151
|
Ning K, Lu K, Chen Q, Guo Z, Du X, Riaz F, Feng L, Fu Y, Yin C, Zhang F, Wu L, Li D. Epigallocatechin Gallate Protects Mice against Methionine-Choline-Deficient-Diet-Induced Nonalcoholic Steatohepatitis by Improving Gut Microbiota To Attenuate Hepatic Injury and Regulate Metabolism. ACS OMEGA 2020; 5:20800-20809. [PMID: 32875214 PMCID: PMC7450495 DOI: 10.1021/acsomega.0c01689] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/29/2020] [Indexed: 05/10/2023]
Abstract
Epigallocatechin gallate (EGCG) has been regarded as a protective bioactive polyphenol in green tea against nonalcoholic steatohepatitis (NASH), but the mechanism remains poorly deciphered. Herein, we assessed the role and mechanism of EGCG on gut microbiota and the metabolism in NASH development. Forty-eight male C57BL/6J mice were fed with either a methionine-choline-sufficient diet or a methionine-choline-deficient (MCD) diet with or without EGCG administration for 4 weeks. Liver injury, inflammation, lipid accumulation, and iron overload were examined. 16S ribosomal RNA sequencing was used to detect the fecal microbiome. In our research, we observed that EGCG notably improved MCD-diet-derived gut microbiota dysbiosis, as proved by a distinctively clustered separation from that of the MCD group and by the decrease of the Oxalobacter, Oscillibacter, Coprococcus_1, and Desulfovibrio genera and enrichment of norank_f__Bacteroidales_S24_7_group, Alloprevotella, and Bacteroides. Spearman-correlation heatmap analysis indicated that Bacteroides and Alloprevotella induced by EGCG were strongly negatively correlated with lipid accumulation. Functional enzymes of the gut microbiome were predicted by PICRUSt based on the operation classification unit. The results revealed that 1468 enzymes were involved in various metabolic pathways, and 371 enzymes showed distinct changes between untreated and EGCG-treated mice. Long-chain-fatty-acid-CoA ligase ACSBG played a distinct role in fatty acid metabolism and ferroptosis and was significantly negatively correlated with Bacteroides. Altogether, the salutary effect of EGCG on NASH might be via shifting gut flora and certain enzymes from genera. Our study thus takes a step toward NASH prevention and therapy.
Collapse
Affiliation(s)
- Kaiting Ning
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, P. R. China
- Key
Laboratory of Environment and Genes Related to Diseases (Xi’an
Jiaotong University), Ministry of Education
of China, Xi’an, Shaanxi 710061, P.
R. China
| | - Kaikai Lu
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, P. R. China
- Key
Laboratory of Environment and Genes Related to Diseases (Xi’an
Jiaotong University), Ministry of Education
of China, Xi’an, Shaanxi 710061, P.
R. China
| | - Qian Chen
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, P. R. China
- Key
Laboratory of Environment and Genes Related to Diseases (Xi’an
Jiaotong University), Ministry of Education
of China, Xi’an, Shaanxi 710061, P.
R. China
| | - Zizhen Guo
- Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Xiaojuan Du
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, P. R. China
- Key
Laboratory of Environment and Genes Related to Diseases (Xi’an
Jiaotong University), Ministry of Education
of China, Xi’an, Shaanxi 710061, P.
R. China
| | - Farooq Riaz
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, P. R. China
- Key
Laboratory of Environment and Genes Related to Diseases (Xi’an
Jiaotong University), Ministry of Education
of China, Xi’an, Shaanxi 710061, P.
R. China
| | - Lina Feng
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, P. R. China
- Key
Laboratory of Environment and Genes Related to Diseases (Xi’an
Jiaotong University), Ministry of Education
of China, Xi’an, Shaanxi 710061, P.
R. China
| | - Yuping Fu
- Department
of Cardiology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| | - Chunyan Yin
- Department
of Pediatric, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| | - Fujun Zhang
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, P. R. China
- Key
Laboratory of Environment and Genes Related to Diseases (Xi’an
Jiaotong University), Ministry of Education
of China, Xi’an, Shaanxi 710061, P.
R. China
| | - Litao Wu
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, P. R. China
- Key
Laboratory of Environment and Genes Related to Diseases (Xi’an
Jiaotong University), Ministry of Education
of China, Xi’an, Shaanxi 710061, P.
R. China
| | - Dongmin Li
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, P. R. China
- Key
Laboratory of Environment and Genes Related to Diseases (Xi’an
Jiaotong University), Ministry of Education
of China, Xi’an, Shaanxi 710061, P.
R. China
| |
Collapse
|
152
|
Yuan J, Zhang R, Wu R, Gu Y, Lu Y. The effects of oxytocin to rectify metabolic dysfunction in obese mice are associated with increased thermogenesis. Mol Cell Endocrinol 2020; 514:110903. [PMID: 32531419 DOI: 10.1016/j.mce.2020.110903] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 01/12/2023]
Abstract
Oxytocin, a protein hormone mainly produced by hypothalamus, has been shown to repress body weight gain in obese animals, in part, by reducing food intake and increasing energy expenditure. Till now, activation of brown fat tissue (BAT) thermogenesis and white adipose tissue (WAT) browning are considered as two main factors for oxytocin-induced energy expenditure. However, the underlying molecular mechanisms are still not understood well. Here, we observed that oxytocin expression in the hypothalamus and its receptor in adipose tissues were induced by cold exposure in mice. In differentiated adipocytes, oxytocin stimulated brown adipocyte specific gene expression by inducing PRDM16. In high fat diet induced obese mice, oxytocin delivery by osmotic minipumps increased body core temperature and decreased body weight gain. Glucose and insulin tolerance were improved by oxytocin. Hyperinsulinemia and fatty liver were ameliorated in oxytocin-treated animals. Moreover, oxytocin treatment induced thermogenic gene expressions in BAT, inguinal WAT (iWAT), and skeletal muscle. Taken together, our findings revealed a new aspect of oxytocin, i.e. oxytocin induces iWAT browning and stimulates thermogenesis in BAT, iWAT and skeletal muscle, through which oxytocin promotes thermogenesis and thus combats obesity and metabolic dysfunctions.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210011, China; Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Rongping Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Runze Wu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Yunjuan Gu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China, 20 Xisi Road, Nantong, Jiangsu, 226001, China.
| | - Yibing Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210011, China.
| |
Collapse
|
153
|
Zhang C, He X, Sheng Y, Yang C, Xu J, Zheng S, Liu J, Xu W, Luo Y, Huang K. Allicin-induced host-gut microbe interactions improves energy homeostasis. FASEB J 2020; 34:10682-10698. [PMID: 32619085 DOI: 10.1096/fj.202001007r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Allicin (diallylthiosulfinate) is a natural food compound with multiple biological and pharmacological functions. However, the mechanism of beneficial role of Allicin on energy homeostasis is not well studied. Gut microbiota (GM) profoundly affects host metabolism via microbiota-host interactions and coevolution. Here, we investigated the interventions of beneficial microbiome induced by Allicin on energy homeostasis, particularly obesity, and related complications. Interestingly, Allicin treatment significantly improved GM composition and induced the most significant alteration enrichment of Bifidobacterium and Lactobacillus. Importantly, transplantation of the Allicin-induced GM to HFD mice (AGMT) played a remarkable role in decreasing adiposity, maintaining glucose homeostasis, and ameliorating hepatic steatosis. Furthermore, AGMT was effective in modulating lipid metabolism, activated brown adipose tissues (BATs), induced browning in sWAT, reduced inflammation, and inhibited the degradation of intestinal villi. Mechanically, AGMT significantly increased Blautia [short-chain fatty acids (SCFAs)-producing microbiota] and Bifidobacterium in HFD mice, also increased the SCFAs in the cecum, which has been proved many beneficial effects on energy homeostasis. Our study highlights that Allicin-induced host-gut microbe interactions plays an important role in regulating energy homeostasis, which provides a promising potential therapy for obesity and metabolic disorders based on host-microbe interactions.
Collapse
Affiliation(s)
- Chuanhai Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Yao Sheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Cui Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Jia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Shujuan Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Junyu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| |
Collapse
|
154
|
Huang ZR, Deng JC, Li QY, Cao YJ, Lin YC, Bai WD, Liu B, Rao PF, Ni L, Lv XC. Protective Mechanism of Common Buckwheat ( Fagopyrum esculentum Moench.) against Nonalcoholic Fatty Liver Disease Associated with Dyslipidemia in Mice Fed a High-Fat and High-Cholesterol Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6530-6543. [PMID: 32383865 DOI: 10.1021/acs.jafc.9b08211] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the protective mechanism of common buckwheat (Fagopyrum esculentum Moench.) against nonalcoholic fatty liver disease (NAFLD) associated with dyslipidemia in mice that were fed a high-fat and high-cholesterol diet (HFD). Results showed that oral supplementation of common buckwheat significantly improved physiological indexes and biochemical parameters related to dyslipidemia and NAFLD in mice fed with HFD. Furthermore, the HFD-induced reductions in fecal short-chain fatty acids were reversed by common buckwheat intervention, which also increased the fecal bile acid (BA) abundance compared with HFD-induced hyperlipidemic mice. Liver metabolomics based on ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry demonstrated that common buckwheat supplementation made significant regulatory effects on the pentose phosphate pathway, starch and sucrose metabolism, primary BA biosynthesis, and so forth. The results of high-throughput sequencing revealed that common buckwheat supplementation significantly altered the structure of the intestinal microbiota in mice fed with HFD. The correlations between lipid metabolic parameters and intestinal microbial phylotypes were also revealed by the heatmap and network. Additionally, common buckwheat intervention regulated the mRNA expressions of genes responsible for liver lipid metabolism and BA homeostasis, thus promoting BA synthesis and excretion. These findings confirmed that common buckwheat has the outstanding ability of improving lipid metabolism and could be used as a potential functional food for the prevention of NAFLD and hyperlipidemia.
Collapse
Affiliation(s)
- Zi-Rui Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Jia-Cong Deng
- School of Ocean Science and Biochemistry Engineering, Fuqing Branch of Fujian Normal University, Fuqing, Fujian 350300, P. R. China
| | - Qiu-Yi Li
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- College of Science and Engineering, Fuzhou University of International Studies and Trade, Fuzhou, Fujian 350202, P. R. China
| | - Ying-Jia Cao
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Yi-Chen Lin
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Wei-Dong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Ping-Fan Rao
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Xu-Cong Lv
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
155
|
Wang Y, Zhou Y, Xiao X, Zheng J, Zhou H. Metaproteomics: A strategy to study the taxonomy and functionality of the gut microbiota. J Proteomics 2020; 219:103737. [DOI: 10.1016/j.jprot.2020.103737] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
|
156
|
Li H, Shen L, Zhang L, Yan B, Sun T, Guo F, Yin X. Reduced Beige Adipogenic Potential in Subcutaneous Adipocytes Derived from Obese Chinese Individuals. Diabetes Metab Syndr Obes 2020; 13:2551-2562. [PMID: 32765034 PMCID: PMC7373414 DOI: 10.2147/dmso.s248112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/26/2020] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Thermogenesis function has made brown/beige adipocyte an attractive target for obesity. Human brown adipose tissue activity is impaired in obesity in vivo. The present study aims to compare the differences in beige adipocyte differentiation potential of subcutaneous adipose tissue derived from normal weight and obese Chinese individuals in vitro. METHODS Adipose-derived stem cells (ADSCs) isolated from subcutaneous fat tissues of normal weight (NW) and obese (OB) groups were induced to differentiate into mature adipocyte with white adipocyte (WA)- and beige adipocyte (BA)-induction treatment. The expression of beige adipocyte marker protein UCP-1 and specific thermogenic genes was detected in differentiated adipocytes via Western blot and rt PCR, and the adipocyte mitochondrial function and lipolysis ability were also measured by oxygen consumption rate (OCR) and glycerol release rate, respectively. RESULTS Either with WA-induction or BA-induction, the expression of UCP-1 and beige adipocyte-specific thermogenic genes in differentiated adipocytes was higher in the NW compared to the OB group, followed by higher OCR and lipolysis ability in NW group than OB group. With BA-induction, expression of UCP-1 and thermogenic genes increased significantly, followed by the increasement in adipocytes OCR and lipolysis rate in NW group compared with WA-induction treatment, but no significant difference was observed in OB group. CONCLUSION Compromised beige adipocyte differentiation plasticity was found in subcutaneous white adipose tissue derived from obese Chinese individuals, which may be due part to the downregulation of β3-adrenergic receptor expression in adipocytes. Discovery of therapeutic agents to active brown adipose tissue through specific pathways could provide a promising approach for treating obesity in the future.
Collapse
Affiliation(s)
- Han Li
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong250013, People’s Republic of China
| | - Lin Shen
- Shandong First Medical University, Taian, Shandong271000, People’s Republic of China
| | - Lei Zhang
- Department of Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong250013, People’s Republic of China
| | - Bing Yan
- Department of Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong250013, People’s Republic of China
| | - Tao Sun
- Department of Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong250013, People’s Republic of China
| | - Feng Guo
- Department of Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong250013, People’s Republic of China
| | - Xiao Yin
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong250013, People’s Republic of China
- Correspondence: Xiao Yin Email
| |
Collapse
|