151
|
Liu M, Dexheimer T, Sui D, Hovde S, Deng X, Kwok R, Bochar DA, Kuo MH. Hyperphosphorylated tau aggregation and cytotoxicity modulators screen identified prescription drugs linked to Alzheimer's disease and cognitive functions. Sci Rep 2020; 10:16551. [PMID: 33024171 PMCID: PMC7539012 DOI: 10.1038/s41598-020-73680-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
The neurodegenerative Alzheimer's disease (AD) affects more than 30 million people worldwide. There is thus far no cure or prevention for AD. Aggregation of hyperphosphorylated tau in the brain correlates with the cognitive decline of patients of AD and other neurodegenerative tauopathies. Intracerebral injection of tau aggregates isolated from tauopathy brains causes similar pathology in the recipient mice, demonstrating the pathogenic role of abnormally phosphorylated tau. Compounds controlling the aggregation of hyperphosphorylated tau therefore are probable modulators for the disease. Here we report the use of recombinant hyperphosphorylated tau (p-tau) to identify potential tauopathy therapeutics and risk factors. Hyperphosphorylation renders tau prone to aggregate and to impair cell viability. Taking advantage of these two characters of p-tau, we performed a screen of a 1280-compound library, and tested a selective group of prescription drugs in p-tau aggregation and cytotoxicity assays. R-(-)-apomorphine and raloxifene were found to be p-tau aggregation inhibitors that protected p-tau-treated cells. In contrast, a subset of benzodiazepines exacerbated p-tau cytotoxicity apparently via enhancing p-tau aggregation. R-(-)apomorphine and raloxifene have been shown to improve cognition in animals or in humans, whereas benzodiazepines were linked to increased risks of dementia. Our results demonstrate the feasibility and potential of using hyperphosphorylated tau-based assays for AD drug discovery and risk factor identification.
Collapse
Affiliation(s)
- Mengyu Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, Biochemistry Building, East Lansing, MI, 48824, USA
| | - Thomas Dexheimer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, Biochemistry Building, East Lansing, MI, 48824, USA
| | - Stacy Hovde
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, Biochemistry Building, East Lansing, MI, 48824, USA
| | - Xiexiong Deng
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, Biochemistry Building, East Lansing, MI, 48824, USA
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| | - Roland Kwok
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | | | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, Biochemistry Building, East Lansing, MI, 48824, USA.
| |
Collapse
|
152
|
Thompson TB, Chaggar P, Kuhl E, Goriely A. Protein-protein interactions in neurodegenerative diseases: A conspiracy theory. PLoS Comput Biol 2020; 16:e1008267. [PMID: 33048932 PMCID: PMC7584458 DOI: 10.1371/journal.pcbi.1008267] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 10/23/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's or Parkinson's are associated with the prion-like propagation and aggregation of toxic proteins. A long standing hypothesis that amyloid-beta drives Alzheimer's disease has proven the subject of contemporary controversy; leading to new research in both the role of tau protein and its interaction with amyloid-beta. Conversely, recent work in mathematical modeling has demonstrated the relevance of nonlinear reaction-diffusion type equations to capture essential features of the disease. Such approaches have been further simplified, to network-based models, and offer researchers a powerful set of computationally tractable tools with which to investigate neurodegenerative disease dynamics. Here, we propose a novel, coupled network-based model for a two-protein system that includes an enzymatic interaction term alongside a simple model of aggregate transneuronal damage. We apply this theoretical model to test the possible interactions between tau proteins and amyloid-beta and study the resulting coupled behavior between toxic protein clearance and proteopathic phenomenology. Our analysis reveals ways in which amyloid-beta and tau proteins may conspire with each other to enhance the nucleation and propagation of different diseases, thus shedding new light on the importance of protein clearance and protein interaction mechanisms in prion-like models of neurodegenerative disease.
Collapse
Affiliation(s)
| | - Pavanjit Chaggar
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Ellen Kuhl
- Living Matter Laboratory, Stanford University, Stanford, California, USA
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
153
|
Modelling frontotemporal dementia using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 2020; 109:103553. [PMID: 32956830 DOI: 10.1016/j.mcn.2020.103553] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/27/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) describes a group of clinically heterogeneous conditions that frequently affect people under the age of 65 (Le Ber et al., 2013). There are multiple genetic causes of FTD, including coding or splice-site mutations in MAPT, GRN mutations that lead to haploinsufficiency of progranulin protein, and a hexanucleotide GGGGCC repeat expansion in C9ORF72. Pathologically, FTD is characterised by abnormal protein accumulations in neurons and glia. These aggregates can be composed of the microtubule-associated protein tau (observed in FTD with MAPT mutations), the DNA/RNA-binding protein TDP-43 (seen in FTD with mutations in GRN or C9ORF72 repeat expansions) or dipeptide proteins generated by repeat associated non-ATG translation of the C9ORF72 repeat expansion. There are currently no disease-modifying therapies for FTD and the availability of in vitro models that recapitulate pathologies in a disease-relevant cell type would accelerate the development of novel therapeutics. It is now possible to generate patient-specific stem cells through the reprogramming of somatic cells from a patient with a genotype/phenotype of interest into induced pluripotent stem cells (iPSCs). iPSCs can subsequently be differentiated into a plethora of cell types including neurons, astrocytes and microglia. Using this approach has allowed researchers to generate in vitro models of genetic FTD in human cell types that are largely inaccessible during life. In this review we explore the recent progress in the use of iPSCs to model FTD, and consider the merits, limitations and future prospects of this approach.
Collapse
|
154
|
Role for caveolin-mediated transcytosis in facilitating transport of large cargoes into the brain via ultrasound. J Control Release 2020; 327:667-675. [PMID: 32918963 DOI: 10.1016/j.jconrel.2020.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic diffusional barrier regulating the molecular and chemical flux between the blood and brain, thereby preserving cerebral homeostasis. Endothelial cells form the core anatomical component of the BBB based on properties such as specialized junctional complexes between cells, which restricts paracellular transport, and extremely low levels of vesicular transport, restricting transcytosis. In performing its protective function, the BBB also constrains the entry of therapeutics into the brain, hampering the treatment of various neurological disorders. Focused ultrasound is a novel therapeutic modality that has shown efficacy in transiently and non-invasively opening the BBB for the targeted delivery of therapeutics to the brain. Although the ability of ultrasound to disrupt the junctional assembly of endothelial cells has been partially investigated, its effect on the transcellular mode of transport has been largely neglected. In this study, we found that ultrasound induces a pronounced increase in the levels of the vesicle-forming protein caveolin-1. In order to investigate the role of vesicle-mediated transcytoplasmic transport, we compared the leakage of various cargo sizes between a mouse model that lacks caveolin-1 and wild-type mice following sonication of the hippocampus. The absence of caveolin-1 did not lead to overt abnormalities in the cerebral vasculature in the mice. We found that caveolin-1 has a critical role specifically in the transport of large (500 kDa), but not smaller (3 and 70 kDa) cargoes. Our findings indicate differential effects of therapeutic ultrasound on cellular transport mechanisms, with implications for therapeutic interventions.
Collapse
|
155
|
Fernandez-Valenzuela JJ, Sanchez-Varo R, Muñoz-Castro C, De Castro V, Sanchez-Mejias E, Navarro V, Jimenez S, Nuñez-Diaz C, Gomez-Arboledas A, Moreno-Gonzalez I, Vizuete M, Davila JC, Vitorica J, Gutierrez A. Enhancing microtubule stabilization rescues cognitive deficits and ameliorates pathological phenotype in an amyloidogenic Alzheimer's disease model. Sci Rep 2020; 10:14776. [PMID: 32901091 PMCID: PMC7479116 DOI: 10.1038/s41598-020-71767-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/18/2020] [Indexed: 01/10/2023] Open
Abstract
In Alzheimer's disease (AD), and other tauopathies, microtubule destabilization compromises axonal and synaptic integrity contributing to neurodegeneration. These diseases are characterized by the intracellular accumulation of hyperphosphorylated tau leading to neurofibrillary pathology. AD brains also accumulate amyloid-beta (Aβ) deposits. However, the effect of microtubule stabilizing agents on Aβ pathology has not been assessed so far. Here we have evaluated the impact of the brain-penetrant microtubule-stabilizing agent Epothilone D (EpoD) in an amyloidogenic model of AD. Three-month-old APP/PS1 mice, before the pathology onset, were weekly injected with EpoD for 3 months. Treated mice showed significant decrease in the phospho-tau levels and, more interesting, in the intracellular and extracellular hippocampal Aβ accumulation, including the soluble oligomeric forms. Moreover, a significant cognitive improvement and amelioration of the synaptic and neuritic pathology was found. Remarkably, EpoD exerted a neuroprotective effect on SOM-interneurons, a highly AD-vulnerable GABAergic subpopulation. Therefore, our results suggested that EpoD improved microtubule dynamics and axonal transport in an AD-like context, reducing tau and Aβ levels and promoting neuronal and cognitive protection. These results underline the existence of a crosstalk between cytoskeleton pathology and the two major AD protein lesions. Therefore, microtubule stabilizers could be considered therapeutic agents to slow the progression of both tau and Aβ pathology.
Collapse
Affiliation(s)
- Juan Jose Fernandez-Valenzuela
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raquel Sanchez-Varo
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Clara Muñoz-Castro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, C/Prof. Garcia Gonzalez 2, 41012, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Vanessa De Castro
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain
| | - Elisabeth Sanchez-Mejias
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Victoria Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, C/Prof. Garcia Gonzalez 2, 41012, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Sebastian Jimenez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, C/Prof. Garcia Gonzalez 2, 41012, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Cristina Nuñez-Diaz
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Angela Gomez-Arboledas
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ines Moreno-Gonzalez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marisa Vizuete
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, C/Prof. Garcia Gonzalez 2, 41012, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Jose Carlos Davila
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. .,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, C/Prof. Garcia Gonzalez 2, 41012, Sevilla, Spain. .,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC, Universidad de Sevilla, Sevilla, Spain.
| | - Antonia Gutierrez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
156
|
Kaur J, Giri A, Bhattacharya M. The protein-surfactant stoichiometry governs the conformational switching and amyloid nucleation kinetics of tau K18. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2020; 49:425-434. [PMID: 32691116 DOI: 10.1007/s00249-020-01447-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/07/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Amyloids are pathological hallmarks of a number of debilitating neurodegenerative diseases. Understanding the molecular mechanism of protein amyloid assembly with an emphasis on structural characterization of early, key prefibrillar species is important for targeted drug design and clinical interventions. Tau is an intrinsically disordered, microtubule-binding protein which is also implicated in various neurodegenerative disorders such as frontotemporal dementia, Down's syndrome, Alzheimer's disease, etc. Earlier reports have demonstrated that tau aggregation in vitro is triggered by anionic inducers, presumably due to charge compensation which facilitates intermolecular association between the tau polypeptide chains. However, the molecular mechanism of tau amyloid aggregation, involving the structural characterization of amyloidogenic intermediates formed especially during early key steps, remains elusive. In this work, we have employed a spectroscopic toolbox to elucidate the mechanism of anionic surfactant-induced disorder-to-order amyloid transition of a tau segment. This study revealed that the amyloid assembly is mediated via binding-induced conformational switching into an early partially helical amyloid-competent intermediate. Additionally, protein and inducer concentration-dependent studies indicated that at the higher protein and/or inducer concentrations, competing off-pathway intermediates dampen the amyloid assembly which implies that the stoichiometry of protein and inducer plays a key regulatory role in the amyloid nucleation and fibril elongation kinetics.
Collapse
Affiliation(s)
- Jaspreet Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Thapar Technology Campus, Bhadson Road, Patiala, Punjab, 147004, India
| | - Anjali Giri
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Thapar Technology Campus, Bhadson Road, Patiala, Punjab, 147004, India
| | - Mily Bhattacharya
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Thapar Technology Campus, Bhadson Road, Patiala, Punjab, 147004, India.
| |
Collapse
|
157
|
Insights into Disease-Associated Tau Impact on Mitochondria. Int J Mol Sci 2020; 21:ijms21176344. [PMID: 32882957 PMCID: PMC7503371 DOI: 10.3390/ijms21176344] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Abnormal tau protein aggregation in the brain is a hallmark of tauopathies, such as frontotemporal lobar degeneration and Alzheimer’s disease. Substantial evidence has been linking tau to neurodegeneration, but the underlying mechanisms have yet to be clearly identified. Mitochondria are paramount organelles in neurons, as they provide the main source of energy (adenosine triphosphate) to these highly energetic cells. Mitochondrial dysfunction was identified as an early event of neurodegenerative diseases occurring even before the cognitive deficits. Tau protein was shown to interact with mitochondrial proteins and to impair mitochondrial bioenergetics and dynamics, leading to neurotoxicity. In this review, we discuss in detail the different impacts of disease-associated tau protein on mitochondrial functions, including mitochondrial transport, network dynamics, mitophagy and bioenergetics. We also give new insights about the effects of abnormal tau protein on mitochondrial neurosteroidogenesis, as well as on the endoplasmic reticulum-mitochondria coupling. A better understanding of the pathomechanisms of abnormal tau-induced mitochondrial failure may help to identify new targets for therapeutic interventions.
Collapse
|
158
|
Muralidar S, Ambi SV, Sekaran S, Thirumalai D, Palaniappan B. Role of tau protein in Alzheimer's disease: The prime pathological player. Int J Biol Macromol 2020; 163:1599-1617. [PMID: 32784025 DOI: 10.1016/j.ijbiomac.2020.07.327] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is a prevalently found tauopathy characterized by memory loss and cognitive insufficiency. AD is an age-related neurodegenerative disease with two major hallmarks which includes extracellular amyloid plaques made of amyloid-β (Aβ) and intracellular neurofibrillary tangles of hyperphosphorylated tau. With population aging worldwide, there is an indispensable need for treatment strategies that can potentially manage this developing dementia. Despite broad researches on targeting Aβ in the past two decades, research findings on Aβ targeted therapeutics failed to prove efficacy in the treatment of AD. Tau protein with its extensive pathological role in several neurodegenerative diseases can be considered as a promising target candidate for developing therapeutic interventions. The abnormal hyperphosphorylation of tau plays detrimental pathological functions which ultimately lead to neurodegeneration. This review will divulge the importance of tau in AD pathogenesis, the interplay of Aβ and tau, the pathological functions of tau, and potential therapeutic strategies for an effective management of neuronal disorders.
Collapse
Affiliation(s)
- Shibi Muralidar
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Senthil Visaga Ambi
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India.
| | - Saravanan Sekaran
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India; Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Diraviyam Thirumalai
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Balamurugan Palaniappan
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
159
|
Reimer L, Betzer C, Kofoed RH, Volbracht C, Fog K, Kurhade C, Nilsson E, Överby AK, Jensen PH. PKR kinase directly regulates tau expression and Alzheimer's disease-related tau phosphorylation. Brain Pathol 2020; 31:103-119. [PMID: 32716602 PMCID: PMC8018097 DOI: 10.1111/bpa.12883] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/12/2020] [Accepted: 07/07/2020] [Indexed: 12/28/2022] Open
Abstract
Deposition of extensively hyperphosphorylated tau in specific brain cells is a clear pathological hallmark in Alzheimer's disease and a number of other neurodegenerative disorders, collectively termed the tauopathies. Furthermore, hyperphosphorylation of tau prevents it from fulfilling its physiological role as a microtubule‐stabilizing protein and leaves it increasingly vulnerable to self‐assembly, suggestive of a central underlying role of hyperphosphorylation as a contributing factor in the etiology of these diseases. Via in vitro phosphorylation and regulation of kinase activity within cells and acute brain tissue, we reveal that the inflammation associated kinase, protein kinase R (PKR), directly phosphorylates numerous abnormal and disease‐modifying residues within tau including Thr181, Ser199/202, Thr231, Ser262, Ser396, Ser404 and Ser409. Similar to disease processes, these PKR‐mediated phosphorylations actively displace tau from microtubules in cells. In addition, PKR overexpression and knockdown, respectively, increase and decrease tau protein and mRNA levels in cells. This regulation occurs independent of noncoding transcriptional elements, suggesting an underlying mechanism involving intra‐exonic regulation of the tau‐encoding microtubule‐associated protein tau (MAPT) gene. Finally, acute encephalopathy in wild type mice, induced by intracranial Langat virus infection, results in robust inflammation and PKR upregulation accompanied by abnormally phosphorylated full‐length‐ and truncated tau. These findings indicate that PKR, independent of other kinases and upon acute brain inflammation, is capable of triggering pathological modulation of tau, which, in turn, might form the initial pathologic seed in several tauopathies such as Alzheimer's disease and Chronic traumatic encephalopathy where inflammation is severe.
Collapse
Affiliation(s)
- Lasse Reimer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Cristine Betzer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Hahn Kofoed
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Chaitanya Kurhade
- Department of Clinical Microbiology, Virology, Umeå University, Umea, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden
| | - Emma Nilsson
- Department of Clinical Microbiology, Virology, Umeå University, Umea, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden
| | - Anna K Överby
- Department of Clinical Microbiology, Virology, Umeå University, Umea, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
160
|
Abstract
Sustaining a healthy proteome is a lifelong challenge for each individual cell of an organism. However, protein homeostasis or proteostasis is constantly jeopardized since damaged proteins accumulate under proteotoxic stress that originates from ever-changing metabolic, environmental, and pathological conditions. Proteostasis is achieved via a conserved network of quality control pathways that orchestrate the biogenesis of correctly folded proteins, prevent proteins from misfolding, and remove potentially harmful proteins by selective degradation. Nevertheless, the proteostasis network has a limited capacity and its collapse deteriorates cellular functionality and organismal viability, causing metabolic, oncological, or neurodegenerative disorders. While cell-autonomous quality control mechanisms have been described intensely, recent work on Caenorhabditis elegans has demonstrated the systemic coordination of proteostasis between distinct tissues of an organism. These findings indicate the existence of intricately balanced proteostasis networks important for integration and maintenance of the organismal proteome, opening a new door to define novel therapeutic targets for protein aggregation diseases. Here, we provide an overview of individual protein quality control pathways and the systemic coordination between central proteostatic nodes. We further provide insights into the dynamic regulation of cellular and organismal proteostasis mechanisms that integrate environmental and metabolic changes. The use of C. elegans as a model has pioneered our understanding of conserved quality control mechanisms important to safeguard the organismal proteome in health and disease.
Collapse
Affiliation(s)
- Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany and
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC), the Hebrew University School of Medicine, Jerusalem 91120, Israel
| |
Collapse
|
161
|
Quintanilla RA, Tapia-Monsalves C, Vergara EH, Pérez MJ, Aranguiz A. Truncated Tau Induces Mitochondrial Transport Failure Through the Impairment of TRAK2 Protein and Bioenergetics Decline in Neuronal Cells. Front Cell Neurosci 2020; 14:175. [PMID: 32848607 PMCID: PMC7406829 DOI: 10.3389/fncel.2020.00175] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are highly specialized organelles essential for the synapse, and their impairment contributes to the neurodegeneration in Alzheimer's disease (AD). Previously, we studied the role of caspase-3-cleaved tau in mitochondrial dysfunction in AD. In neurons, the presence of this AD-relevant tau form induced mitochondrial fragmentation with a concomitant reduction in the expression of Opa1, a mitochondrial fission regulator. More importantly, we showed that caspase-cleaved tau affects mitochondrial transport, decreasing the number of moving mitochondria in the neuronal processes without affecting their velocity rate. However, the molecular mechanisms involved in these events are unknown. We studied the possible role of motor proteins (kinesin 1 and dynein) and mitochondrial protein adaptors (RhoT1/T2, syntaphilin, and TRAK2) in the mitochondrial transport failure induced by caspase-cleaved tau. We expressed green fluorescent protein (GFP), GFP-full-length, and GPF-caspase-3-cleaved tau proteins in rat hippocampal neurons and immortalized cortical neurons (CN 1.4) and analyzed the expression and localization of these proteins involved in mitochondrial transport regulation. We observed that hippocampal neurons expressing caspase-cleaved tau showed a significant accumulation of a mitochondrial population in the soma. These changes were accompanied by evident mitochondrial bioenergetic deficits, including depolarization, oxidative stress, and a significant reduction in ATP production. More critically, caspase-cleaved tau significantly decreased the expression of TRAK2 in immortalized and primary hippocampal neurons without affecting RhoT1/T2 and syntaphilin levels. Also, when we analyzed the expression of motor proteins-Kinesin 1 (KIF5) and Dynein-we did not detect changes in their expression, localization, and binding to the mitochondria. Interestingly, the expression of truncated tau significantly increases the association of TRAK2 with mitochondria compared with neuronal cells expressing full-length tau. Altogether these results indicate that caspase-cleaved tau may affect mitochondrial transport through the increase of TRAK2-mitochondria binding and reduction of ATP production available for the process of movement of these organelles. These observations are novel and represent a set of exciting findings whereby tau pathology could affect mitochondrial distribution in neurons, an event that may contribute to synaptic failure observed in AD.
Collapse
Affiliation(s)
- Rodrigo A. Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
162
|
Mullane K, Williams M. Alzheimer’s disease beyond amyloid: Can the repetitive failures of amyloid-targeted therapeutics inform future approaches to dementia drug discovery? Biochem Pharmacol 2020; 177:113945. [DOI: 10.1016/j.bcp.2020.113945] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
|
163
|
Viswanathan GK, Shwartz D, Losev Y, Arad E, Shemesh C, Pichinuk E, Engel H, Raveh A, Jelinek R, Cooper I, Gosselet F, Gazit E, Segal D. Purpurin modulates Tau-derived VQIVYK fibrillization and ameliorates Alzheimer's disease-like symptoms in animal model. Cell Mol Life Sci 2020; 77:2795-2813. [PMID: 31562564 PMCID: PMC11104911 DOI: 10.1007/s00018-019-03312-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 08/11/2019] [Accepted: 09/19/2019] [Indexed: 01/20/2023]
Abstract
Neurofibrillary tangles of the Tau protein and plaques of the amyloid β peptide are hallmarks of Alzheimer's disease (AD), which is characterized by the conversion of monomeric proteins/peptides into misfolded β-sheet rich fibrils. Halting the fibrillation process and disrupting the existing aggregates are key challenges for AD drug development. Previously, we performed in vitro high-throughput screening for the identification of potent inhibitors of Tau aggregation using a proxy model, a highly aggregation-prone hexapeptide fragment 306VQIVYK311 (termed PHF6) derived from Tau. Here we have characterized a hit molecule from that screen as a modulator of Tau aggregation using in vitro, in silico, and in vivo techniques. This molecule, an anthraquinone derivative named Purpurin, inhibited ~ 50% of PHF6 fibrillization in vitro at equimolar concentration and disassembled pre-formed PHF6 fibrils. In silico studies showed that Purpurin interacted with key residues of PHF6, which are responsible for maintaining its β-sheets conformation. Isothermal titration calorimetry and surface plasmon resonance experiments with PHF6 and full-length Tau (FL-Tau), respectively, indicated that Purpurin interacted with PHF6 predominantly via hydrophobic contacts and displayed a dose-dependent complexation with FL-Tau. Purpurin was non-toxic when fed to Drosophila and it significantly ameliorated the AD-related neurotoxic symptoms of transgenic flies expressing WT-FL human Tau (hTau) plausibly by inhibiting Tau accumulation and reducing Tau phosphorylation. Purpurin also reduced hTau accumulation in cell culture overexpressing hTau. Importantly, Purpurin efficiently crossed an in vitro human blood-brain barrier model. Our findings suggest that Purpurin could be a potential lead molecule for AD therapeutics.
Collapse
Affiliation(s)
- Guru Krishnakumar Viswanathan
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Dana Shwartz
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Yelena Losev
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Elad Arad
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, 8410501, Beer Sheva, Israel
- Department of Chemistry, Ben Gurion University of the Negev, 8410501, Beer Sheva, Israel
| | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
| | - Edward Pichinuk
- Blavatnik Center for Drug Discovery, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Hamutal Engel
- Blavatnik Center for Drug Discovery, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Avi Raveh
- Blavatnik Center for Drug Discovery, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Raz Jelinek
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, 8410501, Beer Sheva, Israel
- Department of Chemistry, Ben Gurion University of the Negev, 8410501, Beer Sheva, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
- Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory (LBHE), Université d'Artois, Lens, France
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 69978, Tel Aviv, Israel
- Blavatnik Center for Drug Discovery, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 69978, Tel Aviv, Israel.
- The Interdisciplinary Sagol School of Neurosciences, Tel-Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
164
|
Silva MC, Nandi GA, Tentarelli S, Gurrell IK, Jamier T, Lucente D, Dickerson BC, Brown DG, Brandon NJ, Haggarty SJ. Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun 2020; 11:3258. [PMID: 32591533 PMCID: PMC7320012 DOI: 10.1038/s41467-020-16984-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/30/2020] [Indexed: 12/27/2022] Open
Abstract
Tauopathies are neurodegenerative diseases associated with accumulation of abnormal tau protein in the brain. Patient iPSC-derived neuronal cell models replicate disease-relevant phenotypes ex vivo that can be pharmacologically targeted for drug discovery. Here, we explored autophagy as a mechanism to reduce tau burden in human neurons and, from a small-molecule screen, identify the mTOR inhibitors OSI-027, AZD2014 and AZD8055. These compounds are more potent than rapamycin, and robustly downregulate phosphorylated and insoluble tau, consequently reducing tau-mediated neuronal stress vulnerability. MTORC1 inhibition and autophagy activity are directly linked to tau clearance. Notably, single-dose treatment followed by washout leads to a prolonged reduction of tau levels and toxicity for 12 days, which is mirrored by a sustained effect on mTORC1 inhibition and autophagy. This new insight into the pharmacodynamics of mTOR inhibitors in regulation of neuronal autophagy may contribute to development of therapies for tauopathies.
Collapse
Affiliation(s)
- M Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St CPZN 5400, Boston, MA, 02114, USA
| | - Ghata A Nandi
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St CPZN 5400, Boston, MA, 02114, USA
| | - Sharon Tentarelli
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Dr, Waltham, MA, 02451, USA
| | - Ian K Gurrell
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Tanguy Jamier
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St CPZN, RM 5820, Boston, MA, 02114, USA
| | - Bradford C Dickerson
- MGH Frontotemporal Disorders Unit, Gerontology Research Unit, Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 149 13th St. Suite 2691, Charlestown, MA, 02129, USA
| | - Dean G Brown
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | | | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St CPZN 5400, Boston, MA, 02114, USA.
| |
Collapse
|
165
|
Bourefis AR, Campanari ML, Buee-Scherrer V, Kabashi E. Functional characterization of a FUS mutant zebrafish line as a novel genetic model for ALS. Neurobiol Dis 2020; 142:104935. [PMID: 32380281 DOI: 10.1016/j.nbd.2020.104935] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in Fused in sarcoma (FUS), an RNA-binding protein, are known to cause Amyotrophic Lateral Sclerosis (ALS). However, molecular mechanisms due to loss of FUS function remain unclear and controversial. Here, we report the characterization and phenotypic analysis of a deletion mutant of the unique FUS orthologue in zebrafish where Fus protein levels are depleted. The homozygous mutants displayed a reduced lifespan as well as impaired motor abilities associated with specific cellular deficits, including decreased motor neurons length and neuromuscular junctions (NMJ) fragmentation. Furthermore, we demonstrate that these cellular impairments are linked to the misregulation of mRNA expression of acetylcholine receptor (AChR) subunits and histone deacetylase 4, markers of denervation and reinnervation processes observed in ALS patients. In addition, fus loss of function alters tau transcripts favoring the expression of small tau isoforms. Overall, this new animal model extends our knowledge on FUS and supports the relevance of FUS loss of function in ALS physiopathology.
Collapse
Affiliation(s)
- Annis-Rayan Bourefis
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France; Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, INSERM Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013 Paris, France
| | - Maria-Letizia Campanari
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France; Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, INSERM Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013 Paris, France
| | | | - Edor Kabashi
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France; Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, INSERM Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013 Paris, France.
| |
Collapse
|
166
|
Gallyas Jr. F, Sumegi B. Mitochondrial Protection by PARP Inhibition. Int J Mol Sci 2020; 21:ijms21082767. [PMID: 32316192 PMCID: PMC7215481 DOI: 10.3390/ijms21082767] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Inhibitors of the nuclear DNA damage sensor and signalling enzyme poly(ADP-ribose) polymerase (PARP) have recently been introduced in the therapy of cancers deficient in double-strand DNA break repair systems, and ongoing clinical trials aim to extend their use from other forms of cancer non-responsive to conventional treatments. Additionally, PARP inhibitors were suggested to be repurposed for oxidative stress-associated non-oncological diseases resulting in a devastating outcome, or requiring acute treatment. Their well-documented mitochondria- and cytoprotective effects form the basis of PARP inhibitors’ therapeutic use for non-oncological diseases, yet can limit their efficacy in the treatment of cancers. A better understanding of the processes involved in their protective effects may improve the PARP inhibitors’ therapeutic potential in the non-oncological indications. To this end, we endeavoured to summarise the basic features regarding mitochondrial structure and function, review the major PARP activation-induced cellular processes leading to mitochondrial damage, and discuss the role of PARP inhibition-mediated mitochondrial protection in several oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Ferenc Gallyas Jr.
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary;
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
- Correspondence: ; Tel.: +36-72-536-278
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary;
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
| |
Collapse
|
167
|
Dillon GM, Henderson JL, Bao C, Joyce JA, Calhoun M, Amaral B, King KW, Bajrami B, Rabah D. Acute inhibition of the CNS-specific kinase TTBK1 significantly lowers tau phosphorylation at several disease relevant sites. PLoS One 2020; 15:e0228771. [PMID: 32255788 PMCID: PMC7138307 DOI: 10.1371/journal.pone.0228771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 11/24/2022] Open
Abstract
Hyperphosphorylated tau protein is a pathological hallmark of numerous neurodegenerative diseases and the level of tau pathology is correlated with the degree of cognitive impairment. Tau hyper-phosphorylation is thought to be an early initiating event in the cascade leading to tau toxicity and neuronal death. Inhibition of tau phosphorylation therefore represents an attractive therapeutic strategy. However, the widespread expression of most kinases and promiscuity of their substrates, along with poor selectivity of most kinase inhibitors, have resulted in systemic toxicities that have limited the advancement of tau kinase inhibitors into the clinic. We therefore focused on the CNS-specific tau kinase, TTBK1, and investigated whether selective inhibition of this kinase could represent a viable approach to targeting tau phosphorylation in disease. In the current study, we demonstrate that TTBK1 regulates tau phosphorylation using overexpression or knockdown of this kinase in heterologous cells and primary neurons. Importantly, we find that TTBK1-specific phosphorylation of tau leads to a loss of normal protein function including a decrease in tau-tubulin binding and deficits in tubulin polymerization. We then describe the use of a novel, selective small molecule antagonist, BIIB-TTBK1i, to study the acute effects of TTBK1 inhibition on tau phosphorylation in vivo. We demonstrate substantial lowering of tau phosphorylation at multiple sites implicated in disease, suggesting that TTBK1 inhibitors may represent an exciting new approach in the search for neurodegenerative disease therapies.
Collapse
Affiliation(s)
| | | | - Channa Bao
- Biogen, Cambridge, MA, United States of America
| | | | | | | | | | | | - Dania Rabah
- Biogen, Cambridge, MA, United States of America
| |
Collapse
|
168
|
Stang CD, Turcano P, Mielke MM, Josephs KA, Bower JH, Ahlskog JE, Boeve BF, Martin PR, Upadhyaya SG, Savica R. Incidence and Trends of Progressive Supranuclear Palsy and Corticobasal Syndrome: A Population-Based Study. JOURNAL OF PARKINSON'S DISEASE 2020; 10:179-184. [PMID: 31594251 PMCID: PMC7153436 DOI: 10.3233/jpd-191744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Few studies have investigated the incidence of PSP and CBS in the population. OBJECTIVE To examine the incidence of and trends in progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) in a population-based cohort of residents of Olmsted County, MN. METHODS We used the 1991-2005 population-based, Olmsted County Parkinsonism-cohort study, defined via the Rochester Epidemiology Project. A movement-disorder specialist reviewed medical records, to confirm PSP and CBS diagnoses. RESULTS We identified 21 patients with these diagnoses 1991-2005 : 18 (85.7%), PSP; 3 (14.3%), CBS. The median diagnosis age was 78 (range: 66-88). 13/21 (62.0%) were male. MRI was performed pre-diagnosis in 11 patients (8 PSP and 3 CBD); 10 showed atrophy consistent with clinical diagnoses. We observed concordance between clinical and pathological diagnoses in two PSP patients who underwent autopsy. Combined incidence for PSP and CBS in Olmsted County was 3.1 per 100,000 person-years (2.6 per 100,000 person-years, PSP; 0.4 per 100,000 person-years, CBS). Incidence was higher in men (4.5, 95% CI, 2.0-7.0) than women (1.8, 95% CI, 0.5-2.9). A combined, significant trend of increasing incidence was observed between 1991 and 2005 (B=0.69, 95% CI 0.42, 0.96, p<0.001). Median time from symptom onset to death among both groups was 6 years (range PSP, 1-10 years; range CBS, 3-8 years). CONCLUSIONS The combined incidence for PSP and CBS was 3.1 per 100,000 person-years, higher in men than women. We observed a significant increase in both PSP and CBS, likely due to advancing imaging technology and improved diagnostic ability among physicians.
Collapse
Affiliation(s)
- Cole D. Stang
- Mayo Clinic Department of Neurology, Rochester, Minnesota, USA
| | | | - Michelle M. Mielke
- Mayo Clinic Department of Health Sciences Research, Rochester, Minnesota, USA
| | | | - James H. Bower
- Mayo Clinic Department of Neurology, Rochester, Minnesota, USA
| | - J. Eric Ahlskog
- Mayo Clinic Department of Neurology, Rochester, Minnesota, USA
| | | | - Peter R. Martin
- Mayo Clinic Department of Health Sciences Research, Rochester, Minnesota, USA
| | | | - Rodolfo Savica
- Mayo Clinic Department of Neurology, Rochester, Minnesota, USA
- Mayo Clinic Department of Health Sciences Research, Rochester, Minnesota, USA
| |
Collapse
|
169
|
Reduced expression of dMyc mitigates TauV337M mediated neurotoxicity by preventing the Tau hyperphosphorylation and inducing autophagy in Drosophila. Neurosci Lett 2020; 715:134622. [DOI: 10.1016/j.neulet.2019.134622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
|
170
|
Alves M, Kenny A, de Leo G, Beamer EH, Engel T. Tau Phosphorylation in a Mouse Model of Temporal Lobe Epilepsy. Front Aging Neurosci 2019; 11:308. [PMID: 31780921 PMCID: PMC6861366 DOI: 10.3389/fnagi.2019.00308] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Hyperphosphorylation of the microtubule-associated protein tau and its resultant aggregation into neurofibrillary tangles (NFT) is a pathological characteristic of neurodegenerative disorders known as tauopathies. Tau is a neuronal protein involved in the stabilization of microtubule structures of the axon and the aberrant phosphorylation of tau is associated with several neurotoxic effects. The discovery of tau pathology and aggregates in the cortex of Temporal lobe epilepsy (TLE) patients has focused interest on hyperphosphorylation of tau as a potential mechanism contributing to increased states of hyperexcitability and cognitive decline. Previous studies using animal models of status epilepticus and tissue from patients with TLE have shown increased tau phosphorylation in the brain following acute seizures and during epilepsy, with tau phosphorylation correlating with cognitive deficits in patients. Suggesting a functional role of tau during epilepsy, studies in tau-deficient and tau-overexpressing mice have demonstrated a causal role of tau during seizure generation. Previous studies, analyzing the impact of seizures on tau hyperphosphorylation, have mainly used animal models of acute seizures. These models, however, do not replicate all aspects of chronic epilepsy. In this study, we investigated the effects of acute seizures (status epilepticus) and chronic epilepsy upon the expression and phosphorylation of tau using the intra-amygdala kainic acid (KA)-induced status epilepticus mouse model. Status epilepticus resulted in an immediate increase in total tau levels in the hippocampus, in particular, the dentate gyrus, and phosphorylation of the AT8 epitope (Ser202, Thr205), with phosphorylated tau mainly localizing to the mossy fibers of the dentate gyrus. During epilepsy, abnormal phosphorylation of tau was detected again at the AT8 epitope with lower total tau levels in the CA3 and CA1 subfields of the hippocampus. Chronic epilepsy in mice also resulted in a strong localization of AT8 phospho-tau to microglia, indicating a distinct pattern of tau hyperphosphorylation during chronic epilepsy compared to status epilepticus. Our results reaffirm previous observations of tau phosphorylation post-status epilepticus, but also elaborate on tau alterations in epileptic mice which more faithfully mimic TLE. Our results confirm seizures affect tau hyperphosphorylation, however, suggest epitope-specific phosphorylation of tau and differences in cell-specific localization according to disease progression.
Collapse
Affiliation(s)
- Marianna Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aidan Kenny
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gioacchino de Leo
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Edward H Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
171
|
Rösler TW, Costa M, Höglinger GU. Disease-modifying strategies in primary tauopathies. Neuropharmacology 2019; 167:107842. [PMID: 31704274 DOI: 10.1016/j.neuropharm.2019.107842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022]
Abstract
Tauopathies are neurodegenerative brain diseases that are characterized by the formation of intraneuronal inclusions containing the microtubule-associated protein tau. This major hallmark defines tau pathology which is predominant in primary tauopathies, while in secondary forms additional driving forces are involved. In the course of the disease, different brain areas degenerate and lead to severe defects of language, behavior and movement. Although neuropathologically heterogeneous, primary tauopathies share a common feature, which is the generation of abnormal tau species that aggregate and progress into filamentous deposits in neurons. Mechanisms that are involved in this disease-related process offer a broad range of targets for disease-modifying therapeutics. The present review provides an up-to-date overview of currently known targets in primary tauopathies and their possible therapeutic modulation. It is structured into four major targets, the post-translational modifications of tau and tau aggregation, protein homeostasis, disease propagation, and tau genetics. Chances, as well as obstacles in the development of effective therapies are highlighted. Some therapeutic strategies, e.g., passive or active immunization, have already reached clinical development, raising hopes for affected patients. Other concepts, e.g., distinct modulators of proteostasis, are at the ready to be developed into promising future therapies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Thomas W Rösler
- School of Medicine, Technical University of Munich, 81675, Munich, Germany; Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
| | - Márcia Costa
- School of Medicine, Technical University of Munich, 81675, Munich, Germany; Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
| | - Günter U Höglinger
- School of Medicine, Technical University of Munich, 81675, Munich, Germany; Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany; Department of Neurology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
172
|
Webster JM, Darling AL, Uversky VN, Blair LJ. Small Heat Shock Proteins, Big Impact on Protein Aggregation in Neurodegenerative Disease. Front Pharmacol 2019; 10:1047. [PMID: 31619995 PMCID: PMC6759932 DOI: 10.3389/fphar.2019.01047] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Misfolding, aggregation, and aberrant accumulation of proteins are central components in the progression of neurodegenerative disease. Cellular molecular chaperone systems modulate proteostasis, and, therefore, are primed to influence aberrant protein-induced neurotoxicity and disease progression. Molecular chaperones have a wide range of functions from facilitating proper nascent folding and refolding to degradation or sequestration of misfolded substrates. In disease states, molecular chaperones can display protective or aberrant effects, including the promotion and stabilization of toxic protein aggregates. This seems to be dependent on the aggregating protein and discrete chaperone interaction. Small heat shock proteins (sHsps) are a class of molecular chaperones that typically associate early with misfolded proteins. These interactions hold proteins in a reversible state that helps facilitate refolding or degradation by other chaperones and co-factors. These sHsp interactions require dynamic oligomerization state changes in response to diverse cellular triggers and, unlike later steps in the chaperone cascade of events, are ATP-independent. Here, we review evidence for modulation of neurodegenerative disease-relevant protein aggregation by sHsps. This includes data supporting direct physical interactions and potential roles of sHsps in the stewardship of pathological protein aggregates in brain. A greater understanding of the mechanisms of sHsp chaperone activity may help in the development of novel therapeutic strategies to modulate the aggregation of pathological, amyloidogenic proteins. sHsps-targeting strategies including modulators of expression or post-translational modification of endogenous sHsps, small molecules targeted to sHsp domains, and delivery of engineered molecular chaperones, are also discussed.
Collapse
Affiliation(s)
- Jack M Webster
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| | - April L Darling
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| | - Laura J Blair
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| |
Collapse
|
173
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
174
|
Ryan B, Williams JM, Curtis MA. Plasma MicroRNAs Are Altered Early and Consistently in a Mouse Model of Tauopathy. Neuroscience 2019; 411:164-176. [PMID: 31152932 DOI: 10.1016/j.neuroscience.2019.05.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/06/2023]
Abstract
Pathological accumulation of tau protein in brain cells is the hallmark of a group of neurodegenerative diseases called tauopathies. Accumulation of tau protein begins years before the onset of symptoms, which include deficits in cognition, behavior and movement. The pre-symptomatic phase of tauopathy may be the best time to deliver disease-modifying treatments, but this is only possible if prognostic, pre-symptomatic biomarkers are identified. Here we describe the profiling of blood plasma microRNAs in a mouse model of tauopathy, in order to identify biomarkers of pre-symptomatic tauopathy. Circulating RNAs were isolated from blood plasma of 16-week-old and 53-week-old hTau mice and age-matched wild type controls (n = 28). Global microRNA profiling was performed using small RNA sequencing (Illumina) and selected microRNAs were validated using individual TaqMan RT-qPCR. The area under the receiver operating characteristic curve (AUC) was used to evaluate discriminative accuracy. We identified three microRNAs (miR-150-5p, miR-155-5p, miR-375-3p) that were down-regulated in 16-week-old hTau mice, which do not yet exhibit a behavioral phenotype and therefore represent pre-symptomatic tauopathy. The discriminative accuracy was AUC 0.98, 0.95 and 1, respectively. Down-regulation of these microRNAs persisted at 53 weeks of age, when hTau mice exhibit cognitive deficits and advanced neuropathology. Bioinformatic analysis showed that these three microRNAs converge on pathways associated with neuronal signaling and phosphorylation of tau. Thus, these circulating microRNAs appear to reflect neuropathological change and are promising candidates in the development of biomarkers of pre-symptomatic tauopathy.
Collapse
Affiliation(s)
- Brigid Ryan
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand; Brain Research, New Zealand - Rangahau Roro Aotearoa.
| | - Joanna M Williams
- Brain Research, New Zealand - Rangahau Roro Aotearoa; Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand; Brain Research, New Zealand - Rangahau Roro Aotearoa
| |
Collapse
|
175
|
Paul A, Li WH, Viswanathan GK, Arad E, Mohapatra S, Li G, Jelinek R, Gazit E, Li YM, Segal D. Tryptophan–glucosamine conjugates modulate tau-derived PHF6 aggregation at low concentrations. Chem Commun (Camb) 2019; 55:14621-14624. [DOI: 10.1039/c9cc06868f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tryptophan–glucosamine conjugates efficiently inhibit tau-derived PHF6-peptide fibrillization and disrupt its preformed fibrils at very low concentrations.
Collapse
Affiliation(s)
- Ashim Paul
- School of Molecular Cell Biology & Biotechnology
- Tel Aviv University
- Israel
| | - Wen-Hao Li
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | | | - Elad Arad
- Department of Chemistry
- Ben Gurion University of the Negev
- Beer Sheva 84105
- Israel
| | - Satabdee Mohapatra
- School of Molecular Cell Biology & Biotechnology
- Tel Aviv University
- Israel
| | - Gao Li
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Raz Jelinek
- Department of Chemistry
- Ben Gurion University of the Negev
- Beer Sheva 84105
- Israel
| | - Ehud Gazit
- School of Molecular Cell Biology & Biotechnology
- Tel Aviv University
- Israel
| | - Yan-Mei Li
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
- Beijing Institute for Brain Disorders
| | - Daniel Segal
- School of Molecular Cell Biology & Biotechnology
- Tel Aviv University
- Israel
- Sagol Interdisciplinary School of Neurosciences
- Tel Aviv University
| |
Collapse
|