151
|
Qiu Y, Jiang H, Ching WK, Ng MK. On predicting epithelial mesenchymal transition by integrating RNA-binding proteins and correlation data via L1/2-regularization method. Artif Intell Med 2019; 95:96-103. [DOI: 10.1016/j.artmed.2018.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 09/20/2018] [Accepted: 09/30/2018] [Indexed: 01/06/2023]
|
152
|
Zañudo JGT, Guinn MT, Farquhar K, Szenk M, Steinway SN, Balázsi G, Albert R. Towards control of cellular decision-making networks in the epithelial-to-mesenchymal transition. Phys Biol 2019; 16:031002. [PMID: 30654341 PMCID: PMC6405305 DOI: 10.1088/1478-3975/aaffa1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present the epithelial-to-mesenchymal transition (EMT) from two perspectives: experimental/technological and theoretical. We review the state of the current understanding of the regulatory networks that underlie EMT in three physiological contexts: embryonic development, wound healing, and metastasis. We describe the existing experimental systems and manipulations used to better understand the molecular participants and factors that influence EMT and metastasis. We review the mathematical models of the regulatory networks involved in EMT, with a particular emphasis on the network motifs (such as coupled feedback loops) that can generate intermediate hybrid states between the epithelial and mesenchymal states. Ultimately, the understanding gained about these networks should be translated into methods to control phenotypic outcomes, especially in the context of cancer therapeutic strategies. We present emerging theories of how to drive the dynamics of a network toward a desired dynamical attractor (e.g. an epithelial cell state) and emerging synthetic biology technologies to monitor and control the state of cells.
Collapse
Affiliation(s)
- Jorge Gómez Tejeda Zañudo
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Medical Oncology, Dana-Farber Cancer Center, Boston, MA 02215, USA
- Cancer Program, Eli and Edythe L. Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - M. Tyler Guinn
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Medical Scientist Training Program, 101 Nicolls Road, Stony Brook, NY 11794, USA
| | - Kevin Farquhar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mariola Szenk
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Steven N. Steinway
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Gábor Balázsi
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
153
|
Regulation of miRNAs by Snail during epithelial-to-mesenchymal transition in HT29 colon cancer cells. Sci Rep 2019; 9:2165. [PMID: 30770873 PMCID: PMC6377707 DOI: 10.1038/s41598-019-39200-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/04/2019] [Indexed: 01/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) in cancer cells, represents early stages of metastasis and is a promising target in colorectal cancer (CRC) therapy. There have been many attempts to identify markers and key pathways induced throughout EMT but the process is complex and depends on the cancer type and tumour microenvironment. Here we used the colon cancer cell line HT29, which stably overexpressed Snail, the key transcription factor in early EMT, as a model for colorectal adenocarcinoma cells with a pro-metastatic phenotype. We investigated miRNA expression regulation during that phenotypic switching. We found that overexpression of Snail in HT29 cells triggered significant changes in individual miRNA levels but did not change the global efficiency of miRNA processing. Snail abundance repressed the expression of miR-192 and miR-194 and increased miR-205, let-7i and SNORD13 levels. These identified changes correlated with the reported transcriptomic alterations in Snail-overexpressing HT29 cells. We also investigated how Snail affected the miRNA content of extracellular vesicles (EVs) released from HT29 cells. Our data suggest that the presence of Snail significantly alters the complex mRNA/miRNA interactions in the early steps of metastasis and also has an impact on the content of EVs released from HT29 cells.
Collapse
|
154
|
Vanneste M, Huang Q, Li M, Moose D, Zhao L, Stamnes MA, Schultz M, Wu M, Henry MD. High content screening identifies monensin as an EMT-selective cytotoxic compound. Sci Rep 2019; 9:1200. [PMID: 30718715 PMCID: PMC6361972 DOI: 10.1038/s41598-018-38019-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/11/2018] [Indexed: 01/03/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is implicated in cancer metastasis and drug resistance. Specifically targeting cancer cells in an EMT-like state may have therapeutic value. In this study, we developed a cell imaging-based high-content screening protocol to identify EMT-selective cytotoxic compounds. Among the 2,640 compounds tested, salinomycin and monensin, both monovalent cation ionophores, displayed a potent and selective cytotoxic effect against EMT-like cells. The mechanism of action of monensin was further evaluated. Monensin (10 nM) induced apoptosis, cell cycle arrest, and an increase in reactive oxygen species (ROS) production in TEM 4-18 cells. In addition, monensin rapidly induced swelling of Golgi apparatus and perturbed mitochondrial function. These are previously known effects of monensin, albeit occurring at much higher concentrations in the micromolar range. The cytotoxic effect of monensin was not blocked by inhibitors of ferroptosis. To explore the generality of our findings, we evaluated the toxicity of monensin in 24 human cancer cell lines and classified them as resistant or sensitive based on IC50 cutoff of 100 nM. Gene Set Enrichment Analysis identified EMT as the top enriched gene set in the sensitive group. Importantly, increased monensin sensitivity in EMT-like cells is associated with elevated uptake of 3H-monensin compared to resistant cells.
Collapse
Affiliation(s)
- Marion Vanneste
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Qin Huang
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Mengshi Li
- Human Toxicology, University of Iowa, Iowa City, IA, 52242, USA
| | - Devon Moose
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Mark A Stamnes
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael Schultz
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.,Human Toxicology, University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Meng Wu
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.,University of Iowa High Throughput Screening Facility (UIHTS), University of Iowa, Iowa City, IA, 52242, USA.,Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA. .,Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA. .,Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA. .,Department of Urology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA. .,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
155
|
Li X, Jolly MK, George JT, Pienta KJ, Levine H. Computational Modeling of the Crosstalk Between Macrophage Polarization and Tumor Cell Plasticity in the Tumor Microenvironment. Front Oncol 2019; 9:10. [PMID: 30729096 PMCID: PMC6351454 DOI: 10.3389/fonc.2019.00010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/03/2019] [Indexed: 01/06/2023] Open
Abstract
Tumor microenvironments contain multiple cell types interacting among one another via different signaling pathways. Furthermore, both cancer cells and different immune cells can display phenotypic plasticity in response to these communicating signals, thereby leading to complex spatiotemporal patterns that can impact therapeutic response. Here, we investigate the crosstalk between cancer cells and macrophages in a tumor microenvironment through in silico (computational) co-culture models. In particular, we investigate how macrophages of different polarization (M1 vs. M2) can interact with epithelial-mesenchymal plasticity of cancer cells, and conversely, how cancer cells exhibiting different phenotypes (epithelial vs. mesenchymal) can influence the polarization of macrophages. Based on interactions documented in the literature, an interaction network of cancer cells and macrophages is constructed. The steady states of the network are then analyzed. Various interactions were removed or added into the constructed-network to test the functions of those interactions. Also, parameters in the mathematical models were varied to explore their effects on the steady states of the network. In general, the interactions between cancer cells and macrophages can give rise to multiple stable steady-states for a given set of parameters and each steady state is stable against perturbations. Importantly, we show that the system can often reach one type of stable steady states where cancer cells go extinct. Our results may help inform efficient therapeutic strategies.
Collapse
Affiliation(s)
- Xuefei Li
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States.,Department of Bioengineering, Rice University, Houston, TX, United States.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States.,Department of Bioengineering, Rice University, Houston, TX, United States.,Department of Physics and Astronomy, Rice University, Houston, TX, United States.,Department of Physics, Northeastern University, Boston, MA, United States
| |
Collapse
|
156
|
Deciphering the Dynamics of Epithelial-Mesenchymal Transition and Cancer Stem Cells in Tumor Progression. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-0150-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
157
|
Jia D, George JT, Tripathi SC, Kundnani DL, Lu M, Hanash SM, Onuchic JN, Jolly MK, Levine H. Testing the gene expression classification of the EMT spectrum. Phys Biol 2019; 16:025002. [PMID: 30557866 PMCID: PMC7179477 DOI: 10.1088/1478-3975/aaf8d4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The epithelial-mesenchymal transition (EMT) plays a central role in cancer metastasis and drug resistance-two persistent clinical challenges. Epithelial cells can undergo a partial or full EMT, attaining either a hybrid epithelial/mesenchymal (E/M) or mesenchymal phenotype, respectively. Recent studies have emphasized that hybrid E/M cells may be more aggressive than their mesenchymal counterparts. However, mechanisms driving hybrid E/M phenotypes remain largely elusive. Here, to better characterize the hybrid E/M phenotype (s) and tumor aggressiveness, we integrate two computational methods-(a) RACIPE-to identify the robust gene expression patterns emerging from the dynamics of a given gene regulatory network, and (b) EMT scoring metric-to calculate the probability that a given gene expression profile displays a hybrid E/M phenotype. We apply the EMT scoring metric to RACIPE-generated gene expression data generated from a core EMT regulatory network and classify the gene expression profiles into relevant categories (epithelial, hybrid E/M, mesenchymal). This categorization is broadly consistent with hierarchical clustering readouts of RACIPE-generated gene expression data. We also show how the EMT scoring metric can be used to distinguish between samples composed of exclusively hybrid E/M cells and those containing mixtures of epithelial and mesenchymal subpopulations using the RACIPE-generated gene expression data.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005, United States of America
- These authors contributed equally
| | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Department of Bioengineering, Rice University, Houston, TX 77005, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, United States of America
- These authors contributed equally
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Deepali L Kundnani
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Mingyang Lu
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Current address: Department of Biochemistry, All India Institute of Medical Sciences, Nagpur 440003, India
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Department of Chemistry, Rice University, Houston, TX 77005, United States of America
- Department of Biosciences, Rice University, Houston, TX 77005, United States of America
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Current address: Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Department of Bioengineering, Rice University, Houston, TX 77005, United States of America
- Department of Biosciences, Rice University, Houston, TX 77005, United States of America
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
| |
Collapse
|
158
|
Ayyad SM, Saleh AI, Labib LM. Gene expression cancer classification using modified K-Nearest Neighbors technique. Biosystems 2019; 176:41-51. [PMID: 30611843 DOI: 10.1016/j.biosystems.2018.12.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/17/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022]
Abstract
Gene expression microarray classification is a crucial research field as it has been employed in cancer prediction and diagnosis systems. Gene expression data are composed of dozens of samples characterized by thousands of genes. Hence, an accurate and effective classification of such samples is a challenge. Machine learning techniques have been broadly utilized to build substantial and precise classification models. This paper proposes a new classification technique for gene expression data, which is called Modified k-nearest neighbor (MKNN). MKNN is applied in two scenarios namely; smallest modified KNN (SMKNN) and largest modified KNN (LMKNN). Both implementations are undertaken to enhance the performance of KNN. The key idea is to employ robust neighbors from training data by using a new weighting strategy. Several experiments have been performed on six different gene expression datasets. Experiments have shown that MKNN in its both scenarios outperforms traditional as well as recent ones. MKNN has been compared against (i) KNN, (ii) weighted KNN, (iii) support vector machine (SVM), (iv) fuzzy support vector machine, (v) brain emotional learning (BEL) in terms of classification accuracy, precision, and recall. On the other hand, results show that MKNN introduces smaller testing time than both KNN and weighted KNN.
Collapse
Affiliation(s)
- Sarah M Ayyad
- Computers and Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt.
| | - Ahmed I Saleh
- Computers and Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt.
| | - Labib M Labib
- Computers and Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
159
|
Pastushenko I, Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol 2018; 29:212-226. [PMID: 30594349 DOI: 10.1016/j.tcb.2018.12.001] [Citation(s) in RCA: 1830] [Impact Index Per Article: 261.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells acquire mesenchymal features. In cancer, EMT is associated with tumor initiation, invasion, metastasis, and resistance to therapy. Recently, it has been demonstrated that EMT is not a binary process, but occurs through distinct cellular states. Here, we review the recent studies that demonstrate the existence of these different EMT states in cancer and the mechanisms regulating their functions. We discuss the different functional characteristics, such as proliferation, propagation, plasticity, invasion, and metastasis associated with the distinct EMT states. We summarize the role of the transcriptional and epigenetic landscapes, gene regulatory network and their surrounding niche in controlling the transition through the different EMT states.
Collapse
Affiliation(s)
- Ievgenia Pastushenko
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium; WELBIO, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
160
|
Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2018; 194:161-184. [PMID: 30268772 DOI: 10.1016/j.pharmthera.2018.09.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer metastasis and therapy resistance are the major unsolved clinical challenges, and account for nearly all cancer-related deaths. Both metastasis and therapy resistance are fueled by epithelial plasticity, the reversible phenotypic transitions between epithelial and mesenchymal phenotypes, including epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). EMT and MET have been largely considered as binary processes, where cells detach from the primary tumor as individual units with many, if not all, traits of a mesenchymal cell (EMT) and then convert back to being epithelial (MET). However, recent studies have demonstrated that cells can metastasize in ways alternative to traditional EMT paradigm; for example, they can detach as clusters, and/or occupy one or more stable hybrid epithelial/mesenchymal (E/M) phenotypes that can be the end point of a transition. Such hybrid E/M cells can integrate various epithelial and mesenchymal traits and markers, facilitating collective cell migration. Furthermore, these hybrid E/M cells may possess higher tumor-initiation and metastatic potential as compared to cells on either end of the EMT spectrum. Here, we review in silico, in vitro, in vivo and clinical evidence for the existence of one or more hybrid E/M phenotype(s) in multiple carcinomas, and discuss their implications in tumor-initiation, tumor relapse, therapy resistance, and metastasis. Together, these studies drive the emerging notion that cells in a hybrid E/M phenotype may occupy 'metastatic sweet spot' in multiple subtypes of carcinomas, and pathways linked to this (these) hybrid E/M state(s) may be relevant as prognostic biomarkers as well as a promising therapeutic targets.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Jason A Somarelli
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Maya Sheth
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Adrian Biddle
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Andrew J Armstrong
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Sharmila A Bapat
- National Center for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| |
Collapse
|
161
|
Liu X, Wei X, Niu W, Wang D, Wang B, Zhuang H. Downregulation of FOXK2 is associated with poor prognosis in patients with gastric cancer. Mol Med Rep 2018; 18:4356-4364. [PMID: 30221666 PMCID: PMC6172389 DOI: 10.3892/mmr.2018.9466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/27/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX)K2 (FOXK2) is a member of the FOX transcription factor family. It has been suggested previously that FOXK2 is required to suppress tumor growth; however, the exact role of FOXK2 in gastric cancer remains to be elucidated. In the present study, the association between FOXK2 expression and the clinicopathological characteristics of patients with gastric cancer was investigated. The prognostic value of FOXK2 expression and the significance of clinicopathological parameters in the overall survival (OS) and progression-free survival of patients were also determined by survival analysis. To investigate the functional roles of FOXK2, it was downregulated in BGC-823 cells using small interfering (si)RNA, and upregulated using a FOXK2 plasmid. Colony formation, Cell Counting Kit-8 and cell proliferation analyses were conducted to examine the proliferation of gastric cancer cells. Transwell and wound-healing assays were performed to investigate the effect of FOXK2 expression on gastric cancer cell migration and invasion. The clinical data demonstrated that FOXK2 expression was reduced in high-grade gastric cancer tissues, and a low level of FOXK2 expression indicated a poor prognosis. The data obtained from the Human Protein Atlas revealed that patients with gastric cancer and a high level of FOXK2 expression had a longer OS time. The results of colony formation assays, Transwell and wound healing assays demonstrated that FOXK2 repressed the proliferation, invasion and migration of gastric cancer cells, respectively. The findings indicated that FOXK2 may serve as a promising therapeutic target in gastric cancer. Taken together, the findings of the present study demonstrated that FOXK2 functions as a tumor suppressor in gastric cancer; the loss of FOXK2 may induce the growth and invasion of gastric cancer cells.
Collapse
Affiliation(s)
- Xi Liu
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Xiaodong Wei
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Wei Niu
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bo Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300050, P.R. China
| | - Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| |
Collapse
|
162
|
Jolly MK, Preca BT, Tripathi SC, Jia D, George JT, Hanash SM, Brabletz T, Stemmler MP, Maurer J, Levine H. Interconnected feedback loops among ESRP1, HAS2, and CD44 regulate epithelial-mesenchymal plasticity in cancer. APL Bioeng 2018; 2:031908. [PMID: 31069317 PMCID: PMC6324214 DOI: 10.1063/1.5024874] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/30/2018] [Indexed: 12/22/2022] Open
Abstract
Aberrant activation of epithelial-mesenchymal transition (EMT) in carcinoma cells contributes to increased migration and invasion, metastasis, drug resistance, and tumor-initiating capacity. EMT is not always a binary process; rather, cells may exhibit a hybrid epithelial/mesenchymal (E/M) phenotype. ZEB1-a key transcription factor driving EMT-can both induce and maintain a mesenchymal phenotype. Recent studies have identified two novel autocrine feedback loops utilizing epithelial splicing regulatory protein 1 (ESRP1), hyaluronic acid synthase 2 (HAS2), and CD44 which maintain high levels of ZEB1. However, how the crosstalk between these feedback loops alters the dynamics of epithelial-hybrid-mesenchymal transition remains elusive. Here, using an integrated theoretical-experimental framework, we identify that these feedback loops can enable cells to stably maintain a hybrid E/M phenotype. Moreover, computational analysis identifies the regulation of ESRP1 as a crucial node, a prediction that is validated by experiments showing that knockdown of ESRP1 in stable hybrid E/M H1975 cells drives EMT. Finally, in multiple breast cancer datasets, high levels of ESRP1, ESRP1/HAS2, and ESRP1/ZEB1 correlate with poor prognosis, supporting the relevance of ZEB1/ESRP1 and ZEB1/HAS2 axes in tumor progression. Together, our results unravel how these interconnected feedback loops act in concert to regulate ZEB1 levels and to drive the dynamics of epithelial-hybrid-mesenchymal transition.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice
University, Houston, Texas 77030, USA
| | | | - Satyendra C. Tripathi
- Department of Clinical Cancer Prevention, UT MD
Anderson Cancer Center, Houston, Texas 77030,
USA
| | | | | | - Samir M. Hanash
- Department of Clinical Cancer Prevention, UT MD
Anderson Cancer Center, Houston, Texas 77030,
USA
| | - Thomas Brabletz
- Department of Experimental Medicine I,
Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander
University of Erlangen-Nürnberg, Erlangen 91054,
Germany
| | - Marc P. Stemmler
- Department of Experimental Medicine I,
Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander
University of Erlangen-Nürnberg, Erlangen 91054,
Germany
| | - Jochen Maurer
- Authors to whom correspondence should be addressed: and
| | | |
Collapse
|
163
|
Gao D, Mittal V, Ban Y, Lourenco AR, Yomtoubian S, Lee S. Metastatic tumor cells - genotypes and phenotypes. ACTA ACUST UNITED AC 2018; 13:277-286. [PMID: 30774650 DOI: 10.1007/s11515-018-1513-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Metastasis is the primary cause of mortality in cancer patients. Therefore, elucidating the genetics and epigenetics of metastatic tumor cells and the mechanisms by which tumor cells acquire metastatic properties constitute significant challenges in cancer research. OBJECTIVE To summarize the current understandings of the specific genotype and phenotype of the metastatic tumor cells. METHOD and RESULT In-depth genetic analysis of tumor cells, especially with advances in the next-generation sequencing, have revealed insights of the genotypes of metastatic tumor cells. Also, studies have shown that the cancer stem cell (CSC) and epithelial to mesenchymal transition (EMT) phenotypes are associated with the metastatic cascade. CONCLUSION In this review, we will discuss recent advances in the field by focusing on the genomic instability and phenotypic dynamics of metastatic tumor cells.
Collapse
Affiliation(s)
- Dingcheng Gao
- Department of Cardiothoracic Surgery, Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY10065, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY10065, USA
| | - Yi Ban
- Department of Cardiothoracic Surgery, Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY10065, USA
| | - Ana Rita Lourenco
- Department of Cardiothoracic Surgery, Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY10065, USA
| | - Shira Yomtoubian
- Department of Cardiothoracic Surgery, Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY10065, USA
| | - Sharrell Lee
- Department of Cardiothoracic Surgery, Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY10065, USA
| |
Collapse
|
164
|
Li J, Choi PS, Chaffer CL, Labella K, Hwang JH, Giacomelli AO, Kim JW, Ilic N, Doench JG, Ly SH, Dai C, Hagel K, Hong AL, Gjoerup O, Goel S, Ge JY, Root DE, Zhao JJ, Brooks AN, Weinberg RA, Hahn WC. An alternative splicing switch in FLNB promotes the mesenchymal cell state in human breast cancer. eLife 2018; 7:37184. [PMID: 30059005 PMCID: PMC6103745 DOI: 10.7554/elife.37184] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing of mRNA precursors represents a key gene expression regulatory step and permits the generation of distinct protein products with diverse functions. In a genome-scale expression screen for inducers of the epithelial-to-mesenchymal transition (EMT), we found a striking enrichment of RNA-binding proteins. We validated that QKI and RBFOX1 were necessary and sufficient to induce an intermediate mesenchymal cell state and increased tumorigenicity. Using RNA-seq and eCLIP analysis, we found that QKI and RBFOX1 coordinately regulated the splicing and function of the actin-binding protein FLNB, which plays a causal role in the regulation of EMT. Specifically, the skipping of FLNB exon 30 induced EMT by releasing the FOXC1 transcription factor. Moreover, skipping of FLNB exon 30 is strongly associated with EMT gene signatures in basal-like breast cancer patient samples. These observations identify a specific dysregulation of splicing, which regulates tumor cell plasticity and is frequently observed in human cancer. As the human body develops, countless cells change from one state into another. Two important cell states are known as epithelial and mesenchymal. Cells in the epithelial state tend to be tightly connected and form barriers, like skin cells. Mesenchymal state cells are loosely organized, move around more and make up connective tissues. Some cells alternate between these states via an epithelial-to-mesenchymal transition (EMT for short) and back again. Without this transition, certain organs would not develop and wounds would not heal. Yet, cancer cells also use this transition to spread to distant sites of the body. Such cancers are often the most aggressive, and therefore the most deadly. The epithelial-to-mesenchymal transition is dynamically regulated in a reversible manner. For example, the genes for some proteins might only be active in the epithelial state and further reinforce this state by turning on other ‘epithelial genes’. Alternatively, there might be differences in the processing of mRNA molecules – the intermediate molecules between DNA and protein – that result in the production of different proteins in epithelial and mesenchymal cells. Li, Choi et al. wanted to know which of the thousands of human genes can endow epithelial state cells with mesenchymal characteristics. A better understanding of the switch could help to prevent cancers undergoing an epithelial-to-mesenchymal transition. From a large-scale experiment in human breast cancer cells, Li, Choi et al. found that a group of proteins that bind and modify mRNA molecules are important for the epithelial-to-mesenchymal transition. Two proteins in particular promoted the transition, most likely by binding to the mRNA of a third protein called FLNB and removing a small piece of it. FLNB normally works to prevent the epithelial-to-mesenchymal transition, but the smaller protein encoded by the shorter mRNA promoted the transition by turning on ‘mesenchymal genes’. This switching between different FLNB proteins happens in some of the more aggressive breast cancers, which also contain mesenchymal cells. Finding out which FLNB protein is made in a given cancer may provide an indication of its aggressiveness. Also, looking for drugs that can target the mRNA-binding proteins or FLNB may one day lead to new treatments for some of the most aggressive breast cancers.
Collapse
Affiliation(s)
- Ji Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Peter S Choi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Christine L Chaffer
- Whitehead Institute for Biomedical Research and MIT, Cambridge, United States.,Garvan Institute of Medical Research, Sydney, Australia
| | - Katherine Labella
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States
| | - Justin H Hwang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Andrew O Giacomelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jong Wook Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Nina Ilic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Seav Huong Ly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Chao Dai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kimberly Hagel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States
| | - Andrew L Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Ole Gjoerup
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Shom Goel
- Harvard Medical School, Boston, United States.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
| | - Jennifer Y Ge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jean J Zhao
- Harvard Medical School, Boston, United States.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
| | - Angela N Brooks
- University of California, Santa Cruz, Santa Cruz, United States
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research and MIT, Cambridge, United States
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
165
|
La Porta CAM, Zapperi S. Explaining the dynamics of tumor aggressiveness: At the crossroads between biology, artificial intelligence and complex systems. Semin Cancer Biol 2018; 53:42-47. [PMID: 30017637 DOI: 10.1016/j.semcancer.2018.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/28/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023]
Abstract
Facing metastasis is the most pressing challenge of cancer research. In this review, we discuss recent advances in understanding phenotypic plasticity of cancer cells, highlighting the kinetics of cancer stem cell and the role of the epithelial mesenchymal transition for metastasis. It appears that the tumor micro-environment plays a crucial role in triggering phenotypic transitions, as we illustrate discussing the challenges posed by macrophages and cancer associated fibroblasts. To disentangle the complexity of environmentally induced phenotypic transitions, there is a growing need for novel advanced algorithms as those proposed in our recent work combining single cell data analysis and numerical simulations of gene regulatory networks. We conclude discussing recent developments in artificial intelligence and its applications to personalized cancer treatment.
Collapse
Affiliation(s)
- Caterina A M La Porta
- Center for Complexity and Biosystems, University of Milan, via Celoria 16, 20133 Milano, Italy; Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milano, Italy.
| | - Stefano Zapperi
- Center for Complexity and Biosystems, University of Milan, via Celoria 16, 20133 Milano, Italy; Department of Physics, University of Milan, via Celoria 16, 20133 Milano, Italy; CNR - Consiglio Nazionale delle Ricerche, ICMATE, Via R. Cozzi 53, 20125 Milano, Italy
| |
Collapse
|
166
|
Jolly MK, Mani SA, Levine H. Hybrid epithelial/mesenchymal phenotype(s): The 'fittest' for metastasis? Biochim Biophys Acta Rev Cancer 2018; 1870:151-157. [PMID: 29997040 DOI: 10.1016/j.bbcan.2018.07.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022]
Abstract
Metastasis is the leading cause of mortality among cancer patients. Dissemination enabled by an epithelial-to-mesenchymal transition (EMT) of carcinoma cells has long been considered to be the predominant mechanism for carcinoma metastasis, based on overexpression studies of many EMT-inducing transcription factors. Individual CTCs - and a binary framework of EMT - have been long considered to be sufficient and necessary condition for metastasis. However, recent studies have shown that collective migration and invasion through tumor buds and clusters of Circulating Tumor Cells (CTCs) as possibly being the prevalent mode of metastasis, although individual CTCs may still contribute to metastasis. These strands and clusters have been proposed to often exhibit a hybrid epithelial/mesenchymal (E/M) phenotype where cells retain epithelial traits of cell-cell adhesion and simultaneously gain mesenchymal characteristics of migration and invasion. To highlight the crucial questions regarding metastasis, we define EMT in a non-binary and context-specific manner, suggest that it can be viewed as a trans-differentiation process, and illustrate the implications of hybrid E/M phenotype(s) and cluster-based dissemination in metastasis.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
167
|
Bocci F, Jolly MK, George JT, Levine H, Onuchic JN. A mechanism-based computational model to capture the interconnections among epithelial-mesenchymal transition, cancer stem cells and Notch-Jagged signaling. Oncotarget 2018; 9:29906-29920. [PMID: 30042822 PMCID: PMC6057462 DOI: 10.18632/oncotarget.25692] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and cancer stem cell (CSCs) formation are two fundamental and well-studied processes contributing to cancer metastasis and tumor relapse. Cells can undergo a partial EMT to attain a hybrid epithelial/mesenchymal (E/M) phenotype or a complete EMT to attain a mesenchymal one. Similarly, cells can reversibly gain or lose 'stemness'. This plasticity in cell states is modulated by signaling pathways such as Notch. However, the interconnections among the cell states enabled by EMT, CSCs and Notch signaling remain elusive. Here, we devise a computational model to investigate the coupling among the core decision-making circuits for EMT, CSCs and Notch. Our model predicts that hybrid E/M cells are most likely to associate with stem-like traits and enhanced Notch-Jagged signaling – a pathway implicated in therapeutic resistance. Further, we show that the position of the 'stemness window' on the 'EMT axis' is varied by altering the coupling strength between EMT and CSC circuits, and/or modulating Notch signaling. Finally, we analyze the gene expression profile of CSCs from several cancer types and observe a heterogeneous distribution along the 'EMT axis', suggesting that different subsets of CSCs may exist with varying phenotypes along the epithelial-mesenchymal axis. We further investigate therapeutic perturbations such as treatment with metformin, a drug associated with decreased cancer incidence and increased lifespan of patients. Our mechanism-based model explains how metformin can both inhibit EMT and blunt the aggressive potential of CSCs simultaneously, by driving the cells out of a hybrid E/M stem-like state with enhanced Notch-Jagged signaling.
Collapse
Affiliation(s)
- Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Jason Thomas George
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Bioengineering, Rice University, Houston, TX 77005, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Chemistry, Rice University, Houston, TX 77005, USA.,Department of Bioengineering, Rice University, Houston, TX 77005, USA.,Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Chemistry, Rice University, Houston, TX 77005, USA.,Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.,Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
168
|
Salgia R, Mambetsariev I, Hewelt B, Achuthan S, Li H, Poroyko V, Wang Y, Sattler M. Modeling small cell lung cancer (SCLC) biology through deterministic and stochastic mathematical models. Oncotarget 2018; 9:26226-26242. [PMID: 29899855 PMCID: PMC5995226 DOI: 10.18632/oncotarget.25360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Mathematical cancer models are immensely powerful tools that are based in part on the fractal nature of biological structures, such as the geometry of the lung. Cancers of the lung provide an opportune model to develop and apply algorithms that capture changes and disease phenotypes. We reviewed mathematical models that have been developed for biological sciences and applied them in the context of small cell lung cancer (SCLC) growth, mutational heterogeneity, and mechanisms of metastasis. The ultimate goal is to develop the stochastic and deterministic nature of this disease, to link this comprehensive set of tools back to its fractalness and to provide a platform for accurate biomarker development. These techniques may be particularly useful in the context of drug development research, such as combination with existing omics approaches. The integration of these tools will be important to further understand the biology of SCLC and ultimately develop novel therapeutics.
Collapse
Affiliation(s)
- Ravi Salgia
- City of Hope, Department of Medical Oncology and Therapeutics Research, Duarte 91010, CA, USA
| | - Isa Mambetsariev
- City of Hope, Department of Medical Oncology and Therapeutics Research, Duarte 91010, CA, USA
| | - Blake Hewelt
- City of Hope, Department of Medical Oncology and Therapeutics Research, Duarte 91010, CA, USA
| | | | - Haiqing Li
- City of Hope, Center for Informatics, Duarte 91010, CA, USA
| | - Valeriy Poroyko
- City of Hope, Department of Medical Oncology and Therapeutics Research, Duarte 91010, CA, USA
| | - Yingyu Wang
- City of Hope, Center for Informatics, Duarte 91010, CA, USA
| | - Martin Sattler
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston 02215, MA, USA.,Harvard Medical School, Department of Medicine, Boston 02115, MA, USA
| |
Collapse
|
169
|
Abstract
The transition between epithelial and mesenchymal states has fundamental importance for embryonic development, stem cell reprogramming, and cancer progression. Here, we construct a topographic map underlying epithelial-mesenchymal transitions using a combination of numerical simulations of a Boolean network model and the analysis of bulk and single-cell gene expression data. The map reveals a multitude of metastable hybrid phenotypic states, separating stable epithelial and mesenchymal states, and is reminiscent of the free energy measured in glassy materials and disordered solids. Our work not only elucidates the nature of hybrid mesenchymal/epithelial states but also provides a general strategy to construct a topographic representation of phenotypic plasticity from gene expression data using statistical physics methods.
Collapse
|
170
|
Chen H, Chen Q, Jiang CM, Shi GY, Sui BW, Zhang W, Yang LZ, Li ZY, Liu L, Su YM, Zhao WC, Sun HQ, Li ZZ, Fu Z. Triptolide suppresses paraquat induced idiopathic pulmonary fibrosis by inhibiting TGFB1-dependent epithelial mesenchymal transition. Toxicol Lett 2017; 284:1-9. [PMID: 29195901 DOI: 10.1016/j.toxlet.2017.11.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/24/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) and tumor are highly similar to abnormal cell proliferation that damages the body. This malignant cell evolution in a stressful environment closely resembles that of epithelial-mesenchymal transition (EMT). As a popular EMT-inducing factor, TGFβ plays an important role in the progression of multiple diseases. However, the drugs that target TGFB1 are limited. In this study, we found that triptolide (TPL), a Chinese medicine extract, exerts an anti-lung fibrosis effect by inhibiting the EMT of lung epithelial cells. In addition, triptolide directly binds to TGFβ and subsequently increase E-cadherin expression and decrease vimentin expression. In in vivo studies, TPL improves the survival state and inhibits lung fibrosis in mice. In summary, this study revealed the potential therapeutic effect of paraquat induced TPL in lung fibrosis by regulating TGFβ-dependent EMT progression.
Collapse
Affiliation(s)
- Hong Chen
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China; China International Science and Technology Cooperation base of Child development and Critical Disorders, China; Chongqing Engineering Research Center of Stem Cell Therapy, China; Department of Pediatrics, First Affiliated Hospital, Heilongjiang University Of Chinese Medicine, China
| | - Qun Chen
- Department of Laboratory, The People's Hospital of Acheng District, Harbin, China
| | - Chun-Ming Jiang
- The First Affiliated Hospital of Harbin Medical University, China
| | | | - Bo-Wen Sui
- First Affiliated Hospital, Heilongjiang University Of Chinese Medicine, China
| | - Wei Zhang
- First Affiliated Hospital, Heilongjiang University Of Chinese Medicine, China
| | - Li-Zhen Yang
- First Affiliated Hospital, Heilongjiang University Of Chinese Medicine, China
| | - Zhu-Ying Li
- First Affiliated Hospital, Heilongjiang University Of Chinese Medicine, China
| | - Li Liu
- First Affiliated Hospital, Heilongjiang University Of Chinese Medicine, China
| | - Yu-Ming Su
- First Affiliated Hospital, Heilongjiang University Of Chinese Medicine, China
| | - Wen-Cheng Zhao
- The First Affiliated Hospital of Harbin Medical University, China
| | - Hong-Qiang Sun
- The First Affiliated Hospital of Harbin Medical University, China
| | | | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China; China International Science and Technology Cooperation base of Child development and Critical Disorders, China; Chongqing Engineering Research Center of Stem Cell Therapy, China.
| |
Collapse
|
171
|
Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA. [Experience in the management of children with diabetes mellitus]. Cells 1966. [PMID: 29534029 PMCID: PMC5870353 DOI: 10.3390/cells7030021] [Citation(s) in RCA: 167] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aerobic glycolysis, also referred to as the Warburg effect, has been regarded as the dominant metabolic phenotype in cancer cells for a long time. More recently, it has been shown that mitochondria in most tumors are not defective in their ability to carry out oxidative phosphorylation (OXPHOS). Instead, in highly aggressive cancer cells, mitochondrial energy pathways are reprogrammed to meet the challenges of high energy demand, better utilization of available fuels and macromolecular synthesis for rapid cell division and migration. Mitochondrial energy reprogramming is also involved in the regulation of oncogenic pathways via mitochondria-to-nucleus retrograde signaling and post-translational modification of oncoproteins. In addition, neoplastic mitochondria can engage in crosstalk with the tumor microenvironment. For example, signals from cancer-associated fibroblasts can drive tumor mitochondria to utilize OXPHOS, a process known as the reverse Warburg effect. Emerging evidence shows that cancer cells can acquire a hybrid glycolysis/OXPHOS phenotype in which both glycolysis and OXPHOS can be utilized for energy production and biomass synthesis. The hybrid glycolysis/OXPHOS phenotype facilitates metabolic plasticity of cancer cells and may be specifically associated with metastasis and therapy-resistance. Moreover, cancer cells can switch their metabolism phenotypes in response to external stimuli for better survival. Taking into account the metabolic heterogeneity and plasticity of cancer cells, therapies targeting cancer metabolic dependency in principle can be made more effective.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX 77005, USA.
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Kwang Hwa Jung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Bioengineering, Rice University, Houston, TX 77005, USA.
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
- Physics and Astronomy, Rice University, Houston, TX 77005, USA.
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|