Zhai XY, Thomsen JS, Birn H, Kristoffersen IB, Andreasen A, Christensen EI. Three-dimensional reconstruction of the mouse nephron.
J Am Soc Nephrol 2005;
17:77-88. [PMID:
16319188 DOI:
10.1681/asn.2005080796]
[Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal function is crucially dependent on renal microstructure which provides the basis for the regulatory mechanisms that control the transport of water and solutes between filtrate and plasma and the urinary concentration. This study provides new, detailed information on mouse renal architecture, including the spatial course of the tubules, lengths of different segments of nephrons, histotopography of tubules and vascular bundles, and epithelial ultrastructure at well-defined positions along Henle's loop and the distal convolution of nephrons. Three-dimensional reconstruction of 200 nephrons and collecting ducts was performed on aligned digital images, obtained from 2.5-mum-thick serial sections of mouse kidneys. Important new findings were highlighted: (1) A tortuous course of the descending thin limbs of long-looped nephrons and a winding course of the thick ascending limbs of short-looped nephrons contributed to a 27% average increase in the lengths of the corresponding segments, (2) the thick-walled tubules incorporated in the central part of the vascular bundles in the inner stripe of the outer medulla were identified as thick ascending limbs of long-looped nephrons, and (3) three types of short-looped nephron bends were identified to relate to the length and the position of the nephron and its corresponding glomerulus. The ultrastructure of the tubule segments was identified and suggests important implications for renal transport mechanisms that should be considered when evaluating the segmental distribution of water and solute transporters within the normal and diseased kidney.
Collapse