151
|
Pandya U, Allen CA, Watson DA, Niesel DW. Global profiling of Streptococcus pneumoniae gene expression at different growth temperatures. Gene 2005; 360:45-54. [PMID: 16154298 DOI: 10.1016/j.gene.2005.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 06/22/2005] [Accepted: 06/22/2005] [Indexed: 11/22/2022]
Abstract
Streptococcus pneumoniae is a common commensal of the upper respiratory tract of healthy humans and is an important pathogen in young children, immunocompromised adults, and the elderly. To better understand the strategies employed by this bacterial species in adapting to conditions present at different infection sites in the host, global transcription profiling was used to study gene expression at different growth temperatures: 21, 29, 33, 37, and 40 degrees C. Here, we found that 658 genes (29%) out of 1717 genes were differently expressed (>or=1.5-fold change) in at least one growth temperature relative to 37 degrees C. The percentages of genes whose expression was altered in each growth temperature, respectively, were: 21 degrees C: 53% upward arrow, 47% downward arrow; 29 degrees C: 44% upward arrow, 56% downward arrow; 33 degrees C: 27% upward arrow, 73% downward arrow and 40 degrees C: 44% upward arrow, 56% downward arrow. Hierarchical clustering (HC) of the temperature regulated genes resulted in four clusters, namely A-D of differently expressed genes grouped by bacterial growth temperature. Cluster A represented 81 genes reflecting enhanced expression at 33 degrees C. Cluster B included 260 genes whose expression increased with growth temperature. Cluster C had 28 genes with 68% showing enhanced expression at 29 degrees C while cluster D had 289 genes with 74% genes showing enhanced expression at 21 degrees C relative to 37 degrees C. Principal component (PC) analysis also divided differentially expressed genes into four groups and was highly correlated with HC, suggesting that temperature regulated expression is not random but coordinated. Overall, these results indicated substantial reprogramming of transcription in response to growth temperature. Functional characterization of differential gene expression at different temperatures provides further information on the molecular mechanism(s) that allows S. pneumoniae to adapt to various host environments.
Collapse
Affiliation(s)
- Utpal Pandya
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Texas 77555-1075, United States
| | | | | | | |
Collapse
|
152
|
Woodall CA, Jones MA, Barrow PA, Hinds J, Marsden GL, Kelly DJ, Dorrell N, Wren BW, Maskell DJ. Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment. Infect Immun 2005; 73:5278-85. [PMID: 16041056 PMCID: PMC1201244 DOI: 10.1128/iai.73.8.5278-5285.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcriptional profiling of Campylobacter jejuni during colonization of the chick cecum identified 59 genes that were differentially expressed in vivo compared with the genes in vitro. The data suggest that C. jejuni regulates electron transport and central metabolic pathways to alter its physiological state during establishment in the chick cecum.
Collapse
Affiliation(s)
- C A Woodall
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Brøndsted L, Andersen MT, Parker M, Jørgensen K, Ingmer H. The HtrA protease of Campylobacter jejuni is required for heat and oxygen tolerance and for optimal interaction with human epithelial cells. Appl Environ Microbiol 2005; 71:3205-12. [PMID: 15933023 PMCID: PMC1151804 DOI: 10.1128/aem.71.6.3205-3212.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is a predominant cause of food-borne bacterial gastroenteritis in the developed world. We have investigated the importance of a homologue of the periplasmic HtrA protease in C. jejuni stress tolerance. A C. jejuni htrA mutant was constructed and compared to the parental strain, and we found that growth of the mutant was severely impaired both at 44 degrees C and in the presence of the tRNA analogue puromycin. Under both conditions, the level of misfolded protein is known to increase, and we propose that the heat-sensitive phenotype of the htrA mutant is caused by an accumulation of misfolded protein in the periplasm. Interestingly, we observed that the level of the molecular chaperones DnaK and ClpB was increased in the htrA mutant, suggesting that accumulation of non-native proteins in the periplasm induces the expression of cytoplasmic chaperones. While lack of HtrA reduces the oxygen tolerance of C. jejuni, the htrA mutant was not sensitive to compounds that increase the formation of oxygen radicals, such as paraquat, cumene hydroperoxide, and H2O2. Using tissue cultures of human epithelial cells (INT407), we found that the htrA mutant adhered to and invaded human epithelial cells with a decreased frequency compared to the wild-type strain. This defect may be a consequence of the observed altered morphology of the htrA mutant. Thus, our results suggest that in C. jejuni, HtrA is important for growth during stressful conditions and has an impact on virulence.
Collapse
Affiliation(s)
- Lone Brøndsted
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
154
|
Boonyaratanakornkit BB, Simpson AJ, Whitehead TA, Fraser CM, El-Sayed NMA, Clark DS. Transcriptional profiling of the hyperthermophilic methanarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock. Environ Microbiol 2005; 7:789-97. [PMID: 15892698 DOI: 10.1111/j.1462-2920.2005.00751.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Temperature shock of the hyperthermophilic methanarchaeon Methanococcus jannaschii from its optimal growth temperature of 85 degrees C to 65 degrees C and 95 degrees C resulted in different transcriptional responses characteristic of both the direction of shock (heat or cold shock) and whether the shock was lethal. Specific outcomes of lethal heat shock to 95 degrees C included upregulation of genes encoding chaperones, and downregulation of genes encoding subunits of the H+ transporting ATP synthase. A gene encoding an alpha subunit of a putative prefoldin was also upregulated, which may comprise a novel element in the protein processing pathway in M. jannaschii. Very different responses were observed upon cold shock to 65 degrees C. These included upregulation of a gene encoding an RNA helicase and other genes involved in transcription and translation, and upregulation of genes coding for proteases and transport proteins. Also upregulated was a gene that codes for an 18 kDa FKBP-type PPIase, which may facilitate protein folding at low temperatures. Transcriptional profiling also revealed several hypothetical proteins that respond to temperature stress conditions.
Collapse
|
155
|
Ducey TF, Carson MB, Orvis J, Stintzi AP, Dyer DW. Identification of the iron-responsive genes of Neisseria gonorrhoeae by microarray analysis in defined medium. J Bacteriol 2005; 187:4865-74. [PMID: 15995201 PMCID: PMC1169496 DOI: 10.1128/jb.187.14.4865-4874.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 04/11/2005] [Indexed: 11/20/2022] Open
Abstract
To ensure survival, most bacteria must acquire iron, a resource that is sequestered by mammalian hosts. Pathogenic bacteria have therefore evolved intricate systems to sense iron limitation and regulate gene expression appropriately. We used a pan-Neisseria microarray to examine genes regulated in Neisseria gonorrhoeae in response to iron availability in defined medium. Overall, 203 genes varied in expression, 109 up-regulated and 94 down-regulated by iron deprivation. In iron-replete medium, genes essential to rapid bacterial growth were preferentially expressed, while iron transport functions, and predominantly genes of unknown function, were expressed in low-iron medium. Of those TonB-dependent proteins encoded in the FA1090 genome with unknown ligand specificity, expression of three was not controlled by iron availability, suggesting that these receptors may not be high-affinity transporters for iron-containing ligands. Approximately 30% of the operons regulated by iron appeared to be directly under control of Fur. Our data suggest a regulatory cascade where Fur indirectly controls gene expression by affecting the transcription of three secondary regulators. Our data also suggest that a second MerR-like regulator may be directly responding to iron availability and controlling transcription independent of the Fur protein. Comparison of our data with those recently published for Neisseria meningitidis revealed that only a small portion of genes were found to be similarly regulated in these closely related pathogens, while a large number of genes derepressed during iron starvation were unique to each organism.
Collapse
Affiliation(s)
- Thomas F Ducey
- Laboratory for Genomics and Bioinformatics, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Biomedical Research Center, Oklahoma City, 73104, USA.
| | | | | | | | | |
Collapse
|
156
|
Andersen MT, Brøndsted L, Pearson BM, Mulholland F, Parker M, Pin C, Wells JM, Ingmer H. Diverse roles for HspR in Campylobacter jejuni revealed by the proteome, transcriptome and phenotypic characterization of an hspR mutant. MICROBIOLOGY-SGM 2005; 151:905-915. [PMID: 15758235 DOI: 10.1099/mic.0.27513-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. The role of a homologue of the negative transcriptional regulatory protein HspR, which in other organisms participates in the control of the heat-shock response, was investigated. Following inactivation of hspR in C. jejuni, members of the HspR regulon were identified by DNA microarray transcript profiling. In agreement with the predicted role of HspR as a negative regulator of genes involved in the heat-shock response, it was observed that the transcript amounts of 13 genes were increased in the hspR mutant, including the chaperone genes dnaK, grpE and clpB, and a gene encoding the heat-shock regulator HrcA. Proteomic analysis also revealed increased synthesis of the heat-shock proteins DnaK, GrpE, GroEL and GroES in the absence of HspR. The altered expression of chaperones was accompanied by heat sensitivity, as the hspR mutant was unable to form colonies at 44 degrees C. Surprisingly, transcriptome analysis also revealed a group of 17 genes with lower transcript levels in the hspR mutant. Of these, eight were predicted to be involved in the formation of the flagella apparatus, and the decreased expression is likely to be responsible for the reduced motility and ability to autoagglutinate that was observed for hspR mutant cells. Electron micrographs showed that mutant cells were spiral-shaped and carried intact flagella, but were elongated compared to wild-type cells. The inactivation of hspR also reduced the ability of Campylobacter to adhere to and invade human epithelial INT-407 cells in vitro, possibly as a consequence of the reduced motility or lower expression of the flagellar export apparatus in hspR mutant cells. It was concluded that, in C. jejuni, HspR influences the expression of several genes that are likely to have an impact on the ability of the bacterium to successfully survive in food products and subsequently infect the consumer.
Collapse
Affiliation(s)
- Marianne Thorup Andersen
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1958 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1958 Frederiksberg C, Denmark
| | | | | | - Mary Parker
- Institute of Food Research, Colney, Norwich NR4 7UA, UK
| | - Carmen Pin
- Institute of Food Research, Colney, Norwich NR4 7UA, UK
| | - Jerry M Wells
- Institute of Food Research, Colney, Norwich NR4 7UA, UK
| | - Hanne Ingmer
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
157
|
Zhao K, Liu M, Burgess RR. The Global Transcriptional Response of Escherichia coli to Induced σ32 Protein Involves σ32 Regulon Activation Followed by Inactivation and Degradation of σ32 in Vivo. J Biol Chem 2005; 280:17758-68. [PMID: 15757896 DOI: 10.1074/jbc.m500393200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
sigma(32) is the first alternative sigma factor discovered in Escherichia coli and can direct transcription of many genes in response to heat shock stress. To define the physiological role of sigma(32), we have used transcription profiling experiments to identify, on a genome-wide basis, genes under the control of sigma(32) in E. coli by moderate induction of a plasmid-borne rpoH gene under defined, steady-state growth conditions. Together with a bioinformatics approach, we successfully confirmed genes known previously to be directly under the control of sigma(32) and also assigned many additional genes to the sigma(32) regulon. In addition, to understand better the functional relevance of the increased amount of sigma(32) to changes in the transcriptional level of sigma(32)-dependent genes, we measured the protein level of sigma(32) both before and after induction by a newly developed quantitative Western blot method. At a normal constant growth temperature (37 degrees C), we found that the sigma(32) protein level rapidly increased, plateaued, and then gradually decreased after induction, indicating sigma(32) can be regulated by genes in its regulon and that the mechanisms of sigma(32) synthesis, inactivation, and degradation are not strictly temperature-dependent. The decrease in the transcriptional level of sigma(32)-dependent genes occurs earlier than the decrease in full-length sigma(32) in the wild type strain, and the decrease in the transcriptional level of sigma(32)-dependent genes is greatly diminished in a DeltaDnaK strain, suggesting that DnaK can act as an anti-sigma factor to functionally inactivate sigma(32) and thus reduce sigma(32)-dependent transcription in vivo.
Collapse
Affiliation(s)
- Kai Zhao
- McArdle Laboratory for Cancer Research
| | | | | |
Collapse
|
158
|
Stintzi A, Marlow D, Palyada K, Naikare H, Panciera R, Whitworth L, Clarke C. Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni. Infect Immun 2005; 73:1797-810. [PMID: 15731081 PMCID: PMC1064905 DOI: 10.1128/iai.73.3.1797-1810.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is the most common bacterial cause of diarrhea worldwide. To colonize the gut and cause infection, C. jejuni must successfully compete with endogenous microbes for nutrients, resist host defenses, persist in the intestine, and ultimately infect the host. These challenges require the expression of a battery of colonization and virulence determinants. In this study, the intestinal lifestyle of C. jejuni was studied using whole-genome microarray, mutagenesis, and a rabbit ileal loop model. Genes associated with a wide range of metabolic, morphological, and pathological processes were expressed in vivo. The in vivo transcriptome of C. jejuni reflected its oxygen-limited, nutrient-poor, and hyperosmotic environment. Strikingly, the expression of several C. jejuni genes was found to be highly variable between individual rabbits. In particular, differential gene expression suggested that C. jejuni extensively remodels its envelope in vivo by differentially expressing its membrane proteins and by modifying its peptidoglycan and glycosylation composition. Furthermore, mutational analysis of seven genes, hspR, hrcA, spoT, Cj0571, Cj0178, Cj0341, and fliD, revealed an important role for the stringent and heat shock response in gut colonization. Overall, this study provides new insights on the mechanisms of gut colonization, as well as possible strategies employed by Campylobacter to resist or evade the host immune responses.
Collapse
Affiliation(s)
- Alain Stintzi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | | | |
Collapse
|
159
|
Gao H, Wang Y, Liu X, Yan T, Wu L, Alm E, Arkin A, Thompson DK, Zhou J. Global transcriptome analysis of the heat shock response of Shewanella oneidensis. J Bacteriol 2004; 186:7796-803. [PMID: 15516594 PMCID: PMC524878 DOI: 10.1128/jb.186.22.7796-7803.2004] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 05/26/2004] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress by using whole-genome DNA microarrays for S. oneidensis. Approximately 15% (n = 711) of the total predicted S. oneidensis genes (n = 4,648) represented on the microarray were significantly up- or downregulated (P < 0.05) over a 25-min period after shift to the heat shock temperature. As expected, the majority of the genes that showed homology to known chaperones and heat shock proteins in other organisms were highly induced. In addition, a number of predicted genes, including those encoding enzymes in glycolysis and the pentose cycle, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed downregulated coexpression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, a putative regulatory site with high conservation to the Escherichia coli sigma32-binding consensus sequence was identified upstream of a number of heat-inducible genes.
Collapse
Affiliation(s)
- Haichun Gao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Poly F, Threadgill D, Stintzi A. Identification of Campylobacter jejuni ATCC 43431-specific genes by whole microbial genome comparisons. J Bacteriol 2004; 186:4781-95. [PMID: 15231810 PMCID: PMC438563 DOI: 10.1128/jb.186.14.4781-4795.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study describes a novel approach to identify unique genomic DNA sequences from the unsequenced strain C. jejuni ATCC 43431 by comparison with the sequenced strain C. jejuni NCTC 11168. A shotgun DNA microarray was constructed by arraying 9,600 individual DNA fragments from a C. jejuni ATCC 43431 genomic library onto a glass slide. DNA fragments unique to C. jejuni ATCC 43431 were identified by competitive hybridization to the array with genomic DNA of C. jejuni NCTC 11168. The plasmids containing unique DNA fragments were sequenced, allowing the identification of up to 130 complete and incomplete genes. Potential biological roles were assigned to 66% of the unique open reading frames. The mean G+C content of these unique genes (26%) differs significantly from the G+C content of the entire C. jejuni genome (30.6%). This suggests that they may have been acquired through horizontal gene transfer from an organism with a G+C content lower than that of C. jejuni. Because the two C. jejuni strains differ by Penner serotype, a large proportion of the unique ATCC 43431 genes encode proteins involved in lipooligosaccharide and capsular biosynthesis, as expected. Several unique open reading frames encode enzymes which may contribute to genetic variability, i.e., restriction-modification systems and integrases. Interestingly, many of the unique C. jejuni ATCC 43431 genes show identity with a possible pathogenicity island from Helicobacter hepaticus and components of a potential type IV secretion system. In conclusion, this study provides a valuable resource to further investigate Campylobacter diversity and pathogenesis.
Collapse
Affiliation(s)
- Frédéric Poly
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
161
|
Palyada K, Threadgill D, Stintzi A. Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 2004; 186:4714-29. [PMID: 15231804 PMCID: PMC438614 DOI: 10.1128/jb.186.14.4714-4729.2004] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron affects the physiology of bacteria in two different ways: as a micronutrient for bacterial growth and as a catalyst for the formation of hydroxyl radicals. In this study, we used DNA microarrays to identify the C. jejuni genes that have their transcript abundance affected by iron availability. The transcript levels of 647 genes were affected after the addition of iron to iron-limited C. jejuni cells. Several classes of affected genes were revealed within 15 min, including immediate-early response genes as well as those specific to iron acquisition and metabolism. In contrast, only 208 genes were differentially expressed during steady-state experiments comparing iron-rich and iron-limited growth conditions. As expected, genes annotated as being involved in either iron acquisition or oxidative stress defense were downregulated during both time course and steady-state experiments, while genes encoding proteins involved in energy metabolism were upregulated. Because the level of protein glycosylation increased with iron limitation, iron may modulate the level of C. jejuni virulence by affecting the degree of protein glycosylation. Since iron homeostasis has been shown to be Fur regulated in C. jejuni, an isogenic fur mutant was used to define the Fur regulon by transcriptome profiling. A total of 53 genes were Fur regulated, including many genes not previously associated with Fur regulation. A putative Fur binding consensus sequence was identified in the promoter region of most iron-repressed and Fur-regulated genes. Interestingly, a fur mutant was found to be significantly affected in its ability to colonize the gastrointestinal tract of chicks, highlighting the importance of iron homeostasis in vivo. Directed mutagenesis of other genes identified by the microarray analyses allowed the characterization of the ferric enterobactin receptor, previously named CfrA. Chick colonization assays indicated that mutants defective in enterobactin-mediated iron acquisition were unable to colonize the gastrointestinal tract. In addition, a mutation in a receptor (Cj0178) for an uncharacterized iron source also resulted in reduced colonization potential. Overall, this work documents the complex response of C. jejuni to iron availability, describes the genetic network between the Fur and iron regulons, and provides insight regarding the role of iron in C. jejuni colonization in vivo.
Collapse
Affiliation(s)
- Kiran Palyada
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
162
|
Brokx SJ, Ellison M, Locke T, Bottorff D, Frost L, Weiner JH. Genome-wide analysis of lipoprotein expression in Escherichia coli MG1655. J Bacteriol 2004; 186:3254-8. [PMID: 15126489 PMCID: PMC400601 DOI: 10.1128/jb.186.10.3254-3258.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To gain insight into the cell envelope of Escherichia coli grown under aerobic and anaerobic conditions, lipoproteins were examined by using functional genomics. The mRNA expression levels of each of these genes under three growth conditions--aerobic, anaerobic, and anaerobic with nitrate--were examined by using both Affymetrix GeneChip E. coli antisense genome arrays and real-time PCR (RT-PCR). Many genes showed significant changes in expression level. The RT-PCR results were in very good agreement with the microarray data. The results of this study represent the first insights into the possible roles of unknown lipoprotein genes and broaden our understanding of the composition of the cell envelope under different environmental conditions. Additionally, these data serve as a test set for the refinement of high-throughput bioinformatic and global gene expression methods.
Collapse
Affiliation(s)
- Stephen J Brokx
- Project CyberCell, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
163
|
Pysz MA, Ward DE, Shockley KR, Montero CI, Conners SB, Johnson MR, Kelly RM. Transcriptional analysis of dynamic heat-shock response by the hyperthermophilic bacterium Thermotoga maritima. Extremophiles 2004; 8:209-17. [PMID: 14991425 DOI: 10.1007/s00792-004-0379-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 01/22/2004] [Indexed: 10/26/2022]
Abstract
The thermal stress response of the hyperthermophilic bacterium Thermotoga maritima was characterized using a 407-open reading frame-targeted cDNA microarray. Transient gene expression was followed for 90 min, following a shift from 80 degrees C to 90 degrees C. While some aspects of mesophilic heat-shock response were conserved in T. maritima, genome content suggested differentiating features that were borne out by transcriptional analysis. Early induction of predicted heat-shock operons hrcA-grpE-dnaJ (TM0851-TM0850-TM0849), groES-groEL (TM0505-TM0506), and dnaK-sHSP (TM0373-TM0374) was consistent with conserved CIRCE elements upstream of hrcA and groES. Induction of the T. maritima rpoE/ sigW and rpoD/ sigA homologs suggests a mechanism for global heat-shock response in the absence of an identifiable ortholog to a major heat-shock sigma factor. In contrast to heat-shock response in Escherichia coli, the majority of genes encoding ATP-dependent proteases were downregulated, including clpP (TM0695), clpQ (TM0521), clpY (TM0522), lonA (TM1633), and lonB (TM1869). Notably, T. maritima showed indications of a late heat-shock response with the induction of a marR homolog (TM0816), several other putative transcriptional regulators (TM1023, TM1069), and two alpha-glucosidases (TM0434 and TM1068). Taken together, the results reported here indicate that, while T. maritima shares core elements of the bacterial heat-shock response with mesophiles, the thermal stress regulatory strategies of this organism differ significantly. However, it remains to be elucidated whether these differences are related to thermophilicity or phylogenetic placement.
Collapse
Affiliation(s)
- Marybeth A Pysz
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Leonard EE, Tompkins LS, Falkow S, Nachamkin I. Comparison of Campylobacter jejuni isolates implicated in Guillain-Barré syndrome and strains that cause enteritis by a DNA microarray. Infect Immun 2004; 72:1199-203. [PMID: 14742576 PMCID: PMC321608 DOI: 10.1128/iai.72.2.1199-1203.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We asked whether Campylobacter jejuni isolated from patients with Guillain-Barré syndrome (GBS) differ from isolates isolated from patients with uncomplicated gastrointestinal infection using DNA microarray analysis. We found that specific GBS genes or regions were not identified, and microarray analysis confirmed significant genomic heterogeneity among the isolates.
Collapse
Affiliation(s)
- Edward E Leonard
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
165
|
Weiner J, Zimmerman CU, Göhlmann HWH, Herrmann R. Transcription profiles of the bacterium Mycoplasma pneumoniae grown at different temperatures. Nucleic Acids Res 2003; 31:6306-20. [PMID: 14576319 PMCID: PMC275481 DOI: 10.1093/nar/gkg841] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Applying microarray technology, we have investigated the transcriptome of the small bacterium Mycoplasma pneumoniae grown at three different temperature conditions: 32, 37 and 32 degrees C followed by a heat shock for 15 min at 43 degrees C, before isolating the RNA. From 688 proposed open-reading frames, 676 were investigated and 564 were found to be expressed (P < 0.001; 606 with P < 0.01) and at least 33 (P < 0.001; 77 at P < 0.01) regulated. By quantitative real-time PCR of selected mRNA species, the expression data could be linked to absolute molecule numbers. We found M.pneumoniae to be regulated at the transcriptional level. Forty-seven genes were found to be significantly up-regulated after heat shock (P < 0.01). Among those were the conserved heat shock genes like dnaK, lonA and clpB, but also several genes coding for ribosomal proteins and 10 genes of unassigned functions. In addition, 30 genes were found to be down-regulated under the applied heat shock conditions. Further more, we have compared different methods of cDNA synthesis (random hexamer versus gene-specific primers, different RNA concentrations) and various normalization strategies of the raw microarray data.
Collapse
Affiliation(s)
- J Weiner
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
166
|
Abstract
PURPOSE OF REVIEW The Campylobacter species jejuni and coli are leading causes of enteritis and enterocolitis worldwide. Arthritis, Reiter syndrome, and Guillain-Barré syndrome represent post-infectious sequelae. Although the acute and chronic clinical manifestations highlight Campylobacter species as excellent models for the identification of mechanisms involved in pathogenesis, detailed investigations at the molecular level are complicated by the fastidious growth requirements of the bacteria and by the tremendous variability displayed by Campylobacter isolates. Thus, research activities in this field constitute a substantial challenge for scientists of many different disciplines. The genome information has greatly stimulated investigations at the molecular level and the resulting modern research trends lead to a better understanding of Campylobacter-associated diseases providing the basis for new developments in prevention and therapy. RECENT FINDINGS This review summarizes results from the most recent investigations in the field of Campylobacter pathogenesis. Topics include genome analysis, surface structures and post-infectious complications, adaptation, host cell interaction and cell toxicity. SUMMARY During its coevolution with human and other vertebrate hosts, Campylobacter species have developed specific survival strategies, which are required for host adaptation and establishment in the intestinal environment. The bacterial factors involved in these processes are the subject of intensive research activities. With a focus on molecular aspects of the most important human pathogen, C. jejuni, this review intends to summarize the recent trends and developments in Campylobacter research by highlighting selected publications in the field of microbial pathogenesis.
Collapse
Affiliation(s)
- Stefan Bereswill
- Department of Microbiology and Hygiene, Institute of Medical Microbiology and Hygiene, University Hospital Freiburg, Germany.
| | | |
Collapse
|
167
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003. [PMCID: PMC2447285 DOI: 10.1002/cfg.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|