of Mycobacterium avium subspecies paratuberculosis in cattle in Egypt. Int J Mycobacteriol 2014; 3:101-7. [PMID: 26786331 DOI: 10.1016/j.ijmyco.2014.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 03/03/2014] [Indexed: 11/29/2022] Open
Abstract
This study aimed to compare traditional tests (Johnin test, fecal staining and fecal culture) with advanced laboratory tests (ELISA, LCD array and IS900 PCR) for detection of Johne's disease. A total of 365 Holstein-Friesian dairy cattle (40 express profuse diarrhea unresponsive to treatment and 325 contacting them) tested with Johnin test, blood collected for ELISA and fecal samples for fecal staining as well as fecal culture, application of LCD array and PCR using IS900 on DNA extracted from Mycobacterium paratuberculosis bacilli (from feces and culture). Johnin test was 40/40 (100%) and 25/325 (7.69%), fecal staining was 13 (37.1%) and 2 (50%), ELISA was 35/40 (87.5%) and 4/25 (16%) for clinical cattle and apparently healthy contacting them respectively. Isolation was 12/13 (92.3%) of the (Johnin test +ve, ELISA +ve and Acid Fast Bacilli +ve) from the clinically positive cattle and 1/2 (50%) of the (Johnin test +ve, ELISA +ve and Acid Fast Bacilli +ve) from apparently healthy contacting them while LCD array and IS900 gave 100% confirming the isolation results. In conclusion, LCD array depending on 16S RNA and DNA hybridization with specific probes for detection of M. paratuberculosis are fast, sensitive and labor-saving when combined with IS900.
Collapse
|
176
|
Kumar A, Singh S, Srivastava A, Gangwar N, Singh P, Gupta S, Chaubey K, Tiwari R, Chakrabort S, Dhama K. Comparative Evaluation of ‘Indigenous’ and Commercial Vaccines in Double Challenge Model for the Control of Caprine Paratuberculosis in India. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/jbs.2014.169.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
177
|
Mycobacterium avium subsp. paratuberculosis antibody response, fecal shedding, and antibody cross-reactivity to Mycobacterium bovis in M. avium subsp. paratuberculosis-infected cattle herds vaccinated against Johne's disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:698-703. [PMID: 24623626 DOI: 10.1128/cvi.00032-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vaccination for Johne's disease with killed inactivated vaccine in cattle herds has shown variable success. The vaccine delays the onset of disease but does not afford complete protection. Johne's disease vaccination has also been reported to interfere with measurements of cell-mediated immune responses for the detection of bovine tuberculosis. Temporal antibody responses and fecal shedding of Mycobacterium avium subsp. paratuberculosis, the causative agent of Johne's disease, were measured in 2 dairy cattle herds using Johne's disease vaccine (Mycopar) over a period of 7 years. Vaccination against Johne's disease resulted in positive serum M. avium subsp. paratuberculosis antibody responses in both herds, and the responses persisted in vaccinated cattle up to 7 years of age. Some vaccinated animals (29.4% in herd A and 36.2% in herd B) showed no serological reactivity to M. avium subsp. paratuberculosis. M. avium subsp. paratuberculosis-specific antibody responses were also detected in milk from Johne's disease-vaccinated animals, but fewer animals (39.3% in herd A and 49.4% in herd B) had positive results with milk than with serum samples. With vaccination against M. avium subsp. paratuberculosis, fecal shedding in both dairy herds was reduced significantly (P < 0.001). In addition, when selected Johne's disease-vaccinated and -infected animals were investigated for serological cross-reactivity to Mycobacterium bovis, no cross-reactivity was observed.
Collapse
|
178
|
Hines ME, Turnquist SE, Ilha MRS, Rajeev S, Jones AL, Whittington L, Bannantine JP, Barletta RG, Gröhn YT, Katani R, Talaat AM, Li L, Kapur V. Evaluation of novel oral vaccine candidates and validation of a caprine model of Johne's disease. Front Cell Infect Microbiol 2014; 4:26. [PMID: 24624365 PMCID: PMC3941644 DOI: 10.3389/fcimb.2014.00026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/12/2014] [Indexed: 12/05/2022] Open
Abstract
Johne's disease (JD) caused by Mycobacterium avium subspecies paratuberculosis (MAP) is a major threat to the dairy industry and possibly some cases of Crohn's disease in humans. A MAP vaccine that reduced of clinical disease and/or reduced fecal shedding would aid in the control of JD. The objectives of this study were (1) to evaluate the efficacy of 5 attenuated strains of MAP as vaccine candidates compared to a commercial control vaccine using the protocol proposed by the Johne's Disease Integrated Program (JDIP) Animal Model Standardization Committee (AMSC), and (2) to validate the AMSC Johne's disease goat challenge model. Eighty goat kids were vaccinated orally twice at 8 and 10 weeks of age with an experimental vaccine or once subcutaneously at 8 weeks with Silirum® (Zoetis), or a sham control oral vaccine at 8 and 10 weeks. Kids were challenged orally with a total of approximately 1.44 × 109 CFU divided in two consecutive daily doses using MAP ATCC-700535 (K10-like bovine isolate). All kids were necropsied at 13 months post-challenge. Results indicated that the AMSC goat challenge model is a highly efficient and valid model for JD challenge studies. None of the experimental or control vaccines evaluated prevented MAP infection or eliminated fecal shedding, although the 329 vaccine lowered the incidence of infection, fecal shedding, tissue colonization and reduced lesion scores, but less than the control vaccine. Based on our results the relative performance ranking of the experimental live-attenuated vaccines evaluated, the 329 vaccine was the best performer, followed by the 318 vaccine, then 316 vaccine, 315 vaccine and finally the 319 vaccine was the worst performer. The subcutaneously injected control vaccine outperformed the orally-delivered mutant vaccine candidates. Two vaccines (329 and 318) do reduce presence of JD gross and microscopic lesions, slow progression of disease, and one vaccine (329) reduced fecal shedding and tissue colonization.
Collapse
Affiliation(s)
- Murray E Hines
- Tifton Veterinary Diagnostic and Investigational Laboratory, University of Georgia Tifton, GA, USA
| | - Sue E Turnquist
- Tifton Veterinary Diagnostic and Investigational Laboratory, University of Georgia Tifton, GA, USA
| | - Marcia R S Ilha
- Tifton Veterinary Diagnostic and Investigational Laboratory, University of Georgia Tifton, GA, USA
| | - Sreekumari Rajeev
- Tifton Veterinary Diagnostic and Investigational Laboratory, University of Georgia Tifton, GA, USA
| | - Arthur L Jones
- College of Veterinary Medicine, Food Animal Health and Management Program, University of Georgia Athens, GA, USA
| | - Lisa Whittington
- Tifton Veterinary Diagnostic and Investigational Laboratory, University of Georgia Tifton, GA, USA
| | - John P Bannantine
- National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service Ames, IA, USA
| | - Raúl G Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - Yrjö T Gröhn
- Section of Epidemiology, Department of Population Medicine and Diagnostic Sciences, Cornell University Ithaca, NY, USA
| | - Robab Katani
- Department of Veterinary Science, Penn State University, University Park Pennsylvania, PA, USA
| | - Adel M Talaat
- Department of Pathobiological Sciences, University of Wisconsin-Madison Madison, WI, USA
| | - Lingling Li
- Department of Veterinary Science, Penn State University, University Park Pennsylvania, PA, USA
| | - Vivek Kapur
- Department of Veterinary Science, Penn State University, University Park Pennsylvania, PA, USA
| |
Collapse
|
179
|
Bihrmann K, Toft N, Nielsen SS, Ersbøll AK. Spatial correlation in Bayesian logistic regression with misclassification. Spat Spatiotemporal Epidemiol 2014; 9:1-12. [PMID: 24889989 DOI: 10.1016/j.sste.2014.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/14/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Standard logistic regression assumes that the outcome is measured perfectly. In practice, this is often not the case, which could lead to biased estimates if not accounted for. This study presents Bayesian logistic regression with adjustment for misclassification of the outcome applied to data with spatial correlation. The models assessed include a fixed effects model, an independent random effects model, and models with spatially correlated random effects modelled using conditional autoregressive prior distributions (ICAR and ICAR(ρ)). Performance of these models was evaluated in a simulation study. Parameters were estimated by Markov Chain Monte Carlo methods, using slice sampling to improve convergence. The results demonstrated that adjustment for misclassification must be included to produce unbiased regression estimates. With strong correlation the ICAR model performed best. With weak or moderate correlation the ICAR(ρ) performed best. With unknown spatial correlation the recommended model would be the ICAR(ρ), assuming convergence can be obtained.
Collapse
Affiliation(s)
- Kristine Bihrmann
- Faculty of Medical and Health Sciences, University of Copenhagen, Grønnegårdsvej 8, DK-1870 Frederiksberg C, Denmark.
| | - Nils Toft
- Faculty of Medical and Health Sciences, University of Copenhagen, Grønnegårdsvej 8, DK-1870 Frederiksberg C, Denmark
| | - Søren Saxmose Nielsen
- Faculty of Medical and Health Sciences, University of Copenhagen, Grønnegårdsvej 8, DK-1870 Frederiksberg C, Denmark
| | - Annette Kjær Ersbøll
- National Institute of Public Health, University of Southern Denmark, Øster Farimagsgade 5A, 2, DK-1353 Copenhagen K, Denmark
| |
Collapse
|
180
|
Pereira RV, Bicalho ML, Machado VS, Lima S, Teixeira AG, Warnick LD, Bicalho RC. Evaluation of the effects of ultraviolet light on bacterial contaminants inoculated into whole milk and colostrum, and on colostrum immunoglobulin G. J Dairy Sci 2014; 97:2866-75. [PMID: 24582452 DOI: 10.3168/jds.2013-7601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022]
Abstract
Raw milk and colostrum can harbor dangerous microorganisms that can pose serious health risks for animals and humans. According to the USDA, more than 58% of calves in the United States are fed unpasteurized milk. The aim of this study was to evaluate the effect of UV light on reduction of bacteria in milk and colostrum, and on colostrum IgG. A pilot-scale UV light continuous (UVC) flow-through unit (45 J/cm(2)) was used to treat milk and colostrum. Colostrum and sterile whole milk were inoculated with Listeria innocua, Mycobacterium smegmatis, Salmonella serovar Typhimurium, Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, and Acinetobacter baumannii before being treated with UVC. During UVC treatment, samples were collected at 5 time points and bacteria were enumerated using selective media. The effect of UVC on IgG was evaluated using raw colostrum from a nearby dairy farm without the addition of bacteria. For each colostrum batch, samples were collected at several different time points and IgG was measured using ELISA. The UVC treatment of milk resulted in a significant final count (log cfu/mL) reduction of Listeria monocytogenes (3.2 ± 0.3 log cfu/mL reduction), Salmonella spp. (3.7 ± 0.2 log cfu/mL reduction), Escherichia coli (2.8 ± 0.2 log cfu/mL reduction), Staph. aureus (3.4 ± 0.3 log cfu/mL reduction), Streptococcus spp. (3.4 ± 0.4 log cfu/mL reduction), and A. baumannii (2.8 ± 0.2 log cfu/mL reduction). The UVC treatment of milk did not result in a significant final count (log cfu/mL) reduction for M. smegmatis (1.8 ± 0.5 log cfu/mL reduction). The UVC treatment of colostrum was significantly associated with a final reduction of bacterial count (log cfu/mL) of Listeria spp. (1.4 ± 0.3 log cfu/mL reduction), Salmonella spp. (1.0 ± 0.2 log cfu/mL reduction), and Acinetobacter spp. (1.1 ± 0.3 log cfu/mL reduction), but not of E. coli (0.5 ± 0.3 log cfu/mL reduction), Strep. agalactiae (0.8 ± 0.2 log cfu/mL reduction), and Staph. aureus (0.4 ± 0.2 log cfu/mL reduction). The UVC treatment of colostrum significantly decreased the IgG concentration, with an observed final mean IgG reduction of approximately 50%. Development of new methods to reduce bacterial contaminants in colostrum must take into consideration the barriers imposed by its opacity and organic components, and account for the incidental damage to IgG caused by manipulating colostrum.
Collapse
Affiliation(s)
- R V Pereira
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - M L Bicalho
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - V S Machado
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - S Lima
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - A G Teixeira
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - L D Warnick
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - R C Bicalho
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
181
|
Park KT, Allen AJ, Davis WC. Development of a novel DNA extraction method for identification and quantification of Mycobacterium avium subsp. paratuberculosis from tissue samples by real-time PCR. J Microbiol Methods 2014; 99:58-65. [PMID: 24534783 DOI: 10.1016/j.mimet.2014.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 11/30/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (Map) is the causative agent of Johne's disease in ruminants and possibly associated with human Crohn's disease. One impediment in furthering our understanding of this potential association has been the lack of an accurate method for detection of Map in affected tissues. Real time polymerase chain reaction (RT-PCR) methods have been reported to have different sensitivities in detection of Map. This is in part attributable to the difficulties of extracting Map DNA and removing PCR inhibitors from the clinical specimens. The maximum efficiency of RT-PCR can only be achieved by using high quality DNA samples. In this study, we present a novel pre-treatment method which significantly increases Map DNA recovery and decreases PCR inhibitors (p<0.05). When the pre-treatment method was combined with the DNeasy Blood and Tissue kit (Qiagen), PCR inhibition was not detected in any of three different RT-PCR methods tested in this study. The results obtained with the IS900 probe showed an excellent Kappa value (0.849) and a high correlation coefficient r (0.940) compared to the results of culture method. When used to examine unknown field samples (n=15), more positive tissues were identified with DNA extracts prepared with pre-treatment method than without (5 vs 3). This improved Map DNA extraction method from tissue samples will make RT-PCR a more powerful tool for a wide range of applications for Map identification and quantification.
Collapse
Affiliation(s)
- Kun Taek Park
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States
| | - Andrew J Allen
- Department of Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States
| | - William C Davis
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|
182
|
Subspecies identification and significance of 257 clinical strains of Mycobacterium avium. J Clin Microbiol 2014; 52:1201-6. [PMID: 24501026 DOI: 10.1128/jcm.03399-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium avium is abundant in the environment. It has four subspecies of three types: the human or porcine type, M. avium subsp. hominissuis; the bird type, including M. avium subsp. avium serotype 1 and serotype 2, 3 (also M. avium subsp. silvaticum); and the ruminant type, M. avium subsp. paratuberculosis. We determined the subspecies of 257 M. avium strains isolated from patients at the M.D. Anderson Cancer Center from 2001 to 2010 and assessed their clinical significance. An assay of multiplex PCR was used for the typing. Results showed M. avium subsp. hominissuis to be most common (n = 238, 92.6%), followed by M. avium subsp. avium serotype 1 (n = 12, 4.7%) and serotype 2, 3 (n = 7, 2.7%). No strains of M. avium subsp. paratuberculosis were found. Of the 238 patients with M. avium subsp. hominissuis, 65 (27.3%) showed evidence of definite or probable infections, mostly in the respiratory tract, whereas the rest had weak evidence of infection. The bird-type subspecies, despite being infrequently isolated, caused relatively more definite and probable infections (10 of 19 strains, 52.6%). Overall, women of 50 years of age or older were more prone to M. avium infection than younger women or men of all ages were. We therefore conclude that M. avium subsp. hominissuis is the dominant M. avium subspecies clinically, that the two bird-type subspecies do cause human infections, and that M. avium infects mainly postmenopausal women. The lack of human clinical isolation of the ruminant type subspecies may need further investigation.
Collapse
|
183
|
Bhattarai B, Fosgate GT, Osterstock JB, Park SC, Roussel AJ. Perceptions of veterinarians and producers concerning Johne's disease prevalence and control in US beef cow-calf operations. BMC Vet Res 2014; 10:27. [PMID: 24456649 PMCID: PMC3903444 DOI: 10.1186/1746-6148-10-27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/03/2014] [Indexed: 12/27/2022] Open
Abstract
Background Efforts to educate producers and veterinarians in the United States regarding the management, prevention and control of Mycobacterium avium subspecies paratuberculosis (MAP) infection have increased over recent years. While nationwide awareness about MAP infection is improving, current level of awareness among beef producers and veterinarians is largely unknown. This study compares the perceptions of beef producers and veterinarians on the burden of MAP infection in cow-calf herds and on measures to control new infections. Questionnaires were mailed to 989 US beef producers through state Designated Johne’s Coordinators and to 1080 bovine veterinarians belonging to a US nationwide professional association. Results Twenty-two percent (34/155) of producers reported having infected animals in their herds. The mean (minimum, median, maximum) prevalence reported by producers was 0.8% (0, 0, 10). Twenty-seven percent (27/100) of producers had at least one clinical animal during the previous year. Compared to the small herds (<50 head), the mean test-positive percentages and estimated prevalences were higher in medium (50–149) and highest in large (≥150) herds. Seedstock herds had a lower prevalence and these producers were more likely to enroll in Johne’s disease (JD) control programs and test their herds. Veterinarians reported a mean overall animal level prevalence in their client herds of 5% (0, 2, 60). Similarly, 26% (0, 10, 100) of client herds had at least one infected animal. Mean percentage of infected cows within infected herds was 9% (0.01, 5, 80). Producers generally performed activities to control MAP transmission more frequently than perceived by veterinarians. Compared to veterinarians’ opinions, producers were less likely to cull cows with signs consistent with JD (P < 0.01), but more likely to test purchased additions (P < 0.01). Testing recommendations by veterinarians (n = 277) for beef cow-calf herds were bacterial culture of feces (3%), PCR (14%), ELISA (35%) and a combination of these tests (47%). Seventy-nine percent of veterinarians recommended a 12-month interval between testing. Conclusions Seedstock producers who had had JD risk assessments performed on their farms were more supportive of JD control programs and had a correspondingly lower prevalence. It is important to increase educational activities to provide relevant information to veterinarians and producers for better management and control of JD. Educational programs should target larger herds to maximize the impact.
Collapse
Affiliation(s)
- Bikash Bhattarai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | |
Collapse
|
184
|
Sting R, Hrubenja M, Mandl J, Seemann G, Salditt A, Waibel S. Detection of Mycobacterium avium subsp. paratuberculosis in faeces using different procedures of pre-treatment for real-time PCR in comparison to culture. Vet J 2014; 199:138-42. [DOI: 10.1016/j.tvjl.2013.08.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/17/2022]
|
185
|
Singh PK, Singh SV, Saxena VK, Singh MK, Singh AV, Sohal JS. Expression profiles of different cytokine genes in peripheral blood mononuclear cells of goats infected experimentally with native strain of Mycobacterium avium subsp. paratuberculosis. Anim Biotechnol 2013; 24:187-97. [PMID: 23777348 DOI: 10.1080/10495398.2012.762008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Paratuberculosis (ParaTB), caused by Mycobacterium avium subspecies paratuberculosis (MAP) is a chronic enteritis of ruminants and may contribute to Crohn's disease in humans. Key features of host immunity to MAP infection include an early pro-inflammatory (Th1-like) response that eventually gives way to a predominant anti-inflammatory (Th2-like) response. Many studies have been conducted to understand the underlying mechanism of misdirected host immune response, however, these studies mainly focused on cattle. The present study is the first attempt to test the hypothesis of shift in Th1 to Th2 like responses during the progression of ParaTB in caprine species (small ruminant). Ten healthy male kids (<6 months old) of the same breed were selected for this study. Of the 10 kids, 6 were experimentally infected with native strain (S5) of MAP ("Indian Bison Type") and the remaining 4 kids were control. Kids were monitored for a period of 12 months post infection (MPI) and were tested for establishment of infection. Expression levels of IFNG, IL2, IL12, IL4, and IL10 genes were estimated before infection and at 4, 8, and 12 MPI in stimulated peripheral blood mononuclear cells (PBMCs) of infected and control kids. The study demonstrated the expression of IFNG and IL2 as classic Th1-like pro-inflammatory signatures; whereas, IL10 exhibited itself as classical Th2-like signature. The study also reports unexpected lowered expression of the IL12 gene simultaneously with increased expression of IFNG, lowered expression of the IL2 gene (compared to IFNG), and suppressed expression of the IL4.
Collapse
Affiliation(s)
- P K Singh
- Central Institute for Research on Goats, Makhdoom, Farah, Mathura, UP, India 281 122.
| | | | | | | | | | | |
Collapse
|
186
|
Rindi L, Garzelli C. Genetic diversity and phylogeny of Mycobacterium avium. INFECTION GENETICS AND EVOLUTION 2013; 21:375-83. [PMID: 24345519 DOI: 10.1016/j.meegid.2013.12.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/02/2013] [Accepted: 12/02/2013] [Indexed: 02/02/2023]
Abstract
Mycobacterium avium, one of the species of the M. avium complex (MAC), includes 4 subspecies, i.e., M. avium subsp. hominissuis (MAH), M. avium subsp. avium (MAA), M. avium subsp. silvaticum (MAS) and M. avium subsp. paratuberculosis (MAP), in turn classified into the S (sheep) and C (cattle) types. These subspecies, although closely related, represent distinct organisms, each endowed with specific pathogenetic and host range characteristics, ranging from environmental opportunistic bacteria that cause infections in swine and immunocompromised patients to pathogens of birds and ruminants. The present review summarizes the basic epidemiological and pathological features of the M. avium subspecies, describes the major genomic events responsible of M. avium subspecies diversity (insertion sequences, sequence variations in specific chromosome loci or genes, deletions, duplications and insertions of large genomic regions) and then reconstructs the phylogenetic relationships among the M. avium subspecies.
Collapse
Affiliation(s)
- Laura Rindi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, I-56127 Pisa, Italy.
| | - Carlo Garzelli
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, I-56127 Pisa, Italy
| |
Collapse
|
187
|
Bhattarai B, Fosgate GT, Osterstock JB, Fossler CP, Park SC, Roussel AJ. Comparison of calf weaning weight and associated economic variables between beef cows with and without serum antibodies against or isolation from feces ofMycobacterium aviumsubspparatuberculosis. J Am Vet Med Assoc 2013; 243:1609-15. [DOI: 10.2460/javma.243.11.1609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
188
|
Perceptions of veterinarians in bovine practice and producers with beef cow-calf operations enrolled in the US Voluntary Bovine Johne's Disease Control Program concerning economic losses associated with Johne's disease. Prev Vet Med 2013; 112:330-7. [DOI: 10.1016/j.prevetmed.2013.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 11/19/2022]
|
189
|
Magombedze G, Ngonghala CN, Lanzas C. Evaluation [corrected] of the "Iceberg Phenomenon" in Johne's disease through mathematical modelling. PLoS One 2013; 8:e76636. [PMID: 24167547 PMCID: PMC3805542 DOI: 10.1371/journal.pone.0076636] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/26/2013] [Indexed: 12/01/2022] Open
Abstract
Johne's disease (JD) is a chronic, enteric disease in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Disease progression follows four distinct stages: silent, subclinical, clinical and advanced. Available diagnostic tests have poor sensitivity and cannot detect early stages of the infection; as a result, only animals in the clinical and advanced stages, which represent the tip of the ‘iceberg’, are identified through testing. The Iceberg Phenomenon is then applied to provide estimates for JD prevalence. For one animal in the advanced stage, it is assumed that there are one to two in the clinical stage, four to eight in the subclinical stage, and ten to fourteen in the silent stage. These ratios, however, are based on little evidence. To evaluate the ratios, we developed a deterministic ordinary differential equation model of JD transmission and disease progression dynamics. When duration periods associated with the natural course of the disease progression are used, the above ratios do not hold. The ratios used to estimate JD prevalence need to be further investigated.
Collapse
Affiliation(s)
- Gesgam Magombedze
- National Institute for Mathematical and Biological Synthesis (NIMBioS), University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| | - Calistus N. Ngonghala
- National Institute for Mathematical and Biological Synthesis (NIMBioS), University of Tennessee, Knoxville, Tennessee, United States of America
| | - Cristina Lanzas
- National Institute for Mathematical and Biological Synthesis (NIMBioS), University of Tennessee, Knoxville, Tennessee, United States of America
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
190
|
Salgado M, Verdugo C, Heuer C, Castillo P, Zamorano P. A novel low-cost method for Mycobacterium avium subsp. paratuberculosis DNA extraction from an automated broth culture system for real-time PCR analysis. J Vet Sci 2013; 15:233-9. [PMID: 24136213 PMCID: PMC4087225 DOI: 10.4142/jvs.2014.15.2.233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/14/2013] [Indexed: 11/20/2022] Open
Abstract
PCR is a highly accurate technique for confirming the presence of Mycobacterium avium subsp. paratuberculosis (Map) in broth culture. In this study, a simple, efficient, and low-cost method of harvesting DNA from Map cultured in liquid medium was developed. The proposed protocol (Universidad Austral de Chile [UACH]) was evaluated by comparing its performance to that of two traditional techniques (a QIAamp DNA Stool Mini Kit and cethyltrimethylammonium bromide [CTAB] method). The results were statistically assessed by agreement analysis for which differences in the number of cycles to positive (CP) were compared by Student's t-test for paired samples and regression analysis. Twelve out of 104 fecal pools cultured were positive. The final PCR results for 11 samples analyzed with the QIAamp and UACH methods or ones examined with the QIAamp and CTAB methods were in agreement. Complete (100%) agreement was observed between data from the CTAB and UACH methods. CP values for the UACH and CTAB techniques were not significantly different, while the UACH method yielded significantly lower CP values compared to the QIAamp kit. The proposed extraction method combines reliability and efficiency with simplicity and lower cost.
Collapse
Affiliation(s)
- Miguel Salgado
- Department of Biochemistry and Microbiology, Faculty of Sciences, Austral University of Chile, Valdivia, Chile.
| | | | | | | | | |
Collapse
|
191
|
Radia D, Bond K, Limon G, van Winden S, Guitian J. Relationship between periparturient management, prevalence of MAP and preventable economic losses in UK dairy herds. Vet Rec 2013; 173:343. [DOI: 10.1136/vr.101408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- D. Radia
- Department of Veterinary Clinical Sciences; Veterinary Epidemiology and Public Health Group. The Royal Veterinary College; Hawkshead Lane North Mymms Hatfield AL9 7TA UK
| | - K. Bond
- Department of Veterinary Clinical Sciences; Veterinary Epidemiology and Public Health Group. The Royal Veterinary College; Hawkshead Lane North Mymms Hatfield AL9 7TA UK
- DairyCo; Agriculture & Horticulture Development Board, Stoneleigh Park Kenilworth Warwickshire CV8 2TL UK
| | - G. Limon
- Department of Veterinary Clinical Sciences; Veterinary Epidemiology and Public Health Group. The Royal Veterinary College; Hawkshead Lane North Mymms Hatfield AL9 7TA UK
| | - S. van Winden
- Department of Veterinary Clinical Sciences; Veterinary Epidemiology and Public Health Group. The Royal Veterinary College; Hawkshead Lane North Mymms Hatfield AL9 7TA UK
| | - J. Guitian
- Department of Veterinary Clinical Sciences; Veterinary Epidemiology and Public Health Group. The Royal Veterinary College; Hawkshead Lane North Mymms Hatfield AL9 7TA UK
| |
Collapse
|
192
|
Novel secreted antigens of Mycobacterium paratuberculosis as serodiagnostic biomarkers for Johne's disease in cattle. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1783-91. [PMID: 24089453 DOI: 10.1128/cvi.00380-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Johne's disease is a chronic gastroenteritis of cattle caused by Mycobacterium avium subsp. paratuberculosis that afflicts 40% of dairy herds worldwide. M. avium subsp. paratuberculosis-infected cattle can remain asymptomatic for years while transmitting the pathogen via fecal contamination and milk. Current serodiagnosis with enzyme-linked immunosorbent assays (ELISAs) fails to detect asymptomatic M. avium subsp. paratuberculosis-infected cattle due to the use of poorly defined antigens and knowledge gaps in our understanding of M. avium subsp. paratuberculosis components eliciting pathogen-specific immune responses. We set out to (i) define a subset of proteins that contain putative antigenic targets and (ii) screen these antigen pools for immunogens relevant in detecting infection. To accomplish our first objective, we captured and resolved M. avium subsp. paratuberculosis-secreted proteins using a 2-step fractionation method and reverse-phase liquid chromatography to identify 162 unique proteins, of which 66 had not been previously observed in M. avium subsp. paratuberculosis culture filtrates. Subsequent screening of M. avium subsp. paratuberculosis-secreted proteins showed four antigens, of which one or more reacted on immunoblotting with individual serum samples from 35 M. avium subsp. paratuberculosis-infected cows. Moreover, these novel antigens reacted with sera from 6 low M. avium subsp. paratuberculosis shedders and 3 fecal-culture-positive cows labeled as ELISA seronegative. The specificity of these antigens was demonstrated using negative-control sera from uninfected calves (n = 5) and uninfected cows (n = 5), which did not react to any of these antigens in immunoblotting. As three of the four antigens are novel, their characterization and incorporation into an ELISA-based format will aid in detecting asymptomatic cattle in early or subclinical stages of disease.
Collapse
|
193
|
Ignatov D, Malakho S, Majorov K, Skvortsov T, Apt A, Azhikina T. RNA-Seq analysis of Mycobacterium avium non-coding transcriptome. PLoS One 2013; 8:e74209. [PMID: 24066122 PMCID: PMC3774663 DOI: 10.1371/journal.pone.0074209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/29/2013] [Indexed: 12/25/2022] Open
Abstract
Deep sequencing was implemented to study the transcriptional landscape of Mycobacterium avium. High-resolution transcriptome analysis identified the transcription start points for 652 genes. One third of these genes represented leaderless transcripts, whereas the rest of the transcripts had 5' UTRs with the mean length of 83 nt. In addition, the 5' UTRs of 6 genes contained SAM-IV and Ykok types of riboswitches. 87 antisense RNAs and 10 intergenic small RNAs were mapped. 6 intergenic small RNAs, including 4.5S RNA and rnpB, were transcribed at extremely high levels. Although several intergenic sRNAs are conserved in M. avium and M. tuberculosis, both of these species have unique intergenic sRNAs. Moreover, we demonstrated that even conserved small RNAs are regulated differently in these species. Different sets of intergenic sRNAs may underlie differences in physiology between conditionally pathogenic M. avium and highly specialized pathogen M. tuberculosis.
Collapse
Affiliation(s)
- Dmitriy Ignatov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- * E-mail:
| | - Sofia Malakho
- Center of Innovations and Technologies “Biologically Active Compounds and their Applications”, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Timofey Skvortsov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Tatyana Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
194
|
Thirunavukkarasu S, de Silva K, Whittington RJ, Plain KM. In vivo and in vitro expression pattern of Toll-like receptors in Mycobacterium avium subspecies paratuberculosis infection. Vet Immunol Immunopathol 2013; 156:20-31. [PMID: 24054090 DOI: 10.1016/j.vetimm.2013.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
Johne's disease (JD) caused by Mycobacterium avium subspecies paratuberculosis (MAP) is a chronic infectious disease of ruminants. Activation of the Toll-like receptors (TLR) in response to microbial stimuli, including MAP, initiates responses in immune cells of the blood and within peripheral tissues. TLR2, 4 and 9 are believed to play a critical role in the initiation of immune responses against mycobacteria. In this study we report on the in vivo expression pattern of these receptors in sheep and cattle experimentally exposed to MAP. Experiments using the mouse macrophage cell line, RAW 264.7, and on isolated bovine monocytes were also carried out to assess the expression pattern of TLR2 and 4 in response to MAP and the non-pathogenic mycobacterial strain, M. smegmatis. Results from the in vivo study showed that there was a significant upregulation of TLR2 (P<0.05) at early time-points post-inoculation in the peripheral blood cells of sheep exposed to MAP S strain that went on to develop severe (multibacillary) disease. However, in the cattle during the initial months post-exposure to MAP C strain, TLR2 was significantly downregulated (P<0.05). TLR4 was significantly upregulated (P<0.05) at later stages (12 months post-inoculation) in MAP-exposed sheep with multibacillary disease; however significant differences in TLR4 expression were not observed in cattle. Expression of TLR9 was unchanged in MAP-exposed sheep and cattle. In vitro studies on mouse macrophages supported the findings of in vivo TLR2 gene expression increases seen in the sheep, in that the TLR2 receptor expression in response to MAP-infection was significantly increased in comparison to cells infected with a non-virulent mycobacterium, M. smegmatis. A likely role for TLR2 in the pathogenesis of Johne's disease is proposed.
Collapse
Affiliation(s)
- Shyamala Thirunavukkarasu
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| | | | | | | |
Collapse
|
195
|
No holes barred: invasion of the intestinal mucosa by Mycobacterium avium subsp. paratuberculosis. Infect Immun 2013; 81:3960-5. [PMID: 23940208 DOI: 10.1128/iai.00575-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The infection biology of Mycobacterium avium subsp. paratuberculosis has recently crystallized, with added details surrounding intestinal invasion. The involvement of pathogen-derived effector proteins such as the major membrane protein, oxidoreductase, and fibronectin attachment proteins have been uncovered. Mutations constructed in this pathogen have also shed light on genes needed for invasion. The host cell types that are susceptible to invasion have been defined, along with their transcriptional response. Recent details have given a new appreciation for the dynamic interplay between the host and bacterium that occurs at the outset of infection. An initial look at the global expression pathways of the host has shown a circumvention of the cell communication pathway by M. avium subsp. paratuberculosis, which loosens the integrity of the tight junctions. We now know that M. avium subsp. paratuberculosis activates the epithelial layer and also actively recruits macrophages to the site of infection. These notable findings are summarized along with added mechanistic details of the early infection model. We conclude by proposing critical next steps to further elucidate the process of M. avium subsp. paratuberculosis invasion.
Collapse
|
196
|
Knust B, Patton E, Ribeiro-Lima J, Bohn JJ, Wells SJ. Evaluation of the effects of a killed whole-cell vaccine against Mycobacterium avium subsp paratuberculosis in 3 herds of dairy cattle with natural exposure to the organism. J Am Vet Med Assoc 2013; 242:663-9. [PMID: 23402414 DOI: 10.2460/javma.242.5.663] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate effects of vaccination with a killed whole-cell vaccine against Mycobacterium avium subsp paratuberculosis (MAP) on fecal shedding of the organism, development of clinical paratuberculosis (Johne's disease [JD]), milk production, measures of reproduction, and within-herd longevity of dairy cattle naturally exposed to MAP. DESIGN Controlled clinical trial. ANIMALS 200 vaccinated and 195 unvaccinated (control) dairy cows from 3 herds in Wisconsin. PROCEDURES Every other heifer calf born in each herd received the MAP vaccine; 162 vaccinates and 145 controls that had ≥ 1 lactation were included in analyses. Bacteriologic culture of fecal samples for MAP was performed annually for 7 years; results were confirmed via histologic methods and PCR assay. Production records and culture results were evaluated to determine effects of vaccination on variables of interest in study cows. Annual whole-herd prevalence of MAP shedding in feces was also determined. RESULTS Vaccinates had a significantly lower hazard of testing positive for MAP via culture of fecal samples than did controls over time (hazard ratio, 0.57; 95% confidence interval, 0.34 to 0.97). Fewer vaccinates developed clinical JD than did controls (n = 6 and 12, respectively), but these differences were nonsignificant. Overall within-herd longevity, total milk production, and calving-to-conception intervals were similar between vaccinates and controls. In all herds, prevalence of MAP shedding in feces decreased over time. CONCLUSIONS AND CLINICAL RELEVANCE Vaccination with a killed whole-cell MAP vaccine appeared to be an effective tool as part of a program to control the spread of JD in dairy cattle.
Collapse
Affiliation(s)
- Barbara Knust
- Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA.
| | | | | | | | | |
Collapse
|
197
|
Taka S, Liandris E, Gazouli M, Sotirakoglou K, Theodoropoulos G, Bountouri M, Andreadou M, Ikonomopoulos J. In vitro expression of the SLC11A1 gene in goat monocyte-derived macrophages challenged with Mycobacterium avium subsp paratuberculosis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2013; 17:8-15. [PMID: 23567820 DOI: 10.1016/j.meegid.2013.03.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/14/2013] [Accepted: 03/20/2013] [Indexed: 11/25/2022]
Abstract
Johne's disease or paratuberculosis is a chronic, progressive intestinal disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). One of the genes that have been targeted with regard to resistance or sensitivity to paratuberculosis is the SLC11A1 (solute carrier family 11 member A1). Here we extend our previous work to the sequence and structure analysis of the caprine SLC11A1 gene and we assess the functional impact of the most frequent polymorphisms of the 3' UTR region of the SLC11A1 gene to its expression in goat macrophages exposed in vitro to MAP. The role of these polymorphisms in primary immune response is also investigated with connection to gene expression of two interleukins (IL), one of which pro (IL-1a), and the other anti-inflammatory (IL-10). In order to assess gene response, quantitative detection of the SLC11A1, IL-10 and IL1a mRNA was performed by real time PCR before, and at 1, 3 and 24h after exposure of primary cultures of peripheral blood monocyte-derived macrophages to MAP, collected from 54 goats of the Greek native goat breed. Sequence analysis of the 3' UTR end of the caprine SLC11A1 gene determined its full length to be 522 bases. Structure analysis confirmed the presence of two microsatellites consisted of a variable number of guanine-thymine repeats (regions A and B). The homozygous B7 genotype [B(GTn)7/7] was associated at a statistically significant level with increased expression of the SLC11A1 and IL-1α genes indicating increased in vitro responsiveness and therefore resistance of mononuclear derived macrophages to MAP infection.
Collapse
Affiliation(s)
- S Taka
- Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, 75 Iera Odos St, 11855 Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Salgado M, Alfaro M, Salazar F, Troncoso E, Mitchell RM, Ramirez L, Naguil A, Zamorano P, Collins MT. Effect of soil slope on the appearance of Mycobacterium avium subsp. paratuberculosis in water running off grassland soil after application of contaminated slurry. Appl Environ Microbiol 2013; 79:3544-52. [PMID: 23542616 PMCID: PMC3675930 DOI: 10.1128/aem.00610-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/24/2013] [Indexed: 12/23/2022] Open
Abstract
The study assessed the effect of soil slope on Mycobacterium avium subsp. paratuberculosis transport into rainwater runoff from agricultural soil after application of M. avium subsp. paratuberculosis-contaminated slurry. Under field conditions, 24 plots of undisturbed loamy soil 1 by 2 m(2) were placed on platforms. Twelve plots were used for water runoff: 6 plots at a 3% slope and 6 plots at a 15% slope. Half of the plots of each slope were treated with M. avium subsp. paratuberculosis-contaminated slurry, and half were not treated. Using the same experimental design, 12 plots were established for soil sampling on a monthly basis using the same spiked slurry application and soil slopes. Runoff following natural rainfall was collected and analyzed for M. avium subsp. paratuberculosis, coliforms, and turbidity. M. avium subsp. paratuberculosis was detected in runoff from all plots treated with contaminated slurry and one control plot. A higher slope (15%) increased the likelihood of M. avium subsp. paratuberculosis detection but did not affect the likelihood of finding coliforms. Daily rainfall increased the likelihood that runoff would have coliforms and the coliform concentration, but it decreased the M. avium subsp. paratuberculosis concentration in the runoff. When there was no runoff, rain was associated with increased M. avium subsp. paratuberculosis concentrations. Coliform counts in runoff were related to runoff turbidity. M. avium subsp. paratuberculosis presence/absence, however, was related to turbidity. Study duration decreased bacterial detection and concentration. These findings demonstrate the high likelihood that M. avium subsp. paratuberculosis in slurry spread on pastures will contaminate water runoff, particularly during seasons with high rainfall. M. avium subsp. paratuberculosis contamination of water has potential consequences for both animal and human health.
Collapse
Affiliation(s)
- M Salgado
- Biochemistry and Microbiology Department, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Cook K, Flis S, Ballard C. Sensitivity of Mycobacterium avium
subsp paratuberculosis
,Escherichia coli
and Salmonella enterica
serotype Typhimurium to low pH, high organic acids and ensiling. J Appl Microbiol 2013; 115:334-45. [DOI: 10.1111/jam.12243] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/10/2013] [Accepted: 05/01/2013] [Indexed: 01/14/2023]
Affiliation(s)
| | - S.A. Flis
- William H. Miner Agricultural Research Institute; Chazy NY USA
| | - C.S. Ballard
- William H. Miner Agricultural Research Institute; Chazy NY USA
| |
Collapse
|
200
|
Nikonenko BV, Apt AS. Drug testing in mouse models of tuberculosis and nontuberculous mycobacterial infections. Tuberculosis (Edinb) 2013; 93:285-90. [DOI: 10.1016/j.tube.2013.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/17/2013] [Accepted: 02/04/2013] [Indexed: 01/12/2023]
|