151
|
Abstract
Diabetes is a complex disease defined by hyperglycaemia; however, strong associations with abdominal obesity, hypertension and dyslipidaemia contribute to the high risk of cardiovascular disease. Although aggressive glycaemic control reduces microvascular complications, the evidence for macrovascular complications is less certain. The theoretical benefits of the mode of action of peroxisome proliferator-activated receptor (PPAR) agonists are clear. In clinical practice, PPAR-α agonists such as fibrates improve dyslipidaemia, while PPAR-γ agonists such as thiazolidinediones improve insulin resistance and diabetes control. However, although these agents are traditionally classed according to their target, they have different and sometimes conflicting clinical benefit and adverse event profiles. It is speculated that this is because of differing properties and specificities for the PPAR receptors (each of which targets specific genes). This is most obvious in the impact on cardiovascular outcomes--in clinical trials pioglitazone appeared to reduce cardiovascular events, whereas rosiglitazone potentially increased the risk of myocardial infarction. The development of a dual PPAR-α/γ agonist may prove beneficial in effectively managing glycaemic control and improving dyslipidaemia in patients with type 2 diabetes. Yet, development of agents such as muraglitazar and tesaglitazar has been hindered by various serious adverse events. Aleglitazar, a balanced dual PPAR-α/γ agonist, is currently the most advanced in clinical development and has shown promising results in phase II clinical trials with beneficial effects on glucose and lipid variables. A phase III study, ALECARDIO, is ongoing and will establish whether improvements in laboratory test profiles translate into an improvement in cardiovascular outcomes.
Collapse
Affiliation(s)
- J P H Wilding
- Department of Obesity & Endocrinology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
152
|
Clark JE. An overview of the contribution of fatness and fitness factors, and the role of exercise, in the formation of health status for individuals who are overweight. J Diabetes Metab Disord 2012; 11:19. [PMID: 23497464 PMCID: PMC3602007 DOI: 10.1186/2251-6581-11-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/27/2012] [Indexed: 01/09/2023]
Abstract
Over the last half century there has been an epidemic of diminished health status induced by what seems as a concurrent rise in a population of individuals that are overfat. During the past few decades, the use of exercise has become a staple in the prevention and treatment options for the retarding the development of health issues pertaining to individuals who are overweight, overfatness or experience obesity. However, there are few studies and reviews look at the global issues surrounding the metabolic and hormone consequences of overfatness and the interaction of exercise with adiposity in humans developing the health status for the individual. This review offers an insight into our current understanding of health issues pertaining to metabolic and hormonal disruption related to overfatness and the treatment effect that exercise, especially resistance exercise, can have on impacting the health status, and overall well-being, for individuals who are overfat, regardless of body compositional changes leading toward a lessening of diseased state, and eventually a return to a normal health status for the individual.
Collapse
Affiliation(s)
- James E Clark
- Division of Mathematics, Department of Science, Science and Health Careers, MS 29, PO Box 1046, 60 Bidwell Street, Manchester, CT 06045-1046, USA.
| |
Collapse
|
153
|
Jia Y, Viswakarma N, Crawford SE, Sarkar J, Sambasiva Rao M, Karpus WJ, Kanwar YS, Zhu YJ, Reddy JK. Early embryonic lethality of mice with disrupted transcription cofactor PIMT/NCOA6IP/Tgs1 gene. Mech Dev 2012; 129:193-207. [PMID: 22982455 DOI: 10.1016/j.mod.2012.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 08/09/2012] [Accepted: 08/27/2012] [Indexed: 11/29/2022]
Abstract
PIMT (also known as PIPMT/NCOA6IP/Tgs1), first isolated as a transcription coactivator PRIP (NCOA6)-interacting 96-kDa protein with RNA-binding property, possesses RNA methyltransferase activity. As a transcription coactivator binding protein, PIMT enhances the nuclear receptor transcriptional activity and its methyltransferase property is involved in the formation of the 2,2,7-trimethylguanosine cap of non-coding small RNAs, but the in vivo functions of this gene have not been fully explored. To elucidate the biological functions, we used gene targeting to generate mice with a disrupted PIMT/Tgs1 gene. Disruption of PIMT gene results in early embryonic lethality due to impairment of development around the blastocyst and uterine implantation stages. We show that PIMT is expressed in all cells of the E3.5day blastocyst in the mouse. PIMT null mutation abolished PIMT expression in all cells of the blastocyst and caused a reduction in the expression of Oct4 and Nanog transcription factor proteins in the E3.5 blastocyst resulting in the near failure to form inner cell mass (ICM). With conditional deletion of PIMT gene, mouse embryonic fibroblasts (MEFs) exhibit defective wound healing in the scratch assay and a reduction in cell proliferation due to decreased G₀/G₁ transition and G₂/M phase cell cycle arrest. We conclude that PIMT/NCOA6IP, which is expressed in all cells of the 3.5 day stage blastocyst, is indispensable for early embryonic development.
Collapse
Affiliation(s)
- Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Chen Y, Tang Y, Guo C, Wang J, Boral D, Nie D. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem Pharmacol 2012; 83:1112-26. [PMID: 22326308 PMCID: PMC3339266 DOI: 10.1016/j.bcp.2012.01.030] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 01/18/2023]
Abstract
Chemotherapy is one of the three most common treatment modalities for cancer. However, its efficacy is limited by multidrug resistant cancer cells. Drug metabolizing enzymes (DMEs) and efflux transporters promote the metabolism, elimination, and detoxification of chemotherapeutic agents. Consequently, elevated levels of DMEs and efflux transporters reduce the therapeutic effectiveness of chemotherapeutics and, often, lead to treatment failure. Nuclear receptors, especially pregnane X receptor (PXR, NR1I2) and constitutive androstane activated receptor (CAR, NR1I3), are increasingly recognized for their role in xenobiotic metabolism and clearance as well as their role in the development of multidrug resistance (MDR) during chemotherapy. Promiscuous xenobiotic receptors, including PXR and CAR, govern the inducible expressions of a broad spectrum of target genes that encode phase I DMEs, phase II DMEs, and efflux transporters. Recent studies conducted by a number of groups, including ours, have revealed that PXR and CAR play pivotal roles in the development of MDR in various human carcinomas, including prostate, colon, ovarian, and esophageal squamous cell carcinomas. Accordingly, PXR/CAR expression levels and/or activation statuses may predict prognosis and identify the risk of drug resistance in patients subjected to chemotherapy. Further, PXR/CAR antagonists, when used in combination with existing chemotherapeutics that activate PXR/CAR, are feasible and promising options that could be utilized to overcome or, at least, attenuate MDR in cancer cells.
Collapse
Affiliation(s)
- Yakun Chen
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| | | | | | | | | | | |
Collapse
|
155
|
Dekkers JF, van der Ent CK, Kalkhoven E, Beekman JM. PPARγ as a therapeutic target in cystic fibrosis. Trends Mol Med 2012; 18:283-91. [PMID: 22494945 DOI: 10.1016/j.molmed.2012.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/06/2012] [Accepted: 03/12/2012] [Indexed: 12/31/2022]
Abstract
Cystic fibrosis (CF) is characterized by a proinflammatory pulmonary condition that may result from increased infections and altered intracellular metabolism in CFTR-deficient cells. The lipid-activated transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) has well-established roles in immune cell function and inflammatory modulation and has been demonstrated to play an important role in the heightened inflammatory response in CF cells. Here, we summarize current literature describing PPARγ-dependent alterations of CF cells and discuss the potential of PPARγ ligands for treating CF.
Collapse
Affiliation(s)
- Johanna F Dekkers
- Department of Pediatric Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
156
|
Anderson AM, Carter KW, Anderson D, Wise MJ. Coexpression of nuclear receptors and histone methylation modifying genes in the testis: implications for endocrine disruptor modes of action. PLoS One 2012; 7:e34158. [PMID: 22496781 PMCID: PMC3319570 DOI: 10.1371/journal.pone.0034158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/23/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Endocrine disruptor chemicals elicit adverse health effects by perturbing nuclear receptor signalling systems. It has been speculated that these compounds may also perturb epigenetic mechanisms and thus contribute to the early origin of adult onset disease. We hypothesised that histone methylation may be a component of the epigenome that is susceptible to perturbation. We used coexpression analysis of publicly available data to investigate the combinatorial actions of nuclear receptors and genes involved in histone methylation in normal testis and when faced with endocrine disruptor compounds. METHODOLOGY/PRINCIPAL FINDINGS The expression patterns of a set of genes were profiled across testis tissue in human, rat and mouse, plus control and exposed samples from four toxicity experiments in the rat. Our results indicate that histone methylation events are a more general component of nuclear receptor mediated transcriptional regulation in the testis than previously appreciated. Coexpression patterns support the role of a gatekeeper mechanism involving the histone methylation modifiers Kdm1, Prdm2, and Ehmt1 and indicate that this mechanism is a common determinant of transcriptional integrity for genes critical to diverse physiological endpoints relevant to endocrine disruption. Coexpression patterns following exposure to vinclozolin and dibutyl phthalate suggest that coactivity of the demethylase Kdm1 in particular warrants further investigation in relation to endocrine disruptor mode of action. CONCLUSIONS/SIGNIFICANCE This study provides proof of concept that a bioinformatics approach that profiles genes related to a specific hypothesis across multiple biological settings can provide powerful insight into coregulatory activity that would be difficult to discern at an individual experiment level or by traditional differential expression analysis methods.
Collapse
Affiliation(s)
- Alison M Anderson
- Computer Science and Software Engineering, University of Western Australia, Perth, Australia.
| | | | | | | |
Collapse
|
157
|
Oda Y, Hu L, Bul V, Elalieh H, Reddy JK, Bikle DD. Coactivator MED1 ablation in keratinocytes results in hair-cycling defects and epidermal alterations. J Invest Dermatol 2011; 132:1075-83. [PMID: 22189783 PMCID: PMC3400544 DOI: 10.1038/jid.2011.430] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The transcriptional coactivator complex Mediator facilitates transcription of nuclear hormone receptors and other transcription factors. We have previously isolated the Mediator complex from primary keratinocytes as the vitamin D receptor interacting protein complex. We identified a role for Mediator in keratinocyte proliferation and differentiation in cultured keratinocytes. Here, we investigated the in vivo role of Mediator by generating conditional null mice, where a critical subunit of the Mediator complex, MED1, is deleted from their keratinocytes. The MED1 ablation resulted in aberrant hair differentiation and cycling leading to hair loss. During the first hair follicle cycle, MED1 deletion resulted in a rapid regression of the hair follicles. Hair differentiation was reduced, and β-catenin/vitamin D receptor (VDR) regulated gene expression was dramatically decreased. In the subsequent adult hair cycle, MED1 ablation activated the initiation of hair follicle cycling. Shh signaling was increased, but terminal differentiation was not sufficient. Deletion of MED1 also caused hyper-proliferation of interfollicular epidermal keratinocytes, and increased the expression of epidermal differentiation markers. These results indicate that MED1 plays a critical role in regulating hair/epidermal proliferation and differentiation.
Collapse
Affiliation(s)
- Yuko Oda
- Department of Medicine and Endocrinology, University of California, San Francisco and Veterans Affairs Medical Center San Francisco, San Francisco, California 94121, USA.
| | | | | | | | | | | |
Collapse
|
158
|
Abstract
This review aims to provide a snapshot of the actual state of knowledge on genetic variants of nuclear receptors (NR) involved in regulating important aspects of liver metabolism. It recapitulates recent evidence for the application of NR in genetic diagnosis of monogenic ("Mendelian") liver disease and their use in clinical diagnosis. Genetic analysis of multifactorial liver diseases such as viral hepatitis or fatty liver disease identifies key players in disease predisposition and progression. Evidence from these analyses points towards a role of NR polymorphisms in common diseases, linking regulatory networks to complex and variable phenotypes. The new insights into NR variants also offer perspectives and cautionary advice for their use as handles towards diagnosis and treatment.
Collapse
Affiliation(s)
- Roman Müllenbach
- Department of Medicine II, Saarland University Medical Center, 66421 Homburg, Germany
| | | | | |
Collapse
|
159
|
Abstract
This review aims to provide a snapshot of the actual state of knowledge on genetic variants of nuclear receptors (NR) involved in regulating important aspects of liver metabolism. It recapitulates recent evidence for the application of NR in genetic diagnosis of monogenic (“Mendelian”) liver disease and their use in clinical diagnosis. Genetic analysis of multifactorial liver diseases such as viral hepatitis or fatty liver disease identifies key players in disease predisposition and progression. Evidence from these analyses points towards a role of NR polymorphisms in common diseases, linking regulatory networks to complex and variable phenotypes. The new insights into NR variants also offer perspectives and cautionary advice for their use as handles towards diagnosis and treatment.
Collapse
|
160
|
Flores AM, Gurevich I, Zhang C, Ramirez VP, Devens TR, Aneskievich BJ. TNIP1 is a corepressor of agonist-bound PPARs. Arch Biochem Biophys 2011; 516:58-66. [PMID: 21967852 DOI: 10.1016/j.abb.2011.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/03/2011] [Accepted: 08/17/2011] [Indexed: 11/18/2022]
Abstract
Nuclear receptor (NR) coregulators include coactivators, contributing to holoreceptor transcriptional activity, and corepressors, mediating NR target gene silencing in the absence of hormone. We identified an atypical NR coregulator, TNFα-induced protein 3-interacting protein 1 (TNIP1), from a peroxisome proliferator activated receptor (PPAR) α screen of a human keratinocyte cDNA library. TNIP1's complex nomenclature parallels its additional function as an NF-κB inhibitor. Here we show TNIP1 is an atypical NR corepressor using two-hybrid systems, biochemical studies, and receptor activity assays. The requirements for TNIP1-PPAR interaction are characteristic for coactivators; however, TNIP1 partially decreases PPAR activity. TNIP1 has separable transcriptional activation and repression domains suggesting a modular nature to its overall effect. It may provide a means of lowering receptor activity in the presence of ligand without total loss of receptor function. TNIP1's multiple roles and expression in several cell types suggest its regulatory effect depends on its expression level and the expression of other regulators in NR and/or NF-κB signaling pathways. As a NR coregulator, TNIP1 targeting agonist-bound PPAR and reducing transcriptional activity offers control of receptor signaling not available from typical corepressors and may contribute to combinatorial regulation of transcription.
Collapse
Affiliation(s)
- Anthony M Flores
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, 06269-3092, USA
| | | | | | | | | | | |
Collapse
|
161
|
Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp, Ctenopharyngodon idellus. Comp Biochem Physiol B Biochem Mol Biol 2011; 159:49-56. [DOI: 10.1016/j.cbpb.2011.01.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/15/2011] [Accepted: 01/30/2011] [Indexed: 11/19/2022]
|
162
|
Bai L, Jia Y, Viswakarma N, Huang J, Vluggens A, Wolins NE, Jafari N, Rao MS, Borensztajn J, Yang G, Reddy JK. Transcription coactivator mediator subunit MED1 is required for the development of fatty liver in the mouse. Hepatology 2011; 53:1164-74. [PMID: 21480322 PMCID: PMC3076129 DOI: 10.1002/hep.24155] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
UNLABELLED Peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor, when overexpressed in liver stimulates the induction of adipocyte-specific and lipogenesis-related genes and causes hepatic steatosis. We report here that Mediator 1 (MED1; also known as PBP or TRAP220), a key subunit of the Mediator complex, is required for high-fat diet-induced hepatic steatosis as well as PPARγ-stimulated adipogenic hepatic steatosis. Mediator forms the bridge between transcriptional activators and RNA polymerase II. MED1 interacts with nuclear receptors such as PPARγ and other transcriptional activators. Liver-specific MED1 knockout (MED1(ΔLiv) ) mice, when fed a high-fat (60% kcal fat) diet for up to 4 months failed to develop fatty liver. Similarly, MED1(ΔLiv) mice injected with adenovirus-PPARγ (Ad/PPARγ) by tail vein also did not develop fatty liver, whereas mice with MED1 (MED1(fl/fl) ) fed a high-fat diet or injected with Ad/PPARγ developed severe hepatic steatosis. Gene expression profiling and northern blot analyses of Ad/PPARγ-injected mouse livers showed impaired induction in MED1(ΔLiv) mouse liver of adipogenic markers, such as aP2, adipsin, adiponectin, and lipid droplet-associated genes, including caveolin-1, CideA, S3-12, and others. These adipocyte-specific and lipogenesis-related genes are strongly induced in MED1(fl/fl) mouse liver in response to Ad/PPARγ. Re-expression of MED1 using adenovirally-driven MED1 (Ad/MED1) in MED1(ΔLiv) mouse liver restored PPARγ-stimulated hepatic adipogenic response. These studies also demonstrate that disruption of genes encoding other coactivators such as SRC-1, PRIC285, PRIP, and PIMT had no effect on hepatic adipogenesis induced by PPARγ overexpression. CONCLUSION We conclude that transcription coactivator MED1 is required for high-fat diet-induced and PPARγ-stimulated fatty liver development, which suggests that MED1 may be considered a potential therapeutic target for hepatic steatosis. (HEPATOLOGY 2011;).
Collapse
Affiliation(s)
- Liang Bai
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
,Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Shaanxi 712100, China
| | - Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Navin Viswakarma
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jiansheng Huang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Aurore Vluggens
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nathan E. Wolins
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Nadereh Jafari
- Genomics Core Facility Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - M. Sambasiva Rao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jayme Borensztajn
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Shaanxi 712100, China
| | - Janardan K. Reddy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
163
|
Abstract
In mammals, most metabolic processes are influenced by biological clocks and feeding rhythms. The mechanisms that couple metabolism to circadian oscillators are just emerging. NAD-dependent enzymes (e.g., Sirtuins and poly[ADP-ribose] polymerases), redox- and/or temperature-dependent transcription factors (e.g., CLOCK, NPAS2, and HSF1), nutrient-sensing transcriptional regulatory proteins (e.g., CREB-CBP-CRCT2, FOXO-p300, nuclear receptors, PGC-1, and SP1 family members) and protein kinases (e.g., AMPK), are plausible candidates for conveying a cell's metabolic state to the core clock circuitry. The intertwining between these acute regulators and circadian clock components is so tight that the discrimination between metabolic and circadian oscillations may be somewhat arbitrary.
Collapse
|