151
|
Flavonoids as Inhibitors of Bacterial Efflux Pumps. Molecules 2021; 26:molecules26226904. [PMID: 34833994 PMCID: PMC8625893 DOI: 10.3390/molecules26226904] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Flavonoids are widely occurring secondary plant constituents, and are abundant in vegetable and fruit diets as well as herbal medicines. Therapeutic treatment options for bacterial infections are limited due to the spread of antimicrobial resistances. Hence, in a number of studies during the last few years, different classes of plant secondary metabolites as resistance-modifying agents have been carried out. In this review, we present the role of flavonoids as inhibitors of bacterial efflux pumps. Active compounds could be identified in the subclasses of chalcones, flavan-3-ols, flavanones, flavones, flavonols, flavonolignans and isoflavones; by far the majority of compounds were aglycones, although some glycosides like kaempferol glycosides with p-coumaroyl acylation showed remarkable results. Staphylococcus aureus NorA pump was the focus of many studies, followed by mycobacteria, whereas Gram-negative bacteria are still under-investigated.
Collapse
|
152
|
The Two-Component System RstA/RstB Regulates Expression of Multiple Efflux Pumps and Influences Anaerobic Nitrate Respiration in Pseudomonas fluorescens. mSystems 2021; 6:e0091121. [PMID: 34726491 PMCID: PMC8562477 DOI: 10.1128/msystems.00911-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multidrug resistance (MDR) efflux pumps are involved in bacterial intrinsic resistance to multiple antimicrobials. Expression of MDR efflux pumps can be either constitutive or transiently induced by various environmental signals, which are typically perceived by bacterial two-component systems (TCSs) and relayed to the bacterial nucleoid, where gene expression is modulated for niche adaptation. Here, we demonstrate that RstA/RstB, a TCS previously shown to control acid-induced and biofilm-related genes in Escherichiacoli, confers resistance to multiple antibiotics in Pseudomonas fluorescens by directly regulating the MDR efflux pumps EmhABC and MexCD-OprJ. Moreover, we show that phosphorylation of the conserved Asp52 residue in RstA greatly enhances RstA-DNA interaction, and regulation of the multidrug resistance by RstA/RstB is dependent on the phosphorylation of the RstA Asp52 residue by RstB. Proteome analysis reveals RstA/RstB also positively regulates the efflux pump MexEF-OprN and enzymes involved in anaerobic nitrate respiration and pyoverdine biosynthesis. Our results suggest that, by coupling the expression of multiple efflux pumps and anaerobic nitrate respiration, RstA/RstB could play a role in defense against nitrosative stress caused by anaerobic nitrate respiration. IMPORTANCE Microenvironmental hypoxia typically increases bacterial multidrug resistance by elevating expression of multidrug efflux pumps, but the precise mechanism is currently not well understood. Here, we showed that the two-component system RstA/RstB not only positively regulated expression of several efflux pumps involved in multidrug resistance, but also promoted expression of enzymes involved in anaerobic nitrate respiration and pyoverdine biosynthesis. These results suggested that, by upregulating expression of efflux pumps and pyoverdine biosynthesis-related enzymes, RstA/RstB could play a role in promoting bacterial tolerance to hypoxia by providing protection against nitrosative stress.
Collapse
|
153
|
Kumar S, Anwer R, Azzi A. Virulence Potential and Treatment Options of Multidrug-Resistant (MDR) Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9102104. [PMID: 34683425 PMCID: PMC8541637 DOI: 10.3390/microorganisms9102104] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen which is undoubtedly known for a high rate of morbidity and mortality in hospital-acquired infections. A. baumannii causes life-threatening infections, including; ventilator-associated pneumonia (VAP), meningitis, bacteremia, and wound and urinary tract infections (UTI). In 2017, the World Health Organization listed A. baumannii as a priority-1 pathogen. The prevalence of A. baumannii infections and outbreaks emphasizes the direct need for the use of effective therapeutic agents for treating such infections. Available antimicrobials, such as; carbapenems, tigecycline, and colistins have insufficient effectiveness due to the appearance of multidrug-resistant strains, accentuating the need for alternative and novel therapeutic remedies. To understand and overcome this menace, the knowledge of recent discoveries on the virulence factors of A. baumannii is needed. Herein, we summarized the role of various virulence factors, including; outer membrane proteins, efflux pumps, biofilm, penicillin-binding proteins, and siderophores/iron acquisition systems. We reviewed the recent scientific literature on different A. baumannii virulence factors and the effective antimicrobial agents for the treatment and management of bacterial infections.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia;
| | - Arezki Azzi
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
- Correspondence:
| |
Collapse
|
154
|
Amiss AS, Henriques ST, Lawrence N. Antimicrobial peptides provide wider coverage for targeting drug‐resistant bacterial pathogens. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anna S. Amiss
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
- School of Biomedical Sciences Queensland University of Technology, Translational Research Institute Brisbane Queensland Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
155
|
Salcedo-Sora JE, Robison ATR, Zaengle-Barone J, Franz KJ, Kell DB. Membrane Transporters Involved in the Antimicrobial Activities of Pyrithione in Escherichia coli. Molecules 2021; 26:molecules26195826. [PMID: 34641370 PMCID: PMC8510280 DOI: 10.3390/molecules26195826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pyrithione (2-mercaptopyridine-N-oxide) is a metal binding modified pyridine, the antibacterial activity of which was described over 60 years ago. The formulation of zinc-pyrithione is commonly used in the topical treatment of certain dermatological conditions. However, the characterisation of the cellular uptake of pyrithione has not been elucidated, although an unsubstantiated assumption has persisted that pyrithione and/or its metal complexes undergo a passive diffusion through cell membranes. Here, we have profiled specific membrane transporters from an unbiased interrogation of 532 E. coli strains of knockouts of genes encoding membrane proteins from the Keio collection. Two membrane transporters, FepC and MetQ, seemed involved in the uptake of pyrithione and its cognate metal complexes with copper, iron, and zinc. Additionally, the phenotypes displayed by CopA and ZntA knockouts suggested that these two metal effluxers drive the extrusion from the bacterial cell of potentially toxic levels of copper, and perhaps zinc, which hyperaccumulate as a function of pyrithione. The involvement of these distinct membrane transporters contributes to the understanding of the mechanisms of action of pyrithione specifically and highlights, more generally, the important role that membrane transporters play in facilitating the uptake of drugs, including metal-drug compounds.
Collapse
Affiliation(s)
- Jesus Enrique Salcedo-Sora
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- Correspondence: (J.E.S.-S.); (K.J.F.); (D.B.K.)
| | - Amy T. R. Robison
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA; (A.T.R.R.); (J.Z.-B.)
| | - Jacqueline Zaengle-Barone
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA; (A.T.R.R.); (J.Z.-B.)
| | - Katherine J. Franz
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA; (A.T.R.R.); (J.Z.-B.)
- Correspondence: (J.E.S.-S.); (K.J.F.); (D.B.K.)
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Correspondence: (J.E.S.-S.); (K.J.F.); (D.B.K.)
| |
Collapse
|
156
|
Rangama S, Lidbury IDEA, Holden JM, Borsetto C, Murphy ARJ, Hawkey PM, Wellington EMH. Mechanisms Involved in the Active Secretion of CTX-M-15 β-Lactamase by Pathogenic Escherichia coli ST131. Antimicrob Agents Chemother 2021; 65:e0066321. [PMID: 34310213 PMCID: PMC8448145 DOI: 10.1128/aac.00663-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Infections caused by antimicrobial-resistant bacterial pathogens are fast becoming an important global health issue. Strains of Escherichia coli are common causal agents of urinary tract infection and can carry multiple resistance genes. This includes the gene blaCTX-M-15, which encodes an extended-spectrum beta-lactamase (ESBL). While studying antimicrobial resistance (AMR) in the environment, we isolated several strains of E. coli ST131 downstream of a wastewater treatment plan (WWTP) in a local river. These isolates were surviving in the river sediment, and characterization proved that a multiresistant phenotype was evident. Here, we show that E. coli strain 48 (river isolate ST131) provided a protective effect against a third-generation cephalosporin (cefotaxime) for susceptible E. coli strain 33 (river isolate ST3576) through secretion of a functional ESBL into the growth medium. Furthermore, extracellular ESBL activity was stable for at least 24 h after secretion. Proteomic and molecular genetic analyses identified CTX-M-15 as the major secreted ESBL responsible for the observed protective effect. In contrast to previous studies, outer membrane vesicles (OMVs) were not the route for CTX-M-15 secretion. Indeed, mutation of the type I secretion system led to a significant reduction in the growth of the ESBL-producing strain as well as a significantly reduced ability to confer protective effect. We speculate that CTX-M-15 secretion, mediated through active secretion using molecular machinery, provides a public goods service by facilitating the survival of otherwise susceptible bacteria in the presence of cefotaxime.
Collapse
Affiliation(s)
- Severine Rangama
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ian D. E. A. Lidbury
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Department of Animal and Plant Science, The University of Sheffield, Sheffield, United Kingdom
| | - Jennifer M. Holden
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Micropathology Ltd., University of Warwick Science Park, Coventry, United Kingdom
| | - Chiara Borsetto
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | - Peter M. Hawkey
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | | |
Collapse
|
157
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|
158
|
Bharatham N, Bhowmik P, Aoki M, Okada U, Sharma S, Yamashita E, Shanbhag AP, Rajagopal S, Thomas T, Sarma M, Narjari R, Nagaraj S, Ramachandran V, Katagihallimath N, Datta S, Murakami S. Structure and function relationship of OqxB efflux pump from Klebsiella pneumoniae. Nat Commun 2021; 12:5400. [PMID: 34518546 PMCID: PMC8437966 DOI: 10.1038/s41467-021-25679-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
OqxB is an RND (Resistance-Nodulation-Division) efflux pump that has emerged as a factor contributing to the antibiotic resistance in Klebsiella pneumoniae. OqxB underwent horizontal gene transfer and is now seen in other Gram-negative bacterial pathogens including Escherichia coli, Enterobacter cloacae and Salmonella spp., further disseminating multi-drug resistance. In this study, we describe crystal structure of OqxB with n-dodecyl-β-D-maltoside (DDM) molecules bound in its substrate-binding pocket, at 1.85 Å resolution. We utilize this structure in computational studies to predict the key amino acids contributing to the efflux of fluoroquinolones by OqxB, distinct from analogous residues in related transporters AcrB and MexB. Finally, our complementation assays with mutated OqxB and minimum inhibitory concentration (MIC) experiments with clinical isolates of E. coli provide further evidence that the predicted structural features are indeed involved in ciprofloxacin efflux.
Collapse
Affiliation(s)
- Nagakumar Bharatham
- grid.413008.e0000 0004 1765 8271Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, GKVK, Bellary Rd, Bengaluru, Karnataka India ,grid.502290.cThe University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka India
| | - Purnendu Bhowmik
- grid.413008.e0000 0004 1765 8271Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, GKVK, Bellary Rd, Bengaluru, Karnataka India ,grid.502290.cThe University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka India
| | - Maho Aoki
- grid.32197.3e0000 0001 2179 2105Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ui Okada
- grid.32197.3e0000 0001 2179 2105Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Sreevalli Sharma
- grid.413008.e0000 0004 1765 8271Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, GKVK, Bellary Rd, Bengaluru, Karnataka India ,grid.502290.cThe University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka India
| | - Eiki Yamashita
- grid.136593.b0000 0004 0373 3971Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Anirudh P. Shanbhag
- grid.413008.e0000 0004 1765 8271Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, GKVK, Bellary Rd, Bengaluru, Karnataka India
| | - Sreenath Rajagopal
- grid.413008.e0000 0004 1765 8271Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, GKVK, Bellary Rd, Bengaluru, Karnataka India
| | - Teby Thomas
- grid.418280.70000 0004 1794 3160St. John’s Research Institute, Bengaluru, Karnataka India
| | - Maitrayee Sarma
- grid.413008.e0000 0004 1765 8271Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, GKVK, Bellary Rd, Bengaluru, Karnataka India
| | - Riya Narjari
- grid.413008.e0000 0004 1765 8271Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, GKVK, Bellary Rd, Bengaluru, Karnataka India
| | | | - Vasanthi Ramachandran
- grid.413008.e0000 0004 1765 8271Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, GKVK, Bellary Rd, Bengaluru, Karnataka India ,grid.502290.cThe University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka India
| | - Nainesh Katagihallimath
- grid.413008.e0000 0004 1765 8271Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, GKVK, Bellary Rd, Bengaluru, Karnataka India ,grid.502290.cThe University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka India
| | - Santanu Datta
- grid.413008.e0000 0004 1765 8271Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, GKVK, Bellary Rd, Bengaluru, Karnataka India
| | - Satoshi Murakami
- grid.32197.3e0000 0001 2179 2105Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
159
|
Thamilselvan G, Sarveswari HB, Vasudevan S, Stanley A, Shanmugam K, Vairaprakash P, Solomon AP. Development of an Antibiotic Resistance Breaker to Resensitize Drug-Resistant Staphylococcus aureus: In Silico and In Vitro Approach. Front Cell Infect Microbiol 2021; 11:700198. [PMID: 34485178 PMCID: PMC8415528 DOI: 10.3389/fcimb.2021.700198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Efflux pumps are one of the predominant microbial resistant mechanisms leading to the development of multidrug resistance. In Staphylococcus aureus, overexpression of NorA protein enables the efflux of antibiotics belonging to the class of fluoroquinolones and, thus, makes S. aureus resistant. Hence, NorA efflux pumps are being extensively exploited as the potential drug target to evade bacterial resistance and resensitize bacteria to the existing antibiotics. Although several molecules are reported to inhibit NorA efflux pump effectively, boronic acid derivatives were shown to have promising NorA efflux pump inhibition. In this regard, the current study exploits 6-(3-phenylpropoxy)pyridine-3-boronic acid to further improve the activity and reduce cytotoxicity using the bioisostere approach, a classical medicinal chemistry concept. Using the SWISS-Bioisostere online tool, from the parent compound, 42 compounds were obtained upon the replacement of the boronic acid. The 42 compounds were docked with modeled NorA protein, and key molecular interactions of the prominent compounds were assessed. The top hit compounds were further analyzed for their drug-like properties using ADMET studies. The identified potent lead, 5-nitro-2-(3-phenylpropoxy)pyridine (5-NPPP), was synthesized, and in vitro efficacy studies have been proven to show enhanced efflux inhibition, thus acting as a potent antibiotic breaker to resensitize S. aureus without elucidating any cytotoxic effect to the host Hep-G2 cell lines.
Collapse
Affiliation(s)
- Gopalakrishnan Thamilselvan
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Hema Bhagavathi Sarveswari
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Alex Stanley
- Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India.,Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Pothiappan Vairaprakash
- Department of Chemistry, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
160
|
Paul D, Mondal SK, Mandal SM. Biologia Futura: use of biocides during COVID-19-global reshuffling of the microbiota. Biol Futur 2021; 72:273-280. [PMID: 34554548 PMCID: PMC7848239 DOI: 10.1007/s42977-021-00069-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/12/2021] [Indexed: 11/02/2022]
Abstract
Aim The article reviews the current usage of biocides during this lockdown period for sanitizing our living areas due to the pandemic and discusses the pros and cons. Subject COVID-19 spread like wildfire to over 200 countries of the world across all continents. The causative agent, novel coronavirus (SARS-CoV-2) is being counter attacked by a thorough application of disinfectants and sterilants. However, the virus mutated over 30 times during this global pandemic, creating panic and leading to enhanced pathogenicity and consequently to more stringent sanitation measures for controlling it. However, excessive use of different types of biocides for disinfecting surfaces is highly alarming in several cases. Extensive application of biocides affects the microbial flora, leading to an abrupt decrease in the number and diversity of beneficial microbes that may directly affect the functioning of nutrient cycles. Results The increased concentration of biocides in agricultural land via surface water or pond water indirectly affect the soil and water ecosystem, soil aggregation and fertility. This will also lead to the flourishing of resistant strains due to loss of competition from the other species, which fail to persist after prolonged use of biocides. Conclusion It is necessary to realize the environmental impacts of biocides and sterilants. It is the right time to stop their entry into the agricultural ecosystem by following adequate management strategies and complete neutralization.
Collapse
Affiliation(s)
- Debarati Paul
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, UP, 201313, India.
| | - Suresh K Mondal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
161
|
Unrath N, McCabe E, Macori G, Fanning S. Application of Whole Genome Sequencing to Aid in Deciphering the Persistence Potential of Listeria monocytogenes in Food Production Environments. Microorganisms 2021; 9:1856. [PMID: 34576750 PMCID: PMC8464834 DOI: 10.3390/microorganisms9091856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a foodborne illness associated with high hospitalizations and mortality rates. This bacterium can persist in food associated environments for years with isolates being increasingly linked to outbreaks. This review presents a discussion of genomes of Listeria monocytogenes which are commonly regarded as persisters within food production environments, as well as genes which are involved in mechanisms aiding this phenotype. Although criteria for the detection of persistence remain undefined, the advent of whole genome sequencing (WGS) and the development of bioinformatic tools have revolutionized the ability to find closely related strains. These advancements will facilitate the identification of mechanisms responsible for persistence among indistinguishable genomes. In turn, this will lead to improved assessments of the importance of biofilm formation, adaptation to stressful conditions and tolerance to sterilizers in relation to the persistence of this bacterium, all of which have been previously associated with this phenotype. Despite much research being published around the topic of persistence, more insights are required to further elucidate the nature of true persistence and its implications for public health.
Collapse
Affiliation(s)
- Natalia Unrath
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Evonne McCabe
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
- Department of Microbiology, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Guerrino Macori
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| |
Collapse
|
162
|
Ali S, Alam M, Hasan GM, Hassan MI. Potential therapeutic targets of Klebsiella pneumoniae: a multi-omics review perspective. Brief Funct Genomics 2021; 21:63-77. [PMID: 34448478 DOI: 10.1093/bfgp/elab038] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/15/2022] Open
Abstract
The multidrug resistance developed in many organisms due to the prolonged use of antibiotics has been an increasing global health crisis. Klebsiella pneumoniae is a causal organism for various infections, including respiratory, urinary tract and biliary diseases. Initially, immunocompromised individuals are primarily affected by K. pneumoniae. Due to the emergence of hypervirulent strains recently, both healthy and immunocompetent individuals are equally susceptible to K. pneumoniae infections. The infections caused by multidrug-resistant and hypervirulent K. pneumoniae strains are complicated to treat, illustrating an urgent need to develop novel and more practical approaches to combat the pathogen. We focused on the previously performed high-throughput analyses by other groups to discover several novel enzymes that may be considered attractive drug targets of K. pneumoniae. These targets qualify most of the selection criteria for drug targeting, including an absence of its homolog's gene in the host. The capsule, lipopolysaccharide, fimbriae, siderophores and essential virulence factors facilitate the pathogen entry, infection and survival inside the host. This review discusses K. pneumoniae pathophysiology, including its virulence determinants and further the potential drug targets that might facilitate the discovery of novel drugs and effective treatment regimens shortly.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| |
Collapse
|
163
|
Mohanty H, Pachpute S, Yadav RP. Mechanism of drug resistance in bacteria: efflux pump modulation for designing of new antibiotic enhancers. Folia Microbiol (Praha) 2021; 66:727-739. [PMID: 34431062 DOI: 10.1007/s12223-021-00910-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022]
Abstract
Drug resistance has now become a serious concern in the domain of microbial infection. Bacteria are becoming smarter by displaying a variety of mechanisms during drug resistance. It is not only helping bacteria to adapt nicely in adverse environment but it also makes a smart system for better availability of nutritional status for microorganisms. In this domain, pathogenic bacteria are extensively studied and their mechanism for drug resistance is well explored. The common modes in bacterial resistance include degradation of antibiotics by enzymes, antibiotic target modification or inactivation by enzymatic actions, complete replacement of antibiotic targets, quorum sensing (QS) mechanism, and efflux pump-based extrusion of antibiotics. In this review, various mechanisms of drug resistance in bacteria have been highlighted with giving the importance of efflux pumps. This can be explored as a knowledge source for the management of a variety of bacterial infections, related disease and vibrant clue for next-generation drug development.
Collapse
Affiliation(s)
- Harshita Mohanty
- MGMIHS OMICS Research Center, MGM Central Research Laboratory, MGM Medical College and Hospital, MGM Institute of Health Sciences, Sector 1, Kamothe, Navi Mumbai-410209, Maharashtra, India.,Department of Molecular Biology, MGM School of Biomedical Sciences, MGM Institute of Health Sciences, Sector 1, Kamothe, Navi Mumbai-410209, Maharashtra, India
| | - Samir Pachpute
- Department of Medical Microbiology, MGM Medical College and Hospital, MGM Institute of Health Sciences, Sector 1, Kamothe, Navi Mumbai-410209, Maharashtra, India
| | - Raman P Yadav
- MGMIHS OMICS Research Center, MGM Central Research Laboratory, MGM Medical College and Hospital, MGM Institute of Health Sciences, Sector 1, Kamothe, Navi Mumbai-410209, Maharashtra, India. .,Department of Molecular Biology, MGM School of Biomedical Sciences, MGM Institute of Health Sciences, Sector 1, Kamothe, Navi Mumbai-410209, Maharashtra, India.
| |
Collapse
|
164
|
Tatay-Dualde J, Prats-van der Ham M, Gaurivaud P, de la Fe C, Tardy F. Efflux Might Participate in Decreased Susceptibility to Oxytetracycline in Contagious Agalactia-Causative Mycoplasma spp. Animals (Basel) 2021; 11:ani11082449. [PMID: 34438907 PMCID: PMC8388784 DOI: 10.3390/ani11082449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Contagious agalactia is associated with mastitis, keratoconjunctivitis, arthritis, pneumonia, and septicemia in small ruminants in countries with large dairy industries worldwide. The causative agents belong to four (sub)species of the Mycoplasma genus that have remained essentially susceptible to antimicrobials, including to the widely-used tetracycline family. However, some clinical isolates have been detected that show increased minimum inhibitory concentrations of tetracyclines, although they do not harbor the mutation in the 16SrRNA gene usually associated with resistance. The present work aimed to assess whether efflux pumps, infrequently described in mycoplasmas, could participate in the observed moderate loss of susceptibility. General efflux mechanisms were measured (i) using the fluorescence property of ethidium bromide when accumulated intracellularly and intercalated in the mycoplasma genomes, its active extrusion resulting in a temperature-dependent decrease in fluorescence and (ii) monitoring the growth inhibition of mycoplasmas by subinhibitory concentrations of tetracycline with or without reserpine, a known inhibitor of efflux in other bacteria. Both methods revealed non-specific efflux phenomena in most of the isolates tested, although their efficacy was difficult to quantify. This property could contribute to the acquisition of mutations conferring resistance by maintaining intracellular concentrations of tetracyclines at subinhibitory levels.
Collapse
Affiliation(s)
- Juan Tatay-Dualde
- Ruminant Health Research Group, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo s/n, University of Murcia, 30100 Murcia, Spain; (J.T.-D.); (M.P.-v.d.H.); (C.d.l.F.)
| | - Miranda Prats-van der Ham
- Ruminant Health Research Group, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo s/n, University of Murcia, 30100 Murcia, Spain; (J.T.-D.); (M.P.-v.d.H.); (C.d.l.F.)
| | - Patrice Gaurivaud
- UMR Mycoplasmoses Animales, Anses, VetAgro Sup, Université de Lyon, F-69364 Lyon, France;
| | - Christian de la Fe
- Ruminant Health Research Group, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo s/n, University of Murcia, 30100 Murcia, Spain; (J.T.-D.); (M.P.-v.d.H.); (C.d.l.F.)
| | - Florence Tardy
- UMR Mycoplasmoses Animales, Anses, VetAgro Sup, Université de Lyon, F-69364 Lyon, France;
- Correspondence: ; Tel.: +33-4-78696843
| |
Collapse
|
165
|
Inhibition of the MepA efflux pump by limonene demonstrated by in vitro and in silico methods. Folia Microbiol (Praha) 2021; 67:15-20. [PMID: 34417720 DOI: 10.1007/s12223-021-00909-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Bacterial resistance is a natural process carried out by bacteria, which has been considered a public health problem in recent decades. This process can be triggered through the efflux mechanism, which has been extensively studied, mainly related to the use of natural products to inhibit this mechanism. To carry out the present study, the minimum inhibitory concentration (MIC) tests of the compound limonene were performed, through the microdilution methodology in sterile 96-well plates. Tests were also carried out with the association of the compound with ethidium bromide and ciprofloxacin, in addition to the ethidium bromide fluorimetry, and later the molecular docking. From the tests performed, it was possible to observe that the compound limonene presented significant results when associated with ethidium bromide and the antibiotic used. Through the fluorescence emission, it was observed that when associated with the compound limonene, a greater ethidium bromide fluorescence was emitted. Finally, when analyzing the in silico study, it demonstrated that limonene can efficiently fit into the MepA structure. In this way, it is possible to show that limonene can contribute to cases of bacterial resistance through an efflux pump, so that it is necessary to carry out more studies to prove its effects against bacteria carrying an efflux pump and assess the toxicity of the compound.
Collapse
|
166
|
Efflux Pump Overexpression Profiling in Acinetobacter baumannii and Study of New 1-(1-Naphthylmethyl)-Piperazine Analogs as Potential Efflux Inhibitors. Antimicrob Agents Chemother 2021; 65:e0071021. [PMID: 34097483 DOI: 10.1128/aac.00710-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of efflux pumps extruding antibiotics currently used for the treatment of Acinetobacter baumannii infections has been described as an important mechanism causing antibiotic resistance. The first aim of this work was to phenotypically evaluate the overexpression of efflux pumps on a collection of 124 ciprofloxacin-resistant A. baumannii strains. An overexpression of genes encoding one or more efflux pumps was obtained for 19 out of the 34 strains with a positive phenotypic efflux (56%). The most frequent genes overexpressed were those belonging to the RND family, with adeJ being the most prevalent (50%). Interestingly, efflux pump genes coding for MATE and MFS families were also overexpressed quite frequently: abeM (32%) and abaQ (26%). The second aim was to synthesize 1-(1-naphthylmethyl)-piperazine analogs as potential new efflux pump inhibitors and biologically evaluate them against strains with a positive phenotypic efflux. Quinoline and pyridine analogs were found to be more effective than their parent compound, 1-(1-naphthyl methyl)-piperazine. Stereochemistry also played an important part in the inhibitory activity, as quinoline derivative (R)-3a was identified as being the most effective and less cytotoxic. Its inhibitory activity was also correlated with the number of efflux pumps expressed by a strain. The results obtained in this work suggest that quinoline analogs of 1-(1-naphthylmethyl)-piperazine are promising leads in the development of new anti-Acinetobacter baumannii therapeutic alternatives in combination with antibiotics for which an efflux-mediated resistance is suspected.
Collapse
|
167
|
Characterization of AreABC, an RND-Type Efflux System Involved in Antimicrobial Resistance of Aliarcobacter butzleri. Antimicrob Agents Chemother 2021; 65:e0072921. [PMID: 34152822 DOI: 10.1128/aac.00729-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aliarcobacter butzleri is an emergent enteropathogen for which resistance to several classes of antimicrobial agents has been described, although the underlying mechanisms have been poorly addressed. We aimed to evaluate the contribution of the resistance-nodulation-division-type (RND) efflux system, AreABC, to drug resistance in A. butzleri. A. butzleri strains were first tested against several antimicrobials with and without an efflux pump inhibitor. Then, erythromycin-resistant strains were screened for the presence of a premature stop codon in a putative transcriptional regulator of the AreABC system, areR. Lastly, antimicrobial susceptibility and ethidium bromide (EtBr) accumulation were evaluated using an areB knockout strain and a strain overexpressing the AreABC system through areR truncation. The presence of the efflux pump inhibitor resulted in increased susceptibility to most of the antimicrobials tested. A correlation between erythromycin resistance and the presence of premature stop codons in areR was observed. The truncation of areR resulted in increased expression of the AreABC system and decreased susceptibility to various antimicrobials. In contrast, areB inactivation resulted in increased susceptibility and a higher intracellular accumulation of EtBr. In conclusion, the AreABC efflux pump plays a role in the resistance of A. butzleri to multiple drugs and is regulated by a putative transcriptional repressor, areR. Our results support the importance of efflux pumps in this bacterium's resistance to major classes of antibiotics and other antimicrobials.
Collapse
|
168
|
Chen B, Han J, Dai H, Jia P. Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: Unintended consequences of community-wide surface disinfecting during COVID-19? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117074. [PMID: 33848900 PMCID: PMC8019131 DOI: 10.1016/j.envpol.2021.117074] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/09/2021] [Accepted: 03/30/2021] [Indexed: 05/17/2023]
Abstract
During the current pandemic, chemical disinfectants are ubiquitously and routinely used in community environments, especially on common touch surfaces in public settings, as a means of controlling the virus spread. An underappreciated risk in current regulatory guidelines and scholarly discussions, however, is that the persisting input of chemical disinfectants can exacerbate the growth of biocide-tolerant and antibiotic-resistant bacteria on those surfaces and allow their direct transfers to humans. For COVID-19, the most commonly used disinfecting agents are quaternary ammonium compounds, hydrogen peroxide, sodium hypochlorite, and ethanol, which account for two-thirds of the active ingredients in current EPA-approved disinfectant products for the novel coronavirus. Tolerance to each of these compounds, which can be either intrinsic or acquired, has been observed on various bacterial pathogens. Of those, mutations and horizontal gene transfer, upregulation of efflux pumps, membrane alteration, and biofilm formation are the common mechanisms conferring biocide tolerance in bacteria. Further, the linkage between disinfectant use and antibiotic resistance was suggested in laboratory and real-life settings. Evidence showed that substantial bacterial transfers to hands could effectuate from short contacts with surrounding surfaces and further from fingers to lips. While current literature on disinfectant-induced antimicrobial resistance predominantly focuses on municipal wastes and the natural environments, in reality the community and public settings are most severely impacted by intensive and regular chemical disinfecting during COVID-19 and, due to their proximity to humans, biocide-tolerant and antibiotic-resistant bacteria emerged in these environments may pose risks of direct transfers to humans, particularly in densely populated urban communities. Here we highlight these risk factors by reviewing the most pertinent and up-to-date evidence, and provide several feasible strategies to mitigate these risks in the scenario of a prolonging pandemic.
Collapse
Affiliation(s)
- Bo Chen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Environmental Science and Engineering, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Han Dai
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Puqi Jia
- Department of Environmental Science and Engineering, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
169
|
Czatzkowska M, Harnisz M, Korzeniewska E, Rusanowska P, Bajkacz S, Felis E, Jastrzębski JP, Paukszto Ł, Koniuszewska I. The impact of antimicrobials on the efficiency of methane fermentation of sewage sludge, changes in microbial biodiversity and the spread of antibiotic resistance. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125773. [PMID: 33831706 DOI: 10.1016/j.jhazmat.2021.125773] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 05/23/2023]
Abstract
The study was designed to simultaneously evaluate the influence of high doses (512-1024 µg/g) the most commonly prescribed antimicrobials on the efficiency of anaerobic digestion of sewage sludge, qualitative and quantitative changes in microbial consortia responsible for the fermentation process, the presence of methanogenic microorganisms, and the fate of antibiotic resistance genes (ARGs). The efficiency of antibiotic degradation during anaerobic treatment was also determined. Metronidazole, amoxicillin and ciprofloxacin exerted the greatest effect on methane fermentation by decreasing its efficiency. Metronidazole, amoxicillin, cefuroxime and sulfamethoxazole were degraded in 100%, whereas ciprofloxacin and nalidixic acid were least susceptible to degradation. The most extensive changes in the structure of digestate microbiota were observed in sewage sludge exposed to metronidazole, where a decrease in the percentage of bacteria of the phylum Bacteroidetes led to an increase in the proportions of bacteria of the phyla Firmicutes and Proteobacteria. The results of the analysis examining changes in the concentration of the functional methanogen gene (mcrA) did not reflect the actual efficiency of methane fermentation. In sewage sludge exposed to antimicrobials, a significant increase was noted in the concentrations of β-lactam, tetracycline and fluoroquinolone ARGs and integrase genes, but selective pressure was not specific to the corresponding ARGs.
Collapse
Affiliation(s)
- Małgorzata Czatzkowska
- Department of Water Protection Engineering and Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Paulina Rusanowska
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117a, 10-720 Olsztyn, Poland
| | - Sylwia Bajkacz
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland; Centre for Biotechnology, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Ewa Felis
- Department of Environmental Biotechnology, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland; Centre for Biotechnology, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Jan P Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Izabela Koniuszewska
- Department of Water Protection Engineering and Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| |
Collapse
|
170
|
RAHAL ANU, KUMAR AMIT. Strategies to combat antimicrobial resistance in Indian scenario. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i2.113812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antimicrobial resistance (AMR) is one of the major public health crisis recognised globally. Microbial infections cause significant productivity losses in animals and humans. In livestock, these microbial infections reduce the growth rates and fertility, diminish production of meat and milk, and occasionally lead to mortality, and are therefore, a major concern for animal welfare. In the dearth of alternative prophylactic measures, antibiotics remain the principal tool for their management. Once an antibiotic is used rampantly, resistance against it is inevidently seen in the microbe population and the hunt for a new drug grows. Discovery and development of a new antimicrobial drug is a time taking and expensive procedure with limited assurance of success. As a result, the past few decades have witnessed only a very few new classes of antibiotics. If the AMR can be restricted or reverted, the success rate of antimicrobial therapy can be boosted and many public health issues be avoided. All these ask for a comprehensive plan to prevent or reduce the antimicrobial resistance and economic losses to the animal husbandry sector. The present review provides an overview of AMR in India, mechanism of its occurrence and the possible roadmap to combat the emerging threat of AMR in Indian scenario.
Collapse
|
171
|
Dera AA, Ahmad I, Rajagopalan P, Shahrani MA, Saif A, Alshahrani MY, Alraey Y, Alamri AM, Alasmari S, Makkawi M, Alkhathami AG, Zaman G, Hakami A, Alhefzi R, Alfhili MA. Synergistic efficacies of thymoquinone and standard antibiotics against multi-drug resistant isolates. Saudi Med J 2021; 42:196-204. [PMID: 33563739 PMCID: PMC7989283 DOI: 10.15537/smj.2021.2.25706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/14/2021] [Indexed: 01/19/2023] Open
Abstract
Objectives: To explore the antibacterial activity of thymoquinone (TQ), a quinone extracted from Nigella sativa. Methods: This study was conducted from May 2019 to March 2020 at the Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia. The antimicrobial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of TQ were determined using an agar well diffusion method and broth microdilution assays, and the synergistic effect was evaluated using antibiotics in parallel. The disruptive effect of TQ on bacterial cell membranes was determined using scanning electron microscopy. The antivirulence properties of TQ, which include adherence and biofilm formation, were also investigated using adherence and biofilm formation assays, respectively. Results: Thymoquinone demonstrated bactericidal efficacy against 4/14 bacterial strains, with MIC range of 1.04-8.3 µg/mL and and MBC range of 10.41–66.66 µg/mL. Thymoquinone showed synergism against Klebsiella pneumoniae, Staphylococcus epidermidis (American Type Culture Collection 12228), Staphylococcus aureus, and Staphylococcus epidermidis in combination with the tested antibiotics. Thymoquinone inhibited bacterial adhesion by 39%-54%, 48%-68%, and 61%-81% at 0.5 × MIC, 1 × MIC, and 2 × MIC, respectively. The tested bacterial strains significantly inhibited biofilm formation after treatment with various concentrations of TQ for 24 and 48 hours. Conclusion: The combinatory effect of TQ with antimicrobials should be considered when developing new antimicrobial therapy regimens to overcome multidrug-resistant.
Collapse
Affiliation(s)
- Ayed A. Dera
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Irfan Ahmad
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Prasanna Rajagopalan
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Mesfer Al Shahrani
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Ahmed Saif
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Mohammad Y. Alshahrani
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Yasser Alraey
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Ahmad M. Alamri
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Sultan Alasmari
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Mohammed Makkawi
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Ali G. Alkhathami
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Gaffar Zaman
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Abdulrahim Hakami
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Razan Alhefzi
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Mohammad A. Alfhili
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
172
|
Dey R, Mukherjee S, Barman S, Haldar J. Macromolecular Nanotherapeutics and Antibiotic Adjuvants to Tackle Bacterial and Fungal Infections. Macromol Biosci 2021; 21:e2100182. [PMID: 34351064 DOI: 10.1002/mabi.202100182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2021] [Indexed: 12/19/2022]
Abstract
The escalating rise in the population of multidrug-resistant (MDR) pathogens coupled with their biofilm forming ability has struck the global health as nightmare. Alongwith the threat of aforementioned menace, the sluggish development of new antibiotics and the continuous deterioration of the antibiotic pipeline has stimulated the scientific community toward the search of smart and innovative alternatives. In near future, membrane targeting antimicrobial polymers, inspired from antimicrobial peptides, can stand out significantly to combat against the MDR superbugs. Many of these amphiphilic polymers can form nanoaggregates through self-assembly with superior and selective antimicrobial efficacy. Additionally, these macromolecular nanoaggregrates can be utilized to engineer smart antibiotic-delivery system for on-demand drug-release, exploiting the infection site's micoenvironment. This strategy substantially increases the local concentration of antibiotics and reduces the associated off-target toxicity. Furthermore, amphiphilc macromolecules can be utilized to rejuvinate obsolete antibiotics to tackle the drug-resistant infections. This review article highlights the recent developments in macromolecular architecture to design numerous nanostructures with broad-spectrum antimicrobial activity, their application in fabricating smart drug delivery systems and their efficacy as antibiotic adjuvants to circumvent antimicrobial resistance. Finally, the current challenges and future prospects are briefly discussed for further exploration and their practical application in clinical settings.
Collapse
Affiliation(s)
- Rajib Dey
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Swagatam Barman
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India.,Antimicrobial Research Laboratory, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| |
Collapse
|
173
|
Ashwath P, Sannejal AD. The Action of Efflux Pump Genes in Conferring Drug Resistance to Klebsiella Species and Their Inhibition. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2021. [DOI: 10.1055/s-0041-1731914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractNosocomial infections caused by Klebsiella species are characterized by high rates of morbidity and mortality. The emergence of the multidrug-resistant (MDR) and extensive drug-resistant (XDR) Gram-negative bacteria reduces the antibiotic efficacy in the treatment of infections caused by the microorganisms. Management of these infections is often difficult, due to the high frequency of strains resistant to multiple antimicrobial agents. Multidrug efflux pumps play a major role as a mechanism of antimicrobial resistance in Gram-negative pathogens. Efflux systems are significant in conferring intrinsic and acquired resistance to the bacteria. The emergence of increasing drug resistance among Klebsiella pneumoniae nosocomial isolates has limited the therapeutic options for treatment of these infections and hence there is a constant quest for an alternative. In this review, we discuss various resistance mechanisms, focusing on efflux pumps and related genes in conferring resistance to Klebsiella. The role of various efflux pump inhibitors (EPIs) in restoring the antibacterial activity has also been discussed. In specific, antisense oligonucleotides as alternative therapeutics in combatting efflux-mediated resistance in Klebsiella species have focused upon.
Collapse
Affiliation(s)
- Priyanka Ashwath
- Divison of Infectious Diseases, Nitte (deemed to be University), Nitte University Centre for Science Education and Research, Mangaluru, Karnakata, India
| | - Akhila Dharnappa Sannejal
- Divison of Infectious Diseases, Nitte (deemed to be University), Nitte University Centre for Science Education and Research, Mangaluru, Karnakata, India
| |
Collapse
|
174
|
Pasqua M, Bonaccorsi di Patti MC, Fanelli G, Utsumi R, Eguchi Y, Trirocco R, Prosseda G, Grossi M, Colonna B. Host - Bacterial Pathogen Communication: The Wily Role of the Multidrug Efflux Pumps of the MFS Family. Front Mol Biosci 2021; 8:723274. [PMID: 34381818 PMCID: PMC8350985 DOI: 10.3389/fmolb.2021.723274] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
Bacterial pathogens are able to survive within diverse habitats. The dynamic adaptation to the surroundings depends on their ability to sense environmental variations and to respond in an appropriate manner. This involves, among others, the activation of various cell-to-cell communication strategies. The capability of the bacterial cells to rapidly and co-ordinately set up an interplay with the host cells and/or with other bacteria facilitates their survival in the new niche. Efflux pumps are ubiquitous transmembrane transporters, able to extrude a large set of different molecules. They are strongly implicated in antibiotic resistance since they are able to efficiently expel most of the clinically relevant antibiotics from the bacterial cytoplasm. Besides antibiotic resistance, multidrug efflux pumps take part in several important processes of bacterial cell physiology, including cell to cell communication, and contribute to increase the virulence potential of several bacterial pathogens. Here, we focus on the structural and functional role of multidrug efflux pumps belonging to the Major Facilitator Superfamily (MFS), the largest family of transporters, highlighting their involvement in the colonization of host cells, in virulence and in biofilm formation. We will offer an overview on how MFS multidrug transporters contribute to bacterial survival, adaptation and pathogenicity through the export of diverse molecules. This will be done by presenting the functions of several relevant MFS multidrug efflux pumps in human life-threatening bacterial pathogens as Staphylococcus aureus, Listeria monocytogenes, Klebsiella pneumoniae, Shigella/E. coli, Acinetobacter baumannii.
Collapse
Affiliation(s)
- Martina Pasqua
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | | | - Giulia Fanelli
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Ryutaro Utsumi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan
| | - Yoko Eguchi
- Department of Science and Technology on Food Safety, Kindai University, Kinokawa, Japan
| | - Rita Trirocco
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Gianni Prosseda
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Milena Grossi
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Bianca Colonna
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
175
|
Goda RM, Shohayeb MM. Use of Pistacia lentiscus mastic for sustained-release system of chlorocresol and benzoic acid for in vitro prevention of bacterial colonization of silicon urinary catheter. Lett Appl Microbiol 2021; 73:599-606. [PMID: 34310728 DOI: 10.1111/lam.13541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022]
Abstract
Urinary tract infections (UTI) are among the most common types of nosocomial infections. Patients with indwelling urinary catheters are at the highest risk of getting infections. A sustained-release method of chlorocresol and benzoic acid using a varnish of Pistacia lentiscus mastic was developed to prevent catheter colonization by Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis and Pseudomonas aeruginosa. Coatings of both antiseptics significantly reduced the number of colonizing bacteria on silicon urinary catheters for 72 h. Chlorocresol-coated catheters were significantly (P ≤ 0·05) more effective than benzoic acid. Except for the Pr. mirabilis, chlorocresol completely inhibited the colonization of catheters by the tested bacteria for 48 h. Nonetheless, the colonization of catheters by Pr. mirabilis was significantly reduced after 48 and 72 h by more than 3·5 logs. Although benzoic acid failed to completely inhibit bacterial growth, it significantly reduced the colonization of the catheters by all the tested bacteria by more than two logs for 72 h. The inhibition of colonization of catheters was confirmed by examining the tested catheters by scanning electron microscopy. The obtained results indicate the potential benefits of using mastic as a varnish for sustaining the release of chlorocresol and benzoic acid to prevent and reduce the colonization of urinary catheters by bacteria.
Collapse
Affiliation(s)
- R M Goda
- Department of Microbiology and Biotechnology, Faculty of Pharmacy, Delta University for Science and Biotechnology, Gamasa, Dakahlia, Egypt
| | - M M Shohayeb
- Department of Microbiology and Biotechnology, Faculty of Pharmacy, Delta University for Science and Biotechnology, Gamasa, Dakahlia, Egypt
| |
Collapse
|
176
|
Antifungal Azoles as Tetracycline Resistance Modifiers in Staphylococcus aureus. Appl Environ Microbiol 2021; 87:e0015521. [PMID: 33990311 DOI: 10.1128/aem.00155-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus has developed resistance to antimicrobials since their first use. The S. aureus major facilitator superfamily (MFS) efflux pump Tet(K) contributes to resistance to tetracyclines. The efflux pump diminishes antibiotic accumulation, and biofilm hampers the diffusion of antibiotics. None of the currently known compounds have been approved as efflux pump inhibitors (EPIs) for clinical use. In the current study, we screened clinically approved drugs for possible Tet(K) efflux pump inhibition. By performing in silico docking followed by in vitro checkerboard assays, we identified five azoles (the fungal ergosterol synthesis inhibitors) showing putative EPI-like potential with a fractional inhibitory concentration index of ≤0.5, indicating synergism. The functionality of the azoles was confirmed using ethidium bromide (EtBr) accumulation and efflux inhibition assays. In time-kill kinetics, the combination treatment with butoconazole engendered a marked increase in the bactericidal capacity of tetracycline. When assessing the off-target effects of the azoles, we observed no disruption of bacterial membrane permeability and polarization. Finally, the combination of azoles with tetracycline led to a significant eradication of preformed mature biofilms. This study demonstrates that azoles can be repurposed as putative Tet(K) EPIs and to reduce biofilm formation at clinically relevant concentrations. IMPORTANCE Staphylococcus aureus uses efflux pumps to transport antibiotics out of the cell and thus increases the dosage at which it endures antibiotics. Also, efflux pumps play a role in biofilm formation by the excretion of extracellular matrix molecules. One way to combat these pathogens may be to reduce the activity of efflux pumps and thereby increase pathogen sensitivity to existing antibiotics. We describe the in silico-based screen of clinically approved drugs that identified antifungal azoles inhibiting Tet(K), a pump that belongs to the major facilitator superfamily, and showed that these compounds bind to and block the activity of the Tet(K) pump. Azoles enhanced the susceptibility of tetracycline against S. aureus and its methicillin-resistant strains. The combination of azoles with tetracycline led to a significant reduction in preformed biofilms. Repurposing approved drugs may help solve the classical toxicity issues related to efflux pump inhibitors.
Collapse
|
177
|
Golubchik A, Lopes LC, Singh V, Kuss S. Pharma‐molecule Transport across Bacterial Membranes: Detection and Quantification Approaches by Electrochemistry and Bioanalytical Methods. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alon Golubchik
- Department Chemistry University of Manitoba Winnipeg R3T 2N2 Canada
| | | | - Vikram Singh
- Department Chemistry University of Manitoba Winnipeg R3T 2N2 Canada
| | - Sabine Kuss
- Department Chemistry University of Manitoba Winnipeg R3T 2N2 Canada
| |
Collapse
|
178
|
Kengmo Tchoupa A, Eijkelkamp BA, Peschel A. Bacterial adaptation strategies to host-derived fatty acids. Trends Microbiol 2021; 30:241-253. [PMID: 34218980 DOI: 10.1016/j.tim.2021.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023]
Abstract
Fatty acids (FAs) are potent antimicrobials which hold great promise as viable alternatives or complements to conventional antibiotics. Intriguingly, bacteria are well equipped to use environmental FAs as energy sources and/or building blocks for their membrane lipids. Furthermore, these microbes display a wide array of mechanisms to prevent or mitigate FA toxicity. In this review we discuss strategies that bacteria use to thrive despite extensive exposure to host-derived antimicrobial FAs. We also highlight the altered response of these FA-adapted bacteria to antibiotics. Given the ubiquitous nature of FAs in various host environments, deciphering bacterial adaptation strategies to FAs is of prime importance. This knowledge may pave the way for a rational design of FA-based combination therapies with antibiotics.
Collapse
Affiliation(s)
- Arnaud Kengmo Tchoupa
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany; Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany.
| | - Bart A Eijkelkamp
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany; Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| |
Collapse
|
179
|
Praski Alzrigat L, Huseby DL, Brandis G, Hughes D. Resistance/fitness trade-off is a barrier to the evolution of MarR inactivation mutants in Escherichia coli. J Antimicrob Chemother 2021; 76:77-83. [PMID: 33089314 PMCID: PMC7729382 DOI: 10.1093/jac/dkaa417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
Background Mutations that inactivate MarR reduce susceptibility to ciprofloxacin and competitive growth fitness in Escherichia coli. Both phenotypes are caused by overexpression of the MarA regulon, which includes the AcrAB-TolC drug efflux pump. Objectives We asked whether compensatory evolution could reduce the fitness cost of MarR-inactivating mutations without affecting resistance to ciprofloxacin. Methods The cost of overexpressing the AcrAB-TolC efflux pump was measured independently of MarA overexpression. Experimental evolution of MarR-inactive strains was used to select mutants with increased fitness. The acquired mutations were identified and their effects on drug susceptibility were measured. Results Overexpression of the AcrAB-TolC efflux pump was found not to contribute to the fitness cost of MarA regulon overexpression. Fitness-compensatory mutations were selected in marA and lon. The mutations reduced the level of MarA protein thus reducing expression of the MarA regulon. They restored growth fitness but also reduced resistance to ciprofloxacin. Conclusions The fitness cost caused by overexpression of the MarA regulon has multiple contributing factors. Experimental evolution did not identify any single pump-independent cost factor. Instead, efficient fitness compensation occurred only by mechanisms that reduce MarA concentration, which simultaneously reduce the drug resistance phenotype. This resistance/fitness trade-off is a barrier to the successful spread of MarR inactivation mutations in clinical isolates where growth fitness is essential.
Collapse
Affiliation(s)
- Lisa Praski Alzrigat
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Sweden
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Sweden
| | - Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Sweden
| |
Collapse
|
180
|
Azargun R, Gholizadeh P, Sadeghi V, Hosainzadegan H, Tarhriz V, Memar MY, Pormohammad A, Eyvazi S. Molecular mechanisms associated with quinolone resistance in Enterobacteriaceae: review and update. Trans R Soc Trop Med Hyg 2021; 114:770-781. [PMID: 32609840 DOI: 10.1093/trstmh/traa041] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/09/2020] [Accepted: 05/20/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Quinolones are broad-spectrum antibiotics, which are used for the treatment of different infectious diseases associated with Enterobacteriaceae. During recent decades, the wide use as well as overuse of quinolones against diverse infections has led to the emergence of quinolone-resistant bacterial strains. Herein, we present the development of quinolone antibiotics, their function and also the different quinolone resistance mechanisms in Enterobacteriaceae by reviewing recent literature. METHODS All data were extracted from Google Scholar search engine and PubMed site, using keywords; quinolone resistance, Enterobacteriaceae, plasmid-mediated quinolone resistance, etc. RESULTS AND CONCLUSION The acquisition of resistance to quinolones is a complex and multifactorial process. The main resistance mechanisms consist of one or a combination of target-site gene mutations altering the drug-binding affinity of target enzymes. Other mechanisms of quinolone resistance are overexpression of AcrAB-tolC multidrug-resistant efflux pumps and downexpression of porins as well as plasmid-encoded resistance proteins including Qnr protection proteins, aminoglycoside acetyltransferase (AAC(6')-Ib-cr) and plasmid-encoded active efflux pumps such as OqxAB and QepA. The elucidation of resistance mechanisms will help researchers to explore new drugs against the resistant strains.
Collapse
Affiliation(s)
- Robab Azargun
- Department of Microbiology, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Sadeghi
- Faculty of Veterinary Medicine, Islamic Azad University, Urmia, Iran
| | - Hasan Hosainzadegan
- Department of Microbiology, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
181
|
1,3,4-oxadiazole conjugates of capsaicin as potent NorA efflux pump inhibitors of Staphylococcus aureus. Bioorg Chem 2021; 113:105031. [PMID: 34089943 DOI: 10.1016/j.bioorg.2021.105031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022]
Abstract
NorA efflux pump pertaining to the major facilitator superfamily (MFS) is known to play a key role in antibiotic and biocide resistance in Staphylococcus aureus (S. aureus). It accounts for the extrusion of antibiotics like fluoroquinolones (e.g. ciprofloxacin). Several compounds including synthetic and natural products have been identified as potential NorA efflux pump inhibitors (EPIs) and found to restore the antibacterial activity of antibiotics. However, none of the reported EPIs have reached to clinical approval probably due to their high toxicity profiles. Considering the NorA efflux pump inhibitory potential of capsaicin, a series of capsaicin-based 1,3,4 oxadiazole conjugates were prepared and evaluated for ciprofloxacin activity potentiating effect. Among the new capsaicinoids tested, 17i displayed a minimum effective concentration (MEC) of 12.5 µg/mL against NorA overexpressing S. aureus strain (SA1199B), whereas capsaicin showed MEC of 50 µg/mL. The kill kinetics curve for the combination showed that ciprofloxacin at a sub-inhibitory concentration (0.25 × MIC) was equipotent in effect, to its MIC. 17i has significantly decreased the ethidium bromide efflux confirming NorA inhibition as the mode of action. Mutation prevention concentration of the ciprofloxacin was reduced in combination with 17i.In silico studies revealed the binding efficiency and binding affinity of 17i with NorA. This compound may serve as a template for the further drug discovery.
Collapse
|
182
|
Risk Factors for Amoxicillin-Clavulanate Resistance in Community-Onset Urinary Tract Infections Caused by Escherichia coli or Klebsiella pneumoniae: The Role of Prior Exposure to Fluoroquinolones. Antibiotics (Basel) 2021; 10:antibiotics10050582. [PMID: 34069184 PMCID: PMC8156637 DOI: 10.3390/antibiotics10050582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background: High rates of amoxicillin-clavulanate (AMC) resistance among Enterobacterales isolated from urinary tract infections (UTIs) were observed in our area. The aim of this study was to identify risk factors associated with AMC resistance in patients with community-onset UTI in emergency departments (EDs). Methods: A retrospective study was performed of all ED patients with positive urine cultures for Escherichia coli or Klebsiella pneumoniae in a Spanish tertiary-care hospital. Results: 330 urine cultures in all were included: 261 (79.1%) for E. coli and 69 (20.90%) for K. pneumonia. Rates of AMC resistance were 14.94% and 34.78%, respectively. UTI was clinically confirmed in 212 (64.24%) cases. Previous antimicrobial exposure was independently associated with AMC resistance development in E. coli and K. pneumoniae urinary isolates (OR = 2.94, 95% CI = 1.55–5.58). Analyses of infected patients revealed that previous exposure to fluoroquinolones (OR = 3.33, 95% CI = 1.10–10.12, p = 0.034) and to AMC (OR = 5.68, 95% CI = 1.97–16.44, p = 0.001) was significantly associated with isolation of AMC-resistant strains. Conclusions: Prior antibiotic exposure, particularly to AMC or fluoroquinolones, was the only independent risk factor associated with development of AMC resistance in E. coli and K. pneumoniae urinary isolates from patients attending the ED.
Collapse
|
183
|
Golubchik A, Lopes LC, Singh V, Kuss S. Pharma-molecule Transport across Bacterial Membranes: Detection and Quantification Approaches by Electrochemistry and Bioanalytical Methods. Angew Chem Int Ed Engl 2021; 60:22112-22124. [PMID: 33979000 DOI: 10.1002/anie.202101055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/07/2022]
Abstract
Antibiotic resistance is a significant challenge encountered by healthcare systems on a global scale. Knowledge about membrane transport of antibiotics and other pharmacologically relevant molecules in bacteria is crucial towards understanding and overcoming antibiotic resistance, as drug resistance often depends on drug transport. This comprehensive literature review discusses the detection and quantification of membrane transport of pharma-molecules in bacteria and highlights the importance of molecule transport to antibiotic resistance. This review emphasizes electrochemical and electrophysiological methods of detection and quantification. The results of this literature review reveal a substantial diversity in methods and types of quantitative information collected.
Collapse
Affiliation(s)
- Alon Golubchik
- Department Chemistry, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | | | - Vikram Singh
- Department Chemistry, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Sabine Kuss
- Department Chemistry, University of Manitoba, Winnipeg, R3T 2N2, Canada
| |
Collapse
|
184
|
Liu J, Wu P, Guo Q, Lai X, Ruan B, Wang H, Rehman S, Chen M. Kaolinite weakens the co-stress of ampicillin and tetracycline on Escherichia coli through multiple pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25228-25240. [PMID: 33453031 DOI: 10.1007/s11356-021-12356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Ampicillin and tetracycline are common antibiotics and can threaten humans by inducing antibiotic resistance in bacteria. Microorganisms are usually exposed to a mixed antibiotic system in the environment. However, there are few researches on the specific regulatory mechanisms of clay on microorganisms under the stress of complex antibiotics. In this study, tandem mass tag-based coupled with two-dimensional liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) was employed to recognize and quantify changes in protein expression of Escherichia coli (E. coli) after culture for 15 days, with or without kaolinite in the co-stress of ampicillin and tetracycline. The results indicated that kaolinite could activate metabolic pathways of E. coli such as the energy metabolism, the biosynthesis of other secondary metabolites, and the metabolism of cofactors and vitamins. Particularly, the fatty acid degradation pathway has also been promoted, indicating that in the same unfavorable environment, kaolinite might influence the composition of E. coli cell membranes. This might be due to the change in membrane composition that was a kind of adaptive strategy of bacterial evolution. Moreover, kaolinite could promote multidrug efflux system to export the bacterial intracellular toxic substances, making E. coli survive better in an adverse environment. Consequently, this study not only disclosed the regulation of kaolinite on E. coli in a complex antibiotic environment but also provided new insights into the environmental process of antibiotic resistance.
Collapse
Affiliation(s)
- Juan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, 510006, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China.
| | - Qing Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiaolin Lai
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Bo Ruan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Huimin Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
185
|
Chemical synthesis, molecular docking and MepA efflux pump inhibitory effect by 1,8-naphthyridines sulfonamides. Eur J Pharm Sci 2021; 160:105753. [PMID: 33581258 DOI: 10.1016/j.ejps.2021.105753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 11/20/2022]
Abstract
This study aimed to evaluate the antibacterial activity and to verify, in silico and in vitro, the inhibition of efflux mechanisms using a series of synthesized 1,8-naphthyridines sulfonamides against Staphylococcus aureus strains carrying MepA efflux pumps. The chemical synthesis occurred through the thermolysis of the Meldrum's acid adduct. The sulfonamide derivatives were obtained by the sulfonylation of 2-amino-5‑chloro-1,8-naphthyridine with commercial benzenesulfonyl chloride. Antibacterial activity was assessed by the broth microdilution test. Efflux pump inhibitory capacity was evaluated in silico by molecular docking and in vitro by analyzing synergistic effects on ciprofloxacin and ethidium bromide (EtBr) and by EtBr fluorescence emission assays. The following 1,8-naphthyridines were synthesized: 4-methyl-N-(5‑chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10a); 2,5-dichloro-N-(5‑chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10b); 4-fluoro-N-(5‑chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10c); 2,3,4-trifluoro-N-(5‑chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10d); 3-trifluoromethyl-N-(5‑chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10e); 4‑bromo-2,5-difluoro-N-(5‑chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10f). The 1,8-naphthyridines derivatives associated with sulfonamides did not show antibacterial activity. However, they showed a favorable pharmacokinetic profile with possible MepA efflux pump inhibitory action, demonstrated in molecular docking. In addition to the promising results in reducing the concentration of intracellular EtBr. 1,8-naphthyridines act as putative agents in the inhibitory action of the MepA efflux pump.
Collapse
|
186
|
Vahhabi A, Hasani A, Rezaee MA, Baradaran B, Hasani A, Samadi Kafil H, Abbaszadeh F, Dehghani L. A plethora of carbapenem resistance in Acinetobacter baumannii: no end to a long insidious genetic journey. J Chemother 2021; 33:137-155. [PMID: 33243098 DOI: 10.1080/1120009x.2020.1847421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 01/21/2023]
Abstract
Acinetobacter baumannii, notorious for causing nosocomial infections especially in patients admitted to intensive care unit (ICU) and burn units, is best at displaying resistance to all existing antibiotic classes. Consequences of high potential for antibiotic resistance has resulted in extensive drug or even pan drug resistant A. baumannii. Carbapenems, mainly imipenem and meropenem, the last resort for the treatment of A. baumannii infections have fallen short due to the emergence of carbapenem resistant A. baumannii (CRAB). Though enzymatic degradation by production of class D β-lactamases (Oxacillinases) and class B β-lactamases (Metallo β-lactamases) is the core mechanism of carbapenem resistance in A. baumannii; however over-expression of efflux pumps such as resistance-nodulation cell division (RND) family and variant form of porin proteins such as CarO have been implicated for CRAB inception. Transduction and outer membrane vesicles-mediated transfer play a role in carbapenemase determinants spread. Colistin, considered as the most promising antibacterial agent, nevertheless faces adverse effects flaws. Cefiderocol, eravacycline, new β-lactam antibiotics, non-β-lactam-β-lactamase inhibitors, polymyxin B-derived molecules and bacteriophages are some other new treatment options streamlined.
Collapse
Affiliation(s)
- Abolfazl Vahhabi
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Alka Hasani
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Behzad Baradaran
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Akbar Hasani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I. R. Iran
| | - Hossein Samadi Kafil
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Faeze Abbaszadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Leila Dehghani
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| |
Collapse
|
187
|
Khunweeraphong N, Kuchler K. Multidrug Resistance in Mammals and Fungi-From MDR to PDR: A Rocky Road from Atomic Structures to Transport Mechanisms. Int J Mol Sci 2021; 22:4806. [PMID: 33946618 PMCID: PMC8124828 DOI: 10.3390/ijms22094806] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance (MDR) can be a serious complication for the treatment of cancer as well as for microbial and parasitic infections. Dysregulated overexpression of several members of the ATP-binding cassette transporter families have been intimately linked to MDR phenomena. Three paradigm ABC transporter members, ABCB1 (P-gp), ABCC1 (MRP1) and ABCG2 (BCRP) appear to act as brothers in arms in promoting or causing MDR in a variety of therapeutic cancer settings. However, their molecular mechanisms of action, the basis for their broad and overlapping substrate selectivity, remains ill-posed. The rapidly increasing numbers of high-resolution atomic structures from X-ray crystallography or cryo-EM of mammalian ABC multidrug transporters initiated a new era towards a better understanding of structure-function relationships, and for the dynamics and mechanisms driving their transport cycles. In addition, the atomic structures offered new evolutionary perspectives in cases where transport systems have been structurally conserved from bacteria to humans, including the pleiotropic drug resistance (PDR) family in fungal pathogens for which high resolution structures are as yet unavailable. In this review, we will focus the discussion on comparative mechanisms of mammalian ABCG and fungal PDR transporters, owing to their close evolutionary relationships. In fact, the atomic structures of ABCG2 offer excellent models for a better understanding of fungal PDR transporters. Based on comparative structural models of ABCG transporters and fungal PDRs, we propose closely related or even conserved catalytic cycles, thus offering new therapeutic perspectives for preventing MDR in infectious disease settings.
Collapse
Affiliation(s)
| | - Karl Kuchler
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria;
| |
Collapse
|
188
|
Missense Mutations in the CrrB Protein Mediate Odilorhabdin Derivative Resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 2021; 65:AAC.00139-21. [PMID: 33685902 PMCID: PMC8092918 DOI: 10.1128/aac.00139-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NOSO-502 is a preclinical antibiotic candidate of the Odilorhabdin class. This compound exhibits activity against Enterobacteriaceae pathogens, including carbapenemase-producing bacteria and most of the Colistin (CST)-resistant strains. Among a collection of CST-resistant Klebsiella pneumoniae strains harboring mutations on genes pmrAB, mgrB, phoPQ, and crrB, only those bearing mutations in gene crrB were found to be resistant to NOSO-502.CrrB is a histidine kinase which acts with the response regulator CrrA to modulate the PmrAB system, which finally induces the restructuring of the lipopolysaccharide present on the outer membrane and thus leading to CST resistance. Moreover, crrB mutations also enhance the transcription of neighboring genes such as H239_3063, an ABC transporter transmembrane region; H239_3064, a putative efflux pump also known as KexD; and H239_3065, a N-acetyltransferase.To elucidate the mechanism of resistance to NOSO-502 induced by CrrB missense mutations in K. pneumoniae, mutants of NCTC 13442 and ATCC BAA-2146 strains resistant to NOSO-502 and CST with single amino acid substitutions in CrrB (S8N, F33Y, Y34N, W140R, N141I, P151A, P151L, P151S, P151T, F303Y) were selected. Full susceptibility to NOSO-502 was restored in crrA or crrB deleted K. pneumoniae NCTC 13442 CrrB(P151L) mutants, confirming the role of CrrAB in controlling this resistance pathway. Deletion of kexD (but no other neighboring genes) in the same mutant also restored NOSO-502-susceptibility. Upregulation of the kexD gene expression was observed for all CrrB mutants. Finally, plasmid expression of kexD in a K. pneumoniae strain missing the locus crrABC and kexD significantly increased resistance to NOSO-502.
Collapse
|
189
|
Ashwath P, Sannejal AD. A quest to the therapeutic arsenal: Novel strategies to combat multidrug-resistant bacteria. Curr Gene Ther 2021; 22:79-88. [PMID: 33874870 DOI: 10.2174/1566523221666210419084836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
The increasing resistance of the disease-causing pathogens to antimicrobial drugs is a public health concern and a socio-economic burden. The emergence of multi-drug resistant strains has made it harder to treat and combat infectious diseases with available conventional antibiotics. There are currently few effective therapeutic regimens for the successful prevention of infections caused by drug-resistant microbes. The various alternative strategies used in the recent past to decrease and limit antibiotic resistance in pathogens include bacteriophages, vaccines, anti-biofilm peptides, and antimicrobial peptides. However, in this review, we focus on the novel and robust molecular approach of antisense RNA (asRNA) technology and the clustered regulatory interspaced short palindromic repeat (CRISPR)-based antibiotic therapy, which can be exploited to selectively eradicate the drug-resistant bacterial strain in a sequence-specific fashion establishing opportunities in the treatment of multi-drug resistant related infections.
Collapse
Affiliation(s)
- Priyanka Ashwath
- Nitte (Deemed to be University), Nitte University Centre for Science Education & Research (NUCSER), Mangaluru. India
| | - Akhila Dharnappa Sannejal
- Nitte (Deemed to be University), Nitte University Centre for Science Education & Research (NUCSER), Mangaluru. India
| |
Collapse
|
190
|
Saracino IM, Pavoni M, Zullo A, Fiorini G, Lazzarotto T, Borghi C, Vaira D. Next Generation Sequencing for the Prediction of the Antibiotic Resistance in Helicobacter pylori: A Literature Review. Antibiotics (Basel) 2021; 10:437. [PMID: 33919811 PMCID: PMC8070836 DOI: 10.3390/antibiotics10040437] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background and aims: Only a few antimicrobials are effective against H. pylori, and antibiotic resistance is an increasing problem for eradication therapies. In 2017, the World Health Organization categorized clarithromycin resistant H. pylori as a "high-priority" bacterium. Standard antimicrobial susceptibility testing can be used to prescribe appropriate therapies but is currently recommended only after the second therapeutic failure. H. pylori is, in fact, a "fastidious" microorganism; culture methods are time-consuming and technically challenging. The advent of molecular biology techniques has enabled the identification of molecular mechanisms underlying the observed phenotypic resistance to antibiotics in H. pylori. The aim of this literature review is to summarize the results of original articles published in the last ten years, regarding the use of Next Generation Sequencing, in particular of the whole genome, to predict the antibiotic resistance in H. pylori.Methods: a literature research was made on PubMed. The research was focused on II and III generation sequencing of the whole H. pylori genome. Results: Next Generation Sequencing enabled the detection of novel, rare and complex resistance mechanisms. The prediction of resistance to clarithromycin, levofloxacin and amoxicillin is accurate; for other antimicrobials, such as metronidazole, rifabutin and tetracycline, potential genetic determinants of the resistant status need further investigation.
Collapse
Affiliation(s)
- Ilaria Maria Saracino
- Microbiology Unit, Department of Specialized, Experimental, and Diagnostic Medicine, IRCCS St. Orsola Polyclinic, University of Bologna, 40138 Bologna, Italy; (I.M.S.); (T.L.)
| | - Matteo Pavoni
- Department of Medical and Surgical Sciences, IRCCS St. Orsola Polyclinic, University of Bologna, 40138 Bologna, Italy; (M.P.); (G.F.); (C.B.)
| | - Angelo Zullo
- Gastroenterology and Digestive Endoscopy, ‘Nuovo Regina Margherita’ Hospital, 00153 Rome, Italy;
| | - Giulia Fiorini
- Department of Medical and Surgical Sciences, IRCCS St. Orsola Polyclinic, University of Bologna, 40138 Bologna, Italy; (M.P.); (G.F.); (C.B.)
| | - Tiziana Lazzarotto
- Microbiology Unit, Department of Specialized, Experimental, and Diagnostic Medicine, IRCCS St. Orsola Polyclinic, University of Bologna, 40138 Bologna, Italy; (I.M.S.); (T.L.)
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, IRCCS St. Orsola Polyclinic, University of Bologna, 40138 Bologna, Italy; (M.P.); (G.F.); (C.B.)
| | - Dino Vaira
- Department of Medical and Surgical Sciences, IRCCS St. Orsola Polyclinic, University of Bologna, 40138 Bologna, Italy; (M.P.); (G.F.); (C.B.)
| |
Collapse
|
191
|
Garg D, Matai I, Sachdev A. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomater Sci Eng 2021; 7:1933-1961. [PMID: 33826312 DOI: 10.1021/acsbiomaterials.0c01408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications. On this account, this review provides an insight into the significance of anti-infective hydrogels for preventing orthopedic implant associated infections to improve the bone healing process. We briefly discuss the clinical course of implant failure, with a prime focus on orthopedic implants. We identify the different anti-infective coating strategies and hence several anti-infective agents which could be incorporated in the hydrogel matrix. The fundamental design criteria to be considered while fabricating anti-infective hydrogels for orthopedic implants will be discussed. We highlight the different hydrogel coatings based on the origin of the polymers involved in light of their antimicrobial efficacy. We summarize the relevant patents reported in the prevention of implant infections, including orthopedics. Finally, the challenges concerning the clinical translation of the aforesaid hydrogels are described, and considerable solutions for improved clinical practice and better future prospects are proposed.
Collapse
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Ishita Matai
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Abhay Sachdev
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| |
Collapse
|
192
|
Hussein HM, Ghafoor DD, Omer KM. Room temperature and surfactant free synthesis of zinc peroxide (ZnO2) nanoparticles in methanol with highly efficient antimicrobials. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
193
|
Tong C, Hu H, Chen G, Li Z, Li A, Zhang J. Disinfectant resistance in bacteria: Mechanisms, spread, and resolution strategies. ENVIRONMENTAL RESEARCH 2021; 195:110897. [PMID: 33617866 DOI: 10.1016/j.envres.2021.110897] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 05/19/2023]
Abstract
Disinfectants are widely acknowledged for removing microorganisms from the surface of the objects and transmission media. However, the emergence of disinfectant resistance has become a severe threat to the safety of life and health and the rational allocation of resources due to the reduced disinfectant effectiveness. The horizontal gene transfer (HGT) of disinfectant resistance genes has also expanded the resistant flora, making the situation worse. This review focused on the resistance mechanisms of disinfectant resistant bacteria on biofilms, cell membrane permeability, efflux pumps, degradable enzymes, and disinfectant targets. Efflux can be the fastest and most effective resistance mechanism for bacteria to respond to stress. The qac genes, located on some plasmids which can transmit resistance through conjugative transfer, are the most commonly reported in the study of disinfectant resistance genes. Whether the qac genes can be transferred through transformation or transduction is still unclear. Studying the factors affecting the resistance of bacteria to disinfectants can find breakthrough methods to more adequately deal with the problem of reduced disinfectant effectiveness. It has been confirmed that the interaction of probiotics and bacteria or the addition of 4-oxazolidinone can inhibit the formation of biofilms. Chemicals such as eugenol and indole derivatives can increase bacterial sensitivity by reducing the expression of efflux pumps. The role of these findings in anti-disinfectant resistance has proved invaluable.
Collapse
Affiliation(s)
- Chaoyu Tong
- Collage of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Hong Hu
- Collage of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Gang Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Zhengyan Li
- Collage of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Aifeng Li
- Collage of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Jianye Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
194
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
195
|
A Major Facilitator Superfamily (MFS) Efflux Pump, SCO4121, from Streptomyces coelicolor with Roles in Multidrug Resistance and Oxidative Stress Tolerance and Its Regulation by a MarR Regulator. Appl Environ Microbiol 2021; 87:AEM.02238-20. [PMID: 33483304 DOI: 10.1128/aem.02238-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Overexpression of efflux pumps is one of the major determinants of resistance in bacteria. Streptomyces species harbor a large array of efflux pumps that are transcriptionally silenced under laboratory conditions. However, their dissemination results in multidrug resistance in different clinical pathogens. In this study, we have identified an efflux pump from Streptomyces coelicolor, SCO4121, belonging to the major facilitator superfamily (MFS) family of transporters and characterized its role in antibiotic resistance. SCO4121 provided resistance to multiple dissimilar drugs upon overexpression in both native and heterologous hosts. Further, deletion of SCO4121 resulted in increased sensitivity toward ciprofloxacin and chloramphenicol, suggesting the pump to be a major transporter of these substrates. Apart from providing multidrug resistance, SCO4121 imparted increased tolerance against the strong oxidant HOCl. In wild-type Streptomyces coelicolor cells, these drugs were found to transcriptionally regulate the pump in a concentration-dependent manner. Additionally, we identified SCO4122, a MarR regulator that positively regulates SCO4121 in response to various drugs and the oxidant HOCl. Thus, through these studies we present the multiple roles of SCO4121 in S. coelicolor and highlight the intricate mechanisms via which it is regulated in response to antibiotics and oxidative stress.IMPORTANCE One of the key mechanisms of drug resistance in bacteria is overexpression of efflux pumps. Streptomyces species are a reservoir of a large number of efflux pumps, potentially to provide resistance to both endogenous and nonendogenous antibiotics. While many of these pumps are not expressed under standard laboratory conditions, they result in resistance to multiple drugs when spread to other bacterial pathogens through horizontal gene transfer. In this study, we have identified a widely conserved efflux pump SCO4121 from Streptomyces coelicolor with roles in both multidrug resistance and oxidative stress tolerance. We also report the presence of an adjacent MarR regulator, SCO4122, which positively regulates SCO4121 in the presence of diverse substrates in a redox-responsive manner. This study highlights that soil bacteria such as Streptomyces can reveal novel mechanisms of antibiotic resistance that may potentially emerge in clinically important bacteria.
Collapse
|
196
|
Enhancement of the antibiotic activity by quercetin against Staphylococcus aureus efflux pumps. J Bioenerg Biomembr 2021; 53:157-167. [PMID: 33683535 DOI: 10.1007/s10863-021-09886-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
The objective of this work was to evaluate the inhibitory effect of quercetin on S. aureus Efflux Pumps. The MIC of Quercetin was evaluated through the broth microdilution method, as well as the Efflux Pump inhibition assay through the method of reducing the antibiotic minimum inhibitory concentration as well as that of ethidium bromide. The in silico approach through bioinformatics was performed to demonstrate the molecular mechanism of interaction of the substrate and the binding cavity. The Quercetin inhibition concentration was not clinically relevant. With respect to the reversal of bacterial resistance effect by efflux pump inhibition, this effect was observed with the strains carrying the TetK and NorA pumps. Regarding the interaction between the Quercetin complex and the NorA pump, the extra stability was provided by hydrogen bonds produced by the hydroxyl group.
Collapse
|
197
|
Complete Genome Sequence Analysis of Brevibacillus laterosporus Bl-zj Reflects its Potential Algicidal Response. Curr Microbiol 2021; 78:1409-1417. [DOI: 10.1007/s00284-021-02378-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
|
198
|
Inhibition of Staphylococcus aureus TetK and MsrA efflux pumps by hydroxyamines derived from lapachol and norlachol. J Bioenerg Biomembr 2021; 53:149-156. [PMID: 33635515 DOI: 10.1007/s10863-021-09885-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
The present study aimed to evaluate the in vitro efflux pump inhibitory capacity of hydroxyamines derived from lapachol and norlachol, where compounds 3, 4, and 5 were tested against the S. aureus strains: RN4220 carrying the pUL5054 plasmid; and IS-58, endowed with the PT181 plasmid. The substances were synthesized from 2-hydroxy-quinones, lapachol and nor-lapachol obtaining the corresponding 2-methoxylated derivatives via dimethyl sulfate alkylation in a basic medium, which then reacted chemoselectively with 2-ethanolamine and 3-propanolamine to form the corresponding amino alcohols. The antibacterial action of the substances was quantified by determining the Minimum Inhibitory Concentration (MIC), while a microdilution assay was carried out to ascertain efflux pump inhibition of Staphylococcus aureus strains carrying the MsrA macrolide and the TetK tetracycline efflux pumps with the substances at a sub-inhibitory concentration. The results were subjected to statistical analysis by an ANOVA test and Bonferroni post hoc test. The MIC from the substances exhibited a value ≥ 1024 µg/mL. However, a significant reduction (p < 0.0001) of the erythromycin, tetracycline and ethidium bromide MIC was demonstrated when these were in combination with the substances, with this effect being due to a supposed efflux pump inhibition. The tested substances demonstrated effectiveness at decreasing the MIC of erythromycin, tetracycline and ethidium bromide, potentially by inhibiting the MsrA macrolide and the TetK tetracycline efflux pumps present in the tested S. aureus strains.
Collapse
|
199
|
The Antibacterial Activity of Human Amniotic Membrane against Multidrug-Resistant Bacteria Associated with Urinary Tract Infections: New Insights from Normal and Cancerous Urothelial Models. Biomedicines 2021; 9:biomedicines9020218. [PMID: 33672670 PMCID: PMC7924402 DOI: 10.3390/biomedicines9020218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
Urinary tract infections (UTIs) represent a serious global health issue, especially due to emerging multidrug-resistant UTI-causing bacteria. Recently, we showed that the human amniotic membrane (hAM) could be a candidate for treatments and prevention of UPEC and Staphylococcus aureus infections. However, its role against multidrug-resistant bacteria, namely methicillin-resistant S. aureus (MRSA), extended-spectrum beta-lactamases (ESBL) producing Escherichia coli and Klebsiella pneumoniae, vancomycin-resistant Enterococci (VRE), carbapenem-resistant Acinetobacter baumannii, and Pseudomonas aeruginosa has not yet been thoroughly explored. Here, we demonstrate for the first time that the hAM homogenate had antibacterial activity against 7 out of 11 tested multidrug-resistant strains, the greatest effect was on MRSA. Using novel approaches, its activity against MRSA was further evaluated in a complex microenvironment of normal and cancerous urinary bladder urothelia. Even short-term incubation in hAM homogenate significantly decreased the number of bacteria in MRSA-infected urothelial models, while it did not affect the viability, number, and ultrastructure of urothelial cells. The hAM patches had no antibacterial activity against any of the tested strains, which further exposes the importance of the hAM preparation. Our study substantially contributes to basic knowledge on the antibacterial activity of hAM and reveals its potential to be used as an antibacterial agent against multidrug-resistant bacteria.
Collapse
|
200
|
Zhao R, Feng J, Huang J, Li X, Li B. Reponses of microbial community and antibiotic resistance genes to the selection pressures of ampicillin, cephalexin and chloramphenicol in activated sludge reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142632. [PMID: 33045611 DOI: 10.1016/j.scitotenv.2020.142632] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
High concentrations of antibiotics can exert strong selection pressures on the microbial community and promote the emergence and dissemination of antibiotic resistance genes (ARGs). The activated sludge reactors treating ampicillin, cephalexin and chloramphenicol production wastewater were established to investigate the responses of microbial community, ARGs and mobile genetic elements (MGEs) to antibiotics. Antibiotic selection pressures significantly declined the microbial diversity and changed microbial community structures. Based on metagenomic analysis, a total of 500 ARG subtypes affiliated with 18 ARG types were identified and 63 ARGs were shared by all samples. The substantial increase of ARG abundance and the shifts of ARG profiles were significantly correlated with antibiotic types and concentrations. The evident enrichment of non-corresponding ARG types suggested the strong co-selection effects of the target antibiotics. Additionally, metagenomic analysis revealed the occurrence of 104 MGEs belonging to various types and the five dominant MGEs were tnpA, intI1, tniA, tniB and IS91. The ARG-MGE co-occurrence associations implied the potential mobility of ARGs. Network analysis also demonstrated that five ARG types (aminoglycoside, beta-lactam, chloramphenicol, multidrug and tetracycline resistance genes) tended to co-occur internally and the obvious co-occurrence patterns among different ARG types indicated the potential for resistance co-selection. Moreover, 15 bacterial genera were speculated as the hosts of diverse ARGs. This study provides a comprehensive overview of the occurrence of ARGs and MGEs and is valuable for the risk assessment and management of antibiotic resistance.
Collapse
Affiliation(s)
- Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jie Feng
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Research Academy of Environmental Sciences, Shenzhen 518001, China
| | - Jin Huang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|