151
|
Lagarde J, Uszczynska-Ratajczak B, Carbonell S, Pérez-Lluch S, Abad A, Davis C, Gingeras TR, Frankish A, Harrow J, Guigo R, Johnson R. High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing. Nat Genet 2017; 49:1731-1740. [PMID: 29106417 PMCID: PMC5709232 DOI: 10.1038/ng.3988] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022]
Abstract
Accurate annotation of genes and their transcripts is a foundation of genomics, but currently no annotation technique combines throughput and accuracy. As a result, reference gene collections remain incomplete-many gene models are fragmentary, and thousands more remain uncataloged, particularly for long noncoding RNAs (lncRNAs). To accelerate lncRNA annotation, the GENCODE consortium has developed RNA Capture Long Seq (CLS), which combines targeted RNA capture with third-generation long-read sequencing. Here we present an experimental reannotation of the GENCODE intergenic lncRNA populations in matched human and mouse tissues that resulted in novel transcript models for 3,574 and 561 gene loci, respectively. CLS approximately doubled the annotated complexity of targeted loci, outperforming existing short-read techniques. Full-length transcript models produced by CLS enabled us to definitively characterize the genomic features of lncRNAs, including promoter and gene structure, and protein-coding potential. Thus, CLS removes a long-standing bottleneck in transcriptome annotation and generates manual-quality full-length transcript models at high-throughput scales.
Collapse
Affiliation(s)
- Julien Lagarde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Barbara Uszczynska-Ratajczak
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Silvia Carbonell
- R&D Department, Quantitative Genomic Medicine Laboratories (qGenomics), Barcelona, Spain
| | - Sílvia Pérez-Lluch
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Amaya Abad
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carrie Davis
- Functional Genomics Group, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Thomas R. Gingeras
- Functional Genomics Group, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Adam Frankish
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK CB10 1HH
| | - Jennifer Harrow
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK CB10 1HH
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Rory Johnson
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
152
|
Role of Non-Coding RNAs in the Etiology of Bladder Cancer. Genes (Basel) 2017; 8:genes8110339. [PMID: 29165379 PMCID: PMC5704252 DOI: 10.3390/genes8110339] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022] Open
Abstract
According to data of the International Agency for Research on Cancer and the World Health Organization (Cancer Incidence in Five Continents, GLOBOCAN, and the World Health Organization Mortality), bladder is among the top ten body locations of cancer globally, with the highest incidence rates reported in Southern and Western Europe, North America, Northern Africa and Western Asia. Males (M) are more vulnerable to this disease than females (F), despite ample frequency variations in different countries, with a M:F ratio of 4.1:1 for incidence and 3.6:1 for mortality, worldwide. For a long time, bladder cancer was genetically classified through mutations of two genes, fibroblast growth factor receptor 3 (FGFR3, for low-grade, non-invasive papillary tumors) and tumor protein P53 (TP53, for high-grade, muscle-invasive tumors). However, more recently scientists have shown that this disease is far more complex, since genes directly involved are more than 150; so far, it has been described that altered gene expression (up- or down-regulation) may be present for up to 500 coding sequences in low-grade and up to 2300 in high-grade tumors. Non-coding RNAs are essential to explain, at least partially, this ample dysregulation. In this review, we summarize the present knowledge about long and short non-coding RNAs that have been linked to bladder cancer etiology.
Collapse
|
153
|
Caldwell KK, Hafez A, Solomon E, Cunningham M, Allan AM. Arsenic exposure during embryonic development alters the expression of the long noncoding RNA growth arrest specific-5 (Gas5) in a sex-dependent manner. Neurotoxicol Teratol 2017; 66:102-112. [PMID: 29132937 DOI: 10.1016/j.ntt.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022]
Abstract
Our previous studies suggest that prenatal arsenic exposure (50ppb) modifies epigenetic control of the programming of the glucocorticoid receptor (GR) signaling system in the developing mouse brain. These deficits may lead to long-lasting consequences, including deficits in learning and memory, increased depressive-like behaviors, and an altered set-point of GR feedback throughout life. To understand the arsenic-induced changes within the GR system, we assessed the impact of in utero arsenic exposure on the levels of the GR and growth arrest-specific-5 (Gas5), a noncoding RNA, across a key gestational period for GR programming (gestational days, GD 14-18) in mice. Gas5 contains a glucocorticoid response element (GRE)-like sequence that binds the GR, thereby decreasing GR-GRE-dependent gene transcription and potentially altering GR programming. Prenatal arsenic exposure resulted in sex-dependent and age-dependent shifts in the levels of GR and Gas5 expression in fetal telencephalon. Nuclear GR levels were reduced in males, but unchanged in females, at all gestational time points tested. Total cellular Gas5 levels were lower in arsenic-exposed males with no changes seen in arsenic-exposed females at GD16 and 18. An increase in total cellular Gas-5 along with increased nuclear levels in GD14 arsenic-exposed females, suggests a differential regulation of cellular compartmentalization of Gas5. RIP assays revealed reduced Gas5 associated with the GR on GD14 in the nuclear fraction prepared from arsenic-exposed males and females. This decrease in levels of GR-Gas5 binding continued only in the females at GD18. Thus, nuclear GR signaling potential is decreased in prenatal arsenic-exposed males, while it is increased or maintained at levels approaching normal in prenatal arsenic-exposed females. These findings suggest that females, but not males, exposed to arsenic are able to regulate the levels of nuclear free GR by altering Gas5 levels, thereby keeping GR nuclear signaling closer to control (unexposed) levels.
Collapse
Affiliation(s)
- Kevin K Caldwell
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Alexander Hafez
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Elizabeth Solomon
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Matthew Cunningham
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
154
|
Malhotra A, Jain M, Prakash H, Vasquez KM, Jain A. The regulatory roles of long non-coding RNAs in the development of chemoresistance in breast cancer. Oncotarget 2017; 8:110671-110684. [PMID: 29299178 PMCID: PMC5746413 DOI: 10.18632/oncotarget.22577] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/13/2017] [Indexed: 01/01/2023] Open
Abstract
Chemoresistance is one of the major hurdles in the treatment of breast cancer, which limits the effect of both targeted and conventional therapies in clinical settings. Therefore, understanding the mechanisms underpinning resistance is paramount for developing strategies to circumvent resistance in breast cancer patients. Several published reports have indicated that lncRNAs play a dynamic role in the regulation of both intrinsic and acquired chemoresistance through a variety of mechanisms that endow cells with a drug-resistant phenotype. Although a number of lncRNAs have been implicated in chemoresistance of breast cancer, their mechanistic roles have not been systematically reviewed. Thus, here we present a detailed review on the latest research findings and discoveries on the mechanisms of acquisition of chemoresistance in breast cancer related to lncRNAs, and how lncRNAs take part in various cancer signalling pathways involved in breast cancer cells. Knowledge obtained from this review could assist in the development of new strategies to avoid or reverse drug resistance in breast cancer chemotherapy.
Collapse
Affiliation(s)
- Akshay Malhotra
- Center for Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Center for Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Hridayesh Prakash
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, TX, USA
| | - Aklank Jain
- Center for Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
155
|
Popp MW, Maquat LE. Nonsense-mediated mRNA Decay and Cancer. Curr Opin Genet Dev 2017; 48:44-50. [PMID: 29121514 DOI: 10.1016/j.gde.2017.10.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 11/16/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved mRNA surveillance pathway that cells use to ensure the quality of transcripts and to fine-tune transcript abundance. The role of NMD in cancer development is complex. In some cases, tumors have exploited NMD to downregulate gene expression by apparently selecting for mutations causing destruction of key tumor-suppressor mRNAs. In other cases, tumors adjust NMD activity to adapt to their microenvironment. Understanding how particular tumors exploit NMD for their benefit may augment the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Maximilian W Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
156
|
Emerging roles for long noncoding RNAs in B-cell development and malignancy. Crit Rev Oncol Hematol 2017; 120:77-85. [PMID: 29198340 DOI: 10.1016/j.critrevonc.2017.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022] Open
Abstract
Long noncoding (lnc)RNAs have emerged as essential mediators of cellular biology, differentiation and malignant transformation. LncRNAs have a broad range of possible functions at the transcriptional, posttranscriptional and protein level and their aberrant expression significantly contributes to the hallmarks of cancer cell biology. In addition, their high tissue- and cell-type specificity makes lncRNAs especially interesting as biomarkers, prognostic factors or specific therapeutic targets. Here, we review current knowledge on lncRNA expression changes during normal B-cell development, indicating essential functions in the differentiation process. In addition we address lncRNA deregulation in B-cell malignancies, the putative prognostic value of this as well as the molecular functions of multiple deregulated lncRNAs. Altogether, the discussed work indicates major roles for lncRNAs in normal and malignant B cells affecting oncogenic pathways as well as the response to common therapeutics.
Collapse
|
157
|
Kong X, Liu W, Kong Y. Roles and expression profiles of long non-coding RNAs in triple-negative breast cancers. J Cell Mol Med 2017; 22:390-394. [PMID: 28941134 PMCID: PMC5742739 DOI: 10.1111/jcmm.13327] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022] Open
Abstract
Triple‐negative breast cancer (TNBC) refers to the breast cancers that express little human epidermal growth factor receptor 2 (HER2), progesterone receptor (PR) and oestrogen receptor (ER). When compared to other types of breast cancers, TNBC behaves more aggressively with relatively poorer prognosis. Moreover, except chemotherapy, no targeted treatments have been approved yet until now. Although the molecular‐biological mechanisms of the initiation and development of TNBC have been explored a lot, the exact details underlying its progressions are still not clear. Long non‐coding RNAs (lncRNAs), with the length greater than 200 nucleotides, are non‐protein coding transcripts. Previous researches have shown that lncRNAs are significantly involved in a variety of pathophysiological processes such as cell migration, invasion, proliferation, differentiation and development. lncRNAs’ dysregulated expressions have been observed in many types of tumours including TNBCs. This article will review the functional roles and dysregulations of lncRNAs in TNBCs. These lncRNAs are worthy of exploitation regarding their potential application values of TNBC's diagnosis and treatment.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Department of Breast Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenyue Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Tissue Engineering and Wound Healing Laboratory, Department of Surgery, Division of Plastic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yanguo Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
158
|
Epigenome Aberrations: Emerging Driving Factors of the Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2017; 18:ijms18081774. [PMID: 28812986 PMCID: PMC5578163 DOI: 10.3390/ijms18081774] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/29/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common form of Kidney cancer, is characterized by frequent mutations of the von Hippel-Lindau (VHL) tumor suppressor gene in ~85% of sporadic cases. Loss of pVHL function affects multiple cellular processes, among which the activation of hypoxia inducible factor (HIF) pathway is the best-known function. Constitutive activation of HIF signaling in turn activates hundreds of genes involved in numerous oncogenic pathways, which contribute to the development or progression of ccRCC. Although VHL mutations are considered as drivers of ccRCC, they are not sufficient to cause the disease. Recent genome-wide sequencing studies of ccRCC have revealed that mutations of genes coding for epigenome modifiers and chromatin remodelers, including PBRM1, SETD2 and BAP1, are the most common somatic genetic abnormalities after VHL mutations in these tumors. Moreover, recent research has shed light on the extent of abnormal epigenome alterations in ccRCC tumors, including aberrant DNA methylation patterns, abnormal histone modifications and deregulated expression of non-coding RNAs. In this review, we discuss the epigenetic modifiers that are commonly mutated in ccRCC, and our growing knowledge of the cellular processes that are impacted by them. Furthermore, we explore new avenues for developing therapeutic approaches based on our knowledge of epigenome aberrations of ccRCC.
Collapse
|
159
|
Sun D, Yu Z, Fang X, Liu M, Pu Y, Shao Q, Wang D, Zhao X, Huang A, Xiang Z, Zhao C, Franklin RJ, Cao L, He C. LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep 2017; 18:1801-1816. [PMID: 28808113 PMCID: PMC5623836 DOI: 10.15252/embr.201643668] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 07/16/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022] Open
Abstract
The regulation of inflammation is pivotal for preventing the development or reoccurrence of multiple sclerosis (MS). A biased ratio of high‐M1 versus low‐M2 polarized microglia is a major pathological feature of MS. Here, using microarray screening, we identify the long noncoding RNA (lncRNA) GAS5 as an epigenetic regulator of microglial polarization. Gain‐ and loss‐of‐function studies reveal that GAS5 suppresses microglial M2 polarization. Interference with GAS5 in transplanted microglia attenuates the progression of experimental autoimmune encephalomyelitis (EAE) and promotes remyelination in a lysolecithin‐induced demyelination model. In agreement, higher levels of GAS5 are found in amoeboid‐shaped microglia in MS patients. Further, functional studies demonstrate that GAS5 suppresses transcription of TRF4, a key factor controlling M2 macrophage polarization, by recruiting the polycomb repressive complex 2 (PRC2), thereby inhibiting M2 polarization. Thus, GAS5 may be a promising target for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Dingya Sun
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Zhongwang Yu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Xue Fang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Mingdong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Yingyan Pu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Qi Shao
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Dan Wang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Xiaolin Zhao
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Aijun Huang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Zhenghua Xiang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Chao Zhao
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Robin Jm Franklin
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Li Cao
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| |
Collapse
|
160
|
Genetic polymorphisms of long non-coding RNA GAS5 predict platinum-based concurrent chemoradiotherapy response in nasopharyngeal carcinoma patients. Oncotarget 2017; 8:62286-62297. [PMID: 28977945 PMCID: PMC5617505 DOI: 10.18632/oncotarget.19725] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/01/2017] [Indexed: 01/06/2023] Open
Abstract
LncRNA GAS5 plays a tumor suppressive role in a variety of human cancers and promises to be a novel diagnostic biomarker, therapy target, as well as prognostic biomarker. However, the role of GAS5 in nasopharyngeal carcinoma (NPC) remains elusive. The objective of the present study was to evaluate the effect of single nucleotide polymorphisms (SNPs) in GAS5 on treatment efficacy and toxicity in NPC patients receiving chemoradiotherapy. Three potentially functional SNPs of GAS5 were genotyped in 267 NPC patients and validated in another 238 NPC patients treated with chemoradiotherapy from southern China. Multivariate logistic regression analyses and stratification analyses were used to estimate the association of candidate SNPs and chemoradiotherapy efficacy and toxic reactions. Our results showed that rs2067079 kept a consistent association with severe myelosuppression and severe neutropenia in discovery set (OR=2.403, P=0.009; OR=2.454, P=0.015; respectively), validation set (OR=3.653, P=0.027; OR=4.767, P=0.016; respectively), and combined dataset (OR=1.880, P=0.007; OR=2.079, P=0.005; respectively). rs2067079 CT genotype carriers presented an even more remarkable increased risk of severe myelosuppression (OR=3.878, P=0.003) and severe neutropenia (OR=3.794, P=0.009) in subgroups taking paclitaxel+platinum as concurrent chemoradiotherapy regimen. Besides, we found a gene-does effect of rs6790, with the incidence rate of severe myelosuppression decreased from 23.56% to 17.21% to 10% and the incidence rate of severe neutropenia decreased from 30.4% to 20.9% to 17.1% for rs6790 GG vs GA vs AA genotype carriers. Our results indicate the potential role of lncRNA GAS5 polymorphisms rs2067079 and rs6790 as predictive biomarkers for chemoradiotherapy induced toxic reactions in NPC patients.
Collapse
|
161
|
Wen Q, Liu Y, Lyu H, Xu X, Wu Q, Liu N, Yin Q, Li J, Sheng X. Long Noncoding RNA GAS5, Which Acts as a Tumor Suppressor via microRNA 21, Regulates Cisplatin Resistance Expression in Cervical Cancer. Int J Gynecol Cancer 2017; 27:1096-1108. [PMID: 28472815 PMCID: PMC5499972 DOI: 10.1097/igc.0000000000001028] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/26/2017] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES The aims of this study were to investigate the functions of GAS5 as a tumor suppressor in cervical cancer and explore the mechanism. METHODS The expression of GAS5 and microRNA 21 (miR-21) was detected in primary cervical cancer tissue specimens, as well as in cervical cancer cell lines. We identified the interaction of GAS5 and miR-21 by quantitative polymerase chain reaction, Western blot, and dual-luciferase reporter assay. We also studied the functions of GAS5 in proliferation, apoptosis, migration, and invasion in cervical cancer cells in vitro and vivo. Finally, the impact of GAS5 on cisplatin resistance and its mechanism in cervical cancer cells was also identified. RESULTS The expression of GAS5 and miR-21 was detected in primary cervical cancer tissue specimens, as well as in cervical cancer cell lines. GAS5, which is a tumor suppressor playing roles in inhibiting the malignancy of cervical cancer cells, including proliferation in vivo and vitro, migration, and invasion, has a low expression in cervical cancer tissue and cervical cancer cell lines, whereas miR-21 expression is high. GAS5 significantly decreased the expression of miR-21, and there is a reciprocal repression of gene expression between GAS5 and miR-21. Besides, most importantly, we found that high expression of GAS5 and low expression of miR-21 can enhance the sensitivity of SiHa/cDDP cancer cells to cisplatin. A further experiment for identifying the mechanism of cisplatin resistance by GAS5 showed that GAS5 can not only regulate phosphatase and tensin homolog through miR-21 but also influence the phosphorylation of Akt. CONCLUSIONS Our results indicate that GAS5 is a direct target of miR-21 and can predict the clinical staging of cervical cancer. Most importantly, GAS5 can also influence cisplatin resistance in cervical cancer via regulating the phosphorylation of Akt. All of these suggest that GAS5 may be a novel therapeutic target for treating cervical cancer.
Collapse
Affiliation(s)
- Qirong Wen
- *Department of Obstetrics and Gynecology, The Third Affiliated Hospital and Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou; and †Xi Li People’s Hospital, Shenzhen, P.R. China
| | - Yan Liu
- *Department of Obstetrics and Gynecology, The Third Affiliated Hospital and Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou; and †Xi Li People’s Hospital, Shenzhen, P.R. China
| | - Huabing Lyu
- *Department of Obstetrics and Gynecology, The Third Affiliated Hospital and Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou; and †Xi Li People’s Hospital, Shenzhen, P.R. China
| | - Xiaying Xu
- *Department of Obstetrics and Gynecology, The Third Affiliated Hospital and Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou; and †Xi Li People’s Hospital, Shenzhen, P.R. China
| | - Qingxia Wu
- *Department of Obstetrics and Gynecology, The Third Affiliated Hospital and Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou; and †Xi Li People’s Hospital, Shenzhen, P.R. China
| | - Ni Liu
- *Department of Obstetrics and Gynecology, The Third Affiliated Hospital and Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou; and †Xi Li People’s Hospital, Shenzhen, P.R. China
| | - Qi Yin
- *Department of Obstetrics and Gynecology, The Third Affiliated Hospital and Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou; and †Xi Li People’s Hospital, Shenzhen, P.R. China
| | - Juan Li
- *Department of Obstetrics and Gynecology, The Third Affiliated Hospital and Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou; and †Xi Li People’s Hospital, Shenzhen, P.R. China
| | - Xiujie Sheng
- *Department of Obstetrics and Gynecology, The Third Affiliated Hospital and Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou; and †Xi Li People’s Hospital, Shenzhen, P.R. China
| |
Collapse
|
162
|
Falaleeva M, Welden JR, Duncan MJ, Stamm S. C/D-box snoRNAs form methylating and non-methylating ribonucleoprotein complexes: Old dogs show new tricks. Bioessays 2017; 39:10.1002/bies.201600264. [PMID: 28505386 PMCID: PMC5586538 DOI: 10.1002/bies.201600264] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
C/D box snoRNAs (SNORDs) are an abundantly expressed class of short, non-coding RNAs that have been long known to perform 2'-O-methylation of rRNAs. However, approximately half of human SNORDs have no predictable rRNA targets, and numerous SNORDs have been associated with diseases that show no defects in rRNAs, among them Prader-Willi syndrome, Duplication 15q syndrome and cancer. This apparent discrepancy has been addressed by recent studies showing that SNORDs can act to regulate pre-mRNA alternative splicing, mRNA abundance, activate enzymes, and be processed into shorter ncRNAs resembling miRNAs and piRNAs. Furthermore, recent biochemical studies have shown that a given SNORD can form both methylating and non-methylating ribonucleoprotein complexes, providing an indication of the likely physical basis for such diverse new functions. Thus, SNORDs are more structurally and functionally diverse than previously thought, and their role in gene expression is under-appreciated. The action of SNORDs in non-methylating complexes can be substituted with oligonucleotides, allowing devising therapies for diseases like Prader-Willi syndrome.
Collapse
Affiliation(s)
- Marina Falaleeva
- University Kentucky, Institute for Biochemistry, Lexington, KY, USA
| | - Justin R. Welden
- University Kentucky, Institute for Biochemistry, Lexington, KY, USA
| | | | - Stefan Stamm
- University Kentucky, Institute for Biochemistry, Lexington, KY, USA
| |
Collapse
|
163
|
Yuan S, Wu Y, Wang Y, Chen J, Chu L. An Oncolytic Adenovirus Expressing SNORD44 and GAS5 Exhibits Antitumor Effect in Colorectal Cancer Cells. Hum Gene Ther 2017; 28:690-700. [PMID: 28530127 DOI: 10.1089/hum.2017.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
SNORD44 is a C/D box small nucleolar RNA, and exhibits low expression in breast cancer and head and neck squamous cell carcinoma tissues. Its host gene is growth arrest specific transcript 5 (GAS5), which is a long noncoding RNA. GAS5 is downregulated in colorectal cancer (CRC), and overexpression of GAS5 suppresses cell proliferation. However, the function of SNORD44 in CRC remains largely unknown, and the application of SNORD44 combined with GAS5 in CRC treatment has not been reported. In this study, the expression levels of SNORD44 and GAS5 were measured in CRC tissues by quantitative RT-PCR. The correlation between SNORD44 and GAS5 was evaluated by Pearson correlation analysis. An oncolytic adenovirus expressing SNORD44 and GAS5 (SPDD-UG) was constructed. The biological effects of SPDD-UG were investigated in CRC cell line SW620 and LS174T in vitro and in xenografts. The synergistic effect of rapamycin and SPDD-UG was explored in SW620 and LS174T cells and tumors. We demonstrated that SNORD44 expression level was markedly decreased in CRC tissues and positively correlated with GAS5 expression. SPDD-UG significantly inhibited SW620 and LS174T cell growth and induced cell apoptosis. Intratumoral injection of SPDD-UG significantly suppressed xenografts growth in nude mice. Moreover, the mechanistic target of rapamycin (mTOR) inhibitor, rapamycin, enhanced the antitumor effect through antagonizing the PI3K/Akt pathway activated by SPDD-UG. These results suggest that overexpression of SNORD44 and GAS5 by oncolytic adenovirus provides a promising method for CRC therapy.
Collapse
Affiliation(s)
- Sujing Yuan
- 1 Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Yu Wu
- 1 Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Yigang Wang
- 2 Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University , Hangzhou, China
| | - Jianhua Chen
- 3 State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Liang Chu
- 1 Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| |
Collapse
|
164
|
Jedrzejczyk D, Gendaszewska-Darmach E, Pawlowska R, Chworos A. Designing synthetic RNA for delivery by nanoparticles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:123001. [PMID: 28004640 DOI: 10.1088/1361-648x/aa5561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The rapid development of synthetic biology and nanobiotechnology has led to the construction of various synthetic RNA nanoparticles of different functionalities and potential applications. As they occur naturally, nucleic acids are an attractive construction material for biocompatible nanoscaffold and nanomachine design. In this review, we provide an overview of the types of RNA and nucleic acid's nanoparticle design, with the focus on relevant nanostructures utilized for gene-expression regulation in cellular models. Structural analysis and modeling is addressed along with the tools available for RNA structural prediction. The functionalization of RNA-based nanoparticles leading to prospective applications of such constructs in potential therapies is shown. The route from the nanoparticle design and modeling through synthesis and functionalization to cellular application is also described. For a better understanding of the fate of targeted RNA after delivery, an overview of RNA processing inside the cell is also provided.
Collapse
Affiliation(s)
- Dominika Jedrzejczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | | | | | | |
Collapse
|
165
|
Richtig G, Ehall B, Richtig E, Aigelsreiter A, Gutschner T, Pichler M. Function and Clinical Implications of Long Non-Coding RNAs in Melanoma. Int J Mol Sci 2017; 18:E715. [PMID: 28350340 PMCID: PMC5412301 DOI: 10.3390/ijms18040715] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
Metastatic melanoma is the most deadly type of skin cancer. Despite the success of immunotherapy and targeted agents, the majority of patients experience disease recurrence upon treatment and die due to their disease. Long non-coding RNAs (lncRNAs) are a new subclass of non-protein coding RNAs involved in (epigenetic) regulation of cell growth, invasion, and other important cellular functions. Consequently, recent research activities focused on the discovery of these lncRNAs in a broad spectrum of human diseases, especially cancer. Additional efforts have been undertaken to dissect the underlying molecular mechanisms employed by lncRNAs. In this review, we will summarize the growing evidence of deregulated lncRNA expression in melanoma, which is linked to tumor growth and progression. Moreover, we will highlight specific molecular pathways and modes of action for some well-studied lncRNAs and discuss their potential clinical implications.
Collapse
Affiliation(s)
- Georg Richtig
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz 8010, Austria.
- Department of Dermatology, Medical University of Graz, Graz 8036, Austria.
| | - Barbara Ehall
- Institute for Pathology, Medical University of Graz, Graz 8036, Austria.
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz 8036, Austria.
| | - Erika Richtig
- Department of Dermatology, Medical University of Graz, Graz 8036, Austria.
| | | | - Tony Gutschner
- Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, Halle (Saale) 06120, Germany.
| | - Martin Pichler
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, Graz 8036, Austria.
| |
Collapse
|
166
|
Yang Y, Shen Z, Yan Y, Wang B, Zhang J, Shen C, Li T, Ye C, Gao Z, Peng G, Ye Y, Jiang K, Wang S. Long non-coding RNA GAS5 inhibits cell proliferation, induces G0/G1 arrest and apoptosis, and functions as a prognostic marker in colorectal cancer. Oncol Lett 2017; 13:3151-3158. [PMID: 28521420 DOI: 10.3892/ol.2017.5841] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/27/2016] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and its treatment remains a challenge. Effective control of cell survival and proliferation is critical in the prevention of oncogenesis and successful treatment of cancer. Long non-coding RNAs (lncRNAs) have emerged as primary regulators of carcinogenesis. Growth arrest specific 5 (GAS5), a lncRNA, is known to be aberrantly expressed in several types of cancer, however, the role of GAS5 in CRC remains unclear. In the present study, GAS5 mRNA expression was measured in CRC and adjacent normal mucosa tissue samples from 53 patients using reverse transcription-quantitative polymerase chain reaction analysis, in addition to seven CRC cell lines. GAS5 mRNA expression was observed to be markedly downregulated in human CRC tissues and cell lines. Decreased GAS5 expression was associated with an increase in tumor diameter [odds ratio (OR), 0.176 (95% CI, 0.053-0.586); P=0.003] and later tumor-node-metastasis stage [OR, 0.261 (95% CI, 0.083-0.819); P=0.019]. Patients with decreased GAS5 expression exhibited decreased overall survival rates compared with patients with increased GAS5 expression (P=0.015). The Cox proportional hazards model demonstrated that downregulated GAS5 expression was an independent prognostic factor for CRC (hazard ratio, 0.236; 95% confidence interval, 0.067-0.827; P=0.024). Functional assays demonstrated that overexpression of GAS5 inhibited cell proliferation and survival, and induced G0/G1 cell cycle arrest and apoptosis; however, knockdown of GAS5 expression enhanced cell proliferation, and reduced G0/G1 arrest and apoptosis. In conclusion, the results of the present study suggest that GAS5 is essential in the control of apoptosis and cell growth in CRC. Therefore, GAS5 may represent a novel prognostic and diagnostic marker of CRC, in addition to being a potential therapeutic target.
Collapse
Affiliation(s)
- Yang Yang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100034, P.R. China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100034, P.R. China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100034, P.R. China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100034, P.R. China
| | - Yichao Yan
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100034, P.R. China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100034, P.R. China
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100034, P.R. China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100034, P.R. China
| | - Jizhun Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100034, P.R. China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100034, P.R. China
| | - Chao Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100034, P.R. China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100034, P.R. China
| | - Tao Li
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100034, P.R. China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100034, P.R. China
| | - Chunxiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100034, P.R. China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100034, P.R. China
| | - Zhidong Gao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100034, P.R. China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100034, P.R. China
| | - Guo Peng
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100034, P.R. China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100034, P.R. China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100034, P.R. China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100034, P.R. China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100034, P.R. China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100034, P.R. China
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100034, P.R. China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100034, P.R. China
| |
Collapse
|
167
|
Steinbusch MMF, Fang Y, Milner PI, Clegg PD, Young DA, Welting TJM, Peffers MJ. Serum snoRNAs as biomarkers for joint ageing and post traumatic osteoarthritis. Sci Rep 2017; 7:43558. [PMID: 28252005 PMCID: PMC5333149 DOI: 10.1038/srep43558] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/25/2017] [Indexed: 01/29/2023] Open
Abstract
The development of effective treatments for the age-related disease osteoarthritis and the ability to predict disease progression has been hampered by the lack of biomarkers able to demonstrate the course of the disease. Profiling the expression patterns of small nucleolar RNAs (snoRNAs) in joint ageing and OA may provide diagnostic biomarkers and therapeutic targets. This study determined expression patterns of snoRNAs in joint ageing and OA and examined them as potential biomarkers. Using SnoRNASeq and real-time quantitative PCR (qRT-PCR) we demonstrate snoRNA expression levels in murine ageing and OA joints and serum for the first time. SnoRNASeq identified differential expression (DE) of 6 snoRNAs in young versus old joints and 5 snoRNAs in old sham versus old experimental osteoarthritic joints. In serum we found differential presence of 27 snoRNAs in young versus old serum and 18 snoRNAs in old sham versus old experimental osteoarthritic serum. Confirmatory qRT-PCR analysis demonstrated good correlation with SnoRNASeq findings. Profiling the expression patterns of snoRNAs is the initial step in determining their functional significance in ageing and osteoarthritis, and provides potential diagnostic biomarkers and therapeutic targets. Our results establish snoRNAs as novel markers of musculoskeletal ageing and osteoarthritis.
Collapse
Affiliation(s)
- Mandy M F Steinbusch
- Department of Orthopedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK
| | - Peter I Milner
- Institute of Ageing and Chronic Disease, University of Liverpool, Apex Building, 6 West Derby Street, Liverpool, L7 9TX, UK
| | - Peter D Clegg
- Institute of Ageing and Chronic Disease, University of Liverpool, Apex Building, 6 West Derby Street, Liverpool, L7 9TX, UK
| | - David A Young
- Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tim J M Welting
- Department of Orthopedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Mandy J Peffers
- Institute of Ageing and Chronic Disease, University of Liverpool, Apex Building, 6 West Derby Street, Liverpool, L7 9TX, UK
| |
Collapse
|
168
|
Tani H. Short-lived non-coding transcripts (SLiTs): Clues to regulatory long non-coding RNA. Drug Discov Ther 2017; 11:20-24. [PMID: 28190799 DOI: 10.5582/ddt.2017.01002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Whole transcriptome analyses have revealed a large number of novel long non-coding RNAs (lncRNAs). Although the importance of lncRNAs has been documented in previous reports, the biological and physiological functions of lncRNAs remain largely unknown. The role of lncRNAs seems an elusive problem. Here, I propose a clue to the identification of regulatory lncRNAs. The key point is RNA half-life. RNAs with a long half-life (t1/2 > 4 h) contain a significant proportion of ncRNAs, as well as mRNAs involved in housekeeping functions, whereas RNAs with a short half-life (t1/2 < 4 h) include known regulatory ncRNAs and regulatory mRNAs. This novel class of ncRNAs with a short half-life can be categorized as Short-Lived non-coding Transcripts (SLiTs). I consider that SLiTs are likely to be rich in functionally uncharacterized regulatory RNAs. This review describes recent progress in research into SLiTs.
Collapse
Affiliation(s)
- Hidenori Tani
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
169
|
Su J, Liao J, Gao L, Shen J, Guarnera MA, Zhan M, Fang H, Stass SA, Jiang F. Analysis of small nucleolar RNAs in sputum for lung cancer diagnosis. Oncotarget 2017; 7:5131-42. [PMID: 26246471 PMCID: PMC4868676 DOI: 10.18632/oncotarget.4219] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/09/2015] [Indexed: 12/15/2022] Open
Abstract
Molecular analysis of sputum presents a noninvasive approach for diagnosis of lung cancer. We have shown that dysregulation of small nucleolar RNAs (snoRNAs) plays a vital role in lung tumorigenesis. We have also identified six snoRNAs whose changes are associated with lung cancer. Here we investigated if analysis of the snoRNAs in sputum could provide a potential tool for diagnosis of lung cancer. Using qRT-PCR, we determined expressions of the six snoRNAs in sputum of a training set of 59 lung cancer patients and 61 cancer-free smokers to develop a biomarker panel, which was validated in a testing set of 67 lung cancer patients and 69 cancer-free smokers for the diagnostic performance. The snoRNAs were robustly measurable in sputum. In the training set, a panel of two snoRNA biomarkers (snoRD66 and snoRD78) was developed, producing 74.58% sensitivity and 83.61% specificity for identifying lung cancer. The snoRNA biomarkers had a significantly higher sensitivity (74.58%) compared with sputum cytology (45.76%) (P < 0.05). The changes of the snoRNAs were not associated with stage and histology of lung cancer (All P >0.05). The performance of the biomarker panel was confirmed in the testing cohort. We report for the first time that sputum snoRNA biomarkers might be useful to improve diagnosis of lung cancer.
Collapse
Affiliation(s)
- Jian Su
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeipi Liao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lu Gao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jun Shen
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria A Guarnera
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Min Zhan
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - HongBin Fang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sanford A Stass
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
170
|
Pickard MR, Williams GT. The hormone response element mimic sequence of GAS5 lncRNA is sufficient to induce apoptosis in breast cancer cells. Oncotarget 2017; 7:10104-16. [PMID: 26862727 PMCID: PMC4891107 DOI: 10.18632/oncotarget.7173] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/23/2016] [Indexed: 12/19/2022] Open
Abstract
Growth arrest-specific 5 (GAS5) lncRNA promotes apoptosis, and its expression is down-regulated in breast cancer. GAS5 lncRNA is a decoy of glucocorticoid/related receptors; a stem-loop sequence constitutes the GAS5 hormone response element mimic (HREM), which is essential for the regulation of breast cancer cell apoptosis. This preclinical study aimed to determine if the GAS5 HREM sequence alone promotes the apoptosis of breast cancer cells. Nucleofection of hormone-sensitive and –insensitive breast cancer cell lines with a GAS5 HREM DNA oligonucleotide increased both basal and ultraviolet-C-induced apoptosis, and decreased culture viability and clonogenic growth, similar to GAS5 lncRNA. The HREM oligonucleotide demonstrated similar sequence specificity to the native HREM for its functional activity and had no effect on endogenous GAS5 lncRNA levels. Certain chemically modified HREM oligonucleotides, notably DNA and RNA phosphorothioates, retained pro-apoptotic. activity. Crucially the HREM oligonucleotide could overcome apoptosis resistance secondary to deficient endogenous GAS5 lncRNA levels. Thus, the GAS5 lncRNA HREM sequence alone is sufficient to induce apoptosis in breast cancer cells, including triple-negative breast cancer cells. These findings further suggest that emerging knowledge of structure/function relationships in the field of lncRNA biology can be exploited for the development of entirely novel, oligonucleotide mimic-based, cancer therapies.
Collapse
Affiliation(s)
- Mark R Pickard
- Apoptosis Research Group, School of Life Sciences, Keele University, Keele ST5 5BG, United Kingdom
| | - Gwyn T Williams
- Apoptosis Research Group, School of Life Sciences, Keele University, Keele ST5 5BG, United Kingdom
| |
Collapse
|
171
|
Petrov AI, Kay SJE, Kalvari I, Howe KL, Gray KA, Bruford EA, Kersey PJ, Cochrane G, Finn RD, Bateman A, Kozomara A, Griffiths-Jones S, Frankish A, Zwieb CW, Lau BY, Williams KP, Chan PP, Lowe TM, Cannone JJ, Gutell R, Machnicka MA, Bujnicki JM, Yoshihama M, Kenmochi N, Chai B, Cole JR, Szymanski M, Karlowski WM, Wood V, Huala E, Berardini TZ, Zhao Y, Chen R, Zhu W, Paraskevopoulou MD, Vlachos IS, Hatzigeorgiou AG, Ma L, Zhang Z, Puetz J, Stadler PF, McDonald D, Basu S, Fey P, Engel SR, Cherry JM, Volders PJ, Mestdagh P, Wower J, Clark MB, Quek XC, Dinger ME. RNAcentral: a comprehensive database of non-coding RNA sequences. Nucleic Acids Res 2017; 45:D128-D134. [PMID: 27794554 PMCID: PMC5210518 DOI: 10.1093/nar/gkw1008] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022] Open
Abstract
RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. The website has been subject to continuous improvements focusing on text and sequence similarity searches as well as genome browsing functionality. All RNAcentral data is provided for free and is available for browsing, bulk downloads, and programmatic access at http://rnacentral.org/.
Collapse
|
172
|
Ziegler C, Kretz M. The More the Merrier-Complexity in Long Non-Coding RNA Loci. Front Endocrinol (Lausanne) 2017; 8:90. [PMID: 28487673 PMCID: PMC5403818 DOI: 10.3389/fendo.2017.00090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Christian Ziegler
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Markus Kretz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
- *Correspondence: Markus Kretz,
| |
Collapse
|
173
|
Xue D, Zhou C, Lu H, Xu R, Xu X, He X. LncRNA GAS5 inhibits proliferation and progression of prostate cancer by targeting miR-103 through AKT/mTOR signaling pathway. Tumour Biol 2016; 37:16187–16197. [PMID: 27743383 DOI: 10.1007/s13277-016-5429-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/23/2016] [Indexed: 12/31/2022] Open
Abstract
In prior research, evidence has been found for a relation between low exposure of long non-coding RNAs (lncRNAs) and prostate tumor genesis. This study aims to clarify the underlying mechanisms of lncRNA GAS5 in prostate cancer (PCa). In total, 118 pairs of PCa tissues and matched adjacent non-tumor tissues were collected. Additionally, lncRNA GAS5 exposure levels were determined using RT-PCR and in situ hybridization. In addition, dual-luciferase report assay was performed to verify the target effect of lncRNA GAS5 on miR-103. The exposure levels of the proteins related to the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) axis, including AKT, mTOR, and S6K1, were measured by western blot PC3 cells infected with lncRNA GAS5 mimic; lncRNA GAS5 siRNA; or a combination of lncRNA and miR-103. The proliferation, invasion, and migration ability of PC3 cells after being infected were tested by MTT assay, wound healing assay, and transwell assays. Finally, nude mouse xenograft models were used to measure lncRNA GAS5 effects on prostate tumor growth in vivo. The lncRNA GAS5 levels were reduced significantly in the PCa tissues and cell lines (P < 0.05). A low exposure of lncRNA GAS5 caused AKT/mTOR signaling pathway activation in PC3 cells (P < 0.05). In addition, over-exposure of lncRNA GAS5 was proven to significantly decelerate PCa cell progression in vitro and tumor growth in vivo through inactivating the AKT/mTOR signaling pathway (P < 0.05). This study proves that lncRNA GAS5 plays a significant role in the decelerating PCa development via mediating the AKT/mTOR signaling pathway through targeting miR-103.
Collapse
Affiliation(s)
- Dong Xue
- Department of Urology, Third Affiliated Hospital, Suzhou University, No. 185 Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Cuixing Zhou
- Department of Urology, Third Affiliated Hospital, Suzhou University, No. 185 Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Hao Lu
- Department of Urology, Third Affiliated Hospital, Suzhou University, No. 185 Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Renfang Xu
- Department of Urology, Third Affiliated Hospital, Suzhou University, No. 185 Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Xianlin Xu
- Department of Urology, Third Affiliated Hospital, Suzhou University, No. 185 Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Xiaozhou He
- Department of Urology, Third Affiliated Hospital, Suzhou University, No. 185 Juqian Street, Changzhou, Jiangsu, 213003, China.
| |
Collapse
|
174
|
Hansji H, Leung EY, Baguley BC, Finlay GJ, Cameron-Smith D, Figueiredo VC, Askarian-Amiri ME. ZFAS1: a long noncoding RNA associated with ribosomes in breast cancer cells. Biol Direct 2016; 11:62. [PMID: 27871336 PMCID: PMC5117590 DOI: 10.1186/s13062-016-0165-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022] Open
Abstract
Background Most of the eukaryotic genome is transcribed, yielding a complex network of transcripts including thousands of lncRNAs that generally lack protein coding potential. However, only a small percentage of these molecules has been functionally characterised, and discoveries of specific functions demonstrate layers of complexity. A large percentage of lncRNAs is located in the cytoplasm, associated with ribosomes but the function of the majority of these transcripts is unclear. The current study analyses putative mechanisms of action of the lncRNA species member ZFAS1 that was initially discovered by microarray analysis of murine tissues undergoing mammary gland development. As developmental genes are often deregulated in cancer, here we have studied its function in breast cancer cell lines. Results Using human breast cancer cell lines, ZFAS1 was found to be expressed in all cell lines tested, albeit at different levels of abundance. Following subcellular fractionation, human ZFAS1 was found in both nucleus and cytoplasm (as is the mouse orthologue) in an isoform-independent manner. Sucrose gradients based on velocity sedimentation were utilised to separate the different components of total cell lysate, and surprisingly ZFAS1 was primarily co-localised with light polysomes. Further investigation into ribosome association through subunit dissociation studies showed that ZFAS1 was predominantly associated with the 40S small ribosomal subunit. The expression levels of ZFAS1 and of mRNAs encoding several ribosomal proteins that have roles in ribosome assembly, production and maturation were tightly correlated. ZFAS1 knockdown significantly reduced RPS6 phosphorylation. Conclusion A large number of lncRNAs associate with ribosomes but the function of the majority of these lncRNAs has not been elucidated. The association of the lncRNA ZFAS1 with a subpopulation of ribosomes and the correlation with expression of mRNAs for ribosomal proteins suggest a ribosome-interacting mechanism pertaining to their assembly or biosynthetic activity. ZFAS1 may represent a new class of lncRNAs which associates with ribosomes to regulate their function. Reviewers This article was reviewed by Christine Vande Velde, Nicola Aceto and Haruhiko Siomi. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0165-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Herah Hansji
- Auckland Cancer Society Research Centre, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Euphemia Y Leung
- Auckland Cancer Society Research Centre, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Graeme J Finlay
- Auckland Cancer Society Research Centre, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - David Cameron-Smith
- The Liggins Institute, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Vandre C Figueiredo
- The Liggins Institute, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Marjan E Askarian-Amiri
- Auckland Cancer Society Research Centre, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand. .,Department of Molecular Medicine and Pathology, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.
| |
Collapse
|
175
|
Extracellular Signal-Regulated Kinase 2 and CHOP Restrict the Expression of the Growth Arrest-Specific p20K Lipocalin Gene to G0. Mol Cell Biol 2016; 36:2890-2902. [PMID: 27601586 DOI: 10.1128/mcb.00338-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022] Open
Abstract
The activation of the growth arrest-specific (gas) p20K gene depends on the interaction of C/EBPβ with two elements of a 48-bp promoter region termed the quiescence-responsive unit (QRU). Here we identify extracellular signal-related kinase 2 (ERK2) as a transcriptional repressor of the p20K QRU in cycling chicken embryo fibroblasts (CEF). ERK2 binds to repeated GAAAG sequences overlapping the C/EBPβ sites of the QRU. The recruitment of ERK2 and C/EBPβ is mutually exclusive and dictates the expression of p20K. C/EBP homologous protein (CHOP) was associated with C/EBPβ under conditions promoting endoplasmic reticulum (ER) stress and, to a lesser extent, in cycling CEF but was not detectable when C/EBPβ was immunoprecipitated from contact-inhibited cells. During ER stress, overexpression of CHOP inhibited p20K, while its downregulation promoted p20K, indicating that CHOP is also a potent inhibitor of p20K. Transcriptome analyses revealed that hypoxia-responsive genes are strongly induced in contact-inhibited but not serum-starved CEF, and elevated levels of nitroreductase activity, a marker of hypoxia, were detected at confluence. Conditions of hypoxia (2% O2) induced growth arrest in subconfluent CEF and markedly stimulated p20K expression, suggesting that the control of proliferation and gas gene expression is closely linked to limiting oxygen concentrations associated with high cell densities.
Collapse
|
176
|
Chen WK, Yu XH, Yang W, Wang C, He WS, Yan YG, Zhang J, Wang WJ. lncRNAs: novel players in intervertebral disc degeneration and osteoarthritis. Cell Prolif 2016; 50. [PMID: 27859817 PMCID: PMC6529103 DOI: 10.1111/cpr.12313] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/23/2016] [Indexed: 12/29/2022] Open
Abstract
The term long non‐coding RNA (lncRNA) refers to a group of RNAs with length more than 200 nucleotides, limited protein‐coding potential, and having widespread biological functions, including regulation of transcriptional patterns and protein activity, formation of endogenous small interfering RNAs (siRNAs) and natural microRNA (miRNA) sponges. Intervertebral disc degeneration (IDD) and osteoarthritis (OA) are the most common chronic, prevalent and age‐related degenerative musculoskeletal disorders. Numbers of lncRNAs are differentially expressed in human degenerative nucleus pulposus tissue and OA cartilage. Moreover, some lncRNAs have been shown to be involved in multiple pathological processes during OA, including extracellular matrix (ECM) degradation, inflammatory responses, apoptosis and angiogenesis. In this review, we summarize current knowledge concerning lncRNAs, from their biogenesis, classification and biological functions to molecular mechanisms and therapeutic potential in IDD and OA.
Collapse
Affiliation(s)
- Wen-Kang Chen
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Xiao-Hua Yu
- Medical Research Center, University of South China, Hengyang, Hunan, China
| | - Wei Yang
- Department of Hand and Micro-surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Cheng Wang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Wen-Si He
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yi-Guo Yan
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Jian Zhang
- Department of Hand and Micro-surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Wen-Jun Wang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| |
Collapse
|
177
|
Growth-arrest-specific 7C protein inhibits tumor metastasis via the N-WASP/FAK/F-actin and hnRNP U/β-TrCP/β-catenin pathways in lung cancer. Oncotarget 2016; 6:44207-21. [PMID: 26506240 PMCID: PMC4792552 DOI: 10.18632/oncotarget.6229] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 10/17/2015] [Indexed: 11/25/2022] Open
Abstract
Growth-arrest-specific 7 (GAS7) belongs to a group of adaptor proteins that coordinate the actin cytoskeleton. Among human GAS7 isoforms, only GAS7C possesses a Src homology 3 domain. We report here that GAS7C acts as a migration suppressor and can serve as a prognostic biomarker in lung cancer. GAS7C overexpression reduces lung cancer migration, whereas GAS7C knockdown enhances cancer cell migration. Importantly, ectopically overexpressed GAS7C binds tightly with N-WASP thus inactivates the fibronectin/integrin/FAK pathway, which in turn leads to the suppression of F-actin dynamics. In addition, overexpression of GAS7C sequesters hnRNP U and thus decreases the level of β-catenin protein via the β-TrCP ubiquitin-degradation pathway. The anti-metastatic effect of GAS7C overexpression was also confirmed using lung cancer xenografts. Our clinical data indicated that 23.6% (25/106) of lung cancer patients showed low expression of GAS7C mRNA which correlated with a poorer overall survival. In addition, low GAS7C mRNA expression was detected in 60.0% of metastatic lung cancer patients, indicating an association between low GAS7C expression and cancer progression. A significant inverse correlation between mRNA expression and promoter hypermethylation was also found, which suggests that the low level of GAS7C expression was partly due to promoter hypermethylation. Our results provide novel evidence that low GAS7C correlates with poor prognosis and promotes metastasis in lung cancer. Low GAS7C increases cancer cell motility by promoting N-WASP/FAK/F-actin cytoskeleton dynamics. It also enhances β-catenin stability via hnRNP U/β-TrCP complex formation. Therefore, GAS7C acts as a metastasis suppressor in lung cancer.
Collapse
|
178
|
The Tetraodon nigroviridis reference transcriptome: developmental transition, length retention and microsynteny of long non-coding RNAs in a compact vertebrate genome. Sci Rep 2016; 6:33210. [PMID: 27628538 PMCID: PMC5024134 DOI: 10.1038/srep33210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/28/2016] [Indexed: 01/03/2023] Open
Abstract
Pufferfish such as fugu and tetraodon carry the smallest genomes among all vertebrates and are ideal for studying genome evolution. However, comparative genomics using these species is hindered by the poor annotation of their genomes. We performed RNA sequencing during key stages of maternal to zygotic transition of Tetraodon nigroviridis and report its first developmental transcriptome. We assembled 61,033 transcripts (23,837 loci) representing 80% of the annotated gene models and 3816 novel coding transcripts from 2667 loci. We demonstrate the similarities of gene expression profiles between pufferfish and zebrafish during maternal to zygotic transition and annotated 1120 long non-coding RNAs (lncRNAs) many of which differentially expressed during development. The promoters for 60% of the assembled transcripts result validated by CAGE-seq. Despite the extreme compaction of the tetraodon genome and the dramatic loss of transposons, the length of lncRNA exons remain comparable to that of other vertebrates and a small set of lncRNAs appears enriched for transposable elements suggesting a selective pressure acting on lncRNAs length and composition. Finally, a set of lncRNAs are microsyntenic between teleost and vertebrates, which indicates potential regulatory interactions between lncRNAs and their flanking coding genes. Our work provides a fundamental molecular resource for vertebrate comparative genomics and embryogenesis studies.
Collapse
|
179
|
Liang W, Lv T, Shi X, Liu H, Zhu Q, Zeng J, Yang W, Yin J, Song Y. Circulating long noncoding RNA GAS5 is a novel biomarker for the diagnosis of nonsmall cell lung cancer. Medicine (Baltimore) 2016; 95:e4608. [PMID: 27631209 PMCID: PMC5402552 DOI: 10.1097/md.0000000000004608] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The recently discovered long noncoding RNAs have the potential to regulate many biological processes, which are aberrantly expressed in many tumor types. Our previous study showed that the long noncoding RNA-growth arrest-specific transcript 5 (GAS5) was decreased in lung cancer tissue, which contributed to the proliferation and apoptosis of nonsmall cell lung cancer (NSCLC). GAS5 was also associated with the prognosis of lung cancer patients. These results suggest that GAS5 may represent a novel prognostic indicator and a target for gene therapy in NSCLC. However, the expression and diagnosis significance of GAS5 in the plasma of NSCLC patients was unknown. The plasma samples were more readily available than the tissue samples in clinical, so we designed the study to investigate the diagnosis value of GAS5 in blood samples. In our study, 90 patients with NSCLC and 33 healthy controls were included. Blood samples were collected before surgery and therapy. We extracted the free RNA in the plasma and analyzed the expression of GAS5 with quantitative reverse transcription PCR. Suitable statistics methods were used to compare the plasma GAS5 levels of preoperative and postoperative plasma samples between the NSCLC patients and healthy controls. Receiver-operating characteristic curve analysis was used to evaluate the diagnostic sensitivity and specificity of plasma GAS5 in NSCLC. The results showed that GAS5 was detectable and stable in the plasma of NSCLC patients. Furthermore, the plasma levels of GAS5 were significantly down-regulated in NSCLC patients compared with healthy controls (P = 0.000). Moreover, GAS5 levels increased markedly on the seventh day after surgery compared with preoperative GAS5 levels in NSCLC patients (P = 0.003). GAS5 expression levels could be used to distinguish NSCLC patients from control patients with an area under the curve of 0.832 (P < 0.0001; sensitivity, 82.2%; specificity, 72.7%). The combination of the GAS5 and carcinoembryonic antigen could produce an area of 0.909 under the receiver-operating characteristic curve in distinguishing NSCLC patients from control subjects (95% confidence interval 0.857-0.962, P = 0.000). We have demonstrated that GAS5 expression was decreased in NSCLC Plasma. Plasma samples were more accessible than tissue samples in clinical; therefore, GAS5 could be an ideal biomarker for the diagnosis of NSCLC.
Collapse
Affiliation(s)
- Wenjun Liang
- Department of Respiratory Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing
| | - Xuefei Shi
- Department of Respiratory Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing
| | - Hongbing Liu
- Department of Respiratory Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing
| | - Qingqing Zhu
- Department of Respiratory Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing
| | - Junli Zeng
- Department of Respiratory Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing
- Southern Medical University, Guangzhou, China
| | - Wen Yang
- Department of Respiratory Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing
| | - Jie Yin
- Department of Respiratory Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing
- Correspondence: Yong Song, Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China (e-mail: ); Co-correspondence: Jie Yin, Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China (e-mail: )
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing
- Correspondence: Yong Song, Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China (e-mail: ); Co-correspondence: Jie Yin, Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China (e-mail: )
| |
Collapse
|
180
|
Abstract
An individual's risk of developing a common disease typically depends on an interaction of genetic and environmental factors. Epigenetic research is uncovering novel ways through which environmental factors such as diet, air pollution, and chemical exposure can affect our genes. DNA methylation and histone modifications are the most commonly studied epigenetic mechanisms. The role of long non-coding RNAs (lncRNAs) in epigenetic processes has been more recently highlighted. LncRNAs are defined as transcribed RNA molecules greater than 200 nucleotides in length with little or no protein-coding capability. While few functional lncRNAs have been well characterized to date, they have been demonstrated to control gene regulation at every level, including transcriptional gene silencing via regulation of the chromatin structure and DNA methylation. This review aims to provide a general overview of lncRNA function with a focus on their role as key regulators of health and disease and as biomarkers of environmental exposure.
Collapse
Affiliation(s)
- Oskar Karlsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, 171 76, Stockholm, Sweden.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
181
|
Mouse models of Down syndrome: gene content and consequences. Mamm Genome 2016; 27:538-555. [PMID: 27538963 DOI: 10.1007/s00335-016-9661-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/27/2016] [Indexed: 12/25/2022]
Abstract
Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), is challenging to model in mice. Not only is it a contiguous gene syndrome spanning 35 Mb of the long arm of Hsa21, but orthologs of Hsa21 genes map to segments of three mouse chromosomes, Mmu16, Mmu17, and Mmu10. The Ts65Dn was the first viable segmental trisomy mouse model for DS; it is a partial trisomy currently popular in preclinical evaluations of drugs for cognition in DS. Limitations of the Ts65Dn are as follows: (i) it is trisomic for 125 human protein-coding orthologs, but only 90 of these are Hsa21 orthologs and (ii) it lacks trisomy for ~75 Hsa21 orthologs. In recent years, several additional mouse models of DS have been generated, each trisomic for a different subset of Hsa21 genes or their orthologs. To best exploit these models and interpret the results obtained with them, prior to proposing clinical trials, an understanding of their trisomic gene content, relative to full trisomy 21, is necessary. Here we first review the functional information on Hsa21 protein-coding genes and the more recent annotation of a large number of functional RNA genes. We then discuss the conservation and genomic distribution of Hsa21 orthologs in the mouse genome and the distribution of mouse-specific genes. Lastly, we consider the strengths and weaknesses of mouse models of DS based on the number and nature of the Hsa21 orthologs that are, and are not, trisomic in each, and discuss their validity for use in preclinical evaluations of drug responses.
Collapse
|
182
|
Chen J, Miao Z, Xue B, Shan Y, Weng G, Shen B. Long Non-coding RNAs in Urologic Malignancies: Functional Roles and Clinical Translation. J Cancer 2016; 7:1842-1855. [PMID: 27698924 PMCID: PMC5039368 DOI: 10.7150/jca.15876] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022] Open
Abstract
Early diagnosis and surveillance for metastasis and recurrences are critical issues of urologic cancer. Deregulation of long non-coding RNAs (lncRNAs) has been implicated in urologic malignancies and represents potential markers or therapeutic targets. However, the utility of lncRNA as biomarkers appears to be overstated due to heterogeneous or irreproducible results from different studies. Thus, a critical and cautious review on the biomarker potential of lncRNAs is needed. This review provides an update on new findings of lncRNA-based markers for urologic cancer. The diverse mechanisms and associated examples of lncRNAs involved during the carcinogenesis of prostate cancer, bladder cancer and renal cancer were discussed in a more balanced and critical manner, as were the suitability of lncRNAs as diagnostic or prognostics markers.
Collapse
Affiliation(s)
- Jiajia Chen
- Center for Systems Biology, Soochow University, Suzhou 215006, China; School of Chemistry, Biological Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Zhijun Miao
- Center for Systems Biology, Soochow University, Suzhou 215006, China; Suzhou Dushuhu Hospital, Clinic Center, Soochow University, Suzhou 215123, China
| | - Boxin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yuxi Shan
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Guobin Weng
- Ningbo Urologic and Nephrotic Hospital, Ningbo 315000, China
| | - Bairong Shen
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| |
Collapse
|
183
|
Abstract
Despite great progress in research and treatment options, lung cancer remains the leading cause of cancer-related deaths worldwide. Oncogenic driver mutations in protein-encoding genes were defined and allow for personalized therapies based on genetic diagnoses. Nonetheless, diagnosis of lung cancer mostly occurs at late stages, and chronic treatment is followed by a fast onset of chemoresistance. Hence, there is an urgent need for reliable biomarkers and alternative treatment options. With the era of whole genome and transcriptome sequencing technologies, long noncoding RNAs emerged as a novel class of versatile, functional RNA molecules. Although for most of them the mechanism of action remains to be defined, accumulating evidence confirms their involvement in various aspects of lung tumorigenesis. They are functional on the epigenetic, transcriptional, and posttranscriptional level and are regulators of pathophysiological key pathways including cell growth, apoptosis, and metastasis. Long noncoding RNAs are gaining increasing attention as potential biomarkers and a novel class of druggable molecules. It has become clear that we are only beginning to understand the complexity of tumorigenic processes. The clinical integration of long noncoding RNAs in terms of prognostic and predictive biomarker signatures and additional cancer targets could provide a chance to increase the therapeutic benefit. Here, we review the current knowledge about the expression, regulation, biological function, and clinical relevance of long noncoding RNAs in lung cancer.
Collapse
Affiliation(s)
- Anna Roth
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ) and Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 280 (B150), 69120, Heidelberg, Germany
| | - Sven Diederichs
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ) and Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 280 (B150), 69120, Heidelberg, Germany.
| |
Collapse
|
184
|
Nitsche A, Stadler PF. Evolutionary clues in lncRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27436689 DOI: 10.1002/wrna.1376] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022]
Abstract
The diversity of long non-coding RNAs (lncRNAs) in the human transcriptome is in stark contrast to the sparse exploration of their functions concomitant with their conservation and evolution. The pervasive transcription of the largely non-coding human genome makes the evolutionary age and conservation patterns of lncRNAs to a topic of interest. Yet it is a fairly unexplored field and not that easy to determine as for protein-coding genes. Although there are a few experimentally studied cases, which are conserved at the sequence level, most lncRNAs exhibit weak or untraceable primary sequence conservation. Recent studies shed light on the interspecies conservation of secondary structures among lncRNA homologs by using diverse computational methods. This highlights the importance of structure on functionality of lncRNAs as opposed to the poor impact of primary sequence changes. Further clues in the evolution of lncRNAs are given by selective constraints on non-coding gene structures (e.g., promoters or splice sites) as well as the conservation of prevalent spatio-temporal expression patterns. However, a rapid evolutionary turnover is observable throughout the heterogeneous group of lncRNAs. This still gives rise to questions about its functional meaning. WIREs RNA 2017, 8:e1376. doi: 10.1002/wrna.1376 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Anne Nitsche
- Bioinformatics Group, Department of Computer Science, University Leipzig, Leipzig, Germany.,Institute de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Cedex, France
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, University Leipzig, Leipzig, Germany.,Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology - IZI, Leipzig, Germany.,Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark.,Department of Theoretical Chemistry, University of Vienna, Wien, Austria.,Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
185
|
Hewson C, Capraro D, Burdach J, Whitaker N, Morris KV. Extracellular vesicle associated long non-coding RNAs functionally enhance cell viability. Noncoding RNA Res 2016; 1:3-11. [PMID: 28090596 PMCID: PMC5228635 DOI: 10.1016/j.ncrna.2016.06.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cells communicate with one another to create microenvironments and share resources. One avenue by which cells communicate is through the action of exosomes. Exosomes are extracellular vesicles that are released by one cell and taken up by neighbouring cells. But how exosomes instigate communication between cells has remained largely unknown. We present evidence here that particular long non-coding RNA molecules are preferentially packaged into exosomes. We also find that a specific class of these exosome associated non-coding RNAs functionally modulate cell viability by direct interactions with l-lactate dehydrogenase B (LDHB), high-mobility group protein 17 (HMG-17), and CSF2RB, proteins involved in metabolism, nucleosomal architecture and cell signalling respectively. Knowledge of this endogenous cell to cell pathway, those proteins interacting with exosome associated non-coding transcripts and their interacting domains, could lead to a better understanding of not only cell to cell interactions but also the development of exosome targeted approaches in patient specific cell-based therapies.
Collapse
Affiliation(s)
- Chris Hewson
- The University of New South Wales, Biotechnology and Biomedical Sciences, Sydney NSW 2052 Australia
| | - David Capraro
- The University of New South Wales, Biotechnology and Biomedical Sciences, Sydney NSW 2052 Australia
| | - Jon Burdach
- The University of New South Wales, Biotechnology and Biomedical Sciences, Sydney NSW 2052 Australia
| | - Noel Whitaker
- The University of New South Wales, Biotechnology and Biomedical Sciences, Sydney NSW 2052 Australia
| | - Kevin V Morris
- The University of New South Wales, Biotechnology and Biomedical Sciences, Sydney NSW 2052 Australia; Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, United States, 92037; City of Hope - Beckman Research Institute, Center for Gene Therapy, Duarte, CA, 91010, United States
| |
Collapse
|
186
|
Lucafò M, Bravin V, Tommasini A, Martelossi S, Rabach I, Ventura A, Decorti G, De Iudicibus S. Differential expression of GAS5 in rapamycin-induced reversion of glucocorticoid resistance. Clin Exp Pharmacol Physiol 2016; 43:602-605. [PMID: 27001230 DOI: 10.1111/1440-1681.12572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 01/24/2023]
Abstract
This study evaluates the association between the long noncoding RNA GAS5 levels and the anti-proliferative effect of the glucocorticoid (GC) methylprednisolone (MP) alone and in combination with rapamycin in peripheral blood mononuclear cells (PBMCs) obtained from healthy donors. The effect of MP, rapamycin, and MP plus rapamycin was determined in 17 healthy donors by labelling metabolically active cells with [methyl-3H] thymidine and the expression levels of GAS5 gene were evaluated by real-time RT-PCR TaqMan analysis. We confirmed a role for GAS5 in modulating GC response: poor responders presented higher levels of GAS5 in comparison with good responders. Interestingly, when PBMCs were treated with the combination of rapamycin plus MP, the high levels of GAS5 observed for each drug in the MP poor responders group decreased in comparison with rapamycin (P value = 0.0134) or MP alone (P value = 0.0193). GAS5 is involved in GC resistance and co-treatment of rapamycin with GCs restores GC effectiveness in poor responders through the downregulation of the long noncoding RNA. GAS5 could be considered a biomarker to personalize therapy and a novel therapeutic target useful for the development of new pharmacological approaches to restore GC sensitivity.
Collapse
Affiliation(s)
- Marianna Lucafò
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Vanessa Bravin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alberto Tommasini
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Stefano Martelossi
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Ingrid Rabach
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Alessandro Ventura
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giuliana Decorti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Sara De Iudicibus
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
187
|
Carlevaro-Fita J, Rahim A, Guigó R, Vardy LA, Johnson R. Cytoplasmic long noncoding RNAs are frequently bound to and degraded at ribosomes in human cells. RNA (NEW YORK, N.Y.) 2016; 22:867-82. [PMID: 27090285 PMCID: PMC4878613 DOI: 10.1261/rna.053561.115] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 03/01/2016] [Indexed: 05/03/2023]
Abstract
Recent footprinting studies have made the surprising observation that long noncoding RNAs (lncRNAs) physically interact with ribosomes. However, these findings remain controversial, and the overall proportion of cytoplasmic lncRNAs involved is unknown. Here we make a global, absolute estimate of the cytoplasmic and ribosome-associated population of stringently filtered lncRNAs in a human cell line using polysome profiling coupled to spike-in normalized microarray analysis. Fifty-four percent of expressed lncRNAs are detected in the cytoplasm. The majority of these (70%) have >50% of their cytoplasmic copies associated with polysomal fractions. These interactions are lost upon disruption of ribosomes by puromycin. Polysomal lncRNAs are distinguished by a number of 5' mRNA-like features, including capping and 5'UTR length. On the other hand, nonpolysomal "free cytoplasmic" lncRNAs have more conserved promoters and a wider range of expression across cell types. Exons of polysomal lncRNAs are depleted of endogenous retroviral insertions, suggesting a role for repetitive elements in lncRNA localization. Finally, we show that blocking of ribosomal elongation results in stabilization of many associated lncRNAs. Together these findings suggest that the ribosome is the default destination for the majority of cytoplasmic long noncoding RNAs and may play a role in their degradation.
Collapse
Affiliation(s)
- Joana Carlevaro-Fita
- Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Anisa Rahim
- A*STAR Institute of Medical Biology, Singapore 138648, Singapore
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Leah A Vardy
- A*STAR Institute of Medical Biology, Singapore 138648, Singapore School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Rory Johnson
- Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| |
Collapse
|
188
|
C/D-box snoRNA-derived RNA production is associated with malignant transformation and metastatic progression in prostate cancer. Oncotarget 2016; 6:17430-44. [PMID: 26041889 PMCID: PMC4627319 DOI: 10.18632/oncotarget.4172] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/02/2015] [Indexed: 12/14/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are dynamically regulated in different tissues and affected in disease. SnoRNAs are processed further to stable smaller RNAs. We sequenced the small RNA transcriptome of prostate cancer (PCa) at different PCa stages and generated a quantified catalogue of 3927 small non-coding RNAs (sncRNAs) detected in normal and malignant prostate tissue. From these, only 1524 are microRNAs. The remaining 2401 sncRNAs represent stable sncRNAs species that originate from snoRNA, tRNA and other sncRNAs. We show that snoRNA-derived RNAs (sdRNAs) display stronger differential expression than microRNAs and are massively upregulated in PCa. SdRNAs account for at least one third of all small RNAs with expression changes in tumor compared to normal adjacent tissue. Multiple sdRNAs can be produced from one snoRNA in a manner related to the conservation of structural snoRNA motifs. Q-PCR analysis in an independent patient cohort (n=106) confirmed the processing patterns of selected snoRNAs (SNORD44, SNORD78, SNORD74 and SNORD81) and the cancer-associated up-regulation of their sdRNAs observed in sequencing data. Importantly, expression of SNORD78 and its sdRNA is significantly higher in a subset of patients that developed metastatic disease demonstrating that snoRNA and sdRNAs may present as novel diagnostic and/or prognostic biomarkers for PCa.
Collapse
|
189
|
Karousis ED, Nasif S, Mühlemann O. Nonsense-mediated mRNA decay: novel mechanistic insights and biological impact. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:661-82. [PMID: 27173476 PMCID: PMC6680220 DOI: 10.1002/wrna.1357] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/19/2022]
Abstract
Nonsense‐mediated mRNA decay (NMD) was originally coined to define a quality control mechanism that targets mRNAs with truncated open reading frames due to the presence of a premature termination codon. Meanwhile, it became clear that NMD has a much broader impact on gene expression and additional biological functions beyond quality control are continuously being discovered. We review here the current views regarding the molecular mechanisms of NMD, according to which NMD ensues on mRNAs that fail to terminate translation properly, and point out the gaps in our understanding. We further summarize the recent literature on an ever‐rising spectrum of biological processes in which NMD appears to be involved, including homeostatic control of gene expression, development and differentiation, as well as viral defense. WIREs RNA 2016, 7:661–682. doi: 10.1002/wrna.1357 This article is categorized under:
RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability
Collapse
Affiliation(s)
| | - Sofia Nasif
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
190
|
Ono M, Yamada K, Bensaddek D, Afzal V, Biddlestone J, Ortmann B, Mudie S, Boivin V, Scott MS, Rocha S, Lamond AI. Enhanced snoMEN Vectors Facilitate Establishment of GFP-HIF-1α Protein Replacement Human Cell Lines. PLoS One 2016; 11:e0154759. [PMID: 27128805 PMCID: PMC4851398 DOI: 10.1371/journal.pone.0154759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/19/2016] [Indexed: 11/18/2022] Open
Abstract
The snoMEN (snoRNA Modulator of gene ExpressioN) vector technology was developed from a human box C/D snoRNA, HBII-180C, which contains an internal sequence that can be manipulated to make it complementary to RNA targets, allowing knock-down of targeted genes. Here we have screened additional human nucleolar snoRNAs and assessed their application for gene specific knock-downs to improve the efficiency of snoMEN vectors. We identify and characterise a new snoMEN vector, termed 47snoMEN, that is derived from box C/D snoRNA U47, demonstrating its use for knock-down of both endogenous cellular proteins and G/YFP-fusion proteins. Using multiplex 47snoMEM vectors that co-express multiple 47snoMEN in a single transcript, each of which can target different sites in the same mRNA, we document >3-fold increase in knock-down efficiency when compared with the original HBII-180C based snoMEN. The multiplex 47snoMEM vector allowed the construction of human protein replacement cell lines with improved efficiency, including the establishment of novel GFP–HIF-1α replacement cells. Quantitative mass spectrometry analysis confirmed the enhanced efficiency and specificity of protein replacement using the 47snoMEN-PR vectors. The 47snoMEN vectors expand the potential applications for snoMEN technology in gene expression studies, target validation and gene therapy.
Collapse
Affiliation(s)
- Motoharu Ono
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kayo Yamada
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Dalila Bensaddek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Vackar Afzal
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - John Biddlestone
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Brian Ortmann
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sharon Mudie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Vincent Boivin
- Department of Biochemistry and RNA Group, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Michelle S. Scott
- Department of Biochemistry and RNA Group, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Angus I. Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
191
|
Seles M, Hutterer GC, Kiesslich T, Pummer K, Berindan-Neagoe I, Perakis S, Schwarzenbacher D, Stotz M, Gerger A, Pichler M. Current Insights into Long Non-Coding RNAs in Renal Cell Carcinoma. Int J Mol Sci 2016; 17:573. [PMID: 27092491 PMCID: PMC4849029 DOI: 10.3390/ijms17040573] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 02/07/2023] Open
Abstract
Renal cell carcinoma (RCC) represents a deadly disease with rising mortality despite intensive therapeutic efforts. It comprises several subtypes in terms of distinct histopathological features and different clinical presentations. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts in the genome which vary in expression levels and length and perform diverse functions. They are involved in the inititation, evolution and progression of primary cancer, as well as in the development and spread of metastases. Recently, several lncRNAs were described in RCC. This review emphasises the rising importance of lncRNAs in RCC. Moreover, it provides an outlook on their therapeutic potential in the future.
Collapse
Affiliation(s)
- Maximilian Seles
- Department of Urology, Medical University of Graz, A-8036 Graz, Austria.
| | - Georg C Hutterer
- Department of Urology, Medical University of Graz, A-8036 Graz, Austria.
| | - Tobias Kiesslich
- Department of Internal Medicine I, Salzburger Landeskliniken (SALK), Paracelsus Medical University, A-5020 Salzburg, Austria.
- Laboratory for Tumour Biology and Experimental Therapies, Institute of Physiology and Pathophysiology, Paracelsus Medical University, A-5020 Salzburg, Austria.
| | - Karl Pummer
- Department of Urology, Medical University of Graz, A-8036 Graz, Austria.
| | - Ioana Berindan-Neagoe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
- Research Center of Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
- Department of Experimental Pathology, The Oncology Institute Ion Chiricuta, 400015 Cluj-Napoca, Romania.
| | - Samantha Perakis
- Institute of Human Genetics, Medical University of Graz, A-8036 Graz, Austria.
| | - Daniela Schwarzenbacher
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria.
| | - Michael Stotz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria.
| | - Armin Gerger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria.
- Center for Biomarker Research in Medicine, Medical University of Graz, A-8036 Graz, Austria.
| | - Martin Pichler
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria.
| |
Collapse
|
192
|
Chen L, Yang H, Xiao Y, Tang X, Li Y, Han Q, Fu J, Yang Y, Zhu Y. Lentiviral-mediated overexpression of long non-coding RNA GAS5 reduces invasion by mediating MMP2 expression and activity in human melanoma cells. Int J Oncol 2016; 48:1509-18. [PMID: 26846479 DOI: 10.3892/ijo.2016.3377] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/07/2016] [Indexed: 11/05/2022] Open
Abstract
The present study evaluated the effects of long non-coding RNA GAS5 on the migration and invasion of melanoma cells. Using the SK-Mel‑110 melanoma cell line, we stably expressed GAS5, visualized the distribution of GAS5 by RNA fluorescence in situ hybridization (FISH) and examined changes in cell migration and invasion with Transwell assays. In GAS5 overexpressed SK-Mel‑110 cells, migrated and invaded cells decreased by 65.3 and 55.6%, respectively. Moreover, the MMP2 protein level, and its activity was downregulated by 67.9 and 15.8%, respectively. Overexpressing lncRNA GAS5 inhibited the migration and invasion ability of melanoma SK-Mel‑110 cells, partially by decreasing the MMP2 expression and its activity. This study is the first to reveal a potential relationship between lncRNA GAS5 and the migration and invasion of melanoma.
Collapse
Affiliation(s)
- Long Chen
- Department of Biochemistry and Molecular Biology of Kunming Medical University, Yunnan, P.R. China
| | - Huixin Yang
- Department of Biochemistry and Molecular Biology of Kunming Medical University, Yunnan, P.R. China
| | - Yanbin Xiao
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan, P.R. China
| | - Xiaoxia Tang
- Department of Pharmacy, The Second Affiliated Hospital of Kunming Medical University, Yunnan, P.R. China
| | - Yuqian Li
- Department of Biochemistry and Molecular Biology of Kunming Medical University, Yunnan, P.R. China
| | - Qiaoqiao Han
- Department of Biochemistry and Molecular Biology of Kunming Medical University, Yunnan, P.R. China
| | - Junping Fu
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan, P.R. China
| | - Yuye Yang
- Department of Biochemistry and Molecular Biology of Kunming Medical University, Yunnan, P.R. China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology of Kunming Medical University, Yunnan, P.R. China
| |
Collapse
|
193
|
Chen J, Shishkin AA, Zhu X, Kadri S, Maza I, Guttman M, Hanna JH, Regev A, Garber M. Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs. Genome Biol 2016; 17:19. [PMID: 26838501 PMCID: PMC4739325 DOI: 10.1186/s13059-016-0880-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/14/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Recent advances in transcriptome sequencing have enabled the discovery of thousands of long non-coding RNAs (lncRNAs) across many species. Though several lncRNAs have been shown to play important roles in diverse biological processes, the functions and mechanisms of most lncRNAs remain unknown. Two significant obstacles lie between transcriptome sequencing and functional characterization of lncRNAs: identifying truly non-coding genes from de novo reconstructed transcriptomes, and prioritizing the hundreds of resulting putative lncRNAs for downstream experimental interrogation. RESULTS We present slncky, a lncRNA discovery tool that produces a high-quality set of lncRNAs from RNA-sequencing data and further uses evolutionary constraint to prioritize lncRNAs that are likely to be functionally important. Our automated filtering pipeline is comparable to manual curation efforts and more sensitive than previously published computational approaches. Furthermore, we developed a sensitive alignment pipeline for aligning lncRNA loci and propose new evolutionary metrics relevant for analyzing sequence and transcript evolution. Our analysis reveals that evolutionary selection acts in several distinct patterns, and uncovers two notable classes of intergenic lncRNAs: one showing strong purifying selection on RNA sequence and another where constraint is restricted to the regulation but not the sequence of the transcript. CONCLUSION Our results highlight that lncRNAs are not a homogenous class of molecules but rather a mixture of multiple functional classes with distinct biological mechanism and/or roles. Our novel comparative methods for lncRNAs reveals 233 constrained lncRNAs out of tens of thousands of currently annotated transcripts, which we make available through the slncky Evolution Browser.
Collapse
Affiliation(s)
- Jenny Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02140, USA
| | - Alexander A Shishkin
- Division of Biology and Biological Engineering, California Institute of Technology, Cambridge, MA, 02140, USA
| | - Xiaopeng Zhu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Sabah Kadri
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Itay Maza
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Cambridge, MA, 02140, USA
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02140, USA
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA. .,Program in Molecular Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
194
|
Long noncoding RNAs: new insights into non-small cell lung cancer biology, diagnosis and therapy. Med Oncol 2016; 33:18. [PMID: 26786153 DOI: 10.1007/s12032-016-0731-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/07/2016] [Indexed: 12/17/2022]
Abstract
Recent advances in tiling array and high throughput analyses revealed that at least 87.3 % of the human genome is actively transcribed, though <3 % of the human genome encodes proteins. This unexpected truth suggests that most of the transcriptome is constituted by noncoding RNA. Among them, high-resolution microarray and massively parallel sequencing analyses identified long noncoding RNAs (lncRNAs) as nonprotein-coding transcripts. lncRNAs are largely polyadenylated and >200 nucleotides in length transcripts, involved in gene expression through epigenetic and transcriptional regulation, splicing, imprinting and subcellular transport. Although lncRNAs functions are largely uncharacterized, accumulating data indicate that they are involved in fundamental biological functions. Conversely, their dysregulation has increasingly been recognized to contribute to the development and progression of several human malignancies, especially lung cancer, which represents the leading cause of cancer-related deaths worldwide. We conducted a comprehensive review of the published literature focusing on lncRNAs function and disruption in nonsmall cell lung cancer biology, also highlighting their value as biomarkers and potential therapeutic targets. lncRNAs are involved in NSCLC pathogenesis, modulating fundamental cellular processes such as proliferation, cell growth, apoptosis, migration, stem cell maintenance and epithelial to mesenchymal transition, also serving as signaling transducers, molecular decoys and scaffolds. Also, lncRNAs represent very promising biomarkers in early-stage NSCLC patients and may become particularly useful in noninvasive screening protocols. lncRNAs may be used as predictive biomarkers for chemotherapy and targeted therapies sensitivity. Furthermore, selectively targeting oncogenic lncRNAs could provide a new therapeutic tool in treating NSCLC patients. lncRNAs disruption plays a pivotal role in NSCLC development and progression. These molecules also serve as diagnostic, prognostic and predictive biomarkers. Characterization of lncRNA genes and their mechanisms of action will enable us to develop a more comprehensive clinical approach, with the final goal to benefit our patients.
Collapse
|
195
|
Audas TE, Lee S. Stressing out over long noncoding RNA. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:184-91. [PMID: 26142536 PMCID: PMC9479161 DOI: 10.1016/j.bbagrm.2015.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 12/26/2022]
Abstract
Genomic studies have revealed that humans possess far fewer protein-encoding genes than originally predicted. These over-estimates were drawn from the inherent developmental and stimuli-responsive complexity found in humans and other mammals, when compared to lower eukaryotic organisms. This left a conceptual void in many cellular networks, as a new class of functional molecules was necessary for "fine-tuning" the basic proteomic machinery. Transcriptomics analyses have determined that the vast majority of the genetic material is transcribed as noncoding RNA, suggesting that these molecules could provide the functional diversity initially sought from proteins. Indeed, as discussed in this review, long noncoding RNAs (lncRNAs), the largest family of noncoding transcripts, have emerged as common regulators of many cellular stressors; including heat shock, metabolic deprivation and DNA damage. These stimuli, while divergent in nature, share some common stress-responsive pathways, notably inhibition of cell proliferation. This role intrinsically makes stress-responsive lncRNA regulators potential tumor suppressor or proto-oncogenic genes. As the list of functional RNA molecules continues to rapidly expand it is becoming increasingly clear that the significance and functionality of this family may someday rival that of proteins. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Timothy E Audas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
196
|
Askarian-Amiri ME, Leung E, Finlay G, Baguley BC. The Regulatory Role of Long Noncoding RNAs in Cancer Drug Resistance. Methods Mol Biol 2016; 1395:207-27. [PMID: 26910076 DOI: 10.1007/978-1-4939-3347-1_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent genomic and transcriptomic analysis has revealed that the majority of the human genome is transcribed as nonprotein-coding RNA. These transcripts, known as long noncoding RNA, have structures similar to those of mRNA. Many of these transcripts are now thought to have regulatory roles in different biological pathways which provide cells with an additional layer of regulatory complexity in gene expression and proteome function in response to stimuli. A wide variety of cellular functions may thus depend on the fine-tuning of interactions between noncoding RNAs and other key molecules in cell signaling networks. Deregulation of many noncoding RNAs is thought to occur in a variety of human diseases, including neoplasia and cancer drug resistance. Here we discuss recent findings on the molecular functions of long noncoding RNAs in cellular pathways mediating resistance to anticancer drugs.
Collapse
Affiliation(s)
- Marjan E Askarian-Amiri
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand. .,Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.,Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Graeme Finlay
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.,Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
197
|
Chen X, Fan S, Song E. Noncoding RNAs: New Players in Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:1-47. [PMID: 27376730 DOI: 10.1007/978-981-10-1498-7_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The world of noncoding RNAs (ncRNAs) has gained widespread attention in recent years due to their novel and crucial potency of biological regulation. Noncoding RNAs play essential regulatory roles in a broad range of developmental processes and diseases, notably human cancers. Regulatory ncRNAs represent multiple levels of structurally and functionally distinct RNAs, including the best-known microRNAs (miRNAs), the complicated long ncRNAs (lncRNAs), and the newly identified circular RNAs (circRNAs). However, the mechanisms by which they act remain elusive. In this chapter, we will review the current knowledge of the ncRNA field, discussing the genomic context, biological functions, and mechanisms of action of miRNAs, lncRNAs, and circRNAs. We also highlight the implications of the biogenesis and gene expression dysregulation of different ncRNA subtypes in the initiation and development of human malignancies.
Collapse
Affiliation(s)
- Xueman Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China
| | - Siting Fan
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China
| | - Erwei Song
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China.
| |
Collapse
|
198
|
Decreased expression of long non-coding RNA GAS5 indicates a poor prognosis and promotes cell proliferation and invasion in hepatocellular carcinoma by regulating vimentin. Mol Med Rep 2015; 13:1541-50. [PMID: 26707238 PMCID: PMC4732840 DOI: 10.3892/mmr.2015.4716] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are key in carcinogenesis. The aim of the present study was to investigate the role of lncRNA GAS5 in HCC tissues and to define the role of growth arrest-specific 5 (GAS5) in the regulation of hepatoma cell proliferation, invasion and apoptosis. Quantitative polymerase chain reaction and in situ hybridization were performed to investigate the expression of GAS5 in tumor tissues and corresponding adjacent tissues from 50 patients with HCC. Low expression of GAS5 was significantly correlated with differentiation (P<0.010) and portal vein tumor thrombosis (P=0.001). Multivariate analysis indicated that GAS5 expression was an independent predictor for overall survival (P=0.017). Further experiments demonstrated that overexpression of GAS5 significantly suppressed the proliferation and invasion of hepatoma cells in vitro. Overexpression of GAS5 significantly promoted the apoptosis of hepatoma cells. In addition, it was demonstrated that GAS5 negatively regulates vimentin expression in vitro and in vivo. Notably, vimentin knockdown promoted GAS5-pcDNA3.1-inhibition of hepatoma cell proliferation. In conclusion, the present study suggests an important role of GAS5 in the molecular etiology of HCC and suggests the potential application of GAS5 in HCC therapy.
Collapse
|
199
|
The growth arrest-specific transcript 5 (GAS5): a pivotal tumor suppressor long noncoding RNA in human cancers. Tumour Biol 2015; 37:1437-44. [PMID: 26634743 DOI: 10.1007/s13277-015-4521-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/26/2015] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), which refer to a group of RNAs with length more than 200 nucleotides and limited protein-coding potential, play a widespread role in regulating biological processes, such as cell differentiation, proliferation, apoptosis, and migration. LncRNAs are dysregulated in multiple cancers, playing an either oncogenic or tumor-suppressive role. LncRNA GAS5 is a recently identified tumor suppressor involved in several cancers, like breast cancer, prostate cancer, lung cancer, and colorectal cancer. The low-expression pattern confers tumor cells elevated capacity of proliferation and predicts poorer prognosis. Existing studies mirror that lncRNA GAS5 promises to be a novel diagnostic biomarker, therapy target, as well as prognostic biomarker. In this review, we will summarize the current knowledge about this vital lncRNA, from its discovery, characteristics, and biological function to molecular mechanism in various neoplasms.
Collapse
|
200
|
Abstract
Recent years have witnessed the discovery of several classes of noncoding RNAs (ncRNAs), which are indispensable for the regulation of cellular processes. Many of these RNAs are regulatory in nature with functions in gene expression regulation such as piwi-interacting RNAs, small interfering RNAs and micro RNAs. Long noncoding RNAs (lncRNAs) comprise the most recently characterized class. LncRNAs are involved in transcriptional regulation, chromatin remodeling, imprinting, splicing, and translation, among other critical functions in the cell. Recent studies have elucidated the importance of lncRNAs in hematopoietic development. Dysregulation of lncRNA expression is a feature of various diseases and cancers, and is also seen in hematopoietic malignancies. This article focuses on lncRNAs that have been implicated in the pathogenesis of hematopoietic malignancies.
Collapse
Affiliation(s)
- Norma I Rodríguez-Malavé
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, University of California Los Angeles Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, University of California Los Angeles
| | - Dinesh S Rao
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, University of California Los Angeles Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, University of California Los Angeles Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, University of California Los Angeles
| |
Collapse
|