151
|
Deregulations in the cyclin-dependent kinase-9-related pathway in cancer: implications for drug discovery and development. ISRN ONCOLOGY 2013; 2013:305371. [PMID: 23840966 PMCID: PMC3690251 DOI: 10.1155/2013/305371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/19/2013] [Indexed: 12/21/2022]
Abstract
The CDK9-related pathway is an important regulator of mammalian cell biology and is also involved in the replication cycle of several viruses, including the human immunodeficiency virus type 1. CDK9 is present in two isoforms termed CDK9-42 and CDK9-55 that bind noncovalently type T cyclins and cyclin K. This association forms a heterodimer, where CDK9 carries the enzymatic site and the cyclin partner functions as a regulatory subunit. This heterodimer is the main component of the positive transcription elongation factor b, which stabilizes RNA elongation via phosphorylation of the RNA pol II carboxyl terminal domain. Abnormal activities in the CDK9-related pathway were observed in human malignancies and cardiac hypertrophies. Thus, the elucidation of the CDK9 pathway deregulations may provide useful insights into the pathogenesis and progression of human malignancies, cardiac hypertrophy, AIDS and other viral-related maladies. These studies may lead to the improvement of kinase inhibitors for the treatment of the previously mentioned pathological conditions. This review describes the CDK9-related pathway deregulations in malignancies and the development of kinase inhibitors in cancer therapy, which can be classified into three categories: antagonists that block the ATP binding site of the catalytic domain, allosteric inhibitors, and small molecules that disrupt protein-protein interactions.
Collapse
|
152
|
Casimiro MC, Crosariol M, Loro E, Li Z, Pestell RG. Cyclins and cell cycle control in cancer and disease. Genes Cancer 2013; 3:649-57. [PMID: 23634253 DOI: 10.1177/1947601913479022] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cyclin D1 overexpression is found in more than 50% of human breast cancers and causes mammary cancer in transgenic mice. Dysregulation of cyclin D1 gene expression or function contributes to the loss of normal cell cycle control during tumorigenesis. Recent studies have demonstrated that cyclin D1 conducts additional specific functions to regulate gene expression in the context of local chromatin, promote cellular migration, and promote chromosomal instability. It is anticipated that these additional functions contribute to the pathology associated with dysregulated cyclin D1 abundance. This article discusses evidence that examines the functional roles that cyclin D1 may play in cancer with an emphasis on other cyclin family members that also may contribute to cancer and disease in a similar fashion.
Collapse
|
153
|
Gao G, Wu X, Zhou J, He M, He JJ, Guo D. Inhibition of HIV-1 transcription and replication by a newly identified cyclin T1 splice variant. J Biol Chem 2013; 288:14297-14309. [PMID: 23569210 DOI: 10.1074/jbc.m112.438465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A variety of cellular factors participates in the HIV-1 life cycle. Among them is the well characterized cyclin T1 (CYCT1). CycT1 binds to cyclin-dependent kinase 9 (CDK9) and forms the positive transcription elongation factor-b (P-TEFb). P-TEFb is then recruited by HIV-1 TAT to the HIV-1 long terminal repeat (LTR) promoter and subsequently leads to phosphorylation of the C-terminal domain of RNA polymerase II (pol II), enhanced processivity of pol II, and transcription of a full-length HIV-1 RNA. In this study, we report the identification of a new CYCT1 splice variant, designated as CYCT1b, and accordingly we renamed CYCT1 as CYCT1a. CYCT1b was detected in several cell lines, including primary human CD4 T cells, and its expression was subject to cell cycle regulation. Similar to CYCT1a, CYCT1b was primarily localized in the nucleus. CYCT1b expression was found to be inversely correlated with HIV-1 gene expression and replication. This inverse correlation appeared to involve TAT transactivation, CDK9 binding, and subsequent recruitment of P-TEFb to the HIV-1 LTR promoter and pol II C-terminal domain phosphorylation. In agreement with these findings, CYCT1b expression led to direct inhibition of TAT-transactivated transcription of the HIV-1 LTR promoter. Taken together, these results show that the newly identified CYCT1b splice variant inhibits HIV-1 transcription and may provide new clues for the development of anti-HIV strategies.
Collapse
Affiliation(s)
- Guozhen Gao
- State Key Laboratory of Virology and Modern Virology Research Center, Wuhan University College of Life Sciences, 430072 Wuhan, China; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiaoyun Wu
- State Key Laboratory of Virology and Modern Virology Research Center, Wuhan University College of Life Sciences, 430072 Wuhan, China
| | - Jieqiong Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, Wuhan University College of Life Sciences, 430072 Wuhan, China
| | - Mingfeng He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Johnny J He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202; Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana 46202; University of North Texas Health Science Center, Fort Worth, Texas 76107.
| | - Deyin Guo
- State Key Laboratory of Virology and Modern Virology Research Center, Wuhan University College of Life Sciences, 430072 Wuhan, China; Institute of Medical Virology, Wuhan University School of Medicine, 430071 Wuhan, China.
| |
Collapse
|
154
|
Abstract
The cell cycle of eukaryotic cells varies greatly from species to species and tissue to tissue. Since an erroneous control of the cell cycle can have disastrous consequences for cellular life, there are genetically programmed signals, so-called cell cycle checkpoints, which ensure that all events of each stage are completed before beginning the next phase. Among the numerous molecules involved in this process, the most important are the cyclin-dependent kinases (CDKs), proteins that are activated only when bound to cyclins (regulatory proteins with fluctuating concentrations). In general, more CDKs are overexpressed in cancer cells than in normal cells, which explains why cancer cells divide uncontrollably. Succeeding in modulating CDK activity with pharmacological agents could result in decreasing the abnormal proliferation rate of cancer cells. This review offers an overview of CDK-cyclin complexes in relation to different cell cycle phases, an analysis of CDK activation and inhibition of molecular mechanisms, and an extensive report, including clinical trials, regarding four new drugs acting as CDK modulators: alvocidib, P276-00, SNS-032 and seliciclib.
Collapse
|
155
|
Abstract
The cell cycle of eukaryotic cells varies greatly from species to species and tissue to tissue. Since an erroneous control of the cell cycle can have disastrous consequences for cellular life, there are genetically programmed signals, so-called cell cycle checkpoints, which ensure that all events of each stage are completed before beginning the next phase. Among the numerous molecules involved in this process, the most important are the cyclin-dependent kinases (CDKs), proteins that are activated only when bound to cyclins (regulatory proteins with fluctuating concentrations). In general, more CDKs are overexpressed in cancer cells than in normal cells, which explains why cancer cells divide uncontrollably. Succeeding in modulating CDK activity with pharmacological agents could result in decreasing the abnormal proliferation rate of cancer cells. This review offers an overview of CDK-cyclin complexes in relation to different cell cycle phases, an analysis of CDK activation and inhibition of molecular mechanisms, and an extensive report, including clinical trials, regarding four new drugs acting as CDK modulators: alvocidib, P276-00, SNS-032 and seliciclib.
Collapse
|
156
|
Muniz L, Egloff S, Kiss T. RNA elements directing in vivo assembly of the 7SK/MePCE/Larp7 transcriptional regulatory snRNP. Nucleic Acids Res 2013; 41:4686-98. [PMID: 23471002 PMCID: PMC3632141 DOI: 10.1093/nar/gkt159] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Through controlling the nuclear level of active positive transcription elongation factor b (P-TEFb), the 7SK small nuclear RNA (snRNA) functions as a key regulator of RNA polymerase II transcription. Together with hexamethylene bisacetamide-inducible proteins 1/2 (HEXIM1/2), the 7SK snRNA sequesters P-TEFb into transcriptionally inactive ribonucleoprotein (RNP). In response to transcriptional stimulation, the 7SK/HEXIM/P-TEFb RNP releases P-TEFb to promote polymerase II-mediated messenger RNA synthesis. Besides transiently associating with HEXIM1/2 and P-TEFb, the 7SK snRNA stably interacts with the La-related protein 7 (Larp7) and the methylphosphate capping enzyme (MePCE). In this study, we used in vivo RNA–protein interaction assays to determine the sequence and structural elements of human 7SK snRNA directing assembly of the 7SK/MePCE/Larp7 core snRNP. MePCE interacts with the short 5′-terminal G1-U4/U106-G111 helix-tail motif and Larp7 binds to the 3′-terminal hairpin and the following U-rich tail of 7SK. The overall RNA structure and some particular nucleotides provide the information for specific binding of MePCE and Larp7. We also demonstrate that binding of Larp7 to 7SK is a prerequisite for in vivo recruitment of P-TEFb, indicating that besides providing stability for 7SK, Larp7 directly participates in P-TEFb regulation. Our results provide further explanation for the frequently observed link between Larp7 mutations and cancer development.
Collapse
Affiliation(s)
- Lisa Muniz
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | | | | |
Collapse
|
157
|
Hamasaki T, Okamoto M, Baba M. Identification of novel inhibitors of human immunodeficiency virus type 1 replication by in silico screening targeting cyclin T1/Tat interaction. Antimicrob Agents Chemother 2013; 57:1323-31. [PMID: 23274668 PMCID: PMC3591921 DOI: 10.1128/aac.01711-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/21/2012] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) transcription is essential for viral replication and the only step for viral genome amplification. Cyclin T1 (CycT1) interacts with HIV-1 Tat and transactivation-responsive (TAR) RNA, leading to the activation of viral transcription through the hyperphosphorylation of RNA polymerase II (RNAPII). Thus, the CycT1/Tat/TAR RNA interaction represents a novel target for inhibition of HIV-1 replication. In this study, we conducted in silico screening of compounds targeting the CycT1/Tat/TAR RNA complex and found that two structurally related compounds (C1 and C2) had high docking scores for a model of the complex. These compounds proved inhibitory to HIV-1 replication in tumor necrosis factor alpha-stimulated chronically infected cells. In addition, C3, a derivative of C1 and C2, was found to be a more potent inhibitor of HIV-1 replication in chronically infected cells. C3 also inhibited HIV-1 replication in acutely infected cells. The compound could suppress Tat-mediated HIV-1 long terminal repeat-driven gene expression and phosphorylation of RNAPII through inhibition of Tat binding to CycT1. Furthermore, the docking pose of C3 was defined by analyses for its in silico docking energy and in vitro antiviral activity, which indicates that C3 interacts with Tat-binding amino acids of CycT1. Thus, a series of compounds described herein are novel inhibitors of HIV-1 transcription through inhibition of CycT1/Tat interaction.
Collapse
MESH Headings
- Anti-HIV Agents/chemistry
- Anti-HIV Agents/pharmacology
- Binding Sites
- Cell Line, Tumor
- Cyclin T/antagonists & inhibitors
- Cyclin T/chemistry
- Cyclin T/genetics
- Gene Expression Regulation, Viral/drug effects
- HIV Long Terminal Repeat
- HIV-1/drug effects
- HIV-1/genetics
- HIV-1/growth & development
- Host-Pathogen Interactions
- Humans
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/virology
- Molecular Docking Simulation
- Phosphorylation
- Protein Binding
- RNA Polymerase II/antagonists & inhibitors
- RNA Polymerase II/chemistry
- RNA Polymerase II/genetics
- RNA, Viral/antagonists & inhibitors
- RNA, Viral/metabolism
- Small Molecule Libraries/chemistry
- Small Molecule Libraries/pharmacology
- Thermodynamics
- Transcription, Genetic/drug effects
- Tumor Necrosis Factor-alpha/pharmacology
- Virus Replication/drug effects
- tat Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors
- tat Gene Products, Human Immunodeficiency Virus/chemistry
- tat Gene Products, Human Immunodeficiency Virus/genetics
Collapse
Affiliation(s)
- Takayuki Hamasaki
- Division of Antiviral Chemotherapy Center for Chronic Viral Disease, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | | | | |
Collapse
|
158
|
Shao H, Shi S, Huang S, Hole A, Abbas AY, Baumli S, Liu X, Lam F, Foley D, Fischer PM, Noble M, Endicott JA, Pepper C, Wang S. Substituted 4-(thiazol-5-yl)-2-(phenylamino)pyrimidines are highly active CDK9 inhibitors: synthesis, X-ray crystal structures, structure-activity relationship, and anticancer activities. J Med Chem 2013; 56:640-59. [PMID: 23301767 PMCID: PMC3579313 DOI: 10.1021/jm301475f] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer cells often have a high demand for antiapoptotic proteins in order to resist programmed cell death. CDK9 inhibition selectively targets survival proteins and reinstates apoptosis in cancer cells. We designed a series of 4-thiazol-2-anilinopyrimidine derivatives with functional groups attached to the C5-position of the pyrimidine or to the C4-thiazol moiety and investigated their effects on CDK9 potency and selectivity. One of the most selective compounds, 12u inhibits CDK9 with IC(50) = 7 nM and shows over 80-fold selectivity for CDK9 versus CDK2. X-ray crystal structures of 12u bound to CDK9 and CDK2 provide insights into the binding modes. This work, together with crystal structures of selected inhibitors in complex with both enzymes described in a companion paper, (34) provides a rationale for the observed SAR. 12u demonstrates potent anticancer activity against primary chronic lymphocytic leukemia cells with a therapeutic window 31- and 107-fold over those of normal B- and T-cells.
Collapse
Affiliation(s)
- Hao Shao
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Shenhua Shi
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Shiliang Huang
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Alison
J. Hole
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Abdullahi Y. Abbas
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Sonja Baumli
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Xiangrui Liu
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Frankie Lam
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
- Shool of Pharmacy and Medical
Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - David
W. Foley
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Peter M. Fischer
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Martin Noble
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
- Northern Institute for Cancer
Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Jane A. Endicott
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
- Northern Institute for Cancer
Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Chris Pepper
- Institute of Cancer and Genetics,
School of Medicine, Cardiff University,
Heath Park, Cardiff CF14 4XN, U.K
| | - Shudong Wang
- School of Pharmacy and Centre
for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
- Shool of Pharmacy and Medical
Sciences, University of South Australia, Adelaide, SA 5001, Australia
- Phone: +61883022372. E-mail:
| |
Collapse
|
159
|
Abstract
Immune response to pathogens depends on coordinated regulation of numerous genes that contribute collectively to pathogen elimination and restoration of the integrity of the affected tissue. The pathogen-induced gene expression is governed largely by the signal-induced posttranslational histone modifications that facilitate assembly of the functionally distinct chromatin complexes. In this review, we describe the principles of chromatin-based gene regulation during innate immune responses. We discuss the ability of pathogens to hijack the host response by interfering with various arms of transcriptional machinery involved in the responses. In particular, we discuss the phenomenon of the histone mimicry where interaction between histones and transcriptional regulators is targeted by pathogens that carry the histone-like sequences (histone mimics). We show how the principle of isotone mimicry as an efficient way to control host gene expression has been sued for the development of novel anti-inflammatory pharmacological approaches.
Collapse
|
160
|
Devaiah BN, Singer DS. Two faces of brd4: mitotic bookmark and transcriptional lynchpin. Transcription 2012; 4:13-7. [PMID: 23131666 DOI: 10.4161/trns.22542] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The bromodomain protein BRD4 links cell cycle and transcription, bookmarking active genes during mitosis and serving as a scaffold for transcription factors. Our recent discovery that BRD4 is a RNA Polymerase II CTD kinase identifies a novel transcriptional function. Here we discuss our model in the context of current knowledge.
Collapse
|
161
|
Transition step during assembly of HIV Tat:P-TEFb transcription complexes and transfer to TAR RNA. Mol Cell Biol 2012; 32:4780-93. [PMID: 23007159 DOI: 10.1128/mcb.00206-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transcription factors regulate eukaryotic RNA polymerase II (Pol II) activity by assembling and remodeling complexes at multiple steps in the transcription cycle. In HIV, we previously proposed a two-step model where the viral Tat protein first preassembles at the promoter with an inactive P-TEFb:7SK snRNP complex and later transfers P-TEFb to TAR on the nascent transcript, displacing the inhibitory snRNP and resulting in Pol II phosphorylation and stimulation of elongation. It is unknown how the Tat:P-TEFb complex transitions to TAR to activate the P-TEFb kinase. Here, we show that P-TEFb artificially recruited to the nascent transcript is not competent for transcription but rather remains inactive due to its assembly with the 7SK snRNP. Tat supplied in trans is able to displace the kinase inhibitor Hexim1 from the snRNP and activate P-TEFb, thereby uncoupling Tat requirements for kinase activation and TAR binding. By combining comprehensive mutagenesis of Tat with multiple cell-based reporter assays that probe the activity of Tat in different arrangements, we genetically defined a transition step in which preassembled Tat:P-TEFb complexes switch to TAR. We propose that a conserved network of residues in Tat has evolved to control this transition and thereby switch the host elongation machinery to viral transcription.
Collapse
|
162
|
Guo L, Wu WJ, Liu LD, Wang LC, Zhang Y, Wu LQ, Guan Y, Li QH. Herpes simplex virus 1 ICP22 inhibits the transcription of viral gene promoters by binding to and blocking the recruitment of P-TEFb. PLoS One 2012; 7:e45749. [PMID: 23029222 PMCID: PMC3454370 DOI: 10.1371/journal.pone.0045749] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/24/2012] [Indexed: 11/18/2022] Open
Abstract
ICP22 is a multifunctional herpes simplex virus 1 (HSV-1) immediate early protein that functions as a general repressor of a subset of cellular and viral promoters in transient expression systems. Although the exact mechanism of repression remains unclear, this protein induces a decrease in RNA polymerase II Serine 2 (RNAPII Ser-2) phosphorylation, which is critical for transcription elongation. To characterize the mechanism of transcriptional repression by ICP22, we established an in vivo transient expression reporter system. We found that ICP22 inhibits transcription of the HSV-1 α, β and γ gene promoters. The viral tegument protein VP16, which plays vital roles in initiation of viral gene expression and viral proliferation, can overcome the inhibitory effect of ICP22 on α-gene transcription. Further immunoprecipitation studies indicated that both ICP22 and VP16 bind to positive transcription elongation factor b (P-TEFb) and form a complex with it in vivo. We extended this to show that P-TEFb regulates transcription of the viral α-gene promoters and affects transcriptional regulation of ICP22 and VP16 on the α-genes. Additionally, ChIP assays demonstrated that ICP22 blocks the recruitment of P-TEFb to the viral promoters, while VP16 reverses this blocking effect by recruiting P-TEFb to the viral α-gene promoters through recognition of the TAATGARAT motif. Taken together, our results suggest that ICP22 interacts with and blocks the recruitment of P-TEFb to viral promoter regions, which inhibits transcription of the viral gene promoters. The transactivator VP16 binds to and induces the recruitment of P-TEFb to viral α-gene promoters, which counteracts the transcriptional repression of ICP22 on α-genes by recruiting p-TEFb to the promoter region.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical College, Kunming, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Conaway RC, Conaway JW. The Mediator complex and transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:69-75. [PMID: 22983086 DOI: 10.1016/j.bbagrm.2012.08.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/14/2012] [Accepted: 08/29/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mediator is an evolutionarily conserved multisubunit RNA polymerase II (Pol II) coregulatory complex. Although Mediator was initially found to play a critical role in the regulation of the initiation of Pol II transcription, recent studies have brought to light an expanded role for Mediator at post-initiation stages of transcription. SCOPE OF REVIEW We provide a brief description of the structure of Mediator and its function in the regulation of Pol II transcription initiation, and we summarize recent findings implicating Mediator in the regulation of various stages of Pol II transcription elongation. MAJOR CONCLUSIONS Emerging evidence is revealing new roles for Mediator in nearly all stages of Pol II transcription, including initiation, promoter escape, elongation, pre-mRNA processing, and termination. GENERAL SIGNIFICANCE Mediator plays a central role in the regulation of gene expression by impacting nearly all stages of mRNA synthesis. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | |
Collapse
|
164
|
Phosphatase PPM1A negatively regulates P-TEFb function in resting CD4(+) T cells and inhibits HIV-1 gene expression. Retrovirology 2012; 9:52. [PMID: 22727189 PMCID: PMC3406988 DOI: 10.1186/1742-4690-9-52] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 06/22/2012] [Indexed: 11/16/2022] Open
Abstract
Background Processive elongation of the integrated HIV-1 provirus is dependent on recruitment of P-TEFb by the viral Tat protein to the viral TAR RNA element. P-TEFb kinase activity requires phosphorylation of Thr186 in the T-loop of the CDK9 subunit. In resting CD4+T cells, low levels of T-loop phosphorylated CDK9 are found, which increase significantly upon activation. This suggests that the phosphorylation status of the T-loop is actively regulated through the concerted actions of cellular proteins such as Ser/Thr phosphatases. We investigated the role of phosphatase PPM1A in regulating CDK9 T-loop phosphorylation and its effect on HIV-1 proviral transcription. Results We found that overexpression of PPM1A inhibits HIV-1 gene expression during viral infection and this required PPM1A catalytic function. Using an artificial CDK tethering system, we further found that PPM1A inhibits CDK9, but not CDK8 mediated activation of the HIV-1 LTR. SiRNA depletion of PPM1A in resting CD4+T cells increased the level of CDK9 T-loop phosphorylation and enhanced HIV-1 gene expression. We also observed that PPM1A protein levels are relatively high in resting CD4+T cells and are not up-regulated upon T cell activation. Conclusions Our results establish a functional link between HIV-1 replication and modulation of CDK9 T-loop phosphorylation by PPM1A. PPM1A represses HIV-1 gene expression by inhibiting CDK9 T-loop phosphorylation, thus reducing the amount of active P-TEFb available for recruitment to the viral LTR. We also infer that PPM1A enzymatic activity in resting and activated CD4+ T cells are likely regulated by as yet undefined factors.
Collapse
|
165
|
Josling GA, Selvarajah SA, Petter M, Duffy MF. The role of bromodomain proteins in regulating gene expression. Genes (Basel) 2012; 3:320-43. [PMID: 24704920 PMCID: PMC3899951 DOI: 10.3390/genes3020320] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/11/2012] [Accepted: 05/17/2012] [Indexed: 11/25/2022] Open
Abstract
Histone modifications are important in regulating gene expression in eukaryotes. Of the numerous histone modifications which have been identified, acetylation is one of the best characterised and is generally associated with active genes. Histone acetylation can directly affect chromatin structure by neutralising charges on the histone tail, and can also function as a binding site for proteins which can directly or indirectly regulate transcription. Bromodomains specifically bind to acetylated lysine residues on histone tails, and bromodomain proteins play an important role in anchoring the complexes of which they are a part to acetylated chromatin. Bromodomain proteins are involved in a diverse range of functions, such as acetylating histones, remodeling chromatin, and recruiting other factors necessary for transcription. These proteins thus play a critical role in the regulation of transcription.
Collapse
Affiliation(s)
- Gabrielle A Josling
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia.
| | - Shamista A Selvarajah
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia.
| | - Michaela Petter
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia.
| | - Michael F Duffy
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia.
| |
Collapse
|
166
|
Marschalek R. [Translocations of the MLL gene: New insights into high-risk leukemia]. PHARMAZIE IN UNSERER ZEIT 2012; 41:196-200. [PMID: 22844666 DOI: 10.1002/pauz.201200468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Rolf Marschalek
- Universität Frankfurt, Institut für Pharmazeutische Biologie, Frankfurt am Main.
| |
Collapse
|
167
|
Abstract
The cyclin-dependent kinases (Cdks) regulate many cellular processes, including the cell cycle, neuronal development, transcription, and posttranscriptional processing. To perform their functions, Cdks bind to specific cyclin subunits to form a functional and active cyclin/Cdk complex. This review is focused on Cyclin K, which was originally considered an alternative subunit of Cdk9, and on its newly identified partners, Cdk12 and Cdk13. We briefly summarize research devoted to each of these proteins. We also discuss the proteins' functions in the regulation of gene expression via the phosphorylation of serine 2 in the C-terminal domain of RNA polymerase II, contributions to the maintenance of genome stability, and roles in the onset of human disease and embryo development.
Collapse
Affiliation(s)
- Jiri Kohoutek
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic.
| | | |
Collapse
|
168
|
POF regulates the expression of genes on the fourth chromosome in Drosophila melanogaster by binding to nascent RNA. Mol Cell Biol 2012; 32:2121-34. [PMID: 22473994 DOI: 10.1128/mcb.06622-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In Drosophila, two chromosome-wide compensatory systems have been characterized: the dosage compensation system that acts on the male X chromosome and the chromosome-specific regulation of genes located on the heterochromatic fourth chromosome. Dosage compensation in Drosophila is accomplished by hypertranscription of the single male X chromosome mediated by the male-specific lethal (MSL) complex. The mechanism of this compensation is suggested to involve enhanced transcriptional elongation mediated by the MSL complex, while the mechanism of compensation mediated by the painting of fourth (POF) protein on the fourth chromosome has remained elusive. Here, we show that POF binds to nascent RNA, and this binding is associated with increased transcription output from chromosome 4. We also show that genes located in heterochromatic regions spend less time in transition from the site of transcription to the nuclear envelope. These results provide useful insights into the means by which genes in heterochromatic regions can overcome the repressive influence of their hostile environment.
Collapse
|
169
|
Caracciolo V, Laurenti G, Romano G, Carnevale V, Cimini AM, Crozier-Fitzgerald C, Gentile Warschauer E, Russo G, Giordano A. Flavopiridol induces phosphorylation of AKT in a human glioblastoma cell line, in contrast to siRNA-mediated silencing of Cdk9: Implications for drug design and development. Cell Cycle 2012; 11:1202-16. [PMID: 22391209 DOI: 10.4161/cc.11.6.19663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cdk9 and Cdk7 are cdc2-like serine/threonine kinases that stabilize RNA transcript elongation through RNA polII carboxyl terminal domain (CTD) phosphorylation and are considered suitable targets for cancer therapy. The effects of flavopiridol and of siRNA-mediated inhibition of Cdk9 and/or Cdk7 were analyzed in human glioblastoma and human prostate cancer cell lines. One finding revealed that Cdk9 and Cdk7 could substitute each other in RNA polII CTD phosphorylation in contrast to the in vitro system. Thus, a simultaneous inhibition of Cdk9 and Cdk7 might be required both for targeting malignant cells and developing a platform for microarray analysis. However, these two pathways are not redundant, as indicated by differential effects observed in cell cycle regulation following siRNA-mediated inhibition of Cdk9 and/or Cdk7 in human PC3 prostate cancer cell line. Specifically, siRNA-mediated inhibition of Cdk9 caused a shift from G 0/G 1 to G 2/M phase in human PC3 prostate cancer cell line. Another finding showed that flavopiridol treatment induced a substantial AKT-Ser473 phosphorylation in human glioblastoma T98G cell line in contrast to siRNA-mediated inhibition of Cdk9 and Cdk9 combined with Cdk7, whereas siRNA-mediated silencing of Cdk7 caused a minor increase in AKT-Ser473 phosphorylation. AKT-Ser473 is a hallmark of AKT pathway activation and may protect cells from apoptosis. This finding also shows that Cdk9 and Cdk7 pathways are not redundant and may have important implications in drug development and for studying the mechanism of chemoresistance in malignant cells.
Collapse
Affiliation(s)
- Valentina Caracciolo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Abstract
Regulation of the elongation phase of transcription by RNA polymerase II (Pol II) is utilized extensively to generate the pattern of mRNAs needed to specify cell types and to respond to environmental changes. After Pol II initiates, negative elongation factors cause it to pause in a promoter proximal position. These polymerases are poised to respond to the positive transcription elongation factor P-TEFb, and then enter productive elongation only under the appropriate set of signals to generate full-length properly processed mRNAs. Recent global analyses of Pol II and elongation factors, mechanisms that regulate P-TEFb involving the 7SK small nuclear ribonucleoprotein (snRNP), factors that control both the negative and positive elongation properties of Pol II, and the mRNA processing events that are coupled with elongation are discussed.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
171
|
Zhang DW, Rodríguez-Molina JB, Tietjen JR, Nemec CM, Ansari AZ. Emerging Views on the CTD Code. GENETICS RESEARCH INTERNATIONAL 2012; 2012:347214. [PMID: 22567385 PMCID: PMC3335543 DOI: 10.1155/2012/347214] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/03/2011] [Indexed: 12/21/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II (Pol II) consists of conserved heptapeptide repeats that function as a binding platform for different protein complexes involved in transcription, RNA processing, export, and chromatin remodeling. The CTD repeats are subject to sequential waves of posttranslational modifications during specific stages of the transcription cycle. These patterned modifications have led to the postulation of the "CTD code" hypothesis, where stage-specific patterns define a spatiotemporal code that is recognized by the appropriate interacting partners. Here, we highlight the role of CTD modifications in directing transcription initiation, elongation, and termination. We examine the major readers, writers, and erasers of the CTD code and examine the relevance of describing patterns of posttranslational modifications as a "code." Finally, we discuss major questions regarding the function of the newly discovered CTD modifications and the fundamental insights into transcription regulation that will necessarily emerge upon addressing those challenges.
Collapse
Affiliation(s)
- David W. Zhang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Juan B. Rodríguez-Molina
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Joshua R. Tietjen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Corey M. Nemec
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| |
Collapse
|
172
|
Zhao Y, Ding X, Ye X, Dai ZM, Yang JS, Yang WJ. Involvement of cyclin K posttranscriptional regulation in the formation of Artemia diapause cysts. PLoS One 2012; 7:e32129. [PMID: 22363807 PMCID: PMC3283732 DOI: 10.1371/journal.pone.0032129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/19/2012] [Indexed: 11/18/2022] Open
Abstract
Background Artemia eggs tend to develop ovoviviparously to yield nauplius larvae in good rearing conditions; while under adverse situations, they tend to develop oviparously and encysted diapause embryos are formed instead. However, the intrinsic mechanisms regulating this process are not well understood. Principal Finding This study has characterized the function of cyclin K, a regulatory subunit of the positive transcription elongation factor b (P-TEFb) in the two different developmental pathways of Artemia. In the diapause-destined embryo, Western blots showed that the cyclin K protein was down-regulated as the embryo entered dormancy and reverted to relatively high levels of expression once development resumed, consistent with the fluctuations in phosphorylation of position 2 serines (Ser2) in the C-terminal domain (CTD) of the largest subunit (Rpb1) of RNA polymerase II (RNAP II). Interestingly, the cyclin K transcript levels remained constant during this process. In vitro translation data indicated that the template activity of cyclin K mRNA stored in the postdiapause cyst was repressed. In addition, in vivo knockdown of cyclin K in developing embryos by RNA interference eliminated phosphorylation of the CTD Ser2 of RNAP II and induced apoptosis by inhibiting the extracellular signal-regulated kinase (ERK) survival signaling pathway. Conclusions/Significance Taken together, these findings reveal a role for cyclin K in regulating RNAP II activity during diapause embryo development, which involves the post-transcriptional regulation of cyclin K. In addition, a further role was identified for cyclin K in regulating the control of cell survival during embryogenesis through ERK signaling pathways.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xia Ding
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiang Ye
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhong-Min Dai
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Jin-Shu Yang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wei-Jun Yang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- * E-mail:
| |
Collapse
|
173
|
Yoshinaga Y, Mochizuki K, Goda T. Trimethylation of histone H3K4 is associated with the induction of fructose-inducible genes in rat jejunum. Biochem Biophys Res Commun 2012; 419:605-11. [PMID: 22366086 DOI: 10.1016/j.bbrc.2012.02.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 02/07/2012] [Indexed: 11/24/2022]
Abstract
We previously reported that fructose force-feeding rapidly induces jejunal Slc2a5 gene expression in rats. In this study, we conducted microarray analyses using total RNA to identify genes upregulated in rat jejunum by fructose force-feeding. Rats were force-fed fructose, glucose or distilled water for 6h. Genes such as Slc2a5, Cdkn1c, Cabp2, Ranbp3, Vwce and Gcgr were induced by force-feeding with fructose compared with glucose or distilled water. Chromatin immunoprecipitation assays revealed that trimethylation of histone H3K4, and acetylation of histones H3 and H4, on the transcribed region of these fructose-inducible genes were enhanced by force-feeding of fructose, but not glucose or distilled water. These results suggest that the induction of genes in the rat jejunum by fructose force-feeding is coordinately regulated by histone modifications, particularly trimethylation of histone H3K4.
Collapse
Affiliation(s)
- Yumiko Yoshinaga
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences and Global COE Program, The University of Shizuoka, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | | | | |
Collapse
|
174
|
Boehm D, Calvanese V, Dar RD, Xing S, Schroeder S, Martins L, Aull K, Li PC, Planelles V, Bradner JE, Zhou MM, Siliciano RF, Weinberger L, Verdin E, Ott M. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle 2012; 12:452-62. [PMID: 23255218 DOI: 10.4161/cc.23309] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of pharmacologic inhibition of bromodomain and extraterminal (BET) proteins has recently emerged in hematological malignancies and chronic inflammation. We find that BET inhibitor compounds (JQ1, I-Bet, I-Bet151 and MS417) reactivate HIV from latency. This is evident in polyclonal Jurkat cell populations containing latent infectious HIV, as well as in a primary T-cell model of HIV latency. Importantly, we show that this activation is dependent on the positive transcription elongation factor p-TEFb but independent from the viral Tat protein, arguing against the possibility that removal of the BET protein BRD4, which functions as a cellular competitor for Tat, serves as a primary mechanism for BET inhibitor action. Instead, we find that the related BET protein, BRD2, enforces HIV latency in the absence of Tat, pointing to a new target for BET inhibitor treatment in HIV infection. In shRNA-mediated knockdown experiments, knockdown of BRD2 activates HIV transcription to the same extent as JQ1 treatment, while a lesser effect is observed with BRD4. In single-cell time-lapse fluorescence microscopy, quantitative analyses across ~2,000 viral integration sites confirm the Tat-independent effect of JQ1 and point to positive effects of JQ1 on transcription elongation, while delaying re-initiation of the polymerase complex at the viral promoter. Collectively, our results identify BRD2 as a new Tat-independent suppressor of HIV transcription in latently infected cells and underscore the therapeutic potential of BET inhibitors in the reversal of HIV latency.
Collapse
Affiliation(s)
- Daniela Boehm
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Victoriano AFB, Okamoto T. Transcriptional control of HIV replication by multiple modulators and their implication for a novel antiviral therapy. AIDS Res Hum Retroviruses 2012; 28:125-38. [PMID: 22077140 DOI: 10.1089/aid.2011.0263] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Transcriptional regulation is critical for the human immunodeficiency virus 1 (HIV-1) life cycle and is the only step at which the virus amplifies the content of its genetic information. Numerous known and still unknown transcriptional factors, both host and viral, regulate HIV-1 gene expression and latency. This article is a comprehensive review of transcription factors involved in HIV-1 gene expression and presents the significant implications of nuclear factor kappa B (NF-κB) and the HIV-1 transactivator of transcription (Tat) protein. We include recent findings on chromatin remodeling toward HIV transcription and its therapeutic implication is also discussed. The current status of small-molecular-weight compounds that affect HIV transcription is also described.
Collapse
Affiliation(s)
- Ann Florence B. Victoriano
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School for Medical Sciences, Nagoya, Japan
- Japanese Foundation for AIDS Prevention, Tokyo, Japan
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School for Medical Sciences, Nagoya, Japan
| |
Collapse
|
176
|
Cyclin-dependent kinases: bridging their structure and function through computations. Future Med Chem 2011; 3:1551-9. [PMID: 21882947 DOI: 10.4155/fmc.11.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are one of the most promising target families for drug discovery for several diseases, such as cancer and neurodegenerative disorders. Over the years, structural insights on CDKs have demonstrated high protein plasticity, with several cases where two or more structures of the same protein adopt different conformations. This has generated a great deal of interest in understanding the relationship between CDK structure and function. Here, we highlight how computer simulations have recently contributed in characterizing some key rare and transient events in CDKs, such as the reaction transition state and activation loop movement. Although not yet fully defined, we can now portray the enzymatic mechanism and plasticity of CDKs at high spatial and temporal resolution. These theoretical studies bridge with experiments and highlight structural determinants that could help in designing specific CDK inhibitors.
Collapse
|
177
|
Schang LM, Coccaro E, Lacasse JJ. CDK INHIBITORY NUCLEOSIDE ANALOGS PREVENT TRANSCRIPTION FROM VIRAL GENOMES. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 24:829-37. [PMID: 16248044 DOI: 10.1081/ncn-200060314] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Targeting viral proteins has lead to many successful antivirals. Yet, such antivirals rapidly select for resistance, tend to be active against only a few related viruses, and require previous characterization of the target proteins. Alternatively, antivirals may be targeted to cellular proteins. Replication of many viruses requires cellular CDKs and pharmacological CDK inhibitors (PCIs), such as the purine-based roscovitine (Rosco), are proving safe in clinical trials against cancer. Rosco inhibits replication of wild-type or (multi-)drug resistant HIV, HCMV, EBV, VZV, and HSV-1 and 2. However, the antiviral mechanisms of purine PCIs remain unknown. Our objective is to characterize these mechanisms using HSV as a model We have shown that Rosco prevents initiation of transcription from viral, but not cellular, genomes. This inhibition is promoter independent, but genome dependent, and requires no viral proteins. This is a novel antiviral mechanism and a previously unknown activity for purine PCIs.
Collapse
Affiliation(s)
- L M Schang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
178
|
Brasier AR, Tian B, Jamaluddin M, Kalita MK, Garofalo RP, Lu M. RelA Ser276 phosphorylation-coupled Lys310 acetylation controls transcriptional elongation of inflammatory cytokines in respiratory syncytial virus infection. J Virol 2011; 85:11752-69. [PMID: 21900162 PMCID: PMC3209292 DOI: 10.1128/jvi.05360-11] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/22/2011] [Indexed: 02/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a negative-sense single-stranded RNA virus responsible for lower respiratory tract infections (LRTIs) in humans. In experimental models of RSV LRTI, the actions of the nuclear factor κB (NF-κB) transcription factor mediate inflammation and pathology. We have shown that RSV replication induces a mitogen-and-stress-related kinase 1 (MSK-1) pathway that activates NF-κB RelA transcriptional activity by a process involving serine phosphorylation at serine (Ser) residue 276. In this study, we examined the mechanism by which phospho-Ser276 RelA mediates expression of the NF-κB-dependent gene network. RelA-deficient mouse embryonic fibroblasts (MEFs) complemented with the RelA Ser276Ala mutant are deficient in CXCL2/Groβ, KC, and interleukin-6 (IL-6) expression, but NFKBIA/IκBα is preserved. We show that RSV-induced RelA Ser276 phosphorylation is required for acetylation at Lys310, an event required for transcriptional activity and stable association of RelA with the activated positive transcriptional elongation factor (PTEF-b) complex proteins, bromodomain 4 (Brd4), and cyclin-dependent kinase 9 (CDK9). In contrast to gene loading pattern of PTEF-b proteins produced by tumor necrosis factor (TNF) stimulation, RSV induces their initial clearance followed by partial reaccumulation coincident with RelA recruitment. The RSV-induced binding patterns of the CDK9 substrate, phospho-Ser2 RNA polymerase (Pol) II, follows a similar pattern of clearance and downstream gene reaccumulation. The functional role of CDK9 was examined using CDK9 small interfering RNA (siRNA) and CDK inhibitors, where RSV-induced NF-κB-dependent gene expression was significantly inhibited. Finally, although RSV induces a transition from short transcripts to fully spliced mRNA in wild-type RelA (RelA WT)-expressing cells, this transition is not seen in cells expressing RelA Ser276Ala. We conclude that RelA Ser276 phosphorylation mediates RelA acetylation, Brd4/CDK9 association, and activation of downstream inflammatory genes by transcriptional elongation in RSV infection.
Collapse
Affiliation(s)
- Allan R Brasier
- MRB 8.126, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1060, USA.
| | | | | | | | | | | |
Collapse
|
179
|
Ai N, Hu X, Ding F, Yu B, Wang H, Lu X, Zhang K, Li Y, Han A, Lin W, Liu R, Chen R. Signal-induced Brd4 release from chromatin is essential for its role transition from chromatin targeting to transcriptional regulation. Nucleic Acids Res 2011; 39:9592-604. [PMID: 21890894 PMCID: PMC3239188 DOI: 10.1093/nar/gkr698] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bromodomain-containing protein Brd4 is shown to persistently associate with chromosomes during mitosis for transmitting epigenetic memory across cell divisions. During interphase, Brd4 also plays a key role in regulating the transcription of signal-inducible genes by recruiting positive transcription elongation factor b (P-TEFb) to promoters. How the chromatin-bound Brd4 transits into a transcriptional regulation mode in response to stimulation, however, is largely unknown. Here, by analyzing the dynamics of Brd4 during ultraviolet or hexamethylene bisacetamide treatment, we show that the signal-induced release of chromatin-bound Brd4 is essential for its functional transition. In untreated cells, almost all Brd4 is observed in association with interphase chromatin. Upon treatment, Brd4 is released from chromatin, mostly due to signal-triggered deacetylation of nucleosomal histone H4 at acetylated-lysine 5/8 (H4K5ac/K8ac). Through selective association with the transcriptional active form of P-TEFb that has been liberated from the inactive multi-subunit complex in response to treatment, the released Brd4 mediates the recruitment of this active P-TEFb to promoter, which enhances transcription at the stage of elongation. Thus, through signal-induced release from chromatin and selective association with the active form of P-TEFb, the chromatin-bound Brd4 switches its role to mediate the recruitment of P-TEFb for regulating the transcriptional elongation of signal-inducible genes.
Collapse
Affiliation(s)
- Nanping Ai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Imai K, Ochiai K. Role of histone modification on transcriptional regulation and HIV-1 gene expression: possible mechanisms of periodontal diseases in AIDS progression. J Oral Sci 2011; 53:1-13. [PMID: 21467809 DOI: 10.2334/josnusd.53.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Although approximately 200 distinct cell types - including fibroblasts, neurons, and hematopoietic cells - possess the same DNA sequence, they have diverse functions in humans and exhibit considerably different gene expression patterns. It has become increasingly clear that epigenetic regulation plays an important role in gene expression. There are two major forms of epigenetic regulation: posttranslational modification of DNA-associated histone proteins in chromatin and methylation of DNA. These forms are regulated by distinct but coupled pathways. Notably, histone Lys acetylation by histone acetyltransferase and deacetylation by histone deacetylases play a crucial role in on-off regulation of gene expression. It is now understood that epigenetics plays an important role not only in the regulation of gene expression but also in the pathogenesis of a broad range of diseases such as cancer and microbial infections. We have determined that epigenetic regulation is involved in the establishment and maintenance of HIV-1 latency and in the reactivation of HIV-1 by periodontopathic bacteria. In this review, we focus on the effect of histone modification on transcriptional regulation and the contribution thereof to the regulation of HIV-1 gene expression during the lytic and latent stages of HIV-1 infection. Likewise, we discuss the mechanisms by which periodontal diseases may accelerate AIDS progression in infected individuals as a new systemic disease caused by periodontitis and describe potential therapeutic interventions based on epigenetic mechanisms.
Collapse
Affiliation(s)
- Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan.
| | | |
Collapse
|
181
|
Sahu GK, Cloyd MW. Latent HIV in primary T lymphocytes is unresponsive to histone deacetylase inhibitors. Virol J 2011; 8:400. [PMID: 21838863 PMCID: PMC3168425 DOI: 10.1186/1743-422x-8-400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/12/2011] [Indexed: 12/03/2022] Open
Abstract
Recently, there is considerable interest in the field of anti-HIV therapy to identify and develop chromatin-modifying histone deacetylase (HDAC) inhibitors that can effectively reactivate latent HIV in patients. The hope is that this would help eliminate cells harboring latent HIV and achieve an eventual cure of the virus. However, how effectively these drugs can stimulate latent HIVs in quiescent primary CD4 T cells, despite their relevant potencies demonstrated in cell line models of HIV latency, is not clear. Here, we show that the HDAC inhibitors valproic acid (VPA) and trichostatin A (TSA) are unable to reactivate HIV in latently infected primary CD4 T cells generated in the H80 co-culture system. This raises a concern that the drugs inhibiting HDAC function alone might not be sufficient for stimulating latent HIV in resting CD4 T cells in patients and not achieve any anticipated reduction in the pool of latent reservoirs.
Collapse
Affiliation(s)
- Gautam K Sahu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA.
| | | |
Collapse
|
182
|
Oqani RK, Kim HR, Diao YF, Park CS, Jin DI. The CDK9/cyclin T1 subunits of P-TEFb in mouse oocytes and preimplantation embryos: a possible role in embryonic genome activation. BMC DEVELOPMENTAL BIOLOGY 2011; 11:33. [PMID: 21639898 PMCID: PMC3127986 DOI: 10.1186/1471-213x-11-33] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/03/2011] [Indexed: 01/01/2023]
Abstract
Background Two stages of genome activation have been identified in the mouse embryo. Specifically, minor transcriptional activation is evident at the one-cell stage and a second major episode of activation occurs at the two-cell stage. Nuclear translocation of RNA polymerase II and phosphorylation of the C-terminal domain (CTD) of the largest enzyme subunit are major determinants of embryonic genome activation. P-TEFb, the Pol II CTD kinase, regulates transcriptional elongation via phosphorylation of the serine 2 residues of the CTD. Results Here, we show that the CDK9 and cyclin T1 subunits of P-TEFb are present in mouse oocytes and preimplantation embryos. Both proteins translocate to pronuclei at the late one-cell stage and are predominantly localized in nuclei at the two-cell stage. We additionally examine the effects of the CDK9-specific inhibitor, flavopiridol, on mouse preimplantation development. Our data show that treatment with the drug results in mislocalization of CDK9, cyclin T1, and phosphorylated Pol II, as well as developmental arrest at the two-cell stage. Conclusions A change in CDK9 localization from the cytoplasm to the pronucleus occurs at the time of minor embryonic genome activation, and CDK9 accumulation at the two-cell stage is evident, concomitant with major transcriptional activation of the embryonic genome. Moreover, CDK9 inhibition triggers a developmental block at the two-cell stage. Our findings clearly indicate that CDK9 is essential for embryonic genome activation in the mouse.
Collapse
Affiliation(s)
- Reza K Oqani
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Korea
| | | | | | | | | |
Collapse
|
183
|
Khan SZ, Mitra D. Cyclin K inhibits HIV-1 gene expression and replication by interfering with cyclin-dependent kinase 9 (CDK9)-cyclin T1 interaction in Nef-dependent manner. J Biol Chem 2011; 286:22943-54. [PMID: 21555514 DOI: 10.1074/jbc.m110.201194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) exploits a number of host cellular factors for successful survival and propagation. The viral protein Nef plays an important role in HIV-1 pathogenesis by interacting with various cellular proteins. In the present work, we identified Cyclin K (CycK) as a novel Nef-interacting protein, and for the first time, we showed that CycK inhibits HIV-1 gene expression and replication in a Nef-dependent manner. The positive elongation factor b complex comprising cyclin-dependent kinase 9 (CDK9) and Cyclin T1 is a critical cellular complex required for viral gene expression and replication. Enhanced expression of CycK in the presence of Nef induced CycK-CDK9 binding, which prevented CDK9-Cyclin T1 complex formation and nuclear translocation of CDK9, resulting in inhibition of HIV-1 long terminal repeat-driven gene expression. Furthermore, this effect of CycK was not observed with Nef-deleted virus, indicating the importance of Nef in this phenomenon. Finally, silencing of CycK in HIV-1-infected cells resulted in increased translocation of CDK9 into the nucleus, leading to increased viral gene expression and replication. These data also suggest that endogenous CycK might act as an inhibitory factor for HIV-1 gene expression and replication in T-cells. Thus, our results clearly demonstrate that CycK utilizes HIV-1 Nef protein to displace CycT1 from the positive elongation factor b complex, resulting in inhibition of HIV-1 gene expression and replication.
Collapse
|
184
|
Tyagi S, Ochem A, Tyagi M. DNA-dependent protein kinase interacts functionally with the RNA polymerase II complex recruited at the human immunodeficiency virus (HIV) long terminal repeat and plays an important role in HIV gene expression. J Gen Virol 2011; 92:1710-1720. [PMID: 21450944 DOI: 10.1099/vir.0.029587-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA-dependent protein kinase (DNA-PK), a nuclear protein kinase that specifically requires association with DNA for its kinase activity, plays important roles in the regulation of different DNA transactions, including transcription, replication and DNA repair, as well as in the maintenance of telomeres. Due to its large size, DNA-PK is also known to facilitate the activities of other factors by providing the docking platform at their site of action. In this study, by running several chromatin immunoprecipitation assays, we demonstrate the parallel distribution of DNA-PK with RNA polymerase II (RNAP II) along the human immunodeficiency virus (HIV) provirus before and after activation with tumour necrosis factor alpha. The association between DNA-PK and RNAP II is also long-lasting, at least for up to 4 h (the duration analysed in this study). Knockdown of endogenous DNA-PK using specific small hairpin RNAs expressed from lentiviral vectors resulted in significant reduction in HIV gene expression and replication, demonstrating the importance of DNA-PK for HIV gene expression. Sequence analysis of the HIV-1 Tat protein revealed three potential target sites for phosphorylation by DNA-PK and, by using kinase assays, we confirmed that Tat is an effective substrate of DNA-PK. Through peptide mapping, we found that two of these three potential phosphorylation sites are recognized and phosphorylated by DNA-PK. Mutational studies on the DNA-PK target sites of Tat further demonstrated the functional significance of the Tat-DNA-PK interaction. Thus, overall our results clearly demonstrate the functional interaction between DNA-PK and RNAP II during HIV transcription.
Collapse
Affiliation(s)
- Shilpi Tyagi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa.,National Center for Biodefense and Infectious Diseases, George Mason University, Biomedical Research Laboratory, 10650 Pyramid Place, MS 1J5, Manassas, VA 20110, USA
| | - Alex Ochem
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Mudit Tyagi
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Adelbert Road, Cleveland, OH 44106, USA.,National Center for Biodefense and Infectious Diseases, George Mason University, Biomedical Research Laboratory, 10650 Pyramid Place, MS 1J5, Manassas, VA 20110, USA
| |
Collapse
|
185
|
Qi T, Tang W, Wang L, Zhai L, Guo L, Zeng X. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb). J Biol Chem 2011; 286:15171-81. [PMID: 21378166 DOI: 10.1074/jbc.m110.184374] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin is a key regulator of RNA polymerase (Pol) II-dependent transcription. Positive transcription elongation factor b (P-TEFb), a Cdk9/cyclin T1 heterodimer, has been reported to play a critical role in transcription elongation. However, the relationship between actin and P-TEFb is still not clear. In this study, actin was found to interact with Cdk9, a catalytic subunit of P-TEFb, in elongation complexes. Using immunofluorescence and immunoprecipitation assays, Cdk9 was found to bind to G-actin through the conserved Thr-186 in the T-loop. Overexpression and in vitro kinase assays showed that G-actin promotes P-TEFb-dependent phosphorylation of the Pol II C-terminal domain. An in vitro transcription experiment revealed that the interaction between G-actin and Cdk9 stimulated Pol II transcription elongation. ChIP and immobilized template assays indicated that actin recruited Cdk9 to a transcriptional template in vivo and in vitro. Using cytokine IL-6-inducible p21 gene expression system, we revealed that actin recruited Cdk9 to endogenous gene. Moreover, overexpression of actin and Cdk9 increased histone H3 acetylation and acetylized histone H3 binding to a transcriptional template through the interaction with histone acetyltransferase, p300. Taken together, our results suggested that actin participates in transcription elongation by recruiting Cdk9 for phosphorylation of the Pol II C-terminal domain, and the actin-Cdk9 interaction promotes chromatin remodeling.
Collapse
Affiliation(s)
- Tianyang Qi
- Key Laboratory of Molecular Epigenetics of MOE and the Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | | | | | | | | | | |
Collapse
|
186
|
Cvoro A, Yuan C, Paruthiyil S, Miller OH, Yamamoto KR, Leitman DC. Cross talk between glucocorticoid and estrogen receptors occurs at a subset of proinflammatory genes. THE JOURNAL OF IMMUNOLOGY 2011; 186:4354-60. [PMID: 21357268 DOI: 10.4049/jimmunol.1002205] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glucocorticoids exert potent anti-inflammatory effects by repressing proinflammatory genes. We previously demonstrated that estrogens repress numerous proinflammatory genes in U2OS cells. The objective of this study was to determine if cross talk occurs between the glucocorticoid receptor (GR) and estrogen receptor (ER)α. The effects of dexamethasone (Dex) and estradiol on 23 proinflammatory genes were examined in human U2OS cells stably transfected with ERα or GR. Three classes of genes were regulated by ERα and/or GR. Thirteen genes were repressed by both estradiol and Dex (ER/GR-repressed genes). Five genes were repressed by ER (ER-only repressed genes), and another five genes were repressed by GR (GR-only repressed genes). To examine if cross talk occurs between ER and GR at ER/GR-repressed genes, U2OS-GR cells were infected with an adenovirus that expresses ERα. The ER antagonist, ICI 182780 (ICI), blocked Dex repression of ER/GR-repressed genes. ICI did not have any effect on the GR-only repressed genes or genes activated by Dex. These results demonstrate that ICI acts on subset of proinflammatory genes in the presence of ERα but not on GR-activated genes. ICI recruited ERα to the IL-8 promoter but did not prevent Dex recruitment of GR. ICI antagonized Dex repression of the TNF response element by blocking the recruitment of nuclear coactivator 2. These findings indicate that the ICI-ERα complex blocks Dex-mediated repression by interfering with nuclear coactivator 2 recruitment to GR. Our results suggest that it might be possible to exploit ER and GR cross talk for glucocorticoid therapies using drugs that interact with ERs.
Collapse
Affiliation(s)
- Aleksandra Cvoro
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
187
|
Wang S, Griffiths G, Midgley CA, Barnett AL, Cooper M, Grabarek J, Ingram L, Jackson W, Kontopidis G, McClue SJ, McInnes C, McLachlan J, Meades C, Mezna M, Stuart I, Thomas MP, Zheleva DI, Lane DP, Jackson RC, Glover DM, Blake DG, Fischer PM. Discovery and characterization of 2-anilino-4- (thiazol-5-yl)pyrimidine transcriptional CDK inhibitors as anticancer agents. ACTA ACUST UNITED AC 2011; 17:1111-21. [PMID: 21035734 DOI: 10.1016/j.chembiol.2010.07.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 07/15/2010] [Accepted: 07/20/2010] [Indexed: 12/11/2022]
Abstract
The main difficulty in the development of ATP antagonist kinase inhibitors is target specificity, since the ATP-binding motif is present in many proteins. We introduce a strategy that has allowed us to identify compounds from a kinase inhibitor library that block the cyclin-dependent kinases responsible for regulating transcription, i.e., CDK7 and especially CDK9. The screening cascade employs cellular phenotypic assays based on mitotic index and nuclear p53 protein accumulation. This permitted us to classify compounds into transcriptional, cell cycle, and mitotic inhibitor groups. We describe the characterization of the transcriptional inhibitor class in terms of kinase inhibition profile, cellular mode of action, and selectivity for transformed cells. A structural selectivity rationale was used to optimize potency and biopharmaceutical properties and led to the development of a transcriptional inhibitor, 3,4-dimethyl-5-[2-(4-piperazin-1-yl-phenylamino)-pyrimidin-4-yl]-3H-thiazol-2-one, with anticancer activity in animal models.
Collapse
|
188
|
Abstract
Nuclear speckles, also known as interchromatin granule clusters, are nuclear domains enriched in pre-mRNA splicing factors, located in the interchromatin regions of the nucleoplasm of mammalian cells. When observed by immunofluorescence microscopy, they usually appear as 20-50 irregularly shaped structures that vary in size. Speckles are dynamic structures, and their constituents can exchange continuously with the nucleoplasm and other nuclear locations, including active transcription sites. Studies on the composition, structure, and dynamics of speckles have provided an important paradigm for understanding the functional organization of the nucleus and the dynamics of the gene expression machinery.
Collapse
Affiliation(s)
- David L Spector
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA.
| | | |
Collapse
|
189
|
An J, Yang T, Huang Y, Liu F, Sun J, Wang Y, Xu Q, Wu D, Zhou P. Strand-specific PCR of UV radiation-damaged genomic DNA revealed an essential role of DNA-PKcs in the transcription-coupled repair. BMC BIOCHEMISTRY 2011; 12:2. [PMID: 21214942 PMCID: PMC3022811 DOI: 10.1186/1471-2091-12-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 01/08/2011] [Indexed: 11/10/2022]
Abstract
Background In eukaryotic cells, there are two sub-pathways of nucleotide excision repair (NER), the global genome (gg) NER and the transcription-coupled repair (TCR). TCR can preferentially remove the bulky DNA lesions located at the transcribed strand of a transcriptional active gene more rapidly than those at the untranscribed strand or overall genomic DNA. This strand-specific repair in a suitable restriction fragment is usually determined by alkaline gel electrophoresis followed by Southern blotting transfer and hybridization with an indirect end-labeled single-stranded probe. Here we describe a new method of TCR assay based on strand-specific-PCR (SS-PCR). Using this method, we have investigated the role of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase-related protein kinases (PIKK) family, in the TCR pathway of UV-induced DNA damage. Results Although depletion of DNA-PKcs sensitized HeLa cells to UV radiation, it did not affect the ggNER efficiency of UV-induced cyclobutane pyrimidine dimers (CPD) damage. We postulated that DNA-PKcs may involve in the TCR process. To test this hypothesis, we have firstly developed a novel method of TCR assay based on the strand-specific PCR technology with a set of smart primers, which allows the strand-specific amplification of a restricted gene fragment of UV radiation-damaged genomic DNA in mammalian cells. Using this new method, we confirmed that siRNA-mediated downregulation of Cockayne syndrome B resulted in a deficiency of TCR of the UV-damaged dihydrofolate reductase (DHFR) gene. In addition, DMSO-induced silencing of the c-myc gene led to a decreased TCR efficiency of UV radiation-damaged c-myc gene in HL60 cells. On the basis of the above methodology verification, we found that the depletion of DNA-PKcs mediated by siRNA significantly decreased the TCR capacity of repairing the UV-induced CPDs damage in DHFR gene in HeLa cells, indicating that DNA-PKcs may also be involved in the TCR pathway of DNA damage repair. By means of immunoprecipitation and MALDI-TOF-Mass spectrometric analysis, we have revealed the interaction of DNA-PKcs and cyclin T2, which is a subunit of the human transcription elongation factor (P-TEFb). While the P-TEFb complex can phosphorylate the serine 2 of the carboxyl-terminal domain (CTD) of RNA polymerase II and promote transcription elongation. Conclusion A new method of TCR assay was developed based the strand-specific-PCR (SS-PCR). Our data suggest that DNA-PKcs plays a role in the TCR pathway of UV-damaged DNA. One possible mechanistic hypothesis is that DNA-PKcs may function through associating with CyclinT2/CDK9 (P-TEFb) to modulate the activity of RNA Pol II, which has already been identified as a key molecule recognizing and initializing TCR.
Collapse
Affiliation(s)
- Jing An
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Manohar SM, Rathos MJ, Sonawane V, Rao SV, Joshi KS. Cyclin-dependent kinase inhibitor, P276-00 induces apoptosis in multiple myeloma cells by inhibition of Cdk9-T1 and RNA polymerase II-dependent transcription. Leuk Res 2011; 35:821-30. [PMID: 21216463 DOI: 10.1016/j.leukres.2010.12.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 09/14/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
P276-00 is a novel cyclin-dependent kinase inhibitor especially potent for Cdk9-T1, Cdk4-D1 and Cdk1-B. Multiple myeloma (MM) is a B-cell malignancy characterized by the accumulation of malignant plasma cells. Treatment of MM cell lines with P276-00 resulted in apoptosis that correlated with transcription inhibition and a significant decline in Mcl-1 protein levels with the appearance of cleaved PARP in these cells. In vivo studies of P276-00 confirmed antitumor activity in RPMI-8226 xenograft. These results suggest that P276-00 causes multiple myeloma cell death by disrupting the balance between cell survival and apoptosis through inhibition of transcription and downregulation of Mcl-1.
Collapse
Affiliation(s)
- Sonal M Manohar
- Department of Pharmacology, Piramal Life Sciences Limited, Mumbai, Maharashtra, India
| | | | | | | | | |
Collapse
|
191
|
Chen R, Liu M, Zhang K, Zhou Q. Isolation and functional characterization of P-TEFb-associated factors that control general and HIV-1 transcriptional elongation. Methods 2011; 53:85-90. [PMID: 20385240 PMCID: PMC6208320 DOI: 10.1016/j.ymeth.2010.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/29/2010] [Accepted: 04/06/2010] [Indexed: 11/28/2022] Open
Abstract
Originally identified as a factor crucial for RNA polymerase (Pol) II transcriptional elongation of cellular genes, the P-TEFb kinase was subsequently shown to also serve as a specific host co-factor required for HIV-1 transcription. Recruited by either the bromodomain protein Brd4 to cellular promoters for general transcription or the HIV-1 Tat protein to the viral LTR for activated HIV-1 transcription, P-TEFb stimulates the processivity of Pol II through phosphorylating the C-terminal domain of Pol II and a pair of negative elongation factors, leading to the synthesis of full-length transcripts. However, abundant evidence indicates that P-TEFb does not act alone in the cell and that all of its known biological functions are likely mediated through the interactions with various regulators. Although a number of P-TEFb-associated factors have already been identified, there are likely more yet to be discovered. Given that P-TEFb plays an essential role in HIV-1 transcription, a major challenge facing the field is to identify all the P-TEFb-associated factors and determine how they may modulate Tat-transactivation and HIV-1 replication. Described here is a set of experimental procedures that have not only enabled us to isolate and identify several P-TEFb-associated factors, but also provided the means to characterize their biochemical functions in HIV-1 transcriptional control. In light of the recent demonstrations that transcriptional elongation plays a much more important role in controlling metazoan gene expression than previously thought, the techniques presented here will also be useful for analyzing Pol II elongation of cellular genes.
Collapse
Affiliation(s)
- Ruichuan Chen
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005 Fujian, China
| | - Min Liu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Kai Zhang
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005 Fujian, China
| | - Qiang Zhou
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005 Fujian, China
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
192
|
Coulombe B. Mapping the disease protein interactome: toward a molecular medicine GPS to accelerate drug and biomarker discovery. J Proteome Res 2010; 10:120-5. [PMID: 20939596 DOI: 10.1021/pr100609a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomic approaches such as genome-wide association studies (GWAS), disease genome sequencing projects, and genome-wide expression profiling analyses, in conjunction with classical genetic approaches, can identify human genes that are altered in disease, thereby suggesting a role for the encoded protein (or RNA) in the establishment and/or progression of the disease. However, many technical difficulties challenge our ability to validate the role of these disease-associated genes and gene products. Moreover, many identified genes contain open reading frames (ORFs) that have yet to be annotated, that is, the function (or activity) of the encoded protein is unknown. As a result, translating the genomic information available in public databases into useful tools for understanding and curing disease is a very slow and inefficient process. To overcome these difficulties, we have developed a technology platform, termed the "molecular medicine GPS" (mm-GPS), which is aimed at defining high-quality maps of interaction networks involving disease proteins. These maps are used to identify network dysfunctions in disease cells or models and to develop molecular tools such as RNA interference (RNAi) and small-molecule inhibitors to further characterize the molecular basis of disease. In this article, I review our progress in producing high-quality maps of human protein interaction networks, and I describe how we used this information to identify new factors and pathways that regulate the RNA polymerase II transcription machinery. I also describe how we utilize the mm-GPS platform to guide more efficient efforts leading from disease-associated genes to protein interaction networks to small-molecule inhibitors, and consequently, to accelerate drug and biomarker discovery.
Collapse
Affiliation(s)
- Benoit Coulombe
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada.
| |
Collapse
|
193
|
Brewster CD, Birkenheuer CH, Vogt MB, Quackenbush SL, Rovnak J. The retroviral cyclin of walleye dermal sarcoma virus binds cyclin-dependent kinases 3 and 8. Virology 2010; 409:299-307. [PMID: 21067790 DOI: 10.1016/j.virol.2010.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/13/2010] [Accepted: 10/14/2010] [Indexed: 12/20/2022]
Abstract
Walleye dermal sarcoma virus encodes a retroviral cyclin (rv-cyclin) with a cyclin box fold and transcription activation domain (AD). Co-immune precipitation (co-IP) identified an association of rv-cyclin with cyclin-dependent kinase 8 (cdk8). Cdk8 is dependent upon cyclin C and regulates transcription with the Mediator complex, a co-activator of transcription. Mutation of cyclin residues, required for cdk binding, disrupts rv-cyclin-cdk8 co-IP. Mutation or removal of the AD has no effect on cdk8 interaction. Direct rv-cyclin-cdk8 binding is demonstrated by pulldown of active cdk8 and by GST-rv-cyclin binding to recombinant cdk8. Cdk3 is also activated by cyclin C and phosphorylates retinoblastoma protein to initiate entry into the cell division cycle. Co-IP and pulldowns demonstrate direct rv-cyclin binding to cdk3 as well. The rv-cyclin functions as a structural ortholog of cyclin C in spite of its limited amino acid sequence identity with C cyclins or with any known cyclins.
Collapse
Affiliation(s)
- Connie D Brewster
- Department of Microbiology, Immunology, and Pathology, 1619 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | |
Collapse
|
194
|
Gordon V, Bhadel S, Wunderlich W, Zhang J, Ficarro SB, Mollah SA, Shabanowitz J, Hunt DF, Xenarios I, Hahn WC, Conaway M, Carey MF, Gioeli D. CDK9 regulates AR promoter selectivity and cell growth through serine 81 phosphorylation. Mol Endocrinol 2010; 24:2267-80. [PMID: 20980437 DOI: 10.1210/me.2010-0238] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Previously we determined that S81 is the highest stoichiometric phosphorylation on the androgen receptor (AR) in response to hormone. To explore the role of this phosphorylation on growth, we stably expressed wild-type and S81A mutant AR in LHS and LAPC4 cells. The cells with increased wild-type AR expression grow faster compared with parental cells and S81A mutant-expressing cells, indicating that loss of S81 phosphorylation limits cell growth. To explore how S81 regulates cell growth, we tested whether S81 phosphorylation regulates AR transcriptional activity. LHS cells stably expressing wild-type and S81A mutant AR showed differences in the regulation of endogenous AR target genes, suggesting that S81 phosphorylation regulates promoter selectivity. We next sought to identify the S81 kinase using ion trap mass spectrometry to analyze AR-associated proteins in immunoprecipitates from cells. We observed cyclin-dependent kinase (CDK)9 association with the AR. CDK9 phosphorylates the AR on S81 in vitro. Phosphorylation is specific to S81 because CDK9 did not phosphorylate the AR on other serine phosphorylation sites. Overexpression of CDK9 with its cognate cyclin, Cyclin T, increased S81 phosphorylation levels in cells. Small interfering RNA knockdown of CDK9 protein levels decreased hormone-induced S81 phosphorylation. Additionally, treatment of LNCaP cells with the CDK9 inhibitors, 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole and Flavopiridol, reduced S81 phosphorylation further, suggesting that CDK9 regulates S81 phosphorylation. Pharmacological inhibition of CDK9 also resulted in decreased AR transcription in LNCaP cells. Collectively these results suggest that CDK9 phosphorylation of AR S81 is an important step in regulating AR transcriptional activity and prostate cancer cell growth.
Collapse
Affiliation(s)
- Vicki Gordon
- University of Virginia, Department of Microbiology, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Functional characterization of a new member of the Cdk9 family in Aspergillus nidulans. EUKARYOTIC CELL 2010; 9:1901-12. [PMID: 20952582 DOI: 10.1128/ec.00384-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cdk9-like kinases in complex with T-type cyclins are essential components of the eukaryotic transcription elongation machinery. The full spectrum of Cdk9/cyclin T targets, as well as the specific consequences of phosphorylations, is still largely undefined. We identify and characterize here a Cdk9 kinase (PtkA) in the filamentous ascomycete Aspergillus nidulans. Deletion of ptkA had a lethal effect in later stages of vegetative growth and completely impeded asexual development. Overexpression of ptkA affected directionality of polarized growth and the initiation of new branching sites. A green fluorescent protein-tagged PtkA version localized inside the nucleus during interphase, supporting a role of PtkA in transcription elongation, as observed in other organisms. We also identified a putative cyclin T homolog, PchA, in the A. nidulans genome and confirmed its interaction with PtkA in vivo. Surprisingly, the Pcl-like cyclin PclA, previously described to be involved in asexual development, was also found to interact with PtkA, indicating a possible role of PtkA in linking transcriptional activity with development and/or morphogenesis in A. nidulans. This is the first report of a Cdk9 kinase interacting with a Pcl-like cyclin, revealing interesting new aspects about the involvement of this Cdk-subfamily in differential gene expression.
Collapse
|
196
|
Muniz L, Egloff S, Ughy B, Jády BE, Kiss T. Controlling cellular P-TEFb activity by the HIV-1 transcriptional transactivator Tat. PLoS Pathog 2010; 6:e1001152. [PMID: 20976203 PMCID: PMC2954905 DOI: 10.1371/journal.ppat.1001152] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 09/13/2010] [Indexed: 11/18/2022] Open
Abstract
The human immunodeficiency virus 1 (HIV-1) transcriptional transactivator (Tat) is essential for synthesis of full-length transcripts from the integrated viral genome by RNA polymerase II (Pol II). Tat recruits the host positive transcription elongation factor b (P-TEFb) to the HIV-1 promoter through binding to the transactivator RNA (TAR) at the 5′-end of the nascent HIV transcript. P-TEFb is a general Pol II transcription factor; its cellular activity is controlled by the 7SK small nuclear RNA (snRNA) and the HEXIM1 protein, which sequester P-TEFb into transcriptionally inactive 7SK/HEXIM/P-TEFb snRNP. Besides targeting P-TEFb to HIV transcription, Tat also increases the nuclear level of active P-TEFb through promoting its dissociation from the 7SK/HEXIM/P-TEFb RNP by an unclear mechanism. In this study, by using in vitro and in vivo RNA-protein binding assays, we demonstrate that HIV-1 Tat binds with high specificity and efficiency to an evolutionarily highly conserved stem-bulge-stem motif of the 5′-hairpin of human 7SK snRNA. The newly discovered Tat-binding motif of 7SK is structurally and functionally indistinguishable from the extensively characterized Tat-binding site of HIV TAR and importantly, it is imbedded in the HEXIM-binding elements of 7SK snRNA. We show that Tat efficiently replaces HEXIM1 on the 7SK snRNA in vivo and therefore, it promotes the disassembly of the 7SK/HEXIM/P-TEFb negative transcriptional regulatory snRNP to augment the nuclear level of active P-TEFb. This is the first demonstration that HIV-1 specifically targets an important cellular regulatory RNA, most probably to promote viral transcription and replication. Demonstration that the human 7SK snRNA carries a TAR RNA-like Tat-binding element that is essential for the normal transcriptional regulatory function of 7SK questions the viability of HIV therapeutic approaches based on small drugs blocking the Tat-binding site of HIV TAR. Expression and replication of the human immunodeficiency virus (HIV) is supported by the viral transcriptional transactivator (Tat) that recruits the host positive transcription elongation factor b (P-TEFb) to the promoter of the integrated viral genome. Here, we demonstrate that HIV Tat specifically and efficiently binds to the host 7SK small nuclear RNA (snRNA) that is a negative regulator of P-TEFb. Although HIV Tat has been reported to interact with a plethora of host factors, our results indicate that the 7SK transcriptional regulatory snRNA is a major and important cellular target of HIV Tat. We demonstrate that binding of Tat to the 7SK snRNA disrupts the 7SK-P-TEFb negative transcriptional regulatory complex and releases active P-TEFb. Thus, we propose that Tat not only targets P-TEFb for HIV transcription, but also modulates the nuclear level of active P-TEFb in HIV-infected cells.
Collapse
Affiliation(s)
- Lisa Muniz
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, Toulouse, France
| | - Sylvain Egloff
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, Toulouse, France
| | - Bettina Ughy
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, Toulouse, France
- Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Beáta E. Jády
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, Toulouse, France
| | - Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, Toulouse, France
- Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
197
|
Galatioto J, Mascareno E, Siddiqui MAQ. CLP-1 associates with MyoD and HDAC to restore skeletal muscle cell regeneration. J Cell Sci 2010; 123:3789-95. [PMID: 20940258 DOI: 10.1242/jcs.073387] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Emerging evidence suggests that eukaryotic gene transcription is regulated primarily at the elongation stage by association and dissociation of the inhibitory protein cardiac lineage protein 1 (CLP-1/HEXIM1) from the positive transcription elongation factor b (P-TEFb) complex. It was reported recently that P-TEFb interacts with skeletal muscle-specific regulatory factor, MyoD, suggesting a linkage between CLP-1-mediated control of transcription and skeletal myogenesis. To examine this, we produced CLP-1 knockdown skeletal muscle C2C12 cells by homologous recombination, and demonstrated that the C2C12 CLP-1 +/- cells failed to differentiate when challenged by low serum in the medium. We also showed that CLP-1 interacts with both MyoD and histone deacetylases (HDACs) maximally at the early stage of differentiation of C2C12 cells. This led us to hypothesize that the association might be crucial to inhibition of MyoD-target proliferative genes. Chromatin immunoprecipitation analysis revealed that the CLP-1/MyoD/HDAC complex binds to the promoter of the cyclin D1 gene, which is downregulated in differentiated muscle cells. These findings suggest a novel transcriptional paradigm whereby CLP-1, in conjunction with MyoD and HDAC, acts to inhibit growth-related gene expression, a requirement for myoblasts to exit the cell cycle and transit to myotubes.
Collapse
Affiliation(s)
- Josephine Galatioto
- Department of Cell Biology, Center for Cardiovascular and Muscle Research, State University of New York Downstate Medical Center, Brooklyn, New York, NY 11203, USA
| | | | | |
Collapse
|
198
|
Daroqui MC, Augenlicht LH. Transcriptional attenuation in colon carcinoma cells in response to butyrate. Cancer Prev Res (Phila) 2010; 3:1292-302. [PMID: 20841488 DOI: 10.1158/1940-6207.capr-10-0083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The short-chain fatty acid sodium butyrate (NaB), produced in the colonic lumen, induces cell cycle arrest, differentiation, and/or apoptosis in colorectal carcinoma cells in vitro, establishing a potential role for NaB in colon cancer prevention. We have previously shown that butyrate decreases cyclin D1 and c-myc expression, each essential for intestinal tumor development, by transcriptional attenuation. Here, we determined that butyrate-induced transcriptional attenuation of the cyclin D1 and c-myc genes in SW837 human colorectal adenocarcinoma cells occurs at ∼100 nucleotides downstream of the transcription start site, with a similar positioning in Caco-2 cells. A concomitant decrease in RNA polymerase II occupancy at the 5' end of each gene was observed. Because transcriptional regulation is associated with chromatin remodeling, we investigated by chromatin immunoprecipitation whether the histone deacetylase inhibitory activity of butyrate altered chromatin structure at the attenuated loci. Although the distributions of histone H3 trimethylated on K4 and K36 along the cyclin D1 and c-myc genes were consistent with current models, butyrate induced only modest decreases in these modifications, with a similar effect on acetylated H3 and a modest increase in histone H3 trimethylated on K27. Finally, transcriptome analysis using novel microarrays showed that butyrate-induced attenuation is widespread throughout the genome, likely independent of transcriptional initiation. We identified 42 loci potentially paused by butyrate and showed that the transcription patterns are gene specific. The biological functions of these loci encompass a number of effects of butyrate on the physiology of intestinal epithelial cells.
Collapse
Affiliation(s)
- Maria C Daroqui
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467, USA.
| | | |
Collapse
|
199
|
Sub1 globally regulates RNA polymerase II C-terminal domain phosphorylation. Mol Cell Biol 2010; 30:5180-93. [PMID: 20823273 DOI: 10.1128/mcb.00819-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The transcriptional coactivator Sub1 has been implicated in several aspects of mRNA metabolism in yeast, such as activation of transcription, termination, and 3'-end formation. Here, we present evidence that Sub1 plays a significant role in controlling phosphorylation of the RNA polymerase II large subunit C-terminal domain (CTD). We show that SUB1 genetically interacts with the genes encoding all four known CTD kinases, SRB10, KIN28, BUR1, and CTK1, suggesting that Sub1 acts to influence CTD phosphorylation at more than one step of the transcription cycle. To address this directly, we first used in vitro kinase assays, and we show that, on the one hand, SUB1 deletion increased CTD phosphorylation by Kin28, Bur1, and Ctk1 but, on the other, it decreased CTD phosphorylation by Srb10. Second, chromatin immunoprecipitation assays revealed that SUB1 deletion decreased Srb10 chromatin association on the inducible GAL1 gene but increased Kin28 and Ctk1 chromatin association on actively transcribed genes. Taken together, our data point to multiple roles for Sub1 in the regulation of CTD phosphorylation throughout the transcription cycle.
Collapse
|
200
|
Smallie T, Ricchetti G, Horwood NJ, Feldmann M, Clark AR, Williams LM. IL-10 inhibits transcription elongation of the human TNF gene in primary macrophages. ACTA ACUST UNITED AC 2010; 207:2081-8. [PMID: 20805562 PMCID: PMC2947066 DOI: 10.1084/jem.20100414] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IL-10 plays a central nonredundant role in limiting inflammation in vivo. However, the mechanisms involved remain to be resolved. Using primary human macrophages, we found that IL-10 inhibits selected inflammatory genes, primarily at a level of transcription. At the TNF gene, this occurs not through an inhibition of RNA polymerase II (Pol II) recruitment and transcription initiation but through a mechanism targeting the stimulation of transcription elongation by cyclin-dependent kinase (CDK) 9. We demonstrated an unanticipated requirement for a region downstream of the TNF 3′ untranslated region (UTR) that contains the nuclear factor κB (NF-κB) binding motif (κB4) both for induction of transcription by lipopolysaccharide (LPS) and its inhibition by IL-10. IL-10 not only inhibits the recruitment of RelA to regions containing κB sites at the TNF gene but also to those found at other LPS-induced genes. We show that although IL-10 elicits a general block in RelA recruitment to its genomic targets, the gene-specific nature of IL-10’s actions are defined through the differential recruitment of CDK9 and the control of transcription elongation. At TNF, but not NFKBIA, the consequence of RelA recruitment inhibition is a loss of CDK9 recruitment, preventing the stimulation of transcription elongation.
Collapse
Affiliation(s)
- Tim Smallie
- Kennedy Institute of Rheumatology Division, Imperial College London, London W6 8LH, UK
| | | | | | | | | | | |
Collapse
|