151
|
Wang H, Tang Q, Lu Y, Chen C, Zhao YL, Xu T, Yang CW, Chen XQ. Berberine-loaded MSC-derived sEVs encapsulated in injectable GelMA hydrogel for spinal cord injury repair. Int J Pharm 2023; 643:123283. [PMID: 37536642 DOI: 10.1016/j.ijpharm.2023.123283] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
After spinal cord injury (SCI), local inflammatory response and fibrous scar formation severely hinder nerve regeneration. Berberine (Ber) has a powerful regulatory effect on the local microenvironment, but its limited solubility and permeability through the blood-brain barrier severely limit its systemic efficacy. Human umbilical cord mesenchymal stem cells (hUC-MSCs)-derived small extracellular vesicles (sEVs) are natural nanocarriers with high cargo loading capacity, and can cross the blood-brain barrier. Most importantly, sEVs can improve drug solubility and drug utilization. Therefore, they can overcome many defects of Ber application. This experiment aimed to design a Ber-carrying hUC-MSCs-derived sEVs and GelMA hydrogel. Ber was loaded into sEVs (sEVs-Ber) by ultrasonic co-incubation with a drug loading capacity (LC) of 15.07%. The unhindered release of up to 80% of sEVs-Ber from GelMA hydrogel was accomplished for up to 14 days. And they could be directly absorbed by local cells of injury, allowing for direct local delivery of the drug and enhancing its efficacy. The experimental results confirmed injecting GelMA-sEVs-Ber into spinal cord defects could exert anti-inflammatory effects by regulating the expression of inflammatory factors. It also demonstrated the anti-fibrotic effect of Ber in SCI for the first time. The modulatory effects of sEVs and Ber on the local microenvironment significantly promoted nerve regeneration and recovery of motor function in post-SCI rats. These results demonstrated that the GelMA-sEVs-Ber dual carrier system is a promising therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Heng Wang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Qin Tang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yang Lu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Cheng Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yu-Lin Zhao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Tao Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Chang-Wei Yang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Xiao-Qing Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
152
|
Gavriilaki E, Mallouri D, Bousiou Z, Demosthenous C, Vardi A, Dolgyras P, Batsis I, Stroggyli E, Karvouni P, Masmanidou M, Gavriilaki M, Bouinta A, Bitsianis S, Kapravelos N, Bitzani M, Vasileiadou G, Yannaki E, Sotiropoulos D, Papagiannopoulos S, Kazis D, Kimiskidis V, Anagnostopoulos A, Sakellari I. Molecular and Clinical Characteristics of Different Toxicity Rates in Anti-CD19 Chimeric Antigen Receptor T Cells: Real-World Experience. Cancers (Basel) 2023; 15:4253. [PMID: 37686529 PMCID: PMC10487155 DOI: 10.3390/cancers15174253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Commercially available anti-CD19 chimeric antigen receptor T cells (CARΤ cells) have offered long-term survival to a constantly expanding patient population. Given that novel toxicities including cytokine release syndrome (CRS) and neurotoxicity (ICANS) have been observed, we aimed to document the safety and toxicity of this treatment in a real-world study. We enrolled 31 adult patients referred to our center for CAR T therapy. Tisagenlecleucel was infused in 12 patients, axicabtagene ciloleucel in 14, and brexucabtagene autoleucel in 5. Cytokine release syndrome was noted in 26 patients while neurotoxicity was observed in 7. Tocilizumab was administered for CRS in 18 patients, along with short-term, low-dose steroid administration in one patient who developed grade III CRS and, subsequently, grade I ICANS. High-dose steroids, along with anakinra and siltuximab, were administered in only two MCL patients. With a median follow-up time of 13.4 months, nine patients were then in CR. The progression-free (PFS) and overall survival (OS) rates were 41.2% and 88.1% at one year, respectively. MCL diagnosis, which coincides with the administration of brexucabtagene autoleucel, was the only factor to be independently associated with poor OS (p < 0.001); meanwhile, increased LDH independently predicted PFS (p = 0.027).In addition, CRP at day 14 was associated with a poor OS (p = 0.001). Therefore, our real-world experience confirmed that commercial CAR T therapy can be administered with minimal toxicity.
Collapse
Affiliation(s)
- E. Gavriilaki
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
- Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - D. Mallouri
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - Z. Bousiou
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - C. Demosthenous
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - A. Vardi
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - P. Dolgyras
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - I. Batsis
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - E. Stroggyli
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - P. Karvouni
- Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - M. Masmanidou
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - M. Gavriilaki
- 1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.G.); (V.K.)
| | - A. Bouinta
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - S. Bitsianis
- Department of Surgery, G. Papanicolaou Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - N. Kapravelos
- 1st Intensive Care Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (N.K.); (G.V.)
| | - M. Bitzani
- 2nd Intensive Care Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (M.B.); (S.P.)
| | - G. Vasileiadou
- 1st Intensive Care Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (N.K.); (G.V.)
| | - E. Yannaki
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - D. Sotiropoulos
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - S. Papagiannopoulos
- 2nd Intensive Care Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (M.B.); (S.P.)
| | - D. Kazis
- 3rd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - V. Kimiskidis
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
- 1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.G.); (V.K.)
| | - A. Anagnostopoulos
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - I. Sakellari
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| |
Collapse
|
153
|
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol 2023; 16:97. [PMID: 37596653 PMCID: PMC10439661 DOI: 10.1186/s13045-023-01492-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Adoptive cell therapies (ACTs) have existed for decades. From the initial infusion of tumor-infiltrating lymphocytes to the subsequent specific enhanced T cell receptor (TCR)-T and chimeric antigen receptor (CAR)-T cell therapies, many novel strategies for cancer treatment have been developed. Owing to its promising outcomes, CAR-T cell therapy has revolutionized the field of ACTs, particularly for hematologic malignancies. Despite these advances, CAR-T cell therapy still has limitations in both autologous and allogeneic settings, including practicality and toxicity issues. To overcome these challenges, researchers have focused on the application of CAR engineering technology to other types of immune cell engineering. Consequently, several new cell therapies based on CAR technology have been developed, including CAR-NK, CAR-macrophage, CAR-γδT, and CAR-NKT. In this review, we describe the development, advantages, and possible challenges of the aforementioned ACTs and discuss current strategies aimed at maximizing the therapeutic potential of ACTs. We also provide an overview of the various gene transduction strategies employed in immunotherapy given their importance in immune cell engineering. Furthermore, we discuss the possibility that strategies capable of creating a positive feedback immune circuit, as healthy immune systems do, could address the flaw of a single type of ACT, and thus serve as key players in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
154
|
Tang L, Huang Z, Mei H, Hu Y. Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal Transduct Target Ther 2023; 8:306. [PMID: 37591844 PMCID: PMC10435569 DOI: 10.1038/s41392-023-01521-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/19/2023] Open
Abstract
The immune-cell origin of hematologic malignancies provides a unique avenue for the understanding of both the mechanisms of immune responsiveness and immune escape, which has accelerated the progress of immunotherapy. Several categories of immunotherapies have been developed and are being further evaluated in clinical trials for the treatment of blood cancers, including stem cell transplantation, immune checkpoint inhibitors, antigen-targeted antibodies, antibody-drug conjugates, tumor vaccines, and adoptive cell therapies. These immunotherapies have shown the potential to induce long-term remission in refractory or relapsed patients and have led to a paradigm shift in cancer treatment with great clinical success. Different immunotherapeutic approaches have their advantages but also shortcomings that need to be addressed. To provide clinicians with timely information on these revolutionary therapeutic approaches, the comprehensive review provides historical perspectives on the applications and clinical considerations of the immunotherapy. Here, we first outline the recent advances that have been made in the understanding of the various categories of immunotherapies in the treatment of hematologic malignancies. We further discuss the specific mechanisms of action, summarize the clinical trials and outcomes of immunotherapies in hematologic malignancies, as well as the adverse effects and toxicity management and then provide novel insights into challenges and future directions.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China
| | - Zhongpei Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
155
|
Moe A, Rayasam A, Sauber G, Shah RK, Yuan CY, Szabo A, Moore BM, Colonna M, Cui W, Romero J, Zamora AE, Hillard CJ, Drobyski WR. MICROGLIAL CELL EXPRESSION OF THE TYPE 2 CANNABINOID RECEPTOR REGULATES IMMUNE-MEDIATED NEUROINFLAMMATION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552854. [PMID: 37645843 PMCID: PMC10462026 DOI: 10.1101/2023.08.10.552854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Neuroinflammation is a recognized complication of immunotherapeutic approaches such as immune checkpoint inhibitor treatment, chimeric antigen receptor therapy, and graft versus host disease (GVHD) occurring after allogeneic hematopoietic stem cell transplantation. While T cells and inflammatory cytokines play a role in this process, the precise interplay between the adaptive and innate arms of the immune system that propagates inflammation in the central nervous system remains incompletely understood. Using a murine model of GVHD, we demonstrate that type 2 cannabinoid receptor (CB2R) signaling plays a critical role in the pathophysiology of neuroinflammation. In these studies, we identify that CB2R expression on microglial cells induces an activated inflammatory phenotype which potentiates the accumulation of donor-derived proinflammatory T cells, regulates chemokine gene regulatory networks, and promotes neuronal cell death. Pharmacological targeting of this receptor with a brain penetrant CB2R inverse agonist/antagonist selectively reduces neuroinflammation without deleteriously affecting systemic GVHD severity. Thus, these findings delineate a therapeutically targetable neuroinflammatory pathway and has implications for the attenuation of neurotoxicity after GVHD and potentially other T cell-based immunotherapeutic approaches.
Collapse
|
156
|
Katiyar V, Chesney J, Kloecker G. Cellular Therapy for Lung Cancer: Focusing on Chimeric Antigen Receptor T (CAR T) Cells and Tumor-Infiltrating Lymphocyte (TIL) Therapy. Cancers (Basel) 2023; 15:3733. [PMID: 37509394 PMCID: PMC10377757 DOI: 10.3390/cancers15143733] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Lung cancer is a leading cause of morbidity and mortality in the United States and worldwide. The introduction of immune checkpoint inhibitors has led to a marked improvement in the outcomes of lung cancer patients. Despite these advances, there is a huge unmet need for therapeutic options in patients who are not candidates for targeted or immunotherapy or those who progress after first-line treatment. With its high mutational burden, lung cancer appears to be an attractive target for novel personalized treatment approaches. In this review, we provide an overview of two adoptive cell therapy approaches-chimeric antigen receptors (CAR) T-cell therapy and Tumor-infiltrating lymphocytes (TILs) in lung cancer with an emphasis on current challenges and future perspectives. While both these therapies are still in the early phases of development in lung cancer and need more refinement, they harbor the potential to be effective treatment options for this group of patients with otherwise poor prognoses.
Collapse
Affiliation(s)
- Vatsala Katiyar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jason Chesney
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Goetz Kloecker
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
157
|
Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, Chauhan R, Dagar M, Mirza S, Bagga P, Kumar R, Akil ASAS, Macha MA, Haris M, Uddin S, Singh M, Bhat AA. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med 2023; 21:449. [PMID: 37420216 PMCID: PMC10327392 DOI: 10.1186/s12967-023-04292-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Traditional cancer treatments use nonspecific drugs and monoclonal antibodies to target tumor cells. Chimeric antigen receptor (CAR)-T cell therapy, however, leverages the immune system's T-cells to recognize and attack tumor cells. T-cells are isolated from patients and modified to target tumor-associated antigens. CAR-T therapy has achieved FDA approval for treating blood cancers like B-cell acute lymphoblastic leukemia, large B-cell lymphoma, and multiple myeloma by targeting CD-19 and B-cell maturation antigens. Bi-specific chimeric antigen receptors may contribute to mitigating tumor antigen escape, but their efficacy could be limited in cases where certain tumor cells do not express the targeted antigens. Despite success in blood cancers, CAR-T technology faces challenges in solid tumors, including lack of reliable tumor-associated antigens, hypoxic cores, immunosuppressive tumor environments, enhanced reactive oxygen species, and decreased T-cell infiltration. To overcome these challenges, current research aims to identify reliable tumor-associated antigens and develop cost-effective, tumor microenvironment-specific CAR-T cells. This review covers the evolution of CAR-T therapy against various tumors, including hematological and solid tumors, highlights challenges faced by CAR-T cell therapy, and suggests strategies to overcome these obstacles, such as utilizing single-cell RNA sequencing and artificial intelligence to optimize clinical-grade CAR-T cells.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, 3050, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Ravi Chauhan
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Manisha Dagar
- Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Sameer Mirza
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|
158
|
Zheng Z, Li S, Liu M, Chen C, Zhang L, Zhou D. Fine-Tuning through Generations: Advances in Structure and Production of CAR-T Therapy. Cancers (Basel) 2023; 15:3476. [PMID: 37444586 DOI: 10.3390/cancers15133476] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a promising form of immunotherapy that has seen significant advancements in the past few decades. It involves genetically modifying T cells to target cancer cells expressing specific antigens, providing a novel approach to treating various types of cancer. However, the initial success of first-generation CAR-T cells was limited due to inadequate proliferation and undesirable outcomes. Nonetheless, significant progress has been made in CAR-T cell engineering, leading to the development of the latest fifth-generation CAR-T cells that can target multiple antigens and overcome individual limitations. Despite these advancements, some shortcomings prevent the widespread use of CAR-T therapy, including life-threatening toxicities, T-cell exhaustion, and inadequate infiltration for solid tumors. Researchers have made considerable efforts to address these issues by developing new strategies for improving CAR-T cell function and reducing toxicities. This review provides an overview of the path of CAR-T cell development and highlights some of the prominent advances in its structure and manufacturing process, which include the strategies to improve antigen recognition, enhance T-cell activation and persistence, and overcome immune escape. Finally, the review briefly covers other immune cells for cancer therapy and ends with the discussion on the broad prospects of CAR-T in the treatment of various diseases, not just hematological tumors, and the challenges that need to be addressed for the widespread clinical application of CAR-T cell therapies.
Collapse
Affiliation(s)
- Zhibo Zheng
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Siyuan Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mohan Liu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chuyan Chen
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100730, China
| | - Lu Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
159
|
Saleki K, Mohamadi MH, Alijanizadeh P, Rezaei N. Neurological adverse effects of chimeric antigen receptor T-cell therapy. Expert Rev Clin Immunol 2023; 19:1361-1383. [PMID: 37578341 DOI: 10.1080/1744666x.2023.2248390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T-cell is among the most prevalent approaches that act by directing T-cells toward cancer; however, they need to be optimized to minimize side effects and maximize efficacy before being used as standard treatment for malignancies. Neurotoxicity associated with CAR T-cell therapy has been well-documented in recent works. AREAS COVERED In this regard, two established syndromes exist. Immune effector cell-associated neurotoxicity syndrome (ICANS), previously called cytokine release encephalopathy syndrome (CRES), is a neuropsychiatric condition which can occur after therapy by immune effector cells (IEC) and T-lymphocytes utilizing treatments. Another syndrome is cytokine release syndrome (CRS), which may overlap with ICANS. EXPERT OPINION ICANS clinical manifestations include cerebral edema, mild lethargy, aphasia, and seizures. Notably, ICANS is associated with changes to EEG and neuroradiological findings. Therefore, it is necessary to make a timely and accurate diagnosis of neurological complications of CAR T-cells by clinical presentations, neuroimaging, and EEG. Since neurological events by different CAR T-cell products are heterogeneous, guides should be developed according to each product. Here, we provide an updated review of general information on CAR T-cell therapies and applications, neurological syndromes associated with their use, and risk factors contributing to ICANS.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences(SBMU), Tehran, Iran
| | | | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
160
|
Gazeau N, Liang EC, Wu QV, Voutsinas JM, Barba P, Iacoboni G, Kwon M, Ortega JLR, López-Corral L, Hernani R, Ortiz-Maldonado V, Martínez-Cibrian N, Martinez AP, Maziarz RT, Williamson S, Nemecek ER, Shadman M, Cowan AJ, Green DJ, Kimble E, Hirayama AV, Maloney DG, Turtle CJ, Gauthier J. Anakinra for Refractory Cytokine Release Syndrome or Immune Effector Cell-Associated Neurotoxicity Syndrome after Chimeric Antigen Receptor T Cell Therapy. Transplant Cell Ther 2023; 29:430-437. [PMID: 37031746 PMCID: PMC10330552 DOI: 10.1016/j.jtct.2023.04.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/02/2023] [Accepted: 04/02/2023] [Indexed: 04/11/2023]
Abstract
Chimeric antigen receptor-engineered (CAR)-T cell therapy remains limited by significant toxicities, including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). The optimal management of severe and/or refractory CRS/ICANS remains ill-defined. Anakinra has emerged as a promising agent based on preclinical data, but its safety and efficacy in CAR-T therapy recipients are unknown. The primary objective of this study was to evaluate the safety of anakinra to treat refractory CRS and ICANS after CAR-T therapy. The secondary objective was to evaluate the impact of key treatment-, patient-, and disease-related variables on the time to CRS/ICANS resolution and treatment-related mortality (TRM). We retrospectively analyzed the outcomes of 43 patients with B cell or plasma cell malignancies treated with anakinra for refractory CRS or ICANS at 9 institutions in the United States and Spain between 2019 and 2022. Cause-specific Cox regression was used to account for competing risks. Multivariable cause-specific Cox regression was used to estimate the effect of anakinra dose on outcomes while minimizing treatment allocation bias by including age, CAR-T product, prelymphodepletion (pre-LD) ferritin, and performance status. Indications for anakinra treatment were grade ≥2 ICANS with worsening or lack of symptom improvement despite treatment with high-dose corticosteroids (n = 40) and grade ≥2 CRS with worsening symptoms despite treatment with tocilizumab (n = 3). Anakinra treatment was feasible and safe; discontinuation of therapy because of anakinra-related side effects was reported in only 3 patients (7%). The overall response rate (ORR) to CAR-T therapy was 77%. The cumulative incidence of TRM in the whole cohort was 7% (95% confidence interval [CI], 2% to 17%) at 28 days and 23% (95% CI, 11% to 38%) at 60 days after CAR-T infusion. The cumulative incidence of TRM at day 28 after initiation of anakinra therapy was 0% in the high-dose (>200 mg/day i.v.) recipient group and 47% (95% CI, 20% to 70%) in the low-dose (100 to 200 mg/day s.c. or i.v.) recipient group. The median cumulative incidence of CRS/ICANS resolution from the time of anakinra initiation was 7 days in the high-dose group and was not reached in the low-dose group, owing to the high TRM in this group. Univariate Cox modeling suggested a shorter time to CRS/ICANS resolution in the high-dose recipients (hazard ratio [HR], 2.19; 95% CI, .94 to 5.12; P = .069). In a multivariable Cox model for TRM including age, CAR-T product, pre-LD ferritin level, and pre-LD Karnofsky Performance Status (KPS), higher anakinra dose remained associated with lower TRM (HR, .41 per 1 mg/kg/day increase; 95% CI, .17 to .96; P = .039. The sole factor independently associated with time to CRS/ICANS resolution in a multivariable Cox model including age, CAR-T product, pre-LD ferritin and anakinra dose was higher pre-LD KPS (HR, 1.05 per 10% increase; 95% CI, 1.01 to 1.09; P = .02). Anakinra treatment for refractory CRS or ICANS was safe at doses up to 12 mg/kg/day i.v. We observed an ORR of 77% after CAR-T therapy despite anakinra treatment, suggesting a limited impact of anakinra on CAR-T efficacy. Higher anakinra dose may be associated with faster CRS/ICANS resolution and was independently associated with lower TRM. Prospective comparative studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Nicolas Gazeau
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Hematology Service, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Emily C Liang
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Qian Vicky Wu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jenna M Voutsinas
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Pere Barba
- Hematology Department, Hospital Universitari Vall d'Hebron. Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Gloria Iacoboni
- Hematology Department, Hospital Universitari Vall d'Hebron. Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Mi Kwon
- Department of Hematology, Hospital General Universitario Gregrorio Marañon, Institute of Health Research Gregorio Marañon. Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Luis Reguera Ortega
- Hematology Service, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Lucía López-Corral
- Hematology Department, Complejo Asistencial Universitario de Salamanca-IBSAL, Centro de Investigación del Cáncer-IBMCC, Spain
| | - Rafael Hernani
- Hematology Department, Hospital Clinico Universitario, INCLIVA Research Institut, Valencia, Spain
| | | | | | | | - Richard T Maziarz
- Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Staci Williamson
- Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Eneida R Nemecek
- Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Mazyar Shadman
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Andrew J Cowan
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Damian J Green
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Erik Kimble
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Alexandre V Hirayama
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - David G Maloney
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Cameron J Turtle
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington; Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jordan Gauthier
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
161
|
Frey NV. Thinking Clearly with Anakinra. Transplant Cell Ther 2023; 29:406-407. [PMID: 37400190 DOI: 10.1016/j.jtct.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Affiliation(s)
- Noelle V Frey
- Hospital of the University of Pennsylvania, Abramson Cancer Center, Cell Therapy and Transplant, Philadelphia PA.
| |
Collapse
|
162
|
Park JH, Nath K, Devlin SM, Sauter CS, Palomba ML, Shah G, Dahi P, Lin RJ, Scordo M, Perales MA, Shouval R, Tomas AA, Cathcart E, Mead E, Santomasso B, Holodny A, Brentjens RJ, Riviere I, Sadelain M. CD19 CAR T-cell therapy and prophylactic anakinra in relapsed or refractory lymphoma: phase 2 trial interim results. Nat Med 2023; 29:1710-1717. [PMID: 37400640 PMCID: PMC11462637 DOI: 10.1038/s41591-023-02404-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/17/2023] [Indexed: 07/05/2023]
Abstract
In preclinical models, anakinra, an IL-1 receptor antagonist (IL-1Ra), reduced immune effector cell-associated neurotoxicity syndrome (ICANS) without compromising anti-CD19 chimeric antigen receptor (CAR) T-cell efficacy. We initiated a phase 2 clinical trial of anakinra in patients with relapsed/refractory large B-cell lymphoma and mantle cell lymphoma treated with commercial anti-CD19 CAR T-cell therapy. Here we report a non-prespecified interim analysis reporting the final results from cohort 1 in which patients received subcutaneous anakinra from day 2 until at least day 10 post-CAR T-cell infusion. The primary endpoint was the rate of severe (grade ≥3) ICANS. Key secondary endpoints included the rates of all-grade cytokine release syndrome (CRS) and ICANS and overall disease response. Among 31 treated patients, 74% received axicabtagene ciloleucel, 13% received brexucabtagene ciloleucel and 4% received tisagenlecleucel. All-grade ICANS occurred in 19%, and severe ICANS occurred in 9.7% of patients. There were no grade 4 or 5 ICANS events. All-grade CRS occurred in 74%, and severe CRS occurred in 6.4% of patients. The overall disease response rate was 77% with 65% complete response rate. These initial results show that prophylactic anakinra resulted in a low incidence of ICANS in patients with lymphoma receiving anti-CD19 CAR T-cell therapy and support further study of anakinra in immune-related neurotoxicity syndromes.
Collapse
Affiliation(s)
- Jae H Park
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA.
| | - Karthik Nath
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Sean M Devlin
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Craig S Sauter
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Center for Cell Engineering, Sloan Kettering Institute, New York City, NY, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - M Lia Palomba
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Gunjan Shah
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Parastoo Dahi
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Richard J Lin
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Michael Scordo
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Miguel-Angel Perales
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Roni Shouval
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Ana Alarcon Tomas
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Division of Hematology and Hemotherapy, Hospital General Universitario Gregorio Maranon, Madrid, Spain
| | - Elizabeth Cathcart
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Elena Mead
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Bianca Santomasso
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andrei Holodny
- Radiology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Renier J Brentjens
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Center for Cell Engineering, Sloan Kettering Institute, New York City, NY, USA
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Isabelle Riviere
- Center for Cell Engineering, Sloan Kettering Institute, New York City, NY, USA
- Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Sloan Kettering Institute, New York City, NY, USA
| |
Collapse
|
163
|
Patrick N, Bahlis N, Peters S. Chimeric Antigen Receptor-T Cell Mediated Bilateral Facial Nerve Palsy: A Case Report. Neurohospitalist 2023; 13:308-311. [PMID: 37441202 PMCID: PMC10334052 DOI: 10.1177/19418744231167290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR-T) cell therapy is highly effective against hematological cancers but is associated with immune mediated side effects, including neurotoxicity. The most commonly described presentations of immune cell mediated neurotoxicity syndrome (ICANS) include cortical symptoms and generally localize to the central nervous system. In this report, we present a patient with acute onset of bilateral facial nerve palsy following CAR-T cell therapy, followed by a complete clinical recovery. Aside from a temporary anisocoria, he had no other neurologic symptoms and no encephalopathy or seizures. MRI Brain was non-contributory and cerebrospinal fluid revealed a modest increase in lymphocytes without systemic leukocytosis and viral studies were all negative. He was diagnosed with bilateral facial nerve palsy secondary to CAR-T cell therapy and subsequently treated with a course of steroids. Several weeks after presentation he returned to his neurological baseline. The presentation of CAR-T cell mediated facial nerve palsy is both clinically and scientifically relevant for physicians, patients, and researchers.
Collapse
Affiliation(s)
- Natalya Patrick
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Nizar Bahlis
- Cumming School of Medicine, University of Calgary, Calgary, Canada
- Annie Charbonneau Cancer Institute, Calgary, Canada
| | - Steven Peters
- Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Calgary, Canada
| |
Collapse
|
164
|
Mulgaonkar A, Udayakumar D, Yang Y, Harris S, Öz OK, Ramakrishnan Geethakumari P, Sun X. Current and potential roles of immuno-PET/-SPECT in CAR T-cell therapy. Front Med (Lausanne) 2023; 10:1199146. [PMID: 37441689 PMCID: PMC10333708 DOI: 10.3389/fmed.2023.1199146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have evolved as breakthrough treatment options for the management of hematological malignancies and are also being developed as therapeutics for solid tumors. However, despite the impressive patient responses from CD19-directed CAR T-cell therapies, ~ 40%-60% of these patients' cancers eventually relapse, with variable prognosis. Such relapses may occur due to a combination of molecular resistance mechanisms, including antigen loss or mutations, T-cell exhaustion, and progression of the immunosuppressive tumor microenvironment. This class of therapeutics is also associated with certain unique toxicities, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other "on-target, off-tumor" toxicities, as well as anaphylactic effects. Furthermore, manufacturing limitations and challenges associated with solid tumor infiltration have delayed extensive applications. The molecular imaging modalities of immunological positron emission tomography and single-photon emission computed tomography (immuno-PET/-SPECT) offer a target-specific and highly sensitive, quantitative, non-invasive platform for longitudinal detection of dynamic variations in target antigen expression in the body. Leveraging these imaging strategies as guidance tools for use with CAR T-cell therapies may enable the timely identification of resistance mechanisms and/or toxic events when they occur, permitting effective therapeutic interventions. In addition, the utilization of these approaches in tracking the CAR T-cell pharmacokinetics during product development and optimization may help to assess their efficacy and accordingly to predict treatment outcomes. In this review, we focus on current challenges and potential opportunities in the application of immuno-PET/-SPECT imaging strategies to address the challenges encountered with CAR T-cell therapies.
Collapse
Affiliation(s)
- Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Durga Udayakumar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yaxing Yang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Praveen Ramakrishnan Geethakumari
- Section of Hematologic Malignancies/Transplant and Cell Therapy, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
165
|
Aureli A, Marziani B, Venditti A, Sconocchia T, Sconocchia G. Acute Lymphoblastic Leukemia Immunotherapy Treatment: Now, Next, and Beyond. Cancers (Basel) 2023; 15:3346. [PMID: 37444456 DOI: 10.3390/cancers15133346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a blood cancer that primarily affects children but also adults. It is due to the malignant proliferation of lymphoid precursor cells that invade the bone marrow and can spread to extramedullary sites. ALL is divided into B cell (85%) and T cell lineages (10 to 15%); rare cases are associated with the natural killer (NK) cell lineage (<1%). To date, the survival rate in children with ALL is excellent while in adults continues to be poor. Despite the therapeutic progress, there are subsets of patients that still have high relapse rates after chemotherapy or hematopoietic stem cell transplantation (HSCT) and an unsatisfactory cure rate. Hence, the identification of more effective and safer therapy choices represents a primary issue. In this review, we will discuss novel therapeutic options including bispecific antibodies, antibody-drug conjugates, chimeric antigen receptor (CAR)-based therapies, and other promising treatments for both pediatric and adult patients.
Collapse
Affiliation(s)
- Anna Aureli
- CNR Institute of Translational Pharmacology, Via Carducci 32, 67100 L'Aquila, Italy
| | - Beatrice Marziani
- Emergency Medicine Department, Sant'Anna University Hospital, Via A. Moro, 8, Cona, 44124 Ferrara, Italy
| | - Adriano Venditti
- Department of Biomedicine and Prevention, The University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Tommaso Sconocchia
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Giuseppe Sconocchia
- CNR Institute of Translational Pharmacology, Via Carducci 32, 67100 L'Aquila, Italy
| |
Collapse
|
166
|
Gatto L, Ricciotti I, Tosoni A, Di Nunno V, Bartolini S, Ranieri L, Franceschi E. CAR-T cells neurotoxicity from consolidated practice in hematological malignancies to fledgling experience in CNS tumors: fill the gap. Front Oncol 2023; 13:1206983. [PMID: 37397356 PMCID: PMC10312075 DOI: 10.3389/fonc.2023.1206983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Chimeric antigen receptor (CAR-T) therapy has marked a paradigm shift in the treatment of hematological malignancies and represent a promising growing field also in solid tumors. Neurotoxicity is a well-recognized common complication of CAR-T therapy and is at the forefront of concerns for CAR-based immunotherapy widespread adoption, as it necessitates a cautious approach. The non-specific targeting of the CAR-T cells against normal tissues (on-target off-tumor toxicities) can be life-threatening; likewise, immune-mediate neurological symptoms related to CAR-T cell induced inflammation in central nervous system (CNS) must be precociously identified and recognized and possibly distinguished from non-specific symptoms deriving from the tumor itself. The mechanisms leading to ICANS (Immune effector Cell-Associated Neurotoxicity Syndrome) remain largely unknown, even if blood-brain barrier (BBB) impairment, increased levels of cytokines, as well as endothelial activation are supposed to be involved in neurotoxicity development. Glucocorticoids, anti-IL-6, anti-IL-1 agents and supportive care are frequently used to manage patients with neurotoxicity, but clear therapeutic indications, supported by high-quality evidence do not yet exist. Since CAR-T cells are under investigation in CNS tumors, including glioblastoma (GBM), understanding of the full neurotoxicity profile in brain tumors and expanding strategies aimed at limiting adverse events become imperative. Education of physicians for assessing individualized risk and providing optimal management of neurotoxicity is crucial to make CAR-T therapies safer and adoptable in clinical practice also in brain tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Ilaria Ricciotti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Vincenzo Di Nunno
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucia Ranieri
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
167
|
Manni S, Del Bufalo F, Merli P, Silvestris DA, Guercio M, Caruso S, Reddel S, Iaffaldano L, Pezzella M, Di Cecca S, Sinibaldi M, Ottaviani A, Quadraccia MC, Aurigemma M, Sarcinelli A, Ciccone R, Abbaszadeh Z, Ceccarelli M, De Vito R, Lodi MC, Cefalo MG, Mastronuzzi A, De Angelis B, Locatelli F, Quintarelli C. Neutralizing IFNγ improves safety without compromising efficacy of CAR-T cell therapy in B-cell malignancies. Nat Commun 2023; 14:3423. [PMID: 37296093 PMCID: PMC10256701 DOI: 10.1038/s41467-023-38723-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/10/2023] [Indexed: 06/12/2023] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy may achieve long-lasting remission in patients with B-cell malignancies not responding to conventional therapies. However, potentially severe and hard-to-manage side effects, including cytokine release syndrome (CRS), neurotoxicity and macrophage activation syndrome, and the lack of pathophysiological experimental models limit the applicability and development of this form of therapy. Here we present a comprehensive humanized mouse model, by which we show that IFNγ neutralization by the clinically approved monoclonal antibody, emapalumab, mitigates severe toxicity related to CAR-T cell therapy. We demonstrate that emapalumab reduces the pro-inflammatory environment in the model, thus allowing control of severe CRS and preventing brain damage, characterized by multifocal hemorrhages. Importantly, our in vitro and in vivo experiments show that IFNγ inhibition does not affect the ability of CD19-targeting CAR-T (CAR.CD19-T) cells to eradicate CD19+ lymphoma cells. Thus, our study provides evidence that anti-IFNγ treatment might reduce immune related adverse effect without compromising therapeutic success and provides rationale for an emapalumab-CAR.CD19-T cell combination therapy in humans.
Collapse
Affiliation(s)
- Simona Manni
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Francesca Del Bufalo
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Pietro Merli
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | | | - Marika Guercio
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Simona Caruso
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Sofia Reddel
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Laura Iaffaldano
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Michele Pezzella
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Stefano Di Cecca
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Matilde Sinibaldi
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Alessio Ottaviani
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Maria Cecilia Quadraccia
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Mariasole Aurigemma
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Andrea Sarcinelli
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Roselia Ciccone
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Zeinab Abbaszadeh
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Manuela Ceccarelli
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Rita De Vito
- Department of Pathological Anatomy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Maria Chiara Lodi
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Maria Giuseppina Cefalo
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Biagio De Angelis
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy.
| | - Franco Locatelli
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy.
- Department of Pediatrics, Catholic University of the Sacred Heart, Rome, Italy.
| | - Concetta Quintarelli
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
168
|
Jess J, Yates B, Dulau-Florea A, Parker K, Inglefield J, Lichtenstein D, Schischlik F, Ongkeko M, Wang Y, Shahani S, Cullinane A, Smith H, Kane E, Little L, Chen D, Fry TJ, Shalabi H, Wang HW, Satpathy A, Lozier J, Shah NN. CD22 CAR T-cell associated hematologic toxicities, endothelial activation and relationship to neurotoxicity. J Immunother Cancer 2023; 11:e005898. [PMID: 37295816 PMCID: PMC10277551 DOI: 10.1136/jitc-2022-005898] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Hematologic toxicities, including coagulopathy, endothelial activation, and cytopenias, with CD19-targeted chimeric antigen receptor (CAR) T-cell therapies correlate with cytokine release syndrome (CRS) and neurotoxicity severity, but little is known about the extended toxicity profiles of CAR T-cells targeting alternative antigens. This report characterizes hematologic toxicities seen following CD22 CAR T-cells and their relationship to CRS and neurotoxicity. METHODS We retrospectively characterized hematologic toxicities associated with CRS seen on a phase 1 study of anti-CD22 CAR T-cells for children and young adults with relapsed/refractory CD22+ hematologic malignancies. Additional analyses included correlation of hematologic toxicities with neurotoxicity and exploring effects of hemophagocytic lymphohistiocytosis-like toxicities (HLH) on bone marrow recovery and cytopenias. Coagulopathy was defined as evidence of bleeding or abnormal coagulation parameters. Hematologic toxicities were graded by Common Terminology Criteria for Adverse Events V.4.0. RESULTS Across 53 patients receiving CD22 CAR T-cells who experienced CRS, 43 (81.1%) patients achieved complete remission. Eighteen (34.0%) patients experienced coagulopathy, of whom 16 had clinical manifestations of mild bleeding (typically mucosal bleeding) which generally subsided following CRS resolution. Three had manifestations of thrombotic microangiopathy. Patients with coagulopathy had higher peak ferritin, D-dimer, prothrombin time, international normalized ratio (INR), lactate dehydrogenase (LDH), tissue factor, prothrombin fragment F1+2 and soluble vascular cell adhesion molecule-1 (s-VCAM-1). Despite a relatively higher incidence of HLH-like toxicities and endothelial activation, overall neurotoxicity was generally less severe than reported with CD19 CAR T-cells, prompting additional analysis to explore CD22 expression in the central nervous system (CNS). Single-cell analysis revealed that in contrast to CD19 expression, CD22 is not on oligodendrocyte precursor cells or on neurovascular cells but is seen on mature oligodendrocytes. Lastly, among those attaining CR, grade 3-4 neutropenia and thrombocytopenia were seen in 65% of patients at D28. CONCLUSION With rising incidence of CD19 negative relapse, CD22 CAR T-cells are increasingly important for the treatment of B-cell malignancies. In characterizing hematologic toxicities on CD22 CAR T-cells, we demonstrate that despite endothelial activation, coagulopathy, and cytopenias, neurotoxicity was relatively mild and that CD22 and CD19 expression in the CNS differed, providing one potential hypothesis for divergent neurotoxicity profiles. Systematic characterization of on-target off-tumor toxicities of novel CAR T-cell constructs will be vital as new antigens are targeted. TRIAL REGISTRATION NUMBER NCT02315612.
Collapse
Affiliation(s)
- Jennifer Jess
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bonnie Yates
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alina Dulau-Florea
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin Parker
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Jon Inglefield
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Dan Lichtenstein
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fiorella Schischlik
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, Maryland, USA
| | - Martin Ongkeko
- Department of Transfusion Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yanyu Wang
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Shilpa Shahani
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ann Cullinane
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Hannah Smith
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Eli Kane
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lauren Little
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dong Chen
- Mayo Clinic, Rochester, Minnesota, USA
| | - Terry J Fry
- University of Colorado Denver Children's Hospital Colorado Research Institute, Aurora, Colorado, USA
| | - Haneen Shalabi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Ansuman Satpathy
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Jay Lozier
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
169
|
Wang H, Tang L, Kong Y, Liu W, Zhu X, You Y. Strategies for Reducing Toxicity and Enhancing Efficacy of Chimeric Antigen Receptor T Cell Therapy in Hematological Malignancies. Int J Mol Sci 2023; 24:ijms24119115. [PMID: 37298069 DOI: 10.3390/ijms24119115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy in hematologic malignancies has made great progress, but there are still some problems. First, T cells from tumor patients show an exhaustion phenotype; thus, the persistence and function of the CAR-Ts are poor, and achieving a satisfactory curative effect is difficult. Second, some patients initially respond well but quickly develop antigen-negative tumor recurrence. Thirdly, CAR-T treatment is not effective in some patients and is accompanied by severe side effects, such as cytokine release syndrome (CRS) and neurotoxicity. The solution to these problems is to reduce the toxicity and enhance the efficacy of CAR-T therapy. In this paper, we describe various strategies for reducing the toxicity and enhancing the efficacy of CAR-T therapy in hematological malignancies. In the first section, strategies for modifying CAR-Ts using gene-editing technologies or combining them with other anti-tumor drugs to enhance the efficacy of CAR-T therapy are introduced. The second section describes some methods in which the design and construction of CAR-Ts differ from the conventional process. The aim of these methods is to enhance the anti-tumor activity of CAR-Ts and prevent tumor recurrence. The third section describes modifying the CAR structure or installing safety switches to radically reduce CAR-T toxicity or regulating inflammatory cytokines to control the symptoms of CAR-T-associated toxicity. Together, the knowledge summarized herein will aid in designing better-suited and safer CAR-T treatment strategies.
Collapse
Affiliation(s)
- Haobing Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingjie Kong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Liu
- Department of Pain Treatment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
170
|
Jain MD, Smith M, Shah NN. How I treat refractory CRS and ICANS after CAR T-cell therapy. Blood 2023; 141:2430-2442. [PMID: 36989488 PMCID: PMC10329191 DOI: 10.1182/blood.2022017414] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/31/2023] Open
Abstract
The clinical use of chimeric antigen receptor (CAR) T-cell therapy is growing rapidly because of the expanding indications for standard-of-care treatment and the development of new investigational products. The establishment of consensus diagnostic criteria for cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), alongside the steady use of both tocilizumab and corticosteroids for treatment, have been essential in facilitating the widespread use. Preemptive interventions to prevent more severe toxicities have improved safety, facilitating CAR T-cell therapy in medically frail populations and in those at high risk of severe CRS/ICANS. Nonetheless, the development of persistent or progressive CRS and ICANS remains problematic because it impairs patient outcomes and is challenging to treat. In this case-based discussion, we highlight a series of cases of CRS and/or ICANS refractory to front-line interventions. We discuss our approach to managing refractory toxicities that persist or progress beyond initial tocilizumab or corticosteroid administration, delineate risk factors for severe toxicities, highlight the emerging use of anakinra, and review mitigation strategies and supportive care measures to improve outcomes in patients who develop these refractory toxicities.
Collapse
Affiliation(s)
- Michael D. Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Melody Smith
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
171
|
Santomasso BD, Gust J, Perna F. How I treat unique and difficult-to-manage cases of CAR T-cell therapy-associated neurotoxicity. Blood 2023; 141:2443-2451. [PMID: 36877916 PMCID: PMC10329188 DOI: 10.1182/blood.2022017604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
With growing indications for chimeric antigen receptor (CAR) T-cell therapy, toxicity profiles are evolving. There is an urgent and unmet need of approaches to optimally manage emerging adverse events that extend beyond the standard paradigm of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome (ICANS). Although management guidelines exist for ICANS, there is little guidance on how to approach patients with neurologic comorbidities, and how to manage rare neurotoxicity presentations, such as CAR T-cell therapy-related cerebral edema, severe motor complications or late-onset neurotoxicity. In this study, we present 3 scenarios of patients treated with CAR T cells who develop unique types of neurotoxicity, and we describe an approach for the evaluation and management based on experience because objective data are limited. The goal of this study is to develop an awareness of emerging and unusual complications, discuss treatment approaches, and help institutions and health care providers establish frameworks to navigate how to best address unusual neurotoxicities to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Bianca D. Santomasso
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Juliane Gust
- Division of Pediatric Neurology, Department of Neurology, University of Washington, Seattle, WA
- Seattle Children's Research Institute Center for Integrative Brain Research, Seattle, WA
| | - Fabiana Perna
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
172
|
Mucha SR, Rajendram P. Management and Prevention of Cellular-Therapy-Related Toxicity: Early and Late Complications. Curr Oncol 2023; 30:5003-5023. [PMID: 37232836 DOI: 10.3390/curroncol30050378] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Chimeric Antigen Receptor T (CAR-T) cell therapy has dramatically changed prognosis and treatment of relapsed and refractory hematologic malignancies. Currently the 6 FDA approved products target various surface antigens. While CAR-T therapy achieves good response, life-threatening toxicities have been reported. Mechanistically, can be divided into two categories: (1) toxicities related to T-cell activation and release of high levels of cytokines: or (2) toxicities resulting from interaction between CAR and CAR targeted antigen expressed on non-malignant cells (i.e., on-target, off-tumor effects). Variations in conditioning therapies, co-stimulatory domains, CAR T-cell dose and anti-cytokine administration, pose a challenge in distinguishing cytokine mediated related toxicities from on-target, off-tumor toxicities. Timing, frequency, severity, as well as optimal management of CAR T-cell-related toxicities vary significantly between products and are likely to change as newer therapies become available. Currently the FDA approved CARs are targeted towards the B-cell malignancies however the future holds promise of expanding the target to solid tumor malignancies. Further highlighting the importance of early recognition and intervention for early and late onset CAR-T related toxicity. This contemporary review aims to describe presentation, grading and management of commonly encountered toxicities, short- and long-term complications, discuss preventive strategies and resource utilization.
Collapse
Affiliation(s)
- Simon R Mucha
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Prabalini Rajendram
- Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
173
|
Marsili L, Marcucci S, LaPorta J, Chirra M, Espay AJ, Colosimo C. Paraneoplastic Neurological Syndromes of the Central Nervous System: Pathophysiology, Diagnosis, and Treatment. Biomedicines 2023; 11:biomedicines11051406. [PMID: 37239077 DOI: 10.3390/biomedicines11051406] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Paraneoplastic neurological syndromes (PNS) include any symptomatic and non-metastatic neurological manifestations associated with a neoplasm. PNS associated with antibodies against intracellular antigens, known as "high-risk" antibodies, show frequent association with underlying cancer. PNS associated with antibodies against neural surface antigens, known as "intermediate- or low-risk" antibodies, are less frequently associated with cancer. In this narrative review, we will focus on PNS of the central nervous system (CNS). Clinicians should have a high index of suspicion with acute/subacute encephalopathies to achieve a prompt diagnosis and treatment. PNS of the CNS exhibit a range of overlapping "high-risk" clinical syndromes, including but not limited to latent and overt rapidly progressive cerebellar syndrome, opsoclonus-myoclonus-ataxia syndrome, paraneoplastic (and limbic) encephalitis/encephalomyelitis, and stiff-person spectrum disorders. Some of these phenotypes may also arise from recent anti-cancer treatments, namely immune-checkpoint inhibitors and CAR T-cell therapies, as a consequence of boosting of the immune system against cancer cells. Here, we highlight the clinical features of PNS of the CNS, their associated tumors and antibodies, and the diagnostic and therapeutic strategies. The potential and the advance of this review consists on a broad description on how the field of PNS of the CNS is constantly expanding with newly discovered antibodies and syndromes. Standardized diagnostic criteria and disease biomarkers are fundamental to quickly recognize PNS to allow prompt treatment initiation, thus improving the long-term outcome of these conditions.
Collapse
Affiliation(s)
- Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Samuel Marcucci
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Joseph LaPorta
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Martina Chirra
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Alberto J Espay
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, 05100 Terni, Italy
| |
Collapse
|
174
|
Pensato U, Amore G, Muccioli L, Sammali S, Rondelli F, Rinaldi R, D'Angelo R, Nicodemo M, Mondini S, Sambati L, Asioli GM, Rossi S, Santoro R, Cretella L, Ferrari S, Spinardi L, Faccioli L, Fanti S, Paccagnella A, Pierucci E, Casadei B, Pellegrini C, Zinzani PL, Bonafè M, Cortelli P, Bonifazi F, Guarino M. CAR t-cell therapy in BOlogNa-NEUrotoxicity TReatment and Assessment in Lymphoma (CARBON-NEUTRAL): proposed protocol and results from an Italian study. J Neurol 2023; 270:2659-2673. [PMID: 36869888 DOI: 10.1007/s00415-023-11595-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 03/05/2023]
Abstract
OBJECTIVE To investigate neurotoxicity clinical and instrumental features, incidence, risk factors, and early and long-term prognosis in lymphoma patients who received CAR T-cell therapy. METHODS In this prospective study, consecutive refractory B-cell non-Hodgkin lymphoma patients who received CAR T-cell therapy were included. Patients were comprehensively evaluated (neurological examination, EEG, brain MRI, and neuropsychological test) before and after (two and twelve months) CAR T-cells. From the day of CAR T-cells infusion, patients underwent daily neurological examinations to monitor the development of neurotoxicity. RESULTS Forty-six patients were included in the study. The median age was 56.5 years, and 13 (28%) were females. Seventeen patients (37%) developed neurotoxicity, characterized by encephalopathy frequently associated with language disturbances (65%) and frontal lobe dysfunction (65%). EEG and brain FDG-PET findings also supported a predominant frontal lobe involvement. The median time at onset and duration were five and eight days, respectively. Baseline EEG abnormalities predicted ICANS development in the multivariable analysis (OR 4.771; CI 1.081-21.048; p = 0.039). Notably, CRS was invariably present before or concomitant with neurotoxicity, and all patients who exhibited severe CRS (grade ≥ 3) developed neurotoxicity. Serum inflammatory markers were significantly higher in patients who developed neurotoxicity. A complete neurological resolution following corticosteroids and anti-cytokines monoclonal antibodies was reached in all patients treated, except for one patient developing a fatal fulminant cerebral edema. All surviving patients completed the 1-year follow-up, and no long-term neurotoxicity was observed. CONCLUSIONS In the first prospective Italian real-life study, we presented novel clinical and investigative insights into ICANS diagnosis, predictive factors, and prognosis.
Collapse
Affiliation(s)
- Umberto Pensato
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italia
- Department of Neurology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italia
| | - Lorenzo Muccioli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italia
| | - Susanna Sammali
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italia
| | - Francesca Rondelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Rita Rinaldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Roberto D'Angelo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Marianna Nicodemo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Susanna Mondini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Luisa Sambati
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Gian Maria Asioli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Simone Rossi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Rossella Santoro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Lucia Cretella
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Susy Ferrari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Luca Spinardi
- Diagnostic and Interventional Neuroradiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luca Faccioli
- Diagnostic and Interventional Neuroradiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Paccagnella
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisabetta Pierucci
- Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Cinzia Pellegrini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Massimiliano Bonafè
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pietro Cortelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | | | - Maria Guarino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia.
| |
Collapse
|
175
|
Mavi AK, Gaur S, Gaur G, Babita, Kumar N, Kumar U. CAR T-cell therapy: Reprogramming patient's immune cell to treat cancer. Cell Signal 2023; 105:110638. [PMID: 36822565 DOI: 10.1016/j.cellsig.2023.110638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a game changer in cancer treatment. Although CAR-T cell therapy has achieved significant clinical responses in specific subgroups of B cell leukaemia or lymphoma, various difficulties restrict CAR-T cell therapy's therapeutic effectiveness in solid tumours and haematological malignancies. Severe life-threatening toxicities, poor anti-tumour effectiveness, antigen escape, restricted trafficking, and limited tumour penetration are all barriers to successful CAR-T cell treatment. Furthermore, CAR-T cell interactions with the host and tumour microenvironment have a significant impact on their activity. Furthermore, developing and implementing these therapies necessitates a complicated staff. Innovative methodologies and tactics to engineering more potent CAR-T cells with greater anti-tumour activity and less toxicity are required to address these important difficulties.
Collapse
Affiliation(s)
- Anil Kumar Mavi
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Sonal Gaur
- Department of Biosciences and Biotechnology, Banasthali Vidyapith, Jaipur, Rajasthan 304022, India
| | - Gauri Gaur
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133203, India
| | - Babita
- Department of Pharmacology, Sharda School of Allied Health Sciences, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Neelesh Kumar
- Department of Aquaculture, College of Fisheries, GB Pant University of Agriculture & Technology, Pantnagar, Udham Singh Nagar, Uttarakhand 263145, India
| | - Umesh Kumar
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh 201015, India.
| |
Collapse
|
176
|
Mao Y, Huang L, Ruan H, Guo Y, Ni S, Ling Y. Patients' experience with chimeric antigen receptor T-cell therapy for DLBCL in China: a qualitative study. Support Care Cancer 2023; 31:303. [PMID: 37099077 PMCID: PMC10131511 DOI: 10.1007/s00520-023-07763-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/17/2023] [Indexed: 04/27/2023]
Abstract
PURPOSE The experiences of patients with diffuse large B-cell lymphoma (DLBCL) treated with chimeric antigen receptor (CAR) T-cell therapy have received little attention. This study aimed to explore the treatment experiences of patients with relapsed or refractory (R/R) B-cell lymphoma during CAR T-cell therapy in China. METHODS This descriptive qualitative study was conducted using face-to-face semi-structured interviews with 21 DLBCL patients 0-2 years after CAR-T infusion. Two researchers independently coded the interviews in MAXQDA 2022, and the original data were analyzed by conventional content analysis. RESULTS Four themes emerged from the transcripts: (1) physiological distress, (2) functional impacts, (3) psychological experience, and (4) support requirement. Participants expressed 29 short-term or long-term symptoms related to their disease and treatment, influencing their daily life and function in a social setting. The participants expressed different negative emotions, polarized expectations about efficacy, and over-reliance on authoritative medical care. Their major concerns and hopes were achieving life goals, being treated with respect, obtaining more information about CAR T-cell therapy, and receiving government financial sponsorship. CONCLUSIONS The patients experienced short-term and long-term symptoms of physical distress. Patients who have experienced failure in CAR T-cell therapy also experience strong negative emotions, such as dependency and guilt. They also require authentic spiritual and financial information that is authentic. Our study may guide the development of standardized and comprehensive nursing care for R/R DLBCL patients undergoing CAR T-cell therapy in China.
Collapse
Affiliation(s)
- Yiwen Mao
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lihong Huang
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China.
| | - Haitao Ruan
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
| | - Yue Guo
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
| | - Sha Ni
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuying Ling
- Florence Nightingale Faculty of Nursing and Midwifery, King's College London, Strand, London, UK
| |
Collapse
|
177
|
Bompaire F, Birzu C, Bihan K, Desestret V, Fargeot G, Farina A, Joubert B, Leclercq D, Nichelli L, Picca A, Tafani C, Weiss N, Psimaras D, Ricard D. Advances in treatments of patients with classical and emergent neurological toxicities of anticancer agents. Rev Neurol (Paris) 2023; 179:405-416. [PMID: 37059646 DOI: 10.1016/j.neurol.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/16/2023]
Abstract
The neurotoxicity associated to the anticancer treatments has received a growing body of interest in the recent years. The development of innovating therapies over the last 20years has led to the emergence of new toxicities. Their diagnosis and management can be challenging in the clinical practice and further research is warranted to improve the understanding of their pathogenic mechanisms. Conventional treatments as radiation therapy and chemotherapy are associated to well-known and under exploration emerging central nervous system (CNS) and peripheral nervous system (PNS) toxicities. The identification of the risk factors and a better understanding of their pathogeny through a "bench to bedside and back again" approach, are the first steps towards the development of toxicity mitigation strategies. New imaging techniques and biological explorations are invaluable for their diagnosis. Immunotherapies have changed the cancer treatment paradigm from tumor cell centered to immune modulation towards an efficient anticancer immune response. The use of the immune checkpoints inhibitors (ICI) and chimeric antigen receptor (CAR-T cells) lead to an increase in the incidence of immune-mediated toxicities and new challenges in the neurological patient's management. The neurological ICI-related adverse events (n-irAE) are rare but potentially severe and may present with both CNS and PNS involvement. The most frequent and well characterized, from a clinical and biological standpoint, are the PNS phenotypes: myositis and polyradiculoneuropathy, but the knowledge on CNS phenotypes and their treatments is expanding. The n-irAE management requires a good balance between dampening the autoimmune toxicity without impairing the anticancer immunity. The adoptive cell therapies as CAR-T cells, a promising anticancer strategy, trigger cellular activation and massive production of proinflammatory cytokines inducing frequent and sometime severe toxicity known as cytokine release syndrome and immune effector cell-associated neurologic syndrome. Their management requires a close partnership between oncologist-hematologists, neurologists, and intensivists. The oncological patient's management requires a multidisciplinary clinical team (oncologist, neurologist and paramedical) as well as a research team leading towards a better understanding and a better management of the neurological toxicities.
Collapse
Affiliation(s)
- Flavie Bompaire
- Service de Neurologie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, Clamart, France; UMR 9010 Centre Borelli, Université Paris-Saclay, École Normale Supérieure Paris-Saclay, CNRS, Service de Santé des Armées, Université Paris Cité, Inserm, Saclay, France; OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France
| | - Cristina Birzu
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; AP-HP, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles-Foix, Service de Neurologie 2-Mazarin, Sorbonne Université, Paris, France
| | - Kevin Bihan
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; AP-HP, Service de Pharmacologie, Centre Régional de Pharmacovigilance, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles-Foix, Inserm, CIC-1901, Sorbonne Universités, Paris, France
| | - Virginie Desestret
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; Service de Neurocognition et Neuro-ophtalmologie, Hospices Civils de Lyon, Hôpital Neurologique Pierre-Wertheimer, Lyon, France; Centre de Référence Maladies Rares pour les Syndromes Neurologiques Paranéoplasiques et les Encéphalites Auto-Immunes, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France; MeLiS, UCBL-CNRS UMR 5284, Inserm U1314, Université Claude-Bernard Lyon 1, Lyon, France
| | - Guillaume Fargeot
- AP-HP, Service de Neurologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Antonio Farina
- Centre de Référence Maladies Rares pour les Syndromes Neurologiques Paranéoplasiques et les Encéphalites Auto-Immunes, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France; MeLiS, UCBL-CNRS UMR 5284, Inserm U1314, Université Claude-Bernard Lyon 1, Lyon, France; Service de Neurologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Bastien Joubert
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; Centre de Référence Maladies Rares pour les Syndromes Neurologiques Paranéoplasiques et les Encéphalites Auto-Immunes, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France; MeLiS, UCBL-CNRS UMR 5284, Inserm U1314, Université Claude-Bernard Lyon 1, Lyon, France; Service de Neurologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Delphine Leclercq
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; AP-HP, Service de Neuroradiologie, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles-Foix, Sorbonne Universités, Paris, France
| | - Lucia Nichelli
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; AP-HP, Service de Neuroradiologie, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles-Foix, Sorbonne Universités, Paris, France
| | - Alberto Picca
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; AP-HP, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles-Foix, Service de Neurologie 2-Mazarin, Sorbonne Université, Paris, France
| | - Camille Tafani
- Service de Neurologie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, Clamart, France; OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France
| | - Nicolas Weiss
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino. Università di Firenze, Firenze, Italy; AP-HP, Service de Soins Intensifs en Neurologie, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles-Foix, Sorbonne Universités, Paris, France; École du Val-de-Grâce, Service de Santé des Armées, Paris, France
| | - Dimitri Psimaras
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; AP-HP, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles-Foix, Service de Neurologie 2-Mazarin, Sorbonne Université, Paris, France
| | - Damien Ricard
- Service de Neurologie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, Clamart, France; UMR 9010 Centre Borelli, Université Paris-Saclay, École Normale Supérieure Paris-Saclay, CNRS, Service de Santé des Armées, Université Paris Cité, Inserm, Saclay, France; OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; École du Val-de-Grâce, Service de Santé des Armées, Paris, France.
| |
Collapse
|
178
|
Xiao X, Cheng Y, Zheng X, Fang Y, Zhang Y, Sun R, Tian Z, Sun H. Bispecific NK-cell engager targeting BCMA elicits stronger antitumor effects and produces less proinflammatory cytokines than T-cell engager. Front Immunol 2023; 14:1113303. [PMID: 37114050 PMCID: PMC10126364 DOI: 10.3389/fimmu.2023.1113303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Bispecific antibodies have attracted more attention in recent years for the treatment of tumors, in which most of them target CD3, which mediates the killing of tumor cells by T cells. However, T-cell engager may cause serious side effects, including neurotoxicity and cytokine release syndrome. More safe treatments are still needed to address unmet medical needs, and NK cell-based immunotherapy is a safer and more effective way to treat tumors. Our study developed two IgG-like bispecific antibodies with the same configuration: BT1 (BCMA×CD3) attracted T cells and tumor cells, while BK1 (BCMA×CD16) attracted NK cells and tumor cells. Our study showed that BK1 mediated NK cell activation and upregulated the expression of CD69, CD107a, IFN-γ and TNF. In addition, BK1 elicited a stronger antitumor effect than BT1 both in vitro and in vivo. Combinatorial treatment (BK1+BT1) showed a stronger antitumor effect than either treatment alone, as indicated by in vitro experiments and in vivo murine models. More importantly, BK1 induced fewer proinflammatory cytokines than BT1 both in vitro and in vivo. Surprisingly, BK1 reduced cytokine production in the combinatorial treatment, suggesting the indispensable role of NK cells in the control of cytokine secretion by T cells. In conclusion, our study compared NK-cell engagers and T-cell engagers targeting BCMA. The results indicated that NK-cell engagers were more effective with less proinflammatory cytokine production. Furthermore, the use of NK-cell engagers in combinatorial treatment helped to reduce cytokine secretion by T cells, suggesting a bright future for NK-cell engagers in clinical settings.
Collapse
Affiliation(s)
- Xinghui Xiao
- Hefei National Research Center for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Ying Cheng
- Hefei National Research Center for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xiaodong Zheng
- Hefei National Research Center for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yuhang Fang
- Hefei National Research Center for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yu Zhang
- Hefei National Research Center for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Hefei National Research Center for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Research Center for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- Hefei TG ImmunoPharma Corporation Limited, Hefei, China
| | - Haoyu Sun
- Hefei National Research Center for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
179
|
Velasco R, Mussetti A, Villagrán-García M, Sureda A. CAR T-cell-associated neurotoxicity in central nervous system hematologic disease: Is it still a concern? Front Neurol 2023; 14:1144414. [PMID: 37090983 PMCID: PMC10117964 DOI: 10.3389/fneur.2023.1144414] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell systemic immunotherapy has revolutionized how clinicians treat several refractory and relapsed hematologic malignancies. Due to its peculiar mechanism of action, CAR T-cell-based therapy has enlarged the spectrum of neurological toxicities. CAR T-cell-associated neurotoxicity-initially defined as CAR T-cell-related encephalopathy syndrome (CRES) and currently coined within the acronym ICANS (immune effector cell-associated neurotoxicity syndrome)-is perhaps the most concerning toxicity of CAR T-cell therapy. Importantly, hematologic malignancies (especially lymphoid malignancies) may originate in or spread to the central nervous system (CNS) in the form of parenchymal and/or meningeal disease. Due to the emergence of deadly and neurological adverse events, such as fatal brain edema in some patients included in early CAR T-cell trials, safety concerns for those with CNS primary or secondary infiltration arose and contributed to the routine exclusion of individuals with pre-existing or active CNS involvement from pivotal trials. However, based primarily on the lack of evidence, it remains unknown whether CNS involvement increases the risk and/or severity of CAR T-cell-related neurotoxicity. Given the limited treatment options available for patients once they relapse with CNS involvement, it is of high interest to explore the role of novel clinical strategies including CAR T cells to treat leukemias/lymphomas and myeloma with CNS involvement. The purpose of this review was to summarize currently available neurological safety data of CAR T-cell-based immunotherapy from the clinical trials and real-world experiences in adult patients with CNS disease due to lymphoma, leukemia, or myeloma. Increasing evidence supports that CNS involvement in hematologic disease should no longer be considered per se as an absolute contraindication to CAR T-cell-based therapy. While the incidence may be high, severity does not appear to be impacted significantly by pre-existing CNS status. Close monitoring by trained neurologists is recommended.
Collapse
Affiliation(s)
- Roser Velasco
- Neuro-Oncology Unit, Department of Neurology, Hospital Universitari de Bellvitge-Institut Català d'Oncologia, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Cerdanyola del Vallés, Spain
| | - Alberto Mussetti
- Department of Hematology, Catalan Institute of Oncology, Hospital Duran i Reynals, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Macarena Villagrán-García
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron. UMR MeLiS team SynatAc, INSERM1314/CNRS5284, Lyon, France
| | - Anna Sureda
- Department of Hematology, Catalan Institute of Oncology, Hospital Duran i Reynals, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Medicine Department, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
180
|
Chohan KL, Siegler EL, Kenderian SS. CAR-T Cell Therapy: the Efficacy and Toxicity Balance. Curr Hematol Malig Rep 2023; 18:9-18. [PMID: 36763238 PMCID: PMC10505056 DOI: 10.1007/s11899-023-00687-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW Chimeric antigen receptor (CAR) T cell therapy is an immunotherapy that has resulted in tremendous progress in the treatment of patients with B cell malignancies. However, the remarkable efficacy of therapy is not without significant safety concerns. Herein, we will review the unique and potentially life-threatening toxicities associated with CAR-T cell therapy and their association with treatment efficacy. RECENT FINDINGS Currently, CAR-T cell therapy is approved for the treatment of B cell relapsed or refractory leukemia and lymphoma, and most recently, multiple myeloma (MM). In these different diseases, it has led to excellent complete and overall response rates depending on the patient population and therapy. Despite promising efficacy, CAR-T cell therapy is associated with significant side effects; the two most notable toxicities are cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). The treatment of CAR-T-induced toxicity is supportive; however, as higher-grade adverse events occur, toxicity-directed therapy with tocilizumab, an IL-6 receptor antibody, and steroids is standard practice. Overall, a careful risk-benefit balance exists between the efficacy and toxicities of therapies. The challenge lies in the underlying pathophysiology of CAR-T-related toxicity which relies upon the activation of CAR-T cells. Some degree of toxicity is expected to achieve an effective response to therapy, and certain aspects of treatment are also associated with toxicity. As progress is made in the investigation and approval of new CARs, novel toxicity-directed therapies and toxicity-limited constructs will be the focus of attention.
Collapse
Affiliation(s)
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 1st ST SW, Rochester, MN, 55902, USA.
| |
Collapse
|
181
|
Khalid F, Gupta R, Gor R, Gor D, Singh V, Eltoukhy H. Neurological Adverse Effects of Immune Checkpoint Inhibitors and Chimeric Antigen Receptor T-Cell Therapy. World J Oncol 2023; 14:109-118. [PMID: 37188042 PMCID: PMC10181423 DOI: 10.14740/wjon1575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023] Open
Abstract
Immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor (CAR) T-cell constitute recently approved novel therapies targeted to treat a wide number of malignancies. Both the treatments modulate the immune system and can cause a number of immune-related adverse events (irAEs), including polyendocrinopathies, gastrointestinal and neurological complications. This literature review focuses on the neurological side effects of these therapies as these are uncommon and alter the course of the treatment. Neurological complications involve the peripheral and central nervous system, including polyneuropathy, myositis, myasthenia gravis, demyelinating polyradiculopathy, myelitis, and encephalitis. If early recognized, the neurological complications can be treated effectively with steroids to reduce the potential of short-term and long-term complications. Therefore, early identification and treatment of irAEs are needed to optimize the outcomes associated with ICPI and CAR T-cell therapies.
Collapse
Affiliation(s)
- Farhan Khalid
- Department of Medicine, Monmouth Medical Center, Long Branch, NJ 07740, USA
- Corresponding Author: Farhan Khalid, Department of Medicine, Monmouth Medical Center, Long Branch, NJ 07740, USA.
| | - Rajshree Gupta
- Department of Medicine, JJM Medical College, Devnagree, Karnataka 577004, India
| | - Rajvi Gor
- Department of Medicine, Jacobi Medical Center, Bronx, NY 10461, USA
| | - Dairya Gor
- Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ 07753, USA
| | - Vinit Singh
- Department of Medicine, Monmouth Medical Center, Long Branch, NJ 07740, USA
| | - Hussam Eltoukhy
- Section of Hematology-Oncology, Department of Medicine, Monmouth Medical Center, Long Branch, NJ 07740, USA
| |
Collapse
|
182
|
Owen K, Ghaly R, Shohdy KS, Thistlethwaite F. Lymphodepleting chemotherapy practices and effect on safety and efficacy outcomes in patients with solid tumours undergoing T cell receptor-engineered T cell (TCR-T) Therapy: a systematic review and meta-analysis. Cancer Immunol Immunother 2023; 72:805-814. [PMID: 36315268 PMCID: PMC9628360 DOI: 10.1007/s00262-022-03287-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND T cell receptor-engineered T cell (TCR-T) therapy has shown promising efficacy in advanced solid tumours. Lymphodepleting (LD) chemotherapy improves TCR-T cell therapy efficacy but is associated with significant toxicities. Evidence is sparse regarding the optimum LD regimen for TCR-T cell therapy in solid tumours. METHODS A systematic review was conducted of interventional, prospective clinical trials describing LD practices prior to TCR-T cell therapy in patients with advanced solid tumours. The objective was to define LD regimens administered prior to TCR-T cell therapy and their effects on specific safety and efficacy outcomes in this patient population. RESULTS Searches returned 484 studies, 19 (231 patients) met the eligibility criteria. Cyclophosphamide (cyclo) 60 mg/kg daily (2 days), plus fludarabine (fludara) 25 mg/m2 daily (5 days) was the most common LD regimen (38% of studies). Higher dose LD regimens were associated with increased pooled incidence rates of febrile neutropaenia compared to low dose (0.64, [95% Confidence interval (CI): 0.50-0.78], vs. 0.39 [95% CI: 0.25-0.53], respectively) but were not significantly associated with higher objective responses (odds ratio: 1.05, 95%CI: 0.60-1.82, p = 0.86). A major shortfall in safety data reporting was identified; determination of LD regimen effects on many safety outcomes was not possible. CONCLUSION Standard consensus guidelines for the design and reporting of adoptive cell therapy (ACT) studies would facilitate accurate risk-benefit analysis for optimising LD regimens in patients with advanced solid tumours.
Collapse
Affiliation(s)
- Kathryn Owen
- ATMP Master Programme, The University of Manchester, Manchester, UK
| | - Ramy Ghaly
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Kyrillus S Shohdy
- Experimental Cancer Medicine Team, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Fiona Thistlethwaite
- Experimental Cancer Medicine Team, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.
- Division of Cancer Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
183
|
De Marco RC, Monzo HJ, Ojala PM. CAR T Cell Therapy: A Versatile Living Drug. Int J Mol Sci 2023; 24:ijms24076300. [PMID: 37047272 PMCID: PMC10094630 DOI: 10.3390/ijms24076300] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
After seeing a dramatic increase in the development and use of immunotherapy and precision medicine over the past few decades, oncological care now embraces the start of the adoptive cell therapy (ACT) era. This impulse towards a new treatment paradigm has been led by chimeric antigen receptor (CAR) T cells, the only type of ACT medicinal product to be commercialized so far. Brought about by an ever-growing understanding of cellular engineering, CAR T cells are T lymphocytes genetically modified with an appropriate DNA construct, which endows them with expression of a CAR, a fusion protein between a ligand-specific recognition domain, often an antibody-like structure, and the activating signaling domain of the T cell receptor. Through this genetic enhancement, CAR T cells are engineered from a cancer patient’s own lymphocytes to better target and kill their cancer cells, and the current amassed data on clinical outcomes point to a stream of bright developments in the near future. Herein, from concept design and present-day manufacturing techniques to pressing hurdles and bright discoveries around the corner, we review and thoroughly describe the state of the art in CAR T cell therapy.
Collapse
|
184
|
De Philippis C, Mannina D, Giordano L, Costantini E, Marcheselli S, Mariotti J, Sarina B, Taurino D, Santoro A, Bramanti S. Impact of Preemptive Use of Tocilizumab on Chimeric Antigen Receptor T Cell Outcomes in Non-Hodgkin Lymphoma. Transplant Cell Ther 2023:S2666-6367(23)01195-8. [PMID: 36966874 DOI: 10.1016/j.jtct.2023.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/05/2023] [Accepted: 03/19/2023] [Indexed: 04/26/2023]
Abstract
Despite the impressive results of chimeric antigen receptor (CAR) T cell treatment for lymphomas, adverse events such as cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and infections are major issues that can lead to intensive care unit (ICU) admission and death. Current guidelines recommend tocilizumab for treating patients with CRS grade (G) ≥2; however, the optimal timing of intervention has yet to be determined. Our institution adopted the preemptive use of tocilizumab in cases of persistent G1 CRS, defined as fever (≥38 °C) for >24 hours. This preemptive tocilizumab treatment aimed to reduce evolution to severe (G≥3) CRS, ICU admission, or death. We report on 48 prospectively collected consecutive patients with non-Hodgkin lymphoma treated with autologous CD19-targeted CAR T cells. In total, 39 patients (81%) developed CRS. CRS started as G1 in 28 patients, as G2 in patients, and as G3 in 1 patient. Tocilizumab was administered in 34 patients, including 23 patients who received "preemptive" tocilizumab and 11 patients who received tocilizumab for G2 or G3 CRS from the onset of symptoms. CRS resolved without worsening severity in 19 patients out of 23 (83%) who received preemptive tocilizumab; 4 patients (17%) progressed from G1 to G2 for the development of hypotension and quickly responded to the introduction of steroids. No patients treated with a preemptive approach developed G3 or G4 CRS. Ten out of 48 patients (21%) were diagnosed with ICANS, including 5 patients with G3 or G4. Six infectious events occurred. The overall ICU admission rate was 19%. ICANS management was the most relevant reason for ICU admission (7 patients), and no patient required ICU to manage CRS. No deaths from CAR-T toxicity were observed. Our data indicate that preemptive tocilizumab use is feasible and useful in reducing severe CRS and CRS-related ICU admission, with no impact on neurotoxicity or infection rate. Therefore, early use of tocilizumab can be considered, especially for patients at high risk of CRS.
Collapse
Affiliation(s)
- Chiara De Philippis
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Rozzano, Milan, Italy.
| | - Daniele Mannina
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Laura Giordano
- Biostatistic Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Elena Costantini
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Simona Marcheselli
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Jacopo Mariotti
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Barbara Sarina
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Daniela Taurino
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Armando Santoro
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Rozzano, Milan, Italy; Biostatistic Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Stefania Bramanti
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Rozzano, Milan, Italy
| |
Collapse
|
185
|
Ma S, Li H, Zhou D, Zhang X, Shi M, Cao J, Qi Y, Xia J, Liu Y, Wang X, Li D, Sang W, Yan Z, Zhu F, Sun H, Cheng H, Zheng J, Xu K, Li Z, Qi K, Wang Y. Associations of granulocyte colony-stimulating factor with toxicities and efficacy of chimeric antigen receptor T-cell therapy in relapsed or refractory multiple myeloma. Cytotherapy 2023; 25:653-658. [PMID: 36907717 DOI: 10.1016/j.jcyt.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND AIMS Few studies have reported the associations of granulocyte colony-stimulating factor (G-CSF) with cytokine release syndrome (CRS), neurotoxic events (NEs) and efficacy after chimeric antigen receptor (CAR) T-cell therapy for relapsed or refractory (R/R) multiple myeloma (MM). We present a retrospective study performed on 113 patients with R/R MM who received single anti-BCMA CAR T-cell, combined with anti-CD19 CAR T-cell or anti-CD138 CAR T-cell therapy. METHODS Eight patients were given G-CSF after successful management of CRS, and no CRS re-occurred thereafter. Of the remaining 105 patients that were finally analyzed, 72 (68.6%) received G-CSF (G-CSF group), and 33 (31.4%) did not (non G-CSF group). We mainly analyzed the incidence and severity of CRS or NEs in two groups of patients, as well as the associations of G-CSF timing, cumulative dose and cumulative time with CRS, NEs and efficacy of CAR T-cell therapy. RESULTS Both groups of patients had similar duration of grade 3-4 neutropenia, and the incidence and severity of CRS or NEs.There were also no differences in the incidence and severity of CRS or NEs between patients with the timing of G-CSF administration ≤3 days and those >3 days after CAR T-cell infusion. The incidence of CRS was greater in patients receiving cumulative doses of G-CSF >1500 μg or cumulative time of G-CSF administration >5 days. Among patients with CRS, there was no difference in the severity of CRS between patients who used G-CSF and those who did not. The duration of CRS in anti-BCMA and anti-CD19 CAR T-cell-treated patients was prolonged after G-CSF administration. There were no significant differences in the overall response rate at 1 and 3 months between the G-CSF group and the non-G-CSF group. CONCLUSIONS Our results showed that low-dose or short-time use of G-CSF was not associated with the incidence or severity of CRS or NEs, and G-CSF administration did not influence the antitumor activity of CAR T-cell therapy.
Collapse
Affiliation(s)
- Sha Ma
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hujun Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dian Zhou
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaotian Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiang Cao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuekun Qi
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jieyun Xia
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yang Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xue Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Depeng Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Sang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhiling Yan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Feng Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Haiying Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hai Cheng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Kunming Qi
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ying Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
186
|
Al Zaki A, McCurry D, Strati P. CAR T-cells and macrophages in large B-cell lymphoma: impact on toxicity and efficacy. Leuk Lymphoma 2023; 64:808-815. [PMID: 36891619 DOI: 10.1080/10428194.2023.2185090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy targeting CD19 is the current standard of care for the treatment of relapsed refractory large B cell lymphoma, demonstrating impressive response rates in the second- and third-line setting. Despite these advances, this treatment strategy can result in significant toxicities, such as cytokine release syndrome or immune effector cell associated neurotoxicity syndrome. While the exact mechanisms of these immune-mediated toxicities are not clearly understood, emerging pre-clinical and clinical studies have revealed the pivotal role of myeloid cells, particularly macrophages, as key contributors to the efficacy of treatments and as crucial mediators of toxicity. In this review, we discuss the current understanding of how macrophages mediate these effects, highlighting specific mechanisms of macrophage biology relevant to CAR T-cell therapy activity and side effects. These findings are resulting in novel treatment strategies that target macrophages, and able to mitigate toxicity while preserving CAR T-cell therapy efficacy.
Collapse
Affiliation(s)
- Ajlan Al Zaki
- Department of Lymphoma and Myeloma, The University of Texas, Houston, TX, USA
| | - Dustin McCurry
- Department of Lymphoma and Myeloma, The University of Texas, Houston, TX, USA
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas, Houston, TX, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
187
|
Liu J, Yang Y, Zeng Y, Qin X, Guo L, Liu W. Exploring the mechanism of physcion-1-O-β-D-monoglucoside against acute lymphoblastic leukaemia based on network pharmacology and experimental validation. Heliyon 2023; 9:e14009. [PMID: 36923879 PMCID: PMC10008983 DOI: 10.1016/j.heliyon.2023.e14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Objective To explore the mechanism of PG against acute lymphoblastic leukaemia (ALL) by network pharmacology and experimental verification in vitro. Methods First, the biological activity of PG against B-ALL was determined by CCK-8 and flow cytometry. Then, the potential targets of PG were obtained from the PharmMapper database. ALL-related genes were collected from the GeneCards, OMIM and PharmGkb databases. The two datasets were intersected to obtain the target genes of PG in ALL. Then, protein interaction networks were constructed using the STRING database. The key targets were obtained by topological analysis of the network with Cytoscape 3.8.0 software. In addition, the mechanism of PG in ALL was confirmed by protein‒protein interaction, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Furthermore, molecular docking was carried out by AutoDock Vina. Finally, Western blotting was performed to confirm the effect of PG on NALM6 cells. Results PG inhibited the proliferation of NALM6 cells. A total of 174 antileukaemic targets of PG were obtained by network pharmacology. The key targets included AKT1, MAPK14, EGFR, ESR1, LCK, PTPN11, RHOA, IGF1, MDM2, HSP90AA1, HRAS, SRC and JAK2. Enrichment analysis found that PG had antileukaemic effects by regulating key targets such as MAPK signalling, and PG had good binding activity with MAPK14 protein (-8.9 kcal/mol). PG could upregulate the expression of the target protein p-P38, induce cell cycle arrest, and promote the apoptosis of leukaemia cells. Conclusion MAPK14 was confirmed to be one of the key targets and pathways of PG by network pharmacology and molecular experiments.
Collapse
Key Words
- AKT1, Protein Kinase B α
- Acute lymphoblastic leukaemia
- B-ALL, B-acute lymphoblastic leukemia
- CDK2, Cyclin-dependent kinase 2
- Cleaved PARP, Cleaved Poly ADP-Ribose Polymerase
- DMSO, Dimethyl sulfoxide
- Experimental validation
- GO, Gene Ontology
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MAPK14
- MAPK14, Mitogen-activated protein kinase
- Network pharmacology
- OMIM, Online Mendelian Inheritance in Man
- PG, Physcion-1-O-β-D-monoglucoside
- PPI, Protein-protein interaction
- Physcion-1-O-β-D-monoglucoside
- RIPA, Radio-Immunoprecipitation Assay
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| | - Yan Yang
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| | - Yan Zeng
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| | - Xiang Qin
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| | - Ling Guo
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| | - Wenjun Liu
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| |
Collapse
|
188
|
Chimeric antigen receptor T cells therapy in solid tumors. Clin Transl Oncol 2023:10.1007/s12094-023-03122-8. [PMID: 36853399 DOI: 10.1007/s12094-023-03122-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023]
Abstract
Chimeric antigen receptor T cells therapy (CAR-T therapy) is a class of ACT therapy. Chimeric antigen receptor (CAR) is an engineered synthetic receptor of CAR-T, which give T cells the ability to recognize tumor antigens in a human leukocyte antigen-independent (HLA-independent) manner and enables them to recognize more extensive target antigens than natural T cell surface receptor (TCR), resulting in tumor destruction. CAR-T is composed of an extracellular single-chain variable fragment (scFv) of antibody, which serves as the targeting moiety, hinge region, transmembrane spacer, and intracellular signaling domain(s). CAR-T has been developing in many generations, which differ according to costimulatory domains. CAR-T therapy has several limitations that reduce its wide availability in immunotherapy which we can summarize in antigen escape that shows either partial or complete loss of target antigen expression, so multiplexing CAR-T cells are promoted to enhance targeting of tumor profiles. In addition, the large diversity in the tumor microenvironment also plays a major role in limiting this kind of treatment. Therefore, engineered CAR-T cells can evoke immunostimulatory signals that rebalance the tumor microenvironment. Using CAR-T therapy in treating the solid tumor is mainly restricted by the difficulty of CAR-T cells infiltrating the tumor site, so local administration was developed to improve the quality of treatment. The most severe toxicity after CAR-T therapy is on-target/on-tumor toxicity, such as cytokine release syndrome (CRS). Another type of toxicity is on-target/off-tumor toxicity which originates from the binding of CAR-T cells to target antigen that has shared expression on normal cells leading to damage in healthy cells and organs. Toxicity management should become a focus of implementation to permit management beyond specialized centers.
Collapse
|
189
|
Butt OH, Zhou AY, Ances BM, DiPersio JF, Ghobadi A. A systematic framework for predictive biomarkers in immune effector cell-associated neurotoxicity syndrome. Front Neurol 2023; 14:1110647. [PMID: 36860569 PMCID: PMC9969296 DOI: 10.3389/fneur.2023.1110647] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the management of several life-threatening malignancies, often achieving durable sustained responses. The number of patients treated with this new class of cell-based therapy, along with the number of Food and Drug Association (FDA) approved indications, are growing significantly. Unfortunately Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS) can often occur after treatment with CAR-T cells, and severe ICANS can be associated with significant morbidity and mortality. Current standard treatments are mainly steroids and supportive care, highlighting the need for early identification. In the last several years, a range of predictive biomarkers have been proposed to distinguish patients at increased risk for developing ICANS. In this review, we discuss a systematic framework to organize potential predictive biomarkers that builds on our current understanding of ICANS.
Collapse
Affiliation(s)
- Omar H. Butt
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, United States
| | - Alice Y. Zhou
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, United States
| | - Beau M. Ances
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, United States
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, United States
| | - Armin Ghobadi
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, United States
| |
Collapse
|
190
|
Manriquez Roman C, Sakemura RL, Kimball BL, Jin F, Khadka RH, Adada MM, Siegler EL, Johnson AJ, Kenderian SS. Assessment of Chimeric Antigen Receptor T Cell-Associated Toxicities Using an Acute Lymphoblastic Leukemia Patient-derived Xenograft Mouse Model. J Vis Exp 2023:10.3791/64535. [PMID: 36847405 PMCID: PMC10600946 DOI: 10.3791/64535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Chimeric antigen receptor T (CART) cell therapy has emerged as a powerful tool for the treatment of multiple types of CD19+ malignancies, which has led to the recent FDA approval of several CD19-targeted CART (CART19) cell therapies. However, CART cell therapy is associated with a unique set of toxicities that carry their own morbidity and mortality. This includes cytokine release syndrome (CRS) and neuroinflammation (NI). The use of preclinical mouse models has been crucial in the research and development of CART technology for assessing both CART efficacy and CART toxicity. The available preclinical models to test this adoptive cellular immunotherapy include syngeneic, xenograft, transgenic, and humanized mouse models. There is no single model that seamlessly mirrors the human immune system, and each model has strengths and weaknesses. This methods paper aims to describe a patient-derived xenograft model using leukemic blasts from patients with acute lymphoblastic leukemia as a strategy to assess CART19-associated toxicities, CRS, and NI. This model has been shown to recapitulate CART19-associated toxicities as well as therapeutic efficacy as seen in the clinic.
Collapse
Affiliation(s)
- Claudia Manriquez Roman
- T Cell Engineering Laboratory, Mayo Clinic, Rochester; Division of Hematology, Mayo Clinic, Rochester; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester; Department of Molecular Medicine, Mayo Clinic, Rochester; Regenerative Sciences PhD Program, Mayo Clinic, Rochester
| | - R Leo Sakemura
- T Cell Engineering Laboratory, Mayo Clinic, Rochester; Division of Hematology, Mayo Clinic, Rochester
| | - Brooke L Kimball
- T Cell Engineering Laboratory, Mayo Clinic, Rochester; Division of Hematology, Mayo Clinic, Rochester
| | - Fang Jin
- Department of Immunology, Mayo Clinic, Rochester
| | | | - Mohamad M Adada
- T Cell Engineering Laboratory, Mayo Clinic, Rochester; Division of Hematology, Mayo Clinic, Rochester
| | - Elizabeth L Siegler
- T Cell Engineering Laboratory, Mayo Clinic, Rochester; Division of Hematology, Mayo Clinic, Rochester
| | | | - Saad S Kenderian
- T Cell Engineering Laboratory, Mayo Clinic, Rochester; Division of Hematology, Mayo Clinic, Rochester; Department of Immunology, Mayo Clinic, Rochester;
| |
Collapse
|
191
|
Pensato U, de Philippis C, Pistolese F, Mannina D, Marcheselli S, Politi LS, Santoro A, Bramanti S. Case report: Reversible punctate inflammatory foci in the corpus callosum: A novel radiological finding of CAR T-cell therapy-related neurotoxicity. Front Neurol 2023; 14:1125121. [PMID: 36824415 PMCID: PMC9941663 DOI: 10.3389/fneur.2023.1125121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Chimeric antigen receptor T-cell therapy-related neurotoxicity is a novel cytokine-mediated neurological syndrome that may present with a broad spectrum of manifestations. Descriptions of novel distinctive features are pivotal to untangling this condition's clinical and instrumental signature in order to inform diagnosis and pathophysiology. Case A 27-year-old female patient received anti-CD19 CAR T cells for a refractory primary mediastinal B-cell lymphoma. At 6 days after the infusion, she developed mild ideo-motor slowing, dysgraphia, and drowsiness. Despite specific treatment with dexamethasone, her neurological status progressively worsened to a comatose state within 24 h. EEG and CSF analyses were non-specific, showing background slowing and inflammatory findings. Brain MRI revealed multiple focal punctate areas of T2-weighted hyperintensity localized in the body and isthmus of the corpus callosum. Following the administration of high-dose intravenous methylprednisolone, her neurological status resolved within 48 h. Notably, the follow-up brain MRI did not reveal any abnormalities in the corpus callosum, except for a reduction of fractional anisotropy. Conclusion Reversible punctate inflammatory foci of the body and isthmus of the corpus callosum may represent a novel radiological finding of CAR T-cell therapy-related neurotoxicity.
Collapse
Affiliation(s)
- Umberto Pensato
- IRCCS Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Chiara de Philippis
- Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy,*Correspondence: Chiara de Philippis ✉
| | - Flavio Pistolese
- IRCCS Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Daniele Mannina
- Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Letterio S. Politi
- IRCCS Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Milan, Italy,Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Stefania Bramanti
- Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
192
|
[Management of neurotoxicity following CAR-T cell therapy: Recommendations of the SFGM-TC]. Bull Cancer 2023; 110:S123-S131. [PMID: 35094839 DOI: 10.1016/j.bulcan.2021.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 11/20/2022]
Abstract
The immune effector cell-associated syndrome (ICANS) has been described as the second most frequent specific complication following CAR-T cell therapy. The median time to the onset of neurological symptoms is five days after CAR-T infusion. ICANS can be concomitant to cytokine release syndrome but often follows the resolution of the latter. However, 10 % of patients experience delayed onset after 3 weeks of CAR-T cell infusion. The duration of symptoms is usually short, around five days if an early appropriate treatment is given. Symptoms are heterogeneous, ranging from mild symptoms quickly reversible (alterations of consciousness, deterioration in handwriting) to more serious forms with seizures or even a coma. The ICANS severity is currently based on the ASTCT score. The diagnosis of ICANS is clinical but EEG, MRI and lumbar punction can help ruling out alternative diagnoses. The first line treatment consists of high-dose corticosteroids. During the twelfth edition of practice harmonization workshops of the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC), a working group focused its work on updating the SFGM-TC recommendations on the management of ICANS. In this review we discuss the management of ICANS and other neurological toxicities in patients undergoing of CAR-T cell therapy. These recommendations apply to commercial CAR-T cells, in order to guide strategies for the management neurological complications associated with this new therapeutic approach.
Collapse
|
193
|
Asokan S, Cullin N, Stein-Thoeringer CK, Elinav E. CAR-T Cell Therapy and the Gut Microbiota. Cancers (Basel) 2023; 15:794. [PMID: 36765752 PMCID: PMC9913364 DOI: 10.3390/cancers15030794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Chimeric antigen receptor (CAR) - T cell cancer therapy has yielded promising results in treating hematologic malignancies in clinical studies, and a growing number of CAR-T regimens are approved for clinical usage. While the therapy is considered of great potential in expanding the cancer immunotherapy arsenal, more than half of patients receiving CAR-T infusions do not respond, while others develop significant adverse effects, collectively indicating a need for optimization of CAR-T treatment to the individual. The microbiota is increasingly suggested as a major modulator of immunotherapy responsiveness. Studying causal microbiota roles possibly contributing to CAR-T therapy efficacy, adverse effects reduction, and prediction of patient responsiveness constitutes an exciting area of active research. Herein, we discuss the latest developments implicating human microbiota involvement in CAR-T therapy, while highlighting challenges and promises in harnessing the microbiota as a predictor and modifier of CAR-T treatment towards optimized efficacy and minimization of treatment-related adverse effects.
Collapse
Affiliation(s)
- Sahana Asokan
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Nyssa Cullin
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christoph K. Stein-Thoeringer
- Department of Internal Medicine I, Laboratory of Translational Microbiome Science, University Clinic Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany
| | - Eran Elinav
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Systems Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
194
|
Kegyes D, Jitaru C, Ghiaur G, Ciurea S, Hoelzer D, Tomuleasa C, Gale RP. Switching from salvage chemotherapy to immunotherapy in adult B-cell acute lymphoblastic leukemia. Blood Rev 2023; 59:101042. [PMID: 36732205 DOI: 10.1016/j.blre.2023.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
About one-half of adults with acute B-cell lymphoblastic leukemia (B-ALL) who do not achieve molecular complete remission or who subsequently relapse are not cured by current chemo- or targeted therapies. Previously, the sole therapeutic option for such persons was a hematopoietic stem cell transplant. Recently, several immune therapies including monoclonal antibodies, bispecific T-cell engagers (BiTEs), antibody-drug conjugates (ADCs), and chimeric antigen receptor T-cells (CARs) have been shown safe and effective in this setting. In this manuscript, we summarize data on US FDA-approved immune therapies of advanced adult B-ALL including rituximab, blinatumomab, inotuzumab ozogamicin, tisagenlecleucel and brexucabtagene autoleucel. We consider the results of clinical trials focusing on efficacy, safety, and quality of life (QoL). Real-world evidence is presented as well. We also briefly discuss pharmacodynamics, pharmacokinetics, and pharmacoeconomics followed by risk-benefit analyses. Lastly, we present future directions of immune therapies for advanced B-ALL in adults.
Collapse
Affiliation(s)
- David Kegyes
- Department of Hematology-Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
| | - Ciprian Jitaru
- Department of Hematology-Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
| | - Gabriel Ghiaur
- Department of Hematology-Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj Napoca, Romania; Department of Leukemia, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Stefan Ciurea
- Department of Stem Cell Transplant and Cellular Therapies, University of California, Irvine, CA, USA
| | - Dieter Hoelzer
- Department of Medicine, Goethe University, Frankfurt, Germany
| | - Ciprian Tomuleasa
- Department of Hematology-Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania.
| | - Robert Peter Gale
- Centre for Haematology, Imperial College of Science, Technology and Medicine, London, UK; Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
195
|
De Matteis S, Dicataldo M, Casadei B, Storci G, Laprovitera N, Arpinati M, Maffini E, Cortelli P, Guarino M, Vaglio F, Naddeo M, Sinigaglia B, Zazzeroni L, Guadagnuolo S, Tomassini E, Bertuccio SN, Messelodi D, Ferracin M, Bonafè M, Zinzani PL, Bonifazi F. Peripheral blood cellular profile at pre-lymphodepletion is associated with CD19-targeted CAR-T cell-associated neurotoxicity. Front Immunol 2023; 13:1058126. [PMID: 36726971 PMCID: PMC9886226 DOI: 10.3389/fimmu.2022.1058126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Background Infusion of second generation autologous CD19-targeted chimeric antigen receptor (CAR) T cells in patients with R/R relapsed/refractory B-cell lymphoma (BCL) is affected by inflammatory complications, such as Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS). Current literature suggests that the immune profile prior to CAR-T infusion modifies the chance to develop ICANS. Methods This is a monocenter prospective study on 53 patients receiving approved CAR T-cell products (29 axi-cel, 24 tisa-cel) for R/R-BCL. Clinical, biochemical, and hematological variables were analyzed at the time of pre-lymphodepletion (pre-LD). In a subset of 21 patients whose fresh peripheral blood sample was available, we performed cytofluorimetric analysis of leukocytes and extracellular vesicles (EVs). Moreover, we assessed a panel of soluble plasma biomarkers (IL-6/IL-10/GDF-15/IL-15/CXCL9/NfL) and microRNAs (miR-146a-5p, miR-21-5p, miR-126-3p, miR-150-5p) which are associated with senescence and inflammation. Results Multivariate analysis at the pre-LD time-point in the entire cohort (n=53) showed that a lower percentage of CD3+CD8+ lymphocytes (38.6% vs 46.8%, OR=0.937 [95% CI: 0.882-0.996], p=0.035) and higher levels of serum C-reactive protein (CRP, 4.52 mg/dl vs 1.00 mg/dl, OR=7.133 [95% CI: 1.796-28], p=0.005) are associated with ICANS. In the pre-LD samples of 21 patients, a significant increase in the percentage of CD8+CD45RA+CD57+ senescent cells (median % value: 16.50% vs 9.10%, p=0.009) and monocytic-myeloid derived suppressor cells (M-MDSC, median % value: 4.4 vs 1.8, p=0.020) was found in ICANS patients. These latter also showed increased levels of EVs carrying CD14+ and CD45+ myeloid markers, of the myeloid chemokine CXCL-9, as well of the MDSC-secreted cytokine IL-10. Notably, the serum levels of circulating neurofilament light chain, a marker of neuroaxonal injury, were positively correlated with the levels of senescent CD8+ T cells, M-MDSC, IL-10 and CXCL-9. No variation in the levels of the selected miRNAs was observed between ICANS and no-ICANS patients. Discussion Our data support the notion that pre-CAR-T systemic inflammation is associated with ICANS. Higher proportion of senescence CD8+ T cells and M-MDSC correlate with early signs of neuroaxonal injury at pre-LD time-point, suggesting that ICANS may be the final event of a process that begins before CAR-T infusion, consequence to patient clinical history.
Collapse
Affiliation(s)
| | - Michele Dicataldo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Gianluca Storci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Mario Arpinati
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Enrico Maffini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pietro Cortelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Maria Guarino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesca Vaglio
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria Naddeo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Barbara Sinigaglia
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Luca Zazzeroni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | | | - Enrica Tomassini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | | | - Daria Messelodi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,*Correspondence: Massimiliano Bonafè,
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | | |
Collapse
|
196
|
Zhang X, Pan X, Pan Y, Wang Y. Effects of preventive care on psychological state and complications in leukemia patients receiving chemotherapy. Am J Transl Res 2023; 15:184-192. [PMID: 36777830 PMCID: PMC9908461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 02/14/2023]
Abstract
OBJECTIVE To investigate the effects of preventive care on the psychological state and complications in patients with leukemia undergoing chemotherapy. METHODS Retrospectively, 85 patients with leukemia undergoing chemotherapy in Xinchang People's Hospital from April 2019 to September 2021 were collected, including 47 patients who received preventive care as an observation group and 38 patients who received routine care as a control group. The incidence of chemotherapy-related complications, the scores of Self-Rating Anxiety Scale (SAS) and Self-Rating Depression Scale (SDS) before and after nursing intervention, and the General Comfort Questionnaire (GCQ) and nursing satisfaction were compared between the two groups. RESULTS The complication rate in the control group was higher than that of the observation group (P<0.05). The SAS and SDS scores of the control group were higher than those of the observation group after care (P<0.05). The GCQ score of the observation group was higher than that of the control group after care (P<0.05), and the care satisfaction of the control group was lower than that of the observation group (P<0.05). Multivariate Logistic regression analysis showed that age over 65 years old, platelet count less than 50 × 109/L and white blood cell count over 100 × 109/L were risk factors for complications in leukemia patients receiving chemotherapy (P<0.05). CONCLUSION Preventive care helps to improve the negative emotions of patients with leukemia undergoing chemotherapy and reduces complications.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Oncology and Hematology, Xinchang People’s HospitalNo. 117, Gushan Middle Road, Shaoxing 312500, Zhejiang, China
| | - Xinying Pan
- Department of Gynaecology, Xinchang People’s HospitalNo. 117, Gushan Middle Road, Shaoxing 312500, Zhejiang, China
| | - Yun Pan
- Shanghai University99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Yanyan Wang
- Department of Infectious Disease, Xinchang People’s HospitalNo. 117, Gushan Middle Road, Shaoxing 312500, Zhejiang, China
| |
Collapse
|
197
|
Dean EA, Peters KR, Adams CB, Hiemenz JW. Pattern of brexucabtagene autoleucel-related neurotoxicity on magnetic resonance imaging of the brain in a patient with relapsed/refractory B-cell acute lymphoblastic leukemia and prior leptomeningeal disease. Radiol Case Rep 2023; 18:1093-1098. [PMID: 36660565 PMCID: PMC9842530 DOI: 10.1016/j.radcr.2022.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 01/08/2023] Open
Abstract
Immune effector cell-associated neurotoxicity syndrome (ICANS) secondary to chimeric antigen receptor T-cell therapy is common in adult patients with relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (ALL), but imaging findings during neurologic toxicity and their meaning have yet to be systematically described in this patient population. Brexucabtagene autoleucel (brexu-cel) is a CD19-directed autologous T-cell immunotherapy for the treatment of adult patients with R/R B-cell ALL that can enter the central nervous system. We present a case of an adult patient with R/R B-cell ALL and prior leptomeningeal disease who developed neurologic toxicity and new findings on magnetic resonance imaging of the brain while receiving brexu-cel. We interpret the patient's neuroimaging studies within clinical context to differentiate ICANS from active treatment of residual leukemia.
Collapse
Affiliation(s)
- Erin A. Dean
- Division of Hematology and Oncology, Department of Medicine, University of Florida, 1515 SW Archer Rd, Gainesville, FL, 32610, USA,Corresponding author.
| | - Keith R. Peters
- Department of Radiology, University of Florida, Gainesville, FL, USA
| | - Carolyn B. Adams
- Division of Hematology and Oncology, Department of Pharmacy, University of Florida, Gainesville, FL, USA
| | - John W. Hiemenz
- Division of Hematology and Oncology, Department of Medicine, University of Florida, 1515 SW Archer Rd, Gainesville, FL, 32610, USA
| |
Collapse
|
198
|
Wirsching HG, Weller M. Immunotherapy for Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:225-234. [PMID: 37432631 DOI: 10.1007/978-3-031-29750-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Systemic treatment approaches are urgently needed for a subset of meningioma patients who do not achieve local tumor control with surgery and radiotherapy. Classical chemotherapy or anti-angiogenic agents exert only very limited activity in these tumors. Long-term survival of patients with advanced metastatic cancer following treatment with immune checkpoint inhibitors, i.e., monoclonal antibodies designed to unleash suppressed anticancer immune responses, has fostered hopes for benefit from similar approaches in patients with meningiomas that recur after standard local therapy. Moreover, a plethora of immunotherapy approaches beyond these drugs have entered clinical development or clinical practice for other cancer entities, including (i) novel immune checkpoint inhibitors that may act independently of T cell activity, (ii) cancer peptide or dendritic cell vaccines to induce anticancer immunity utilizing cancer-associated antigens, (iii) cellular therapies utilizing genetically modified peripheral blood cells to directly target cancer cells, (iv) T cell engaging recombinant proteins that link tumor antigen-binding sites to effector cell activating or recognition domains, or to immunogenic cytokines, and (v) oncolytic virotherapy utilizing attenuated viral vectors designed to specifically infect cancer cells, seeking to elicit systemic anticancer immunity. This chapter provides an overview of the principles of immunotherapy, summarizes ongoing immunotherapy clinical trials in meningioma patients, and discusses the applicability of established and emerging immunotherapy concepts to meningioma patients.
Collapse
Affiliation(s)
- Hans-Georg Wirsching
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
199
|
Genoud V, Migliorini D. An Overview of Cytokine Release Syndrome and Other Side Effects of CAR-T Cell Therapy. PRAXIS 2023; 112:189-193. [PMID: 36855881 DOI: 10.1024/1661-8157/a003980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oncology has been rapidly evolving over the past decade with tremendous therapeutic development. Engineered cell therapies such as chimeric antigen receptor (CAR)-T cells are increasingly used in daily practice, and provided a paradigm change especially for hematological malignancies. Their development is a scientific and technological achievement, but their toxicities can be life-threatening. As their utilization expands, better understanding of pathophysiology leads to better management. In this article we present a general overview of cell-therapy toxicities and their management.
Collapse
Affiliation(s)
- Vassilis Genoud
- Department of Oncology, University Hospital of Geneva, Geneva, Switzerland
- Center for Translational Research in Onco-Haematology, University of Geneva, Geneva, Switzerland
| | - Denis Migliorini
- Department of Oncology, University Hospital of Geneva, Geneva, Switzerland
- Center for Translational Research in Onco-Haematology, University of Geneva, Geneva, Switzerland
- Brain Tumor and Immune Cell Engineering Laboratory, AGORA Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| |
Collapse
|
200
|
Satyanarayan S, Spiegel J, Hovsepian D, Markert M, Thomas R, Muffly L, Miklos D, Graber K, Scott BJ. Continuous EEG monitoring detects nonconvulsive seizure and Ictal-Interictal Continuum abnormalities in moderate to severe ICANS following systemic CAR-T therapy. Neurohospitalist 2023; 13:53-60. [PMID: 36531846 PMCID: PMC9755619 DOI: 10.1177/19418744221128852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Background and Purpose Immune Cell Effector Associated Neurotoxicity Syndrome (ICANS) is common amongst patients receiving CD19 targeted Chimeric Antigen Receptor T-cell (CAR-T) therapy. The purpose of this study is to characterize the incidence of seizures and ictal-interictal continuum (IIC) abnormalities in patients with ICANS. Methods Retrospective review of consecutive patients treated with axicabtagene ciloleucel (axi-cel) for recurrent high-grade systemic lymphoma at Stanford Medical Center between 2/2016-6/2019. Electronic medical records (EMR) were reviewed for clinical features, treatment information, EEG data, CRS (cytokine release syndrome)/ICANS severity, and clinical outcomes. Results Fifty-six patients met inclusion criteria. 85.7% of patients developed CRS, and 58.9% developed ICANS. Twenty-eight patients had EEG monitoring, of whom 26 had ICANS. Median duration of EEG monitoring was 30 hours (range .5-126 hours). Four patients (7.1%) had seizures (1 patient had a clinical generalized seizure, 2 patients had clinical and nonconvulsive seizures, and 1 patient had an isolated non-convulsive seizure). Ictal-interictal continuum abnormalities were common, of which generalized periodic discharges (GPDs) with triphasic morphology and GPDs with epileptiform morphology were most frequently seen. Generalized periodic discharges with triphasic wave morphology were found across Grade 2-3 peak ICANS severity, however the majority (86%) of patients with epileptiform GPDs had Grade 3 peak ICANS severity. Conclusions Among patients receiving axi-cel, seizure occurred in 7.1% of the total cohort, representing 12% of patients with ICANS. Ictal-interictal continuum abnormalities are also seen in patients with ICANS, most commonly GPDs. 75% of patients with seizures had nonconvulsive seizures supporting the use of continuous video EEG monitoring in this population.
Collapse
Affiliation(s)
- Sammita Satyanarayan
- Department of Neurology, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Jay Spiegel
- Department of Medicine, University of Miami Health System, Miami, FL, USA
| | - Dominic Hovsepian
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew Markert
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Reena Thomas
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lori Muffly
- Department of Medicine- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - David Miklos
- Department of Medicine- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin Graber
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian J. Scott
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|