151
|
Childress P, Brinker A, Gong CMS, Harris J, Olivos DJ, Rytlewski JD, Scofield DC, Choi SY, Shirazi-Fard Y, McKinley TO, Chu TMG, Conley CL, Chakraborty N, Hammamieh R, Kacena MA. Forces associated with launch into space do not impact bone fracture healing. LIFE SCIENCES IN SPACE RESEARCH 2018; 16:52-62. [PMID: 29475520 PMCID: PMC5828031 DOI: 10.1016/j.lssr.2017.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 06/08/2023]
Abstract
Segmental bone defects (SBDs) secondary to trauma invariably result in a prolonged recovery with an extended period of limited weight bearing on the affected limb. Soldiers sustaining blast injuries and civilians sustaining high energy trauma typify such a clinical scenario. These patients frequently sustain composite injuries with SBDs in concert with extensive soft tissue damage. For soft tissue injury resolution and skeletal reconstruction a patient may experience limited weight bearing for upwards of 6 months. Many small animal investigations have evaluated interventions for SBDs. While providing foundational information regarding the treatment of bone defects, these models do not simulate limited weight bearing conditions after injury. For example, mice ambulate immediately following anesthetic recovery, and in most cases are normally ambulating within 1-3 days post-surgery. Thus, investigations that combine disuse with bone healing may better test novel bone healing strategies. To remove weight bearing, we have designed a SBD rodent healing study in microgravity (µG) on the International Space Station (ISS) for the Rodent Research-4 (RR-4) Mission, which launched February 19, 2017 on SpaceX CRS-10 (Commercial Resupply Services). In preparation for this mission, we conducted an end-to-end mission simulation consisting of surgical infliction of SBD followed by launch simulation and hindlimb unloading (HLU) studies. In brief, a 2 mm defect was created in the femur of 10 week-old C57BL6/J male mice (n = 9-10/group). Three days after surgery, 6 groups of mice were treated as follows: 1) Vivarium Control (maintained continuously in standard cages); 2) Launch Negative Control (placed in the same spaceflight-like hardware as the Launch Positive Control group but were not subjected to launch simulation conditions); 3) Launch Positive Control (placed in spaceflight-like hardware and also subjected to vibration followed by centrifugation); 4) Launch Positive Experimental (identical to Launch Positive Control group, but placed in qualified spaceflight hardware); 5) Hindlimb Unloaded (HLU, were subjected to HLU immediately after launch simulation tests to simulate unloading in spaceflight); and 6) HLU Control (single housed in identical HLU cages but not suspended). Mice were euthanized 28 days after launch simulation and bone healing was examined via micro-Computed Tomography (µCT). These studies demonstrated that the mice post-surgery can tolerate launch conditions. Additionally, forces and vibrations associated with launch did not impact bone healing (p = .3). However, HLU resulted in a 52.5% reduction in total callus volume compared to HLU Controls (p = .0003). Taken together, these findings suggest that mice having a femoral SBD surgery tolerated the vibration and hypergravity associated with launch, and that launch simulation itself did not impact bone healing, but that the prolonged lack of weight bearing associated with HLU did impair bone healing. Based on these findings, we proceeded with testing the efficacy of FDA approved and novel SBD therapies using the unique spaceflight environment as a novel unloading model on SpaceX CRS-10.
Collapse
Affiliation(s)
- Paul Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, United States
| | - Alexander Brinker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, United States
| | - Cynthia-May S Gong
- KBR Wyle Laboratory and Division of Space Biology, NASA Ames Research Center, Moffett Field, CA, United States
| | - Jonathan Harris
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, United States
| | - David J Olivos
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, United States
| | - Jeffrey D Rytlewski
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, United States
| | - David C Scofield
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, United States
| | - Sungshin Y Choi
- KBR Wyle Laboratory and Division of Space Biology, NASA Ames Research Center, Moffett Field, CA, United States
| | - Yasaman Shirazi-Fard
- KBR Wyle Laboratory and Division of Space Biology, NASA Ames Research Center, Moffett Field, CA, United States
| | - Todd O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, United States
| | - Tien-Min G Chu
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, United States
| | - Carolynn L Conley
- Department of Defense Space Test Program, Houston, TX, United States
| | - Nabarun Chakraborty
- Geneva Foundation, Fredrick, MD, United States; US Army Center for Environmental Health Research, Fredrick, MD, United States
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research, Fredrick, MD, United States
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, United States.
| |
Collapse
|
152
|
Ward C, Rettig TA, Hlavacek S, Bye BA, Pecaut MJ, Chapes SK. Effects of spaceflight on the immunoglobulin repertoire of unimmunized C57BL/6 mice. LIFE SCIENCES IN SPACE RESEARCH 2018; 16:63-75. [PMID: 29475521 PMCID: PMC5826609 DOI: 10.1016/j.lssr.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 05/25/2023]
Abstract
Spaceflight has been shown to suppress the adaptive immune response, altering the distribution and function of lymphocyte populations. B lymphocytes express highly specific and highly diversified receptors, known as immunoglobulins (Ig), that directly bind and neutralize pathogens. Ig diversity is achieved through the enzymatic splicing of gene segments within the genomic DNA of each B cell in a host. The collection of Ig specificities within a host, or Ig repertoire, has been increasingly characterized in both basic research and clinical settings using high-throughput sequencing technology (HTS). We utilized HTS to test the hypothesis that spaceflight affects the B-cell repertoire. To test this hypothesis, we characterized the impact of spaceflight on the unimmunized Ig repertoire of C57BL/6 mice that were flown aboard the International Space Station (ISS) during the Rodent Research One validation flight in comparison to ground controls. Individual gene segment usage was similar between ground control and flight animals, however, gene segment combinations and the junctions in which gene segments combine was varied among animals within and between treatment groups. We also found that spontaneous somatic mutations in the IgH and Igκ gene loci were not increased. These data suggest that space flight did not affect the B cell repertoire of mice flown and housed on the ISS over a short period of time.
Collapse
Affiliation(s)
- Claire Ward
- Division of Biology, Kansas State University, 1717 Claflin Rd, 116 Ackert Hall, Manhattan, KS 66502, United States
| | - Trisha A Rettig
- Division of Biology, Kansas State University, 1717 Claflin Rd, 116 Ackert Hall, Manhattan, KS 66502, United States
| | - Savannah Hlavacek
- Division of Biology, Kansas State University, 1717 Claflin Rd, 116 Ackert Hall, Manhattan, KS 66502, United States
| | - Bailey A Bye
- Division of Biology, Kansas State University, 1717 Claflin Rd, 116 Ackert Hall, Manhattan, KS 66502, United States
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, 11021 Campus St. Rm 101, Loma Linda, CA 92350, United States
| | - Stephen K Chapes
- Division of Biology, Kansas State University, 1717 Claflin Rd, 116 Ackert Hall, Manhattan, KS 66502, United States.
| |
Collapse
|
153
|
Cavey T, Pierre N, Nay K, Allain C, Ropert M, Loréal O, Derbré F. Simulated microgravity decreases circulating iron in rats: role of inflammation-induced hepcidin upregulation. Exp Physiol 2018; 102:291-298. [PMID: 28087888 DOI: 10.1113/ep086188] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? Although microgravity is well known to reduce circulating iron in astronauts, the underlying mechanism is still unknown. We investigated whether hepcidin, a key hormone regulating iron metabolism, could be involved in this deleterious effect. What is the main finding and its importance? We show that hindlimb suspension, a model of microgravity, stimulates the production of hepcidin in liver of rats. In agreement with the biological role of hepcidin, we found a decrease of circulating iron and an increase of spleen iron content in hindlimb-unloaded rats. Consequently, our study supports the idea that hepcidin could play a role in the alteration of iron metabolism parameters observed during spaceflight. During spaceflight, humans exposed to microgravity exhibit an increase of iron storage and a reduction of circulating iron. Such perturbations could promote oxidative stress and anaemia in astronauts. The mechanism by which microgravity modulates iron metabolism is still unknown. Herein, we hypothesized that microgravity upregulates hepcidin, a hormone produced by the liver that is the main controller of iron homeostasis. To test this hypothesis, rats were submitted to hindlimb unloading (HU), the reference model to mimic the effects of microgravity in rodents. After 7 days, the mRNA level of hepcidin was increased in the liver of HU rats (+74%, P = 0.001). In agreement with the biological role of hepcidin, we found an increase of spleen iron content (+78%, P = 0.030) and a decrease of serum iron concentration (-35%, P = 0.002) and transferrin saturation (-25%, P = 0.011) in HU rats. These findings support a role of hepcidin in microgravity-induced iron metabolism alteration. Furthermore, among the signalling pathways inducing hepcidin mRNA expression, we found that only the interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) axis was activated by HU, as shown by the increase of phospho-STAT3 (+193%, P < 0.001) and of the hepatic mRNA level of haptoglobin (+167%, P < 0.001), a STAT3-inducible gene, in HU rats. Taken together, these data support the idea that microgravity may alter iron metabolism through an inflammatory process upregulating hepcidin.
Collapse
Affiliation(s)
- Thibault Cavey
- INSERM UMR 991 UMR, Rennes, France.,University of Rennes 1, Rennes, France.,Department of Biochemistry, CHU Rennes, France
| | - Nicolas Pierre
- Laboratory 'Movement, Sport and Health Sciences' (M2S), University Rennes 2-ENS Rennes, Bruz, France
| | - Kévin Nay
- Laboratory 'Movement, Sport and Health Sciences' (M2S), University Rennes 2-ENS Rennes, Bruz, France
| | - Coralie Allain
- INSERM UMR 991 UMR, Rennes, France.,University of Rennes 1, Rennes, France
| | - Martine Ropert
- INSERM UMR 991 UMR, Rennes, France.,Department of Biochemistry, CHU Rennes, France
| | - Olivier Loréal
- INSERM UMR 991 UMR, Rennes, France.,University of Rennes 1, Rennes, France
| | - Frédéric Derbré
- Laboratory 'Movement, Sport and Health Sciences' (M2S), University Rennes 2-ENS Rennes, Bruz, France
| |
Collapse
|
154
|
Tahimic CGT, Globus RK. Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight. Int J Mol Sci 2017; 18:ijms18102153. [PMID: 29035346 PMCID: PMC5666834 DOI: 10.3390/ijms18102153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 12/16/2022] Open
Abstract
Spaceflight entails exposure to numerous environmental challenges with the potential to contribute to both musculoskeletal and vascular dysfunction. The purpose of this review is to describe current understanding of microgravity and radiation impacts on the mammalian skeleton and associated vasculature at the level of the whole organism. Recent experiments from spaceflight and ground-based models have provided fresh insights into how these environmental stresses influence mechanisms that are related to redox signaling, oxidative stress, and tissue dysfunction. Emerging mechanistic knowledge on cellular defenses to radiation and other environmental stressors, including microgravity, are useful for both screening and developing interventions against spaceflight-induced deficits in bone and vascular function.
Collapse
Affiliation(s)
- Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
- KBRWyle, Moffett Field, CA 94035, USA.
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
155
|
Differences in bone structure and unloading-induced bone loss between C57BL/6N and C57BL/6J mice. Mamm Genome 2017; 28:476-486. [PMID: 28913652 DOI: 10.1007/s00335-017-9717-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022]
Abstract
The C57BL/6 mouse, the most frequently utilized animal model in biomedical research, is in use as several substrains, all of which differ by a small array of genomic differences. Two of these substrains, C57BL/6J (B6J) and C57BL/6N (B6N), are commonly used but it is unclear how phenotypically similar or different they are. Here, we tested whether adolescent B6N mice have a bone phenotype and respond to the loss of weightbearing differently than B6J. At 9 weeks of age, normally ambulating B6N had lower trabecular bone volume fraction but greater bone formation rates and osteoblast surfaces than corresponding B6J. At 11 weeks of age, differences in trabecular indices persisted between the substrains but differences in cellular activity had ceased. Cortical bone indices were largely similar between the two substrains. Hindlimb unloading (HLU) induced similar degeneration of trabecular architecture and cellular activity in both substrains when comparing 11-week-old HLU mice to 11-week-old controls. However, unloaded B6N mice had smaller cortices than B6J. When comparing HLU to 9 weeks baseline control mice, deterioration in trabecular separation, osteoblast indices, and endocortical variables was significantly greater in B6N than B6J. These data indicate specific developmental differences in bone formation and morphology between B6N and B6J mice, giving rise to a differential response to mechanical unloading that may be modulated, in part, by the genes Herc2, Myo18b, and Acan. Our results emphasize that these substrains cannot be used interchangeably at least for investigations in which the phenotypic makeup and its response to extraneous stimuli are of interest.
Collapse
|
156
|
Kitazawa T, Kitazawa K. Prolonged bed rest impairs rapid CPI-17 phosphorylation and contraction in rat mesenteric resistance arteries to cause orthostatic hypotension. Pflugers Arch 2017; 469:1651-1662. [PMID: 28717991 DOI: 10.1007/s00424-017-2031-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/03/2017] [Accepted: 07/09/2017] [Indexed: 02/07/2023]
Abstract
Prolonged bed rest (PBR) causes orthostatic hypotension (OH). Rapid constriction of splanchnic resistance arteries in response to a sudden increase in sympathetic tone contributes to the recovery of orthostatic arterial pressure upon standing. However, the molecular mechanism of PBR-induced dysfunction in arterial constriction is not fully understood. Previously, we showed that CPI-17, a regulatory protein for myosin phosphatase, mediates α1A-adrenergic receptor-induced rapid contraction of small mesenteric arteries. Here, we tested whether PBR associated with OH affects the α1-adrenergic receptor-induced CPI-17 signaling pathway in mesenteric arteries using rats treated by head-down tail-suspension hindlimb unloading (HDU), an experimental OH model. In normal anesthetized rats, mean arterial pressure (MAP) rapidly reduced upon 90° head-up tilt from supine position and then immediately recovered without change in heart rate, suggesting a rapid arterial constriction. On the other hand, after a 4-week HDU treatment, the fast orthostatic MAP recovery failed for 1 min. Alpha1A subtype-specific antagonist suppressed the orthostatic MAP recovery with a small decrease in basal blood pressure, whereas non-specific α1-antagonist prazosin strongly reduced both basal MAP and orthostatic recovery. The HDU treatment resulted in 68% reduction in contraction in parallel with 83% reduction in CPI-17 phosphorylation in denuded mesenteric arteries 10 s after α1-agonist stimulation. The treatment with either Ca2+-release channel opener or PKC inhibitor mimicked the deficiency in HDU arteries. These results suggest that an impairment of the rapid PKC/CPI-17 signaling pathway downstream of α1A-adrenoceptors in peripheral arterial constriction, as an end organ of orthostatic blood pressure reflex, is associated with OH in prolonged bed rest patients.
Collapse
Affiliation(s)
- Toshio Kitazawa
- Boston Biomedical Research Institute, Watertown, MA, 02472, USA. .,Department of Molecular Physiology and Biophysics, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| | - Kazuyo Kitazawa
- Boston Biomedical Research Institute, Watertown, MA, 02472, USA
| |
Collapse
|
157
|
Tanaka K, Nishimura N, Kawai Y. Adaptation to microgravity, deconditioning, and countermeasures. J Physiol Sci 2017; 67:271-281. [PMID: 28000175 PMCID: PMC10717636 DOI: 10.1007/s12576-016-0514-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/07/2016] [Indexed: 02/01/2023]
Abstract
Humans are generally in standing or sitting positions on Earth during the day. The musculoskeletal system supports these positions and also allows motion. Gravity acting in the longitudinal direction of the body generates a hydrostatic pressure difference and induces footward fluid shift. The vestibular system senses the gravity of the body and reflexively controls the organs. During spaceflight or exposure to microgravity, the load on the musculoskeletal system and hydrostatic pressure difference is diminished. Thus, the skeletal muscle, particularly in the lower limbs, is atrophied, and bone minerals are lost via urinary excretion. In addition, the heart is atrophied, and the plasma volume is decreased, which may induce orthostatic intolerance. Vestibular-related control also declines; in particular, the otolith organs are more susceptible to exposure to microgravity than the semicircular canals. Using an advanced resistive exercise device with administration of bisphosphonate is an effective countermeasure against bone deconditioning. However, atrophy of skeletal muscle and the heart has not been completely prevented. Further ingenuity is needed in designing countermeasures for muscular, cardiovascular, and vestibular dysfunctions.
Collapse
Affiliation(s)
- Kunihiko Tanaka
- Graduate School of Health and Medicine, Gifu University of Medical Science, 795-1 Nagamine Ichihiraga, Seki, Gifu, 501-3892, Japan.
| | - Naoki Nishimura
- Department of Physiology, Faculty of Medicine, Aichi Medical School, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1103, Japan
| | - Yasuaki Kawai
- Division of Adaptation Physiology, Faculty of Medicine, Tottori University, 86 Nishi-machi, Yonago, Tottori, 683-8503, Japan
| |
Collapse
|
158
|
Huie JR, Morioka K, Haefeli J, Ferguson AR. What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury. J Neurotrauma 2017; 34:1831-1840. [PMID: 27875927 DOI: 10.1089/neu.2016.4562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating syndrome that produces dysfunction in motor and sensory systems, manifesting as chronic paralysis, sensory changes, and pain disorders. The multi-faceted and heterogeneous nature of SCI has made effective rehabilitative strategies challenging. Work over the last 40 years has aimed to overcome these obstacles by harnessing the intrinsic plasticity of the spinal cord to improve functional locomotor recovery. Intensive training after SCI facilitates lower extremity function and has shown promise as a tool for retraining the spinal cord by engaging innate locomotor circuitry in the lumbar cord. As new training paradigms evolve, the importance of appropriate afferent input has emerged as a requirement for adaptive plasticity. The integration of kinematic, sensory, and loading force information must be closely monitored and carefully manipulated to optimize training outcomes. Inappropriate peripheral input may produce lasting maladaptive sensory and motor effects, such as central pain and spasticity. Thus, it is important to closely consider the type of afferent input the injured spinal cord receives. Here we review preclinical and clinical input parameters fostering adaptive plasticity, as well as those producing maladaptive plasticity that may undermine neurorehabilitative efforts. We differentiate between passive (hindlimb unloading [HU], limb immobilization) and active (peripheral nociception) forms of aberrant input. Furthermore, we discuss the timing of initiating exposure to afferent input after SCI for promoting functional locomotor recovery. We conclude by presenting a candidate rapid synaptic mechanism for maladaptive plasticity after SCI, offering a pharmacological target for restoring the capacity for adaptive spinal plasticity in real time.
Collapse
Affiliation(s)
- J Russell Huie
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Kazuhito Morioka
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Jenny Haefeli
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Adam R Ferguson
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California.,2 San Francisco Veterans Affairs Medical Center , San Francisco, California
| |
Collapse
|
159
|
Sundblad P, Prisk GK. Something from nothing? Space research without leaving the planet. J Appl Physiol (1985) 2016; 120:889-90. [PMID: 26917694 DOI: 10.1152/japplphysiol.00147.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - G Kim Prisk
- University of California, San Diego, California
| |
Collapse
|