151
|
Salvati L, Mandalà M, Massi D. Melanoma brain metastases: review of histopathological features and immune-molecular aspects. Melanoma Manag 2020; 7:MMT44. [PMID: 32821376 PMCID: PMC7426753 DOI: 10.2217/mmt-2019-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Patients with melanoma brain metastases (MBM) have a dismal prognosis, but the unprecedented advances in systemic therapy alone or in combination with local therapy have now extended the 1-year overall survival rate from 20–25% to nearing 80–85%, mainly in asymptomatic patients. The histopathological and molecular characterization of MBM and the understanding of the microenvironment are critical to more effectively manage patients with advanced melanoma and to design biologically driven clinical trials. This review aims to give an overview of the main histopathological features and the immune-molecular aspects of MBM.
Collapse
Affiliation(s)
- Lorenzo Salvati
- Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
| | - Mario Mandalà
- Unit of Medical Oncology, Department of Oncology & Hematology, Pope John XXIII Cancer Center Hospital, Bergamo, Italy
| | - Daniela Massi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
152
|
Zhang Q, Sang F, Qian J, Lyu S, Wang W, Wang Y, Li Q, Du L. Identification of novel potential PI3Kα inhibitors for cancer therapy. J Biomol Struct Dyn 2020; 39:3721-3732. [DOI: 10.1080/07391102.2020.1771421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Qingyan Zhang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Feng Sang
- Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jieyu Qian
- Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - ShaoLi Lyu
- Department of Ecology and Resource Engineering, Hetao College, Bayannur, Inner Mongolia, PR of China
| | - Wang Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ying Wang
- The Department of Anesthesiology, the First Affiliated of Henan University, Kaifeng, China
| | - Qiang Li
- Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - LinFang Du
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
153
|
Quassinoid analogs with enhanced efficacy for treatment of hematologic malignancies target the PI3Kγ isoform. Commun Biol 2020; 3:267. [PMID: 32461675 PMCID: PMC7253423 DOI: 10.1038/s42003-020-0996-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Development of novel PI3K inhibitors is an important strategy to overcome their resistance and poor tolerability in clinical trials. The quassinoid family member Brusatol shows specific inhibitory activity against hematologic malignancies. However, the mechanism of its anti-cancer activity is unknown. We investigated the anti-cancer activity of Brusatol on multiple hematologic malignancies derived cell lines. The results demonstrated that the PI3Kγ isoform was identified as a direct target of Brusatol, and inhibition was dramatically reduced on cells with lower PI3Kγ levels. Novel synthetic analogs were also developed and tested in vitro and in vivo. They shared comparable or superior potency in their ability to inhibit malignant hematologic cell lines, and in a xenograft transplant mouse model. One unique analog had minimal toxicity to normal human cells and in a mouse model. These new analogs have enhanced potential for development as a new class of PI3K inhibitors for treatment of hematologic malignancies. Pei et al. demonstrate that PI3Kγ isoform is a direct target of Brusatol, a natural compound with inhibitory activity against hematologic malignancies. They further develop several Brusatol analogs with superior in vitro and in vivo anti-cancer activity.
Collapse
|
154
|
Pan RR, Zhang CY, Li Y, Zhang BB, Zhao L, Ye Y, Song YN, Zhang M, Tie HY, Zhang H, Zhu JY. Daphnane Diterpenoids from Daphne genkwa Inhibit PI3K/Akt/mTOR Signaling and Induce Cell Cycle Arrest and Apoptosis in Human Colon Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2020; 83:1238-1248. [PMID: 32223193 DOI: 10.1021/acs.jnatprod.0c00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Seven new daphnane-type diterpenoids, daphgenkins A-G (1-7), and 15 known analogues (8-22) were isolated from the flower buds of Daphne genkwa. Their structures and absolute configurations were elucidated by spectroscopic data and calculated ECD analyses. The cytotoxicities of all daphnane-type diterpenoids (1-22) obtained were evaluated against three human colon cancer cell lines (SW620, RKO, and LoVo). Compounds 1, 12, and 13 exhibited cytotoxic effects against the SW620 and RKO cell lines, with IC50 values in the range of 3.0-9.7 μM. The most active new compound, 1, with an IC50 value of 3.0 μM against SW620 cells, was evaluated further for its underlying molecular mechanism. Compound 1 induced G0/G1 cell cycle arrest, leading to the induction of apoptosis in SW620 cells. Also, it induced cancer cell apoptosis by an increased ratio of Bax/Bcl-2, activated cleaved caspase-3 and caspase-9, and upregulated PARP. Finally, compound 1 significantly inhibited PI3K/Akt/mTOR signaling in SW620 cells. Together, the results suggest that compound 1 may be a suitable lead compound for further biological evaluation.
Collapse
Affiliation(s)
- Rong-Rong Pan
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Chun-Yan Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Yuan Li
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Bing-Bing Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Liang Zhao
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Ying Ye
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Ya-Nan Song
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Miao Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Hong-Yun Tie
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Hong Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Jian-Yong Zhu
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| |
Collapse
|
155
|
Huang TT, Lampert EJ, Coots C, Lee JM. Targeting the PI3K pathway and DNA damage response as a therapeutic strategy in ovarian cancer. Cancer Treat Rev 2020; 86:102021. [PMID: 32311593 DOI: 10.1016/j.ctrv.2020.102021] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy worldwide although exponential progress has been made in its treatment over the last decade. New agents and novel combination treatments are on the horizon. Among many new drugs, a series of PI3K/AKT/mTOR pathway (referred to as the PI3K pathway) inhibitors are under development or already in clinical testing. The PI3K pathway is frequently upregulated in ovarian cancer and activated PI3K signaling contributes to increased cell survival and chemoresistance. However, no significant clinical success has been achieved with the PI3K pathway inhibitor(s) to date, reflecting the complex biology and also highlighting the need for combination treatment strategies. DNA damage repair pathways have been active therapeutic targets in ovarian cancer. Emerging data suggest the PI3K pathway is also involved in DNA replication and genome stability, making DNA damage response (DDR) inhibitors as an attractive combination treatment for PI3K pathway blockades. This review describes an expanded role for the PI3K pathway in the context of DDR and cell cycle regulation. We also present the novel treatment strategies combining PI3K pathway inhibitors with DDR blockades to improve the efficacy of these inhibitors for ovarian cancer.
Collapse
Affiliation(s)
- Tzu-Ting Huang
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Erika J Lampert
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Cynthia Coots
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
156
|
Vernieri C, Corti F, Nichetti F, Ligorio F, Manglaviti S, Zattarin E, Rea CG, Capri G, Bianchi GV, de Braud F. Everolimus versus alpelisib in advanced hormone receptor-positive HER2-negative breast cancer: targeting different nodes of the PI3K/AKT/mTORC1 pathway with different clinical implications. Breast Cancer Res 2020; 22:33. [PMID: 32252811 PMCID: PMC7137211 DOI: 10.1186/s13058-020-01271-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
Background The PI3K/AKT/mTORC1 axis is implicated in hormone receptor-positive HER2-negative metastatic breast cancer (HR+ HER2− mBC) resistance to anti-estrogen treatments. Based on results of the BOLERO-2 trial, the mTORC1 inhibitor everolimus in combination with the steroidal aromatase inhibitor (AI) exemestane has become a standard treatment for patients with HR+ HER2− mBC resistant to prior non-steroidal AI therapy. In the recent SOLAR-1 trial, the inhibitor of the PI3K alpha subunit (p110α) alpelisib in combination with fulvestrant prolonged progression-free survival (PFS) when compared to fulvestrant alone in patients with PIK3CA-mutated HR+ HER2− mBC that progressed after/on previous AI treatment. Therefore, two different molecules targeting the PI3K/AKT/mTORC1 axis, namely everolimus and alpelisib, are available for patients progressing on/after previous AI treatment, but it is unclear how to optimize their use in the clinical practice. Main body of the abstract Here, we reviewed the available clinical evidence deriving from the BOLERO-2 and SOLAR-1 trials to compare efficacy and safety profiles of everolimus and alpelisib in advanced HR+ HER2− BC treatment. Adding either compound to standard endocrine therapy provided similar absolute and relative PFS advantage. In the SOLAR-1 trial, a 76% incidence of grade (G) 3 or 4 (G3/G4) adverse events was reported, while G3/G4 toxicities occurred in 42% of patients in the BOLERO-2 trial. While alpelisib was only effective in patients with PIK3CA-mutated neoplasms, retrospective analyses indicate that everolimus improves exemestane efficacy independently of PIK3CA mutational status. Conclusions Based on the available efficacy and safety data, the “new” alpelisib may be burdened by higher incidence of severe adverse events, higher costs, and anticancer efficacy that is limited to PIK3CA-mutated tumors when compared to the “old” everolimus. Therefore, the everolimus-exemestane combination remains an effective and reasonably well-tolerated therapeutic option for HR+ HER2− mBC patients progressing after/on previous AI treatment, independently of PIK3CA mutational status.
Collapse
Affiliation(s)
- Claudio Vernieri
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy. .,Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy.
| | - Francesca Corti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Federico Nichetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Francesca Ligorio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Sara Manglaviti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Emma Zattarin
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Carmen G Rea
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Giuseppe Capri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Giulia V Bianchi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy.,Oncology and Hemato-Oncology Department, University of Milan, 20122, Milan, Italy
| |
Collapse
|
157
|
Wu YH, Huang YF, Chen CC, Huang CY, Chou CY. Comparing PI3K/Akt Inhibitors Used in Ovarian Cancer Treatment. Front Pharmacol 2020; 11:206. [PMID: 32194423 PMCID: PMC7063971 DOI: 10.3389/fphar.2020.00206] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian carcinoma (EOC) is the most lethal gynecological malignancy. Herein, we sought to determine the efficacy of phosphoinositide 3-kinase (PI3K)/Akt inhibition using three AZD compounds in a NOD-SCID xenograft mouse model and Akt regulation in a panel of eight ovarian cancer cell lines. Elevated Akt phosphorylation on Ser473 but not on Thr308 in cancerous tissues correlated with short progression-free survival (PFS), overall survival (OS), and death. AZD8835 and AZD8186 inhibited Akt phosphorylation while AZD5363 augmented its phosphorylation on Ser473. To add, all compounds inhibited the Akt downstream effectors 4E-BP1 and p70S6 kinase. AZD8835 and AZD5363 sensitized chemoresistant ovarian cancer cells to cisplatin and paclitaxel treatment. Only AZD5363 could inhibit COL11A1 mRNA and promoter activity, which are important factors in Akt regulation and chemoresistance in ovarian cancer. By using a mouse xenograft model, AZD8835 and AZD5363, but not AZD8186, caused a significant reduction in tumor formation. AZD compounds did not change the mRNA expression of BRCA1/BRCA in ovarian cancer cells, but AZD8835 inhibited BRCA1/BRCA2 mRNA expression and p-ERK protein expression in OVCAR-8 cells with the KRAS mutation. This study highlights the importance of PI3K/Akt in ovarian tumor progression and chemoresistance and the potential application of AZD compounds, especially AZD8835 and AZD5363, as therapeutic agents for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yi-Hui Wu
- Department of Medical Research, Chi Mei Medical Center, Liouying, Taiwan
| | - Yu-Fang Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chia-Yen Huang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
158
|
D’Ambrosio C, Erriquez J, Arigoni M, Capellero S, Mittica G, Ghisoni E, Borella F, Katsaros D, Privitera S, Ribotta M, Maldi E, Di Nardo G, Berrino E, Venesio T, Ponzone R, Vaira M, Hall D, Jimenez-Linan M, Paterson AL, Calogero RA, Brenton JD, Valabrega G, Di Renzo MF, Olivero M. PIK3R1W624R Is an Actionable Mutation in High Grade Serous Ovarian Carcinoma. Cells 2020; 9:E442. [PMID: 32075097 PMCID: PMC7072782 DOI: 10.3390/cells9020442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
Identifying cancer drivers and actionable mutations is critical for precision oncology. In epithelial ovarian cancer (EOC) the majority of mutations lack biological or clinical validation. We fully characterized 43 lines of Patient-Derived Xenografts (PDXs) and performed copy number analysis and whole exome sequencing of 12 lines derived from naïve, high grade EOCs. Pyrosequencing allowed quantifying mutations in the source tumours. Drug response was assayed on PDX Derived Tumour Cells (PDTCs) and in vivo on PDXs. We identified a PIK3R1W624R variant in PDXs from a high grade serous EOC. Allele frequencies of PIK3R1W624R in all the passaged PDXs and in samples of the source tumour suggested that it was truncal and thus possibly a driver mutation. After inconclusive results in silico analyses, PDTCs and PDXs allowed the showing actionability of PIK3R1W624R and addiction of PIK3R1W624R carrying cells to inhibitors of the PI3K/AKT/mTOR pathway. It is noteworthy that PIK3R1 encodes the p85α regulatory subunit of PI3K, that is very rarely mutated in EOC. The PIK3R1W624R mutation is located in the cSH2 domain of the p85α that has never been involved in oncogenesis. These data show that patient-derived models are irreplaceable in their role of unveiling unpredicted driver and actionable variants in advanced ovarian cancer.
Collapse
Affiliation(s)
- Concetta D’Ambrosio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Jessica Erriquez
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.A.); (R.A.C.)
| | - Sonia Capellero
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Gloria Mittica
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
| | - Eleonora Ghisoni
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
| | - Fulvio Borella
- Città della Salute e della Scienza, 10126 Torino, Italy; (F.B.); (D.K.); (S.P.); (M.R.)
| | - Dionyssios Katsaros
- Città della Salute e della Scienza, 10126 Torino, Italy; (F.B.); (D.K.); (S.P.); (M.R.)
| | - Silvana Privitera
- Città della Salute e della Scienza, 10126 Torino, Italy; (F.B.); (D.K.); (S.P.); (M.R.)
| | - Marisa Ribotta
- Città della Salute e della Scienza, 10126 Torino, Italy; (F.B.); (D.K.); (S.P.); (M.R.)
| | - Elena Maldi
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, 10125 Torino, Italy;
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Tiziana Venesio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
| | - Riccardo Ponzone
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
| | - Marco Vaira
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
| | - Douglas Hall
- University of Cambridge, Cambridge CB2 0XZ, UK; (D.H.); (M.J.-L.); (A.L.P.); (J.D.B.)
- Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, UK
| | | | - Anna L. Paterson
- University of Cambridge, Cambridge CB2 0XZ, UK; (D.H.); (M.J.-L.); (A.L.P.); (J.D.B.)
- Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Raffaele A. Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.A.); (R.A.C.)
| | - James D. Brenton
- University of Cambridge, Cambridge CB2 0XZ, UK; (D.H.); (M.J.-L.); (A.L.P.); (J.D.B.)
- Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Giorgio Valabrega
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Maria Flavia Di Renzo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Martina Olivero
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| |
Collapse
|
159
|
PIK3CA gene aberrancy and role in targeted therapy of solid malignancies. Cancer Gene Ther 2020; 27:634-644. [PMID: 31988478 DOI: 10.1038/s41417-020-0164-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 01/03/2023]
Abstract
Phosphoinositide kinases (PIKs) are a group of lipid kinases that are important upstream activators of various signaling pathways that drive oncogenesis. Hyperactivation of the PI3K/AKT/mTOR pathways-either via mutations or genomic amplification-confers key oncogenic activity, essential for the development and progression of several solid tumors. Alterations in the PIK3CA gene are associated with poor prognosis of solid malignancies. Contradictory reports exist in the literature regarding the prognostic value of PIK3CA in aggressive cancers, but most available data highlights an important role of PIK3CA mutation in mediating tumorigenesis via increased signaling of the PI3K/AKT/mTOR survival pathway. Several inhibitors of PI3K/AKT/mTOR pathways have been investigated as potential therapeutic options in solid malignancies. This article reviews the role of PIK3CA mutations and inhibitors of the PI3K/AKT/mTOR pathway in cancer and examines association with the clinico-pathological parameters and prognosis.
Collapse
|
160
|
Yang K, Tang XJ, Xu FF, Liu JH, Tan YQ, Gao L, Sun Q, Ding X, Liu BH, Chen QX. PI3K/mTORC1/2 inhibitor PQR309 inhibits proliferation and induces apoptosis in human glioblastoma cells. Oncol Rep 2020; 43:773-782. [PMID: 32020210 PMCID: PMC7040887 DOI: 10.3892/or.2020.7472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) is the most common type of primary central nervous system tumor in adults, which has high mortality and morbidity rates, and short survival time, namely <15 months after the diagnosis and application of standard therapy, which includes surgery, radiation therapy and chemotherapy; thus, novel therapeutic strategies are imperative. The activation of the PI3K/AKT signaling pathway plays an important role in GBM. In the present study, U87 and U251 GBM cells were treated with the PI3K/mTORC1/2 inhibitor PQR309, and its effect on glioma cells was investigated. Cell Counting Kit-8 assay, 5-ethynyl-2′-deoxyuridine and colony formation assays revealed dose- and time-dependent cytotoxicity in glioma cells that were treated with PQR309. Flow cytometry and western blotting revealed that PQR309 can significantly induce tumor cell apoptosis and arrest the cell cycle in the G1 phase. Furthermore, the expression levels of AKT, phosphorylated (p)-AKT, Bcl-2, Bcl-xL, Bad, Bax, cyclin D1, cleaved caspase-3, MMP-9 and MMP-2 were altered. In addition, the migration and invasion of glioma cells, as detected by wound healing, migration and Transwell invasion assays, exhibited a marked suppression after treating the cells with PQR309. These results indicated that PQR309 exerts an antitumor effect by inhibiting proliferation, inducing apoptosis, inducing G1 cell cycle arrest, and inhibiting invasion and migration in human glioma cells. The present study provides evidence supportive of further development of PQR309 for adjuvant therapy of GBM.
Collapse
Affiliation(s)
- Kun Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiang-Jun Tang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Feng-Fei Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jun-Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yin-Qiu Tan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiang Ding
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bao-Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian-Xue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
161
|
Santin AD, Filiaci V, Bellone S, Ratner ES, Mathews CA, Cantuaria G, Gunderson CC, Rutledge T, Buttin BM, Lankes HA, Frumovitz M, Khleif SN, Huh WK, Birrer MJ. Phase II evaluation of copanlisib, a selective inhibitor of Pi3kca, in patients with persistent or recurrent endometrial carcinoma harboring PIK3CA hotspot mutations: An NRG Oncology study (NRG-GY008). Gynecol Oncol Rep 2020; 31:100532. [PMID: 31934607 PMCID: PMC6951478 DOI: 10.1016/j.gore.2019.100532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/15/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Endometrial cancer commonly harbors hotspot mutations in the PIK3CA gene. NRG-GY008 evaluated the activity of copanlisib, an inhibitor of PIK3CA, in recurrent endometrial cancer patients. Copanlisib has an acceptable safety profile but low antitumor activity in endometrial cancer. Combinations of copanlisib may be necessary to increase clinical responses in endometrial cancer patients.
Purpose NRG Oncology conducted a phase II trial to assess the antitumor activity and tolerability of copanlisib, a selective inhibitor of PIK3CA, in persistent or recurrent endometrial carcinoma harboring hotspot PIK3CA mutations. Patients and methods Eligible patients had endometrial cancer with endometrioid, serous or mixed histology, a somatic PIK3CA gene mutation, measurable disease, and GOG performance status ≤2. Treatment consisted of IV copanlisib (60 mg weekly, day 1, 8 and 15 of 28-day cycle) until disease progression or prohibitive toxicity. The primary endpoints of the study were objective tumor response as assessed by RECIST 1.1 and to determine the nature and degree of toxicity of copanlisib as assessed by CTCAE version 4. The study used a 2-stage group sequential design. Results Eleven patients were enrolled onto stage I of the treatment trial. Five patients had endometrioid, four serous and two had a tumor of mixed histology. The most common PIK3CA mutation was Q546X (n = 3) in exon 9. The most common grade 3 or 4 AE was hyperglycemia. No grade 5 adverse events were reported. No clinical responses were detected. Six patients had a best overall response of stable disease. Of 11 who initiated treatment, 10 progressed on treatment. One patient with stable disease on copanlisib withdrew from treatment secondary to relocation. The median progression-free survival (PFS) was 2.8 months; at 6 months 27% were alive, progression-free. The median overall survival (OS) was 15.2 months. Due to the lack of CR/PR continuation of accrual to the second stage of accrual was not warranted. Conclusion Copanlisib is well tolerated but has limited activity as a single agent in this population.
Collapse
Affiliation(s)
- Alessandro D Santin
- Department of Obstetrics, Gynecology & Reproductive Services, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Virginia Filiaci
- NRG Oncology Statistical and Data Management Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Stefania Bellone
- Department of Obstetrics, Gynecology & Reproductive Services, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elena S Ratner
- Department of Obstetrics, Gynecology & Reproductive Services, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cara A Mathews
- Medical Oncology, Women & Infants Hospital, 101 Dudley Street, Providence, RI 02905, USA
| | | | - Camille C Gunderson
- Department of Obstetrics & Gynecology, University of Oklahoma, The Stephenson Cancer Center, 800 NE 10 Street, Suite 2500, Oklahoma City, OK 73104, USA
| | - Teresa Rutledge
- Gynecologic Oncology, University of New Mexico, 1201 Camino de Salud, Albuquerque, NM 87102, USA
| | - Barbara M Buttin
- Department of Obstetrics & Gynecology, Northwestern Medicine Regional Medical Group, 4405 Weaver Parkway, Warrenville, IL 60555-3269, USA
| | - Heather A Lankes
- NRG Oncology, Operations Center-Philadelphia East, Philadelphia, PA, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michael Frumovitz
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Samir N Khleif
- Director, The Loop Immuno-Oncology Research Laboratory, Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Warner K Huh
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham AL 35205, USA
| | - Michael J Birrer
- Division of Hematology/Oncology, O'Neal Cancer Center University of Alabama, 176F 10390, 619 19 Street S, Birmingham, AL, USA
| |
Collapse
|
162
|
Abstract
PURPOSE OF REVIEW The phosphatidylinositol 3-kinase (PI3K) pathway is the most common aberrantly activated pathway in breast cancer, making it an attractive therapeutic target. In this review, we will discuss the rationale for targeting PI3K/AKT signaling and the development of PI3K/AKT inhibitors in breast cancer. RECENT FINDINGS Although the initial clinical trials with pan-PI3K inhibitors were challenged by high toxicities and modest antitumor effect, there has been continued effort to develop agents more precisely targeting PI3K isoforms to improve therapeutic index. Alpelisib in combination with fulvestrant is now available in the clinic for postmenopausal women with advanced or metastatic hormone receptor (HR)-positive, HER2-negative, PIK3CA-mutated breast cancer. In addition, promising data has been observed in randomized phase II trials of AKT inhibitors in combination with fulvestrant or paclitaxel in metastatic HR-positive, HER2-negative disease and triple negative breast cancer (TNBC), respectively. The high frequency of genetic alterations in the PI3K pathway has provided the rationale for development of inhibitors targeting PI3K/AKT. Despite initial disappointment with several randomized trials of pan-PI3K inhibitors in HR-positive breast cancer, there has been continued effort to more precisely target PI3K isoforms, which has led to clinical benefit for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Haley Ellis
- Division of Oncology, Department of Medicine, Siteman Cancer Center, School of Medicine, Washington University, 660 South Euclid Ave, St. Louis, MO, 63110, USA
| | - Cynthia X Ma
- Division of Oncology, Department of Medicine, Siteman Cancer Center, School of Medicine, Washington University, 660 South Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
163
|
Affiliation(s)
- Alex Toker
- Beth Israel Deaconess Medical Center, Department of Pathology, Harvard University Medical School, Boston, MA, USA.
| |
Collapse
|
164
|
Chen X, Cao Y, Sedhom W, Lu L, Liu Y, Wang H, Oka M, Bornstein S, Said S, Song J, Lu SL. Distinct roles of PIK3CA in the enrichment and maintenance of cancer stem cells in head and neck squamous cell carcinoma. Mol Oncol 2019; 14:139-158. [PMID: 31600013 PMCID: PMC6944113 DOI: 10.1002/1878-0261.12584] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/20/2019] [Accepted: 10/08/2019] [Indexed: 01/26/2023] Open
Abstract
Recurrence and metastasis are the major causes of mortality in head and neck squamous cell carcinoma (HNSCC). It is suggested that cancer stem cells (CSCs) play pivotal roles in recurrence and metastasis. Thus, a greater understanding of the mechanisms of CSC regulation may provide opportunities to develop novel therapies for improving survival by controlling recurrence or metastasis. Here, we report that overexpression of the gene encoding the catalytic subunit of PI3K (PIK3CA), the most frequently amplified oncogene in HNSCC, promotes epithelial‐to‐mesenchymal transition and enriches the CSC population. However, PIK3CA is not required to maintain these traits and inhibition of the phosphatidylinositol 3‐kinase (PI3K) signaling pathway paradoxically promotes CSC population. Molecular analysis revealed that overexpression of PIK3CA activates multiple receptor tyrosine kinases (RTKs), in which ephrin receptors (Ephs), tropomyosin receptor kinases (TRK) and mast/stem cell growth factor receptor (c‐Kit) contribute to maintain CSC population. Accordingly, simultaneous inhibition of these RTKs using a multi‐kinase inhibitor ponatinib has a superior effect at eliminating the CSC population and reduces metastasis of PIK3CA‐overexpressing HNSCC cells. Our result suggests that co‐targeting of Ephs, TRKs and the c‐Kit pathway may be effective at eliminating the PI3K‐independent CSC population, thereby providing potential targets for future development of a novel anti‐CSC therapeutic approach for HNSCC patients, particularly for patients with PIK3CA amplification.
Collapse
Affiliation(s)
- Xi Chen
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yu Cao
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Surgical Oncology, First Hospital of China Medical University, Shengyang, China
| | - Wafik Sedhom
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ling Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yanqiu Liu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Institute of Integrative Medicine, Dalian Medical University, China
| | - Haibo Wang
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Surgical Oncology, Second Hospital of Dalian Medical University, China
| | - Masako Oka
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Bornstein
- Department of Radiation Oncology, Cornell University, New York, NY, USA
| | - Sherif Said
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John Song
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shi-Long Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
165
|
Whole-exome sequencing of cervical carcinomas identifies activating ERBB2 and PIK3CA mutations as targets for combination therapy. Proc Natl Acad Sci U S A 2019; 116:22730-22736. [PMID: 31624127 DOI: 10.1073/pnas.1911385116] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The prognosis of advanced/recurrent cervical cancer patients remains poor. We analyzed 54 fresh-frozen and 15 primary cervical cancer cell lines, along with matched-normal DNA, by whole-exome sequencing (WES), most of which harboring Human-Papillomavirus-type-16/18. We found recurrent somatic missense mutations in 22 genes (including PIK3CA, ERBB2, and GNAS) and a widespread APOBEC cytidine deaminase mutagenesis pattern (TCW motif) in both adenocarcinoma (ACC) and squamous cell carcinomas (SCCs). Somatic copy number variants (CNVs) identified 12 copy number gains and 40 losses, occurring more often than expected by chance, with the most frequent events in pathways similar to those found from analysis of single nucleotide variants (SNVs), including the ERBB2/PI3K/AKT/mTOR, apoptosis, chromatin remodeling, and cell cycle. To validate specific SNVs as targets, we took advantage of primary cervical tumor cell lines and xenografts to preclinically evaluate the activity of pan-HER (afatinib and neratinib) and PIK3CA (copanlisib) inhibitors, alone and in combination, against tumors harboring alterations in the ERBB2/PI3K/AKT/mTOR pathway (71%). Tumors harboring ERBB2 (5.8%) domain mutations were significantly more sensitive to single agents afatinib or neratinib when compared to wild-type tumors in preclinical in vitro and in vivo models (P = 0.001). In contrast, pan-HER and PIK3CA inhibitors demonstrated limited in vitro activity and were only transiently effective in controlling in vivo growth of PIK3CA-mutated cervical cancer xenografts. Importantly, combinations of copanlisib and neratinib were highly synergistic, inducing long-lasting regression of tumors harboring alterations in the ERBB2/PI3K/AKT/mTOR pathway. These findings define the genetic landscape of cervical cancer, suggesting that a large subset of cervical tumors might benefit from existing ERBB2/PIK3CA/AKT/mTOR-targeted drugs.
Collapse
|
166
|
Rathinaswamy MK, Burke JE. Class I phosphoinositide 3-kinase (PI3K) regulatory subunits and their roles in signaling and disease. Adv Biol Regul 2019; 75:100657. [PMID: 31611073 DOI: 10.1016/j.jbior.2019.100657] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023]
Abstract
The Class I phosphoinositide 3-kinases (PI3Ks) are a group of heterodimeric lipid kinases that regulate crucial cellular processes including proliferation, survival, growth, and metabolism. The diversity in functions controlled by the various catalytic isoforms (p110α, p110β, p110δ, and p110γ) depends on their abilities to be activated by distinct stimuli such as receptor tyrosine kinases (RTKs), G-protein coupled receptors (GPCRs), and the Ras family of small G-proteins. A major factor determining the ability of each p110 enzyme to be activated is the presence of regulatory binding partners. Given the overwhelming evidence for the involvement of PI3Ks in diseases such as cancer, inflammation, immunodeficiency and diabetes, an understanding of how these regulatory proteins influence PI3K function is essential. This article highlights research deciphering the role of regulatory subunits in PI3K signaling and their involvement in human disease.
Collapse
Affiliation(s)
- Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada.
| |
Collapse
|
167
|
Delou JMA, Souza ASO, Souza LCM, Borges HL. Highlights in Resistance Mechanism Pathways for Combination Therapy. Cells 2019; 8:E1013. [PMID: 31480389 PMCID: PMC6770082 DOI: 10.3390/cells8091013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
Combination chemotherapy has been a mainstay in cancer treatment for the last 60 years. Although the mechanisms of action and signaling pathways affected by most treatments with single antineoplastic agents might be relatively well understood, most combinations remain poorly understood. This review presents the most common alterations of signaling pathways in response to cytotoxic and targeted anticancer drug treatments, with a discussion of how the knowledge of signaling pathways might support and orient the development of innovative strategies for anticancer combination therapy. The ultimate goal is to highlight possible strategies of chemotherapy combinations based on the signaling pathways associated with the resistance mechanisms against anticancer drugs to maximize the selective induction of cancer cell death. We consider this review an extensive compilation of updated known information on chemotherapy resistance mechanisms to promote new combination therapies to be to discussed and tested.
Collapse
Affiliation(s)
- João M A Delou
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Alana S O Souza
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonel C M Souza
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Helena L Borges
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
168
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
169
|
Effects of Intestinal Microbial⁻Elaborated Butyrate on Oncogenic Signaling Pathways. Nutrients 2019; 11:nu11051026. [PMID: 31067776 PMCID: PMC6566851 DOI: 10.3390/nu11051026] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiota is well known to have multiple benefits on human health, including cancer prevention and treatment. The effects are partially mediated by microbiota-produced short chain fatty acids (SCFAs) such as butyrate, propionate and acetate. The anti-cancer effect of butyrate has been demonstrated in cancer cell cultures and animal models of cancer. Butyrate, as a signaling molecule, has effects on multiple signaling pathways. The most studied effect is its inhibition on histone deacetylase (HDAC), which leads to alterations of several important oncogenic signaling pathways such as JAK2/STAT3, VEGF. Butyrate can interfere with both mitochondrial apoptotic and extrinsic apoptotic pathways. In addition, butyrate also reduces gut inflammation by promoting T-regulatory cell differentiation with decreased activities of the NF-κB and STAT3 pathways. Through PKC and Wnt pathways, butyrate increases cancer cell differentiation. Furthermore, butyrate regulates oncogenic signaling molecules through microRNAs and methylation. Therefore, butyrate has the potential to be incorporated into cancer prevention and treatment regimens. In this review we summarize recent progress in butyrate research and discuss the future development of butyrate as an anti-cancer agent with emphasis on its effects on oncogenic signaling pathways. The low bioavailability of butyrate is a problem, which precludes clinical application. The disadvantage of butyrate for medicinal applications may be overcome by several approaches including nano-delivery, analogue development and combination use with other anti-cancer agents or phytochemicals.
Collapse
|
170
|
Martelli AM, Paganelli F, Fazio A, Bazzichetto C, Conciatori F, McCubrey JA. The Key Roles of PTEN in T-Cell Acute Lymphoblastic Leukemia Development, Progression, and Therapeutic Response. Cancers (Basel) 2019; 11:cancers11050629. [PMID: 31064074 PMCID: PMC6562458 DOI: 10.3390/cancers11050629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer that comprises 10–15% of pediatric and ~25% of adult ALL cases. Although the curative rates have significantly improved over the past 10 years, especially in pediatric patients, T-ALL remains a challenge from a therapeutic point of view, due to the high number of early relapses that are for the most part resistant to further treatment. Considerable advances in the understanding of the genes, signaling networks, and mechanisms that play crucial roles in the pathobiology of T-ALL have led to the identification of the key drivers of the disease, thereby paving the way for new therapeutic approaches. PTEN is critical to prevent the malignant transformation of T-cells. However, its expression and functions are altered in human T-ALL. PTEN is frequently deleted or mutated, while PTEN protein is often phosphorylated and functionally inactivated by casein kinase 2. Different murine knockout models recapitulating the development of T-ALL have demonstrated that PTEN abnormalities are at the hub of an intricate oncogenic network sustaining and driving leukemia development by activating several signaling cascades associated with drug-resistance and poor outcome. These aspects and their possible therapeutic implications are highlighted in this review.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Antonietta Fazio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|