151
|
Bliss SP, Navratil AM, Xie J, Miller A, Baccarini M, Roberson MS. ERK signaling, but not c-Raf, is required for gonadotropin-releasing hormone (GnRH)-induced regulation of Nur77 in pituitary gonadotropes. Endocrinology 2012; 153:700-11. [PMID: 22186412 PMCID: PMC3275385 DOI: 10.1210/en.2011-0247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stimulation of pituitary gonadotropes by hypothalamic GnRH leads to the rapid expression of several immediate early genes that play key roles in orchestrating the response of the gonadotrope to hypothalamic stimuli. Elucidation of the signaling mechanisms that couple the GnRH receptor to this immediate early gene repertoire is critical for understanding the molecular basis of GnRH action. Here we identify signaling mechanisms that underlie regulation of the orphan nuclear receptor Nur77 as a GnRH-responsive immediate early gene in αT3-1 cells and mouse gonadotropes in culture. Using a variety of approaches, we show that GnRH-induced transcriptional upregulation of Nur77 in αT3-1 cells is dependent on calcium, protein kinase C (PKC), and ERK signaling. Transcriptional activity of Nur77 within the gonadotrope is regulated posttranslationally by GnRH signaling via PKC but not ERK activity. Surprisingly, neither activation of the ERK pathway nor the transcriptional response of Nur77 to GnRH requires the activity of c-Raf kinase. In corroboration of these results, Nur77 responsiveness to GnRH was maintained in gonadotropes from mice with pituitary-targeted ablation of c-Raf kinase. In contrast, gonadotropes from mice with pituitary deficiency of ERK signaling failed to up-regulate Nur77 after GnRH stimulation. These results further clarify the role of ERK and PKC signaling in regulation of the GnRH-induced immediate early gene program as well as GnRH-induced transcription-stimulating activity of Nur77 in the gonadotrope and shed new light on the complex functional organization of this signaling pathway in the pituitary gonadotrope.
Collapse
Affiliation(s)
- Stuart P Bliss
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
152
|
Pang T, Wang J, Benicky J, Saavedra JM. Minocycline ameliorates LPS-induced inflammation in human monocytes by novel mechanisms including LOX-1, Nur77 and LITAF inhibition. Biochim Biophys Acta Gen Subj 2012; 1820:503-10. [PMID: 22306153 DOI: 10.1016/j.bbagen.2012.01.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/13/2012] [Accepted: 01/15/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Minocycline exhibits anti-inflammatory properties independent of its antibiotic activity, ameliorating inflammatory responses in monocytes and macrophages. However, the mechanisms of minocycline anti-inflammatory effects are only partially understood. METHODS Human circulating monocytes were cultured in the presence of lipopolysaccharide (LPS), 50 ng/ml, and minocycline (10-40 μM). Gene expression was determined by RT-PCR, cytokine and prostaglandin E(2) (PGE(2)) release by ELISA, protein expression, phosphorylation and nuclear translocation by Western blotting. RESULTS Minocycline significantly reduced the inflammatory response in LPS-challenged monocytes, decreasing LPS-induced transcription of pro-inflammatory tumor-necrosis factor alpha (TNF-α), interleukin-1 beta, interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2), and the LPS-stimulated TNF-α, IL-6 and PGE(2) release. Minocycline inhibited LPS-induced activation of the lectin-like oxidized low density lipoprotein receptor-1 (LOX-1), NF-κB, LPS-induced TNF-α factor (LITAF) and the Nur77 nuclear receptor. Mechanisms involved in the anti-inflammatory effects of minocycline include a reduction of LPS-stimulated p38 mitogen-activated protein kinase (p38 MAPK) activation and stimulation of the phosphoinositide 3-kinase (PI3K)/Akt pathway. CONCLUSIONS We provide novel evidence demonstrating that the anti-inflammatory effects of minocycline in human monocytes include, in addition to decreased NF-κB activation, abrogation of the LPS-stimulated LOX-1, LITAF, Nur77 pathways, p38 MAPK inhibition and PI3K/Akt activation. Our results reveal that minocycline inhibits points of convergence of distinct and interacting signaling pathways mediating multiple inflammatory signals which may influence monocyte activation, traffic and recruitment into the brain. GENERAL SIGNIFICANCE Our results in primary human monocytes contribute to explain the profound anti-inflammatory and protective effects of minocycline in cardiovascular and neurological diseases and may have direct translational relevance.
Collapse
Affiliation(s)
- Tao Pang
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
153
|
Price JC, Cronin J, Sheldon IM. Toll-Like Receptor Expression and Function in the COV434 Granulosa Cell Line. Am J Reprod Immunol 2012; 68:205-17. [DOI: 10.1111/j.1600-0897.2011.01103.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 12/14/2011] [Indexed: 12/31/2022] Open
Affiliation(s)
| | - James Cronin
- Institute of Life Science; School of Medicine; Swansea University; Swansea; UK
| | - Iain Martin Sheldon
- Institute of Life Science; School of Medicine; Swansea University; Swansea; UK
| |
Collapse
|
154
|
Hanna RN, Shaked I, Hubbeling HG, Punt JA, Wu R, Herrley E, Zaugg C, Pei H, Geissmann F, Ley K, Hedrick CC. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ Res 2011; 110:416-27. [PMID: 22194622 DOI: 10.1161/circresaha.111.253377] [Citation(s) in RCA: 344] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE NR4A1 (Nur77) is a nuclear receptor that is expressed in macrophages and within atherosclerotic lesions, yet its function in atherosclerosis is unknown. OBJECTIVE Nur77 regulates the development of monocytes, particularly patrolling Ly6C(-) monocytes that may be involved in resolution of inflammation. We sought to determine how absence of nuclear receptor subfamily 4, group A, member 1 (NR4A1) in hematopoietic cells affected atherosclerosis development. METHODS AND RESULTS Nur77(-/-) chimeric mice on a Ldlr(-/-) background showed a 3-fold increase in atherosclerosis development when fed a Western diet for 20 weeks, despite having a drastic reduction in Ly6C(-) patrolling monocytes. In a second model, mice deficient in both Nur77 and ApoE (ApoE(-/-)Nur77(-/-)) also showed increased atherosclerosis after 11 weeks of Western diet. Atherosclerosis was associated with a significant change in macrophage polarization toward a proinflammatory phenotype, with high expression of tumor necrosis factor-α and nitric oxide and low expression of Arginase-I. Moreover, we found increased expression of toll-like receptor 4 mRNA and protein in Nur77(-/-) macrophages as well as increased phosphorylation of the p65 subunit of NFκB. Inhibition of NFκB activity blocked excess activation of Nur77(-/-) macrophages. CONCLUSIONS We conclude that the absence of Nur77 in monocytes and macrophages results in enhanced toll-like receptor signaling and polarization of macrophages toward a proinflammatory M1 phenotype. Despite having fewer monocytes, Nur77(-/-) mice developed significant atherosclerosis when fed a Western diet. These studies indicate that Nur77 is a novel target for modulating the inflammatory phenotype of monocytes and macrophages and may be important for regulation of atherogenesis.
Collapse
Affiliation(s)
- Richard N Hanna
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Hamers AAJ, Vos M, Rassam F, Marinković G, Marincovic G, Kurakula K, van Gorp PJ, de Winther MPJ, Gijbels MJJ, de Waard V, de Vries CJM. Bone marrow-specific deficiency of nuclear receptor Nur77 enhances atherosclerosis. Circ Res 2011; 110:428-38. [PMID: 22194623 DOI: 10.1161/circresaha.111.260760] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE Nuclear receptor Nur77, also known as NR4A1, TR3, or NGFI-B, is expressed in human atherosclerotic lesions in macrophages, endothelial cells, T cells and smooth muscle cells. Macrophages play a critical role in atherosclerosis and the function of Nur77 in lesion macrophages has not yet been investigated. OBJECTIVE This study aims to delineate the function of Nur77 in macrophages and to assess the effect of bone marrow-specific deficiency of Nur77 on atherosclerosis. METHODS AND RESULTS We investigated Nur77 in macrophage polarization using bone marrow-derived macrophages (BMM) from wild-type and Nur77-knockout (Nur77(-/-)) mice. Nur77(-/-) BMM exhibit changed expression of M2-specific markers and an inflammatory M1-phenotype with enhanced expression of interleukin-12, IFNγ, and SDF-1α and increased NO synthesis in (non)-stimulated Nur77(-/-) BMM cells. SDF-1α expression in nonstimulated Nur77(-/-) BMM is repressed by Nur77 and the chemoattractive activity of Nur77(-/-) BMM is abolished by SDF-1α inhibiting antibodies. Furthermore, Nur77(-/-) mice show enhanced thioglycollate-elicited migration of macrophages and B cells. The effect of bone marrow-specific deficiency of Nur77 on atherosclerosis was studied in low density lipoprotein receptor-deficient (Ldlr(-/-)) mice. Ldlr(-/-) mice with a Nur77(-/-)-deficient bone marrow transplant developed 2.1-fold larger atherosclerotic lesions than wild-type bone marrow-transplanted mice. These lesions contain more macrophages, T cells, smooth muscle cells and larger necrotic cores. SDF-1α expression is higher in lesions of Nur77(-/-)-transplanted mice, which may explain the observed aggravation of lesion formation. CONCLUSIONS In conclusion, in bone marrow-derived cells the nuclear receptor Nur77 has an anti-inflammatory function, represses SDF-1α expression and inhibits atherosclerosis.
Collapse
Affiliation(s)
- Anouk A J Hamers
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Kurakula K, van der Wal E, Geerts D, van Tiel CM, de Vries CJM. FHL2 protein is a novel co-repressor of nuclear receptor Nur77. J Biol Chem 2011; 286:44336-43. [PMID: 22049082 DOI: 10.1074/jbc.m111.308999] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three members of the NR4A orphan nuclear receptor subfamily Nur77, Nurr1, and NOR-1, regulate a variety of biological functions including vascular disease and metabolism. In this study, we identified Four and a half LIM domains protein-2 (FHL2) as a novel interacting protein of NR4A nuclear receptors by yeast two-hybrid screen and co-immunoprecipitation studies. Each of the four LIM domains of FHL2 can bind Nur77, and both the amino-terminal domain and the DNA binding domain of Nur77 are involved in the interaction between FHL2 and Nur77. FHL2 represses Nur77 transcriptional activity in a dose-dependent manner, and short hairpin RNA-mediated knockdown of FHL2 results in increased Nur77 transcriptional activity. ChIP experiments on the enolase3 promoter revealed that FHL2 inhibits the association of Nur77 with DNA. FHL2 is highly expressed in human endothelial and smooth muscle cells, but not in monocytes or macrophages. To substantiate functional involvement of FHL2 in smooth muscle cell physiology, we demonstrated that FHL2 overexpression increases the growth of these cells, whereas FHL2 knockdown results in reduced DNA synthesis. Collectively, these studies suggest that association of FHL2 with Nur77 plays a pivotal role in vascular disease.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Medical Biochemistry, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
157
|
Multiple noncoding exons 1 of nuclear receptors NR4A family (nerve growth factor-induced clone B, Nur-related factor 1 and neuron-derived orphan receptor 1) and NR5A1 (steroidogenic factor 1) in human cardiovascular and adrenal tissues. J Hypertens 2011; 29:1185-95. [PMID: 21546879 DOI: 10.1097/hjh.0b013e32834626bb] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Nuclear receptors are involved in a wide variety of functions, including aldosteronogenesis. Nuclear receptor families NR4A [nerve growth factor-induced clone B (NGFIB), Nur-related factor 1 (NURR1) and neuron-derived orphan receptor 1 (NOR1)] and NR2F [chicken ovalbumin upstream promoter-transcription factor 1 (COUP-TFI), COUP-TFII and NR2F6) activate, whereas NR5A1 [steroidogenic factor 1 (SF1)] represses CYP11B2 (aldosterone synthase) gene transcription. The present study was undertaken to elucidate the mechanism of differential regulation of nuclear receptors between cardiovascular and adrenal tissues. METHODS We collected tissues of artery (n = 9), cardiomyopathy muscle (n = 9), heart muscle (noncardiomyopathy) (n = 6), adrenal gland (n = 9) and aldosterone-producing adenoma (APA) (n = 9). 5'-rapid amplification of cDNA ends (RACE) identified transcription start sites. Multiplex reverse-transcription PCR (RT-PCR) determined use of alternative noncoding exons 1 (ANEs). RESULTS In adrenocortical H295R cells, angiotensin II, KCl or cAMP, all stimulated CYP11B2 transcription and NR4A was upregulated, whereas NR2F and NR5A1 were downregulated. 5'-RACE and RT-PCR revealed four ANEs of NGFIB (NR4A1), three of NURR1 (NR4A2), two of NOR1 (NR4A3) and two of SF1 (NR5A1) in cardiovascular and adrenal tissues. Quantitative multiplex RT-PCR showed NR4A and NR5A1 differentially employed multiple ANEs in a tissue-specific manner. The use of ANEs of NGFIB and NURR1 was significantly different between APA and artery. Changes in use of ANEs of NGFIB and NOR1 were observed between cardiomyopathy and noncardiomyopathy. The NR4A mRNA levels in artery were high compared with cardiac and adrenal tissues, whereas the NR5A1 mRNA level in adrenal tissues was extremely high compared with cardiovascular tissues. CONCLUSION NR4A and NR5A1 genes are complex in terms of alternative promoter use. The use of ANEs may be associated with the pathophysiology of the heart and adrenal gland.
Collapse
|
158
|
Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM, Punt JA, Geissmann F, Hedrick CC. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat Immunol 2011; 12:778-85. [PMID: 21725321 DOI: 10.1038/ni.2063] [Citation(s) in RCA: 495] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/27/2011] [Indexed: 12/12/2022]
Abstract
The transcription factors that regulate differentiation into the monocyte subset in bone marrow have not yet been identified. Here we found that the orphan nuclear receptor NR4A1 controlled the differentiation of Ly6C- monocytes. Ly6C- monocytes, which function in a surveillance role in circulation, were absent from Nr4a1-/- mice. Normal numbers of myeloid progenitor cells were present in Nr4a1-/- mice, which indicated that the defect occurred during later stages of monocyte development. The defect was cell intrinsic, as wild-type mice that received bone marrow from Nr4a1-/- mice developed fewer patrolling monocytes than did recipients of wild-type bone marrow. The Ly6C- monocytes remaining in the bone marrow of Nr4a1-/- mice were arrested in S phase of the cell cycle and underwent apoptosis. Thus, NR4A1 functions as a master regulator of the differentiation and survival of 'patrolling' Ly6C- monocytes.
Collapse
Affiliation(s)
- Richard N Hanna
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Abstract
Inflammation is paradoxical; it is essential for protection following biological, chemical or physical stimuli, but inappropriate or misdirected inflammation is responsible for tissue injury in a variety of inflammatory diseases. The polarization of immune cells is critical in controlling the stages of inflammatory response. The acute phase of inflammation is characterized by a T-lymphocyte:Th2 cytokine profile and involves a co-ordinated migration of immune cells to the site of injury where production of cytokines and acute-phase proteins brings about healing. However, persistent inflammation can result in inappropriate and prolonged T-lymphocyte:Th1 cytokine-mediated action and reaction of self-molecules, leading to a chronic phase in diseases such as RA (rheumatoid arthritis), Ps (psoriasis) and atherosclerosis. The inflammatory response is also controlled by activated macrophage cells, with classically activated (M1) cells producing a wide variety of pro-inflammatory mediators, while alternatively activated (M2) macrophages participate in anti-inflammatory response. Members of the NR4A subfamily (NR4A1/NUR77, NR4A2/NURR1 and NR4A3/NOR1) of orphan NRs (nuclear receptors) have emerged as key transcriptional regulators of cytokine and growth factor action in diseases affecting our aging population. As ligand-independent and constitutively active receptors, the activity of these transcription factors is tightly controlled at the level of expression, post-translational modification and subcellular localization. NR4A subfamily members are aberrantly expressed in inflamed human synovial tissue, psoriatic skin, atherosclerotic lesions, lung and colorectal cancer cells. Significantly, prolonged or inappropriate inflammatory responses contribute to the pathogenesis of these diseases. In activated cells, NR4A receptors are rapidly and potently induced, suggesting that these receptors may act as important transcriptional mediators of inflammatory signals. NR4A receptors may contribute to the cellular processes that control inflammation, playing a critical part in the contribution of chronic inflammation or they may have a protective role, where they may mediate pro-resolution responses. Here, we will review the contribution of the NR4A orphan NRs to integration of cytokine signalling in inflammatory disorders.
Collapse
|
160
|
Maijenburg MW, Gilissen C, Melief SM, Kleijer M, Weijer K, Ten Brinke A, Roelofs H, Van Tiel CM, Veltman JA, de Vries CJM, van der Schoot CE, Voermans C. Nuclear receptors Nur77 and Nurr1 modulate mesenchymal stromal cell migration. Stem Cells Dev 2011; 21:228-38. [PMID: 21480782 DOI: 10.1089/scd.2011.0076] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Detailed understanding of mesenchymal stromal cells (MSC) migration is imperative for future cellular therapies. To identify genes involved in the process of MSC migration, we generated gene expression profiles of migrating and nonmigrating fetal bone marrow MSC (FBMSC). Only 12 genes showed differential expression in migrating versus nonmigrating FBMSC. The nuclear receptors Nur77 and Nurr1 showed the highest expression in migratory MSC. Nur77 and Nurr1 are members of NR4A nuclear orphan receptor family, and we found that their expression is rapidly increased upon exposure of FBMSC to the migratory stimuli stromal-derived factor-1α (SDF-1α) and platelet-derived growth factor-BB. Lentiviral expression of Nur77 or Nurr1 resulted in enhanced migration of FBMSC toward SDF-1α compared with mock-transduced FBMSC. Analysis of the cell cycle, known to be involved in MSC migration, revealed that expression of Nur77 and Nurr1 decreases the proportion of cells in S-phase compared with control cells. Further, gain-of-function experiments showed increased hepatocyte growth factor expression and interleukin (IL)-6 and IL-8 production in MSC. Despite the altered cytokine profile, FBMSC expressing Nur77 or Nurr1 maintained the capacity to inhibit T-cell proliferation in a mixed lymphocyte reaction. Our results demonstrate that Nur77 and Nurr1 promote FBMSC migration. Modulation of Nur77 and Nurr1 activity may therefore offer perspectives to enhance the migratory potential of FBMSC which may specifically regulate the local immune response.
Collapse
Affiliation(s)
- Marijke W Maijenburg
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Lundequist A, Calounova G, Wensman H, Rönnberg E, Pejler G. Differential regulation of Nr4a subfamily nuclear receptors following mast cell activation. Mol Immunol 2011; 48:1753-61. [PMID: 21621845 DOI: 10.1016/j.molimm.2011.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/28/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
The biological function of the Nr4a subfamily of nuclear receptors is only partially understood. Here we show for the fist time that mast cell (MC) activation processes involve the regulation of Nr4a factors. Exposure of murine bone marrow-derived MCs (BMMCs) to live bacteria causes a robust and selective upregulation of all Nr4a members (Nr4a1-Nr4a3). In response to purified LPS, strong upregulation of Nr4a3, but not of Nr4a1 or Nr4a2 was seen. Nr4a3 expression was also induced after the activation of BMMCs by IgE receptor cross-linking. Moreover, Nr4a expression was induced in activated human MCs. As shown by Western blot analysis, Nr4a phosphorylation was induced by IgE receptor cross-linking and calcium ionophore stimulation of BMMCs and LAD2 cells, respectively. By using various inhibitors of signaling pathways, Nr4a3 induction in BMMCs was shown to be strongly dependent on Gö6976-sensitive kinases and partially dependent on the nuclear factor of activated T-cells (NFAT) pathway, while nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) inhibition failed to inhibit Nr4a3 expression in BMMCs. Together, these data reveal selective induction of Nr4a family members in activated MCs and implicate Nr4a family nuclear receptors in the regulation of MC function.
Collapse
Affiliation(s)
- Anders Lundequist
- Swedish University of Agricultural Sciences, Dept of Anatomy, Physiology and Biochemistry, BMC, Box 575, 75123 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
162
|
Wang L, Dong X, Zhou W, Zeng Q, Mao Y. PDGF-induced proliferation of smooth muscular cells is related to the regulation of CREB phosphorylation and Nur77 expression. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2011; 31:169-173. [PMID: 21505978 DOI: 10.1007/s11596-011-0245-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Indexed: 10/24/2022]
Abstract
This study examined the relationship between PDGF-induced proliferation of vascular smooth muscle cells (VSMCs) and Nur77 expression and the effect of atorvastatin on VSMC proliferation and Nur77 in PDGF-treated VSMCs. Rat VSMCs were isolated and cultured. After incubation with atorvastatin or Nur77 siRNA, the cells were stimulated with PDGF and detected for BrdU incorporation to measure the proliferation of the VSMCs. Quantitative PCR and Western blotting were used to determine the Nur77 protein and the CREB phosphorylation level, to observe their relations with PDGF-induced VSMC proliferation. Our results showed that PDGF increased the BrdU incorporation in VSMCs, suggesting that it induced the proliferation of the cells. The VSMC proliferation was associated with increased Nur77 expression and elevated CREB phosphorylation. Atorvastatin inhibited the PDGF-induced VSMC proliferation, suppressed Nur77 expression. After silencing of Nur77 gene, the PDGF-induced VSMC proliferation was decreased. It was concluded that PDGF-induced VSMC proliferation was related to the Nur77 expression and CREB phosphorylation. Atorvastatin reduced the Nur77 expression and, at the same time, inhibited the VSMC proliferation.
Collapse
MESH Headings
- Animals
- Atorvastatin
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/metabolism
- Heptanoic Acids/pharmacology
- Male
- Muscle Cells/cytology
- Muscle Cells/drug effects
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phosphorylation
- Platelet-Derived Growth Factor/pharmacology
- Pyrroles/pharmacology
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Liyue Wang
- Department of Cardiology, Tongren Hospital, Wuhan University, Wuhan, 430060, China
| | - Xiaoyan Dong
- Department of Cardiology, Tongren Hospital, Wuhan University, Wuhan, 430060, China
| | - Wei Zhou
- Department of Cardiology, Union Hospital, Tongji Medical University, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical University, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Mao
- Department of Cardiology, Union Hospital, Tongji Medical University, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
163
|
Burkhardt R, Sündermann S, Ludwig D, Ceglarek U, Holdt LM, Thiery J, Teupser D. Cosegregation of aortic root atherosclerosis and intermediate lipid phenotypes on chromosomes 2 and 8 in an intercross of C57BL/6 and BALBc/ByJ low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vasc Biol 2011; 31:775-84. [PMID: 21252064 DOI: 10.1161/atvbaha.110.213843] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We sought to identify novel atherosclerosis-modifying loci and their potential functional links in a genome-wide approach using cosegregation analysis of atherosclerosis and related intermediate phenotypes in mice. METHODS AND RESULTS We carried out an F2 intercross between atherosclerosis-susceptible C57BL/6 mice and atherosclerosis-resistant BALB/cByJ mice on the low-density lipoprotein receptor(-/-) background to examine the genetic basis for their differences in atherosclerosis susceptibility. Atherosclerotic lesion size and a comprehensive panel of 61 atherosclerosis-related phenotypes, including plasma levels of lipids, cytokines, and chemokines were measured in 376 F2 mice. Quantitative trait locus mapping revealed a novel significant locus (logarithm of odds, 6.18) for atherosclerosis on proximal mouse chromosome (Chr) 2 (Ath39), which was associated with major variations in lesion size (14%). Plasma very-low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, lanosterol, and phytosterol levels cosegregated with atherosclerosis at this locus. Moreover, these lipid traits showed significant correlations with lesion size, suggesting that they share the same underlying genetic factor. We also describe a second male-specific locus on Chr 8 (Ath40) where atherosclerosis and lipids cosegregated. CONCLUSIONS Our study revealed new loci for atherosclerosis susceptibility on mouse Chr 2 and 8, which might exert their effects on lesion size via plasma lipid levels.
Collapse
Affiliation(s)
- Ralph Burkhardt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Liebigstrasse 27, 04103 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
164
|
Ralph JA, Ahmed AU, Santos LL, Clark AR, McMorrow J, Murphy EP, Morand EF. Identification of NURR1 as a mediator of MIF signaling during chronic arthritis: effects on glucocorticoid-induced MKP1. THE AMERICAN JOURNAL OF PATHOLOGY 2010. [PMID: 20829434 DOI: 10.2353/ajpath.2010.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Elucidation of factors regulating glucocorticoid (GC) sensitivity is required for the development of "steroid-sparing" therapies for chronic inflammatory diseases, including rheumatoid arthritis (RA). Accumulating evidence suggests that macrophage migration inhibitory factor (MIF) counterregulates the GC-induction of anti-inflammatory mediators, including mitogen-activated protein kinase phosphatase 1 (MKP1), a critical mitogen-activated protein kinase signaling inhibitor. This observation has yet to be extended to human disease; the molecular mechanisms remain unknown. We investigated NURR1, a GC-responsive transcription factor overexpressed in RA, as a MIF signaling target. We reveal abrogation by recombinant MIF (rMIF) of GC-induced MKP1 expression in RA fibroblast-like synoviocytes (FLS). rMIF enhanced NURR1 expression, artificial NBRE (orphan receptor DNA-binding site) reporter transactivation, and reversed GC-inhibition of NURR1. NURR1 expression was reduced during experimental arthritis in MIF-/- synovium, and silencing MIF reduced RA FLS NURR1 mRNA. Consistent with NBRE identification on the MKP1 gene, MKP1 mRNA was reduced in FLS that ectopically express NURR1, and silencing NURR1 enhanced MKP1 mRNA in RA FLS. rMIF enhanced NBRE binding on the MKP1 gene, and the absence of the NBRE prevented NURR1-repressive effects on basal and GC-induced MKP1 transactivation. This study defines NURR1 as a novel MIF target in chronic inflammation and demonstrates a role for NURR1 in regulating the anti-inflammatory mediator, MKP1. We propose a MIF-NURR1 signaling axis as a regulator of the GC sensitivity of MKP1.
Collapse
Affiliation(s)
- Jennifer A Ralph
- Centre for Inflammatory Diseases, Monash University, Department of Medicine, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
165
|
Ralph JA, Ahmed AU, Santos LL, Clark AR, McMorrow J, Murphy EP, Morand EF. Identification of NURR1 as a mediator of MIF signaling during chronic arthritis: effects on glucocorticoid-induced MKP1. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2366-78. [PMID: 20829434 DOI: 10.2353/ajpath.2010.091204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Elucidation of factors regulating glucocorticoid (GC) sensitivity is required for the development of "steroid-sparing" therapies for chronic inflammatory diseases, including rheumatoid arthritis (RA). Accumulating evidence suggests that macrophage migration inhibitory factor (MIF) counterregulates the GC-induction of anti-inflammatory mediators, including mitogen-activated protein kinase phosphatase 1 (MKP1), a critical mitogen-activated protein kinase signaling inhibitor. This observation has yet to be extended to human disease; the molecular mechanisms remain unknown. We investigated NURR1, a GC-responsive transcription factor overexpressed in RA, as a MIF signaling target. We reveal abrogation by recombinant MIF (rMIF) of GC-induced MKP1 expression in RA fibroblast-like synoviocytes (FLS). rMIF enhanced NURR1 expression, artificial NBRE (orphan receptor DNA-binding site) reporter transactivation, and reversed GC-inhibition of NURR1. NURR1 expression was reduced during experimental arthritis in MIF-/- synovium, and silencing MIF reduced RA FLS NURR1 mRNA. Consistent with NBRE identification on the MKP1 gene, MKP1 mRNA was reduced in FLS that ectopically express NURR1, and silencing NURR1 enhanced MKP1 mRNA in RA FLS. rMIF enhanced NBRE binding on the MKP1 gene, and the absence of the NBRE prevented NURR1-repressive effects on basal and GC-induced MKP1 transactivation. This study defines NURR1 as a novel MIF target in chronic inflammation and demonstrates a role for NURR1 in regulating the anti-inflammatory mediator, MKP1. We propose a MIF-NURR1 signaling axis as a regulator of the GC sensitivity of MKP1.
Collapse
Affiliation(s)
- Jennifer A Ralph
- Centre for Inflammatory Diseases, Monash University, Department of Medicine, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
166
|
Zhao Y, Bruemmer D. NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular biology. Arterioscler Thromb Vasc Biol 2010; 30:1535-41. [PMID: 20631354 DOI: 10.1161/atvbaha.109.191163] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Members of the nuclear hormone receptor superfamily, including the peroxisome proliferator-activated receptor and the liver X receptor subfamilies, orchestrate transcriptional networks involved in the control of metabolism and the development of vascular disease. In addition to these well-characterized ligand-activated transcription factors, the nuclear receptor (NR) superfamily comprises many orphan receptors, whose ligands and physiological functions remain unknown. Among this group of orphan receptors is the NR4A subfamily, including Nur77 (NR4A1), Nurr1 (NR4A2), and NOR1 (NR4A3). These orphan NRs constitute an evolutionary ancient and highly conserved group of transcription factors. In contrast to other members of the superfamily, NR4A receptors function as ligand-independent transcription factors and immediate- or early-response genes, which are rapidly induced by a pleiotropy of environmental cues. Early functional studies have pointed to a critical role of NR4A receptors in regulating differentiation, proliferation, and apoptosis. More recent research has characterized NR4A receptors as key transcriptional regulators of glucose and lipid homeostasis, adipogenesis, inflammation, and vascular remodeling. In this review, we will summarize recent advances in understanding the molecular biology and physiological functions of NR4A receptors and discuss their role in the transcriptional control of metabolism and vascular remodeling.
Collapse
Affiliation(s)
- Yue Zhao
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, USA
| | | |
Collapse
|
167
|
Huang W, Glass CK. Nuclear receptors and inflammation control: molecular mechanisms and pathophysiological relevance. Arterioscler Thromb Vasc Biol 2010; 30:1542-9. [PMID: 20631355 DOI: 10.1161/atvbaha.109.191189] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tissue inflammation is a tightly regulated process that normally serves to recruit the immune system to sites of infection and injury and to facilitate tissue repair processes. When an inflammatory state is excessive or prolonged, local and systemic damage to host tissues can result in loss of normal physiological functions. Here, we briefly review recent studies that advance our understanding of signaling pathways involved in initiation of inflammatory responses at the level of transcription and counterregulation of these pathways by selected members of the nuclear receptor superfamily. Studies of the intersection of nuclear receptors and inflammation have revealed mechanisms of positive and negative transcriptional control that may provide new targets for pharmacological intervention in chronic diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Wendy Huang
- Department of Cellular and Molecular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
168
|
Shao Q, Shen LH, Hu LH, Pu J, Qi MY, Li WQ, Tian FJ, Jing Q, He B. Nuclear receptor Nur77 suppresses inflammatory response dependent on COX-2 in macrophages induced by oxLDL. J Mol Cell Cardiol 2010; 49:304-11. [DOI: 10.1016/j.yjmcc.2010.03.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 12/11/2022]
|
169
|
Alexopoulou AN, Leao M, Caballero OL, Da Silva L, Reid L, Lakhani SR, Simpson AJ, Marshall JF, Neville AM, Jat PS. Dissecting the transcriptional networks underlying breast cancer: NR4A1 reduces the migration of normal and breast cancer cell lines. Breast Cancer Res 2010; 12:R51. [PMID: 20642837 PMCID: PMC2949640 DOI: 10.1186/bcr2610] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 06/28/2010] [Accepted: 07/19/2010] [Indexed: 11/25/2022] Open
Abstract
Introduction Breast cancer currently accounts for more than one-quarter of all female cancers and, despite the great progress in treatment observed in the past few years, the need for identification of new gene targets that can be used for diagnosis, prognosis and therapy is evident. A previous study identified the transcription factor NR4A1 as a gene upregulated in primary breast cancer compared with normal tissue by microarray analysis and sequencing technologies. The purpose of the study was to identify the role of NR4A1 in normal mammary epithelial and breast cancer cell biology. Methods NR4A1 expression in breast tumours was assessed by semiquantitative and real-time PCR using RNA from normal and tumour samples or breast cancer cell lines. Immunohistochemistry on tissue microarrays was performed to check NR4A1 protein expression in breast tumours. MCF-10A and 226L normal mammary epithelial cells as well as the tumour lines PMC42, ZR-75-1 and MDA-MB-231 were transduced with full-length NR4A1, and the ability of NR4A1-overexpressing cells to migrate was tested using scratch wound or transwell migration assays. Proliferation was measured using the MTT and BrdU assays, while apoptosis was determined by the Annexin V assay. The ability of the cells to adhere to extracellular matrix was tested by adhesion assays and integrin cell surface expression was measured by flow cytometry. Activation of the FAK as well as ERK1/2 and PI3K pathways was checked by western blotting. Results Breast tissue microarray analysis showed NR4A1 expression in primary tumours, which was reduced in higher grade and metastatic tumours. Ectopic expression of NR4A1 in MCF-10A, 226L, PMC42 and ZR-75-1 cells led to reduced ability of the cells to migrate, while no differences were observed in their proliferation and apoptotic index. NR4A1 expression altered the ability of the MCF-10A cells to adhere to the extracellular matrix and affected cell surface expression of integrins. Conclusions NR4A1 acts as an antimigratory factor in two normal mammary epithelial and two breast cancer cell lines tested. It is therefore possible that NR4A1 acts as an antimigratory factor in breast tumours, and further studies should be conducted to understand the mechanisms involved.
Collapse
Affiliation(s)
- Annika N Alexopoulou
- University of Oxford Branch, Ludwig Institute for Cancer Research, Old Road Campus, Off Roosevelt Drive, Oxford OX3 7DQ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Zhao Y, Howatt DA, Gizard F, Nomiyama T, Findeisen HM, Heywood EB, Jones KL, Conneely OM, Daugherty A, Bruemmer D. Deficiency of the NR4A orphan nuclear receptor NOR1 decreases monocyte adhesion and atherosclerosis. Circ Res 2010; 107:501-11. [PMID: 20558821 DOI: 10.1161/circresaha.110.222083] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The orphan nuclear receptor NOR1 is a member of the evolutionary highly conserved and ligand-independent NR4A subfamily of the nuclear hormone receptor superfamily. Members of this subfamily have been characterized as early response genes regulating essential biological processes including inflammation and proliferation; however, the role of NOR1 in atherosclerosis remains unknown. OBJECTIVE The goal of the present study was to determine the causal contribution of NOR1 to atherosclerosis development and to identify the mechanism by which this nuclear receptor participates in the disease process. METHODS AND RESULTS In the present study, we demonstrate expression of NOR1 in endothelial cells of human atherosclerotic lesions. In response to inflammatory stimuli, NOR1 expression is rapidly induced in endothelial cells through a nuclear factor kappaB-dependent transactivation of the NOR1 promoter. Overexpression of NOR1 in human endothelial cells increased the expression of vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule-1, whereas NOR1 deficiency altered adhesion molecule expression in response to inflammatory stimuli. Transient transfection experiments and chromatin immunoprecipitation assays revealed that NOR1 induces VCAM-1 promoter activity by binding to a canonical response element for NR4A receptors in the VCAM-1 promoter. Further functional studies confirmed that NOR1 mediates monocyte adhesion by inducing VCAM-1 and intercellular adhesion molecule-1 expression in endothelial cells. Finally, we demonstrate that NOR1 deficiency reduces hypercholesterolemia-induced atherosclerosis formation in apoE(-/-) mice by decreasing the macrophage content of the lesion. CONCLUSIONS In concert, these studies identify a novel pathway underlying monocyte adhesion and establish that NOR1 serves a previously unrecognized atherogenic role in mice by positively regulating monocyte recruitment to the vascular wall.
Collapse
Affiliation(s)
- Yue Zhao
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536-0200, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Wang L, Gong F, Dong X, Zhou W, Zeng Q. Regulation of vascular smooth muscle cell proliferation by nuclear orphan receptor Nur77. Mol Cell Biochem 2010; 341:159-66. [DOI: 10.1007/s11010-010-0447-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/17/2010] [Indexed: 12/11/2022]
|
172
|
Pols TWH, Bonta PI, Pires NMM, Otermin I, Vos M, de Vries MR, van Eijk M, Roelofsen J, Havekes LM, Quax PHA, van Kuilenburg ABP, de Waard V, Pannekoek H, de Vries CJM. 6-mercaptopurine inhibits atherosclerosis in apolipoprotein e*3-leiden transgenic mice through atheroprotective actions on monocytes and macrophages. Arterioscler Thromb Vasc Biol 2010; 30:1591-7. [PMID: 20413732 DOI: 10.1161/atvbaha.110.205674] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE 6-Mercaptopurine (6-MP), the active metabolite of the immunosuppressive prodrug azathioprine, is commonly used in autoimmune diseases and transplant recipients, who are at high risk for cardiovascular disease. Here, we aimed to gain knowledge on the action of 6-MP in atherosclerosis, with a focus on monocytes and macrophages. METHODS AND RESULTS We demonstrate that 6-MP induces apoptosis of THP-1 monocytes, involving decreased expression of the intrinsic antiapoptotic factors B-cell CLL/Lymphoma-2 (Bcl-2) and Bcl2-like 1 (Bcl-x(L)). In addition, we show that 6-MP decreases expression of the monocyte adhesion molecules platelet endothelial adhesion molecule-1 (PECAM-1) and very late antigen-4 (VLA-4) and inhibits monocyte adhesion. Screening of a panel of cytokines relevant to atherosclerosis revealed that 6-MP robustly inhibits monocyte chemoattractant chemokine-1 (MCP-1) expression in macrophages stimulated with lipopolysaccharide (LPS). Finally, local delivery of 6-MP to the vessel wall, using a drug-eluting cuff, attenuates atherosclerosis in hypercholesterolemic apolipoprotein E*3-Leiden transgenic mice (P<0.05). In line with our in vitro data, this inhibition of atherosclerosis by 6-MP was accompanied with decreased lesion monocyte chemoattractant chemokine-1 levels, enhanced vascular apoptosis, and reduced macrophage content. CONCLUSIONS We report novel, previously unrecognized atheroprotective actions of 6-MP in cultured monocytes/macrophages and in a mouse model of atherosclerosis, providing further insight into the effect of the immunosuppressive drug azathioprine in atherosclerosis.
Collapse
Affiliation(s)
- Thijs W H Pols
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Pearen MA, Muscat GEO. Minireview: Nuclear hormone receptor 4A signaling: implications for metabolic disease. Mol Endocrinol 2010; 24:1891-903. [PMID: 20392876 DOI: 10.1210/me.2010-0015] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Numerous members of the nuclear hormone receptor (NR) superfamily have been demonstrated to regulate metabolic function in a cell- and tissue-specific manner. This review brings together recent studies that have associated members of the NR superfamily, the orphan NR4A subgroup, with the regulation of metabolic function and disease. The orphan NR4A subgroup includes Nur77 (NR4A1), Nurr1 (NR4A2), and Nor-1 (NR4A3). Expression of these receptors is induced in multiple tissues by a diverse range of stimuli, including stimuli associated with metabolic function, such as: β-adrenoceptor agonists, cold, fatty acids, glucose, insulin, cholesterol, and thiazolidinediones. In vitro and in vivo gain- and loss-of-function studies in major metabolic tissues (including skeletal muscle, adipose, and liver cells and tissues) have associated the NR4A subgroup with specific aspects of lipid, carbohydrate, and energy homeostasis. Most excitingly, although these orphan receptors do not have known endogenous ligands, several small molecule agonists have recently been identified. The preliminary studies reviewed in this manuscript suggest that therapeutic exploitation of the NR4A subgroup may show utility against dyslipidemia, obesity, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia.
| | | |
Collapse
|
174
|
Michiels P, Atkins K, Ludwig C, Whittaker S, van Dongen M, Günther U. Assignment of the orphan nuclear receptor Nurr1 by NMR. BIOMOLECULAR NMR ASSIGNMENTS 2010; 4:101-105. [PMID: 20300892 DOI: 10.1007/s12104-010-9210-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 01/25/2010] [Indexed: 05/29/2023]
Abstract
The orphan nuclear receptor Nurr1 has been implicated in a number of conditions including Parkinson's disease and Schizophrenia. As such, it is of interest to study its interactions with other proteins, possibly mediated by small molecules, considering possible use as a drug target. We produced (2)H, (15)N, (13)C labelled-Nurr1 to generate the backbone amide NH, carbonyl C', C(alpha) and C(beta) assignments. About 84.0% of residues could be assigned. Most of the 37 missing assignments fall in 3 regions of the protein. Two of these surround a putative ligand-binding region of Nurr1, suggesting that this region of the protein is flexible, despite the ligand-binding pocket being filled with hydrophobic side-chains from residues surrounding the ligand binding pocket.
Collapse
Affiliation(s)
- Paul Michiels
- Solvay Pharmaceuticals Research Laboratories, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
175
|
Rees DA, Giles P, Lewis MD, Ham J. Adenosine regulates thrombomodulin and endothelial protein C receptor expression in folliculostellate cells of the pituitary gland. Purinergic Signal 2010; 6:19-29. [PMID: 19859827 PMCID: PMC2837818 DOI: 10.1007/s11302-009-9172-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 10/08/2009] [Indexed: 12/21/2022] Open
Abstract
Adenosine stimulates the release of interleukin 6 (IL-6) and vascular endothelial growth factor from folliculostellate cells of the anterior pituitary gland indicating that such cells are also involved in the communication between the immune and endocrine systems during stress and inflammation. In order to understand the precise actions of adenosine on folliculostellate cells, DNA microarray analysis was used to determine global changes in gene expression. Hierarchical clusters revealed, of the genes that had altered expression, the majority were suppressed and many, such as B cell translocation gene 2 and cyclin-dependent kinase inhibitor 2b were related to cell cycle arrest or inhibition of proliferation. Several of the up-regulated genes were associated with cytokine signalling or membrane receptor activity. The most notable of these being IL-6, sulfiredoxin 1, endothelial protein C receptor (EPCR) and thrombomodulin (THBD) which can all play a role in controlling inflammation. The EPCR and THBD pathway is well known in anti-coagulation but also has anti-inflammatory and anti-apoptotic properties. Up-regulation of EPCR and THBD in folliculostellate cells was confirmed by qRT-PCR and western blotting analysis and their expression were also demonstrated in many of the hormone-secreting cells of the anterior pituitary gland. Our findings suggest that adenosine can stimulate expression of stress and inflammation related genes from folliculostellate cells of the anterior pituitary gland. These genes include EPCR and THBD, neither of which has been previously identified in the pituitary gland.
Collapse
Affiliation(s)
- D. Aled Rees
- Centre for Endocrine and Diabetes Sciences, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| | - Peter Giles
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| | - Mark D. Lewis
- Centre for Endocrine and Diabetes Sciences, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| | - Jack Ham
- Centre for Endocrine and Diabetes Sciences, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| |
Collapse
|
176
|
Bonta PI, Matlung HL, Vos M, Peters SLM, Pannekoek H, Bakker ENTP, de Vries CJM. Nuclear receptor Nur77 inhibits vascular outward remodelling and reduces macrophage accumulation and matrix metalloproteinase levels. Cardiovasc Res 2010; 87:561-8. [PMID: 20189954 DOI: 10.1093/cvr/cvq064] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Structural adaptation of the vessel wall in response to sustained alterations in haemodynamic forces is known as vascular remodelling. Detailed knowledge on the mechanism underlying this vascular response is limited, and we aimed to study the function of Nur77 in smooth muscle cells (SMCs) in arterial remodelling. METHODS AND RESULTS Carotid artery ligation in mice results in flow-induced, outward remodelling of the contralateral carotid artery, and we observed enhanced Nur77 expression during this process. Transgenic mice that express Nur77 or its dominant-negative variant, denoted as 'DeltaTA' in arterial SMCs, were exposed to carotid artery ligation, and after 4 weeks pressure-diameter relationships were measured. Structural outward remodelling is inhibited in Nur77-transgenic mice when compared with wild-type and DeltaTA-transgenic mice. The key determinants of remodelling vascular tone and macrophage accumulation were studied. No difference in contractile and relaxant responses was detected in isolated aorta, carotid, and mesenteric artery segments between transgenic and wild-type mice. SMC-specific overexpression of Nur77 in transgenic mice reduced macrophage accumulation and repressed matrix metalloproteinase (MMP)1 and MMP9 expression at early time points. MMP2 protein expression was reduced in Nur77-transgenic mice, whereas in DeltaTA-transgenic mice MMP2 expression was increased. CONCLUSION Nur77 is induced during outward remodelling and inhibits this vascular adaptation in mice. Nur77-mediated inhibition of arterial remodelling involves a reduction in both macrophage accumulation and MMP expression levels.
Collapse
Affiliation(s)
- Peter I Bonta
- Department of Medical Biochemistry, Academic Medical Center K1-113, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
Chronic inflammation is associated with many neurodegenerative diseases, including multiple sclerosis, Parkinson's disease, and Alzheimer's disease. Increasing evidence that neuroinflammation contributes to disease severity has generated considerable interest in determining whether inhibition of inflammation pathways might be of therapeutic benefit. One potential avenue of intervention is provided by members of the nuclear receptor superfamily of ligand-dependent transcription factors that exert anti-inflammatory effects in many cell types. Here, we review recent studies providing insights into the distinct mechanisms that enable nuclear receptors to modulate immune responses, describe inflammatory components of neurodegenerative diseases, and discuss recent literature relevant to roles of nuclear receptors in influencing these processes.
Collapse
|
178
|
Wang X, Liu X, Kong R, Zhan R, Wang X, Leng X, Gong J, Duan M, Wang L, Wu L, Qian L. NGFI-B targets mitochondria and induces cardiomyocyte apoptosis in restraint-stressed rats by mediating energy metabolism disorder. Cell Stress Chaperones 2009; 14:639-48. [PMID: 19412742 PMCID: PMC2866952 DOI: 10.1007/s12192-009-0116-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/06/2009] [Accepted: 04/15/2009] [Indexed: 01/21/2023] Open
Abstract
NGFI-B/Nur77/TR3, originally identified as an immediate-early gene rapidly induced by serum and growth factors, is a member of the steroid hormone nuclear receptor superfamily with no identified endogenous ligand. NGFI-B induces apoptosis in a number of cell lineages exposed to proapoptotic stimuli by directly targeting the mitochondria, inducing cytochrome c release. The present study was designed to determine the role of NGFI-B in cardiomyocytes of restraint-stressed rats. The NGFI-B content was increased in mitochondria and reduced in plasma as apoptosis increased. Analysis showed that NGFI-B induces cardiomyocyte apoptosis in restraint-stressed rats by mediating mitochondrial energy metabolism disorder. Several novel mitochondrial proteins, which correlate with NGFI-B, were reported in cardiomyocyte apoptosis of restraint-stressed rats. Five proteins associated with NGFI-B participate directly in mitochondrial energy metabolism. Studies of mitochondrial respiratory efficiency and ATP synthase activity strongly support the findings. These results provide significant information for comprehensively understanding the cellular mechanism of cardiovascular diseases.
Collapse
Affiliation(s)
- XinXing Wang
- Department of Stress Medicine, Institute of Health & Environmental Medicine, No.1 DaLi Road, Tianjin, 300050 People’s Republic of China
| | - XiaoHua Liu
- Department of Stress Medicine, Institute of Health & Environmental Medicine, No.1 DaLi Road, Tianjin, 300050 People’s Republic of China
| | - RuiRui Kong
- Department of Stress Medicine, Institute of Health & Environmental Medicine, No.1 DaLi Road, Tianjin, 300050 People’s Republic of China
| | - Rui Zhan
- Department of Stress Medicine, Institute of Health & Environmental Medicine, No.1 DaLi Road, Tianjin, 300050 People’s Republic of China
| | - XiaoMing Wang
- Department of Stress Medicine, Institute of Health & Environmental Medicine, No.1 DaLi Road, Tianjin, 300050 People’s Republic of China
| | - Xue Leng
- Department of Stress Medicine, Institute of Health & Environmental Medicine, No.1 DaLi Road, Tianjin, 300050 People’s Republic of China
| | - JingBo Gong
- Department of Stress Medicine, Institute of Health & Environmental Medicine, No.1 DaLi Road, Tianjin, 300050 People’s Republic of China
| | - Meng Duan
- Department of Stress Medicine, Institute of Health & Environmental Medicine, No.1 DaLi Road, Tianjin, 300050 People’s Republic of China
| | - LiQun Wang
- Department of Stress Medicine, Institute of Health & Environmental Medicine, No.1 DaLi Road, Tianjin, 300050 People’s Republic of China
| | - Lei Wu
- Department of Stress Medicine, Institute of Health & Environmental Medicine, No.1 DaLi Road, Tianjin, 300050 People’s Republic of China
| | - LingJia Qian
- Department of Stress Medicine, Institute of Health & Environmental Medicine, No.1 DaLi Road, Tianjin, 300050 People’s Republic of China
| |
Collapse
|
179
|
Zhang D, Bi Z, Li Y, Zheng H, Li L, Ouyang J, Wang B, Bi Y. Sodium Ferulate Modified Gene Expression Profile of Oxidized Low-Density Lipoprotein-Stimulated Human Umbilical Vein Endothelial Cells. J Cardiovasc Pharmacol Ther 2009; 14:302-13. [PMID: 19837969 DOI: 10.1177/1074248409347986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL) is known to trigger vascular injury in atherosclerosis development. Sodium ferulate is an effective component from Chinese medicines with various beneficial cardiovascular pharmacological activities. Here, we investigated the effects of sodium ferulate on the gene expression profile of ox-LDL-stimulated endothelial cells. Cultured human umbilical vein endothelial cells (HUVECs) were treated with ox-LDL (50 μg/mL) in the absence or presence of sodium ferulate (5 μmol/L). Sodium ferulate significantly reduced ox-LDL-induced endothelial cell death as evaluated by cell viability assay. Human oligonucleotide microarray analysis demonstrated that a total of 32 ox-LDL-induced genes were significantly downregulated to control levels by sodium ferulate. These genes included members from families of chemokine, inflammatory factor, growth factor, and nuclear receptor. These data provided an overview of the gene expression profile of endothelial cells in response to ox-LDL and sodium ferulate, and demonstrated that sodium ferulate could regulate the expression of inflammation-related genes in endothelial cells and has the potential to benefit endothelial function in the setting of atherosclerosis.
Collapse
Affiliation(s)
- Dongxian Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, PR China, Nanyang Medical College, Henan, PR China
| | - Zhuoyue Bi
- School of Pharmacy, Wuhan University, Wuhan, PR China
| | - Yang Li
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, PR China
| | - Hong Zheng
- School of Basic Medical Science, Yunyang Medical College, Hubei, PR China
| | - Li Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, PR China
| | - Jingping Ouyang
- Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan, PR China
| | - Baohua Wang
- Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan, PR China
| | - Yongyi Bi
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|
180
|
Aherne CM, McMorrow J, Kane D, FitzGerald O, Mix KS, Murphy EP. Identification of NR4A2 as a transcriptional activator of IL-8 expression in human inflammatory arthritis. Mol Immunol 2009; 46:3345-57. [DOI: 10.1016/j.molimm.2009.07.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/26/2009] [Indexed: 01/27/2023]
|
181
|
Gurven M, Kaplan H, Winking J, Eid Rodriguez D, Vasunilashorn S, Kim JK, Finch C, Crimmins E. Inflammation and infection do not promote arterial aging and cardiovascular disease risk factors among lean horticulturalists. PLoS One 2009; 4:e6590. [PMID: 19668697 PMCID: PMC2722089 DOI: 10.1371/journal.pone.0006590] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 07/09/2009] [Indexed: 01/08/2023] Open
Abstract
Background Arterial aging is well characterized in industrial populations, but scantly described in populations with little access to modern medicine. Here we characterize health and aging among the Tsimane, Amazonian forager-horticulturalists with short life expectancy, high infectious loads and inflammation, but low adiposity and robust physical fitness. Inflammation has been implicated in all stages of arterial aging, atherogenesis and hypertension, and so we test whether greater inflammation associates with atherosclerosis and CVD risk. In contrast, moderate to vigorous daily activity, minimal obesity, and low fat intake predict minimal CVD risk among older Tsimane. Methods and Findings Peripheral arterial disease (PAD), based on the Ankle-Brachial Index (ABI), and hypertension were measured in Tsimane adults, and compared with rates from industrialized populations. No cases of PAD were found among Tsimane and hypertension was comparatively low (prevalence: 3.5%, 40+; 23%, 70+). Markers of infection and inflammation were much higher among Tsimane than among U.S. adults, whereas HDL was substantially lower. Regression models examine associations of ABI and BP with biomarkers of energy balance and metabolism and of inflammation and infection. Among Tsimane, obesity, blood lipids, and disease history were not significantly associated with ABI. Unlike the Tsimane case, higher cholesterol, C-reactive protein, leukocytes, cigarette smoking and systolic pressure among North Americans are all significantly associated with lower ABI. Conclusions Inflammation may not always be a risk factor for arterial degeneration and CVD, but instead may be offset by other factors: healthy metabolism, active lifestyle, favorable body mass, lean diet, low blood lipids and cardiorespiratory health. Other possibilities, including genetic susceptibility and the role of helminth infections, are discussed. The absence of PAD and CVD among Tsimane parallels anecdotal reports from other small-scale subsistence populations and suggests that chronic vascular disease had little impact on adult mortality throughout most of human evolutionary history.
Collapse
Affiliation(s)
- Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice. Biochem Biophys Res Commun 2009; 386:311-5. [PMID: 19523439 DOI: 10.1016/j.bbrc.2009.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 06/06/2009] [Indexed: 11/22/2022]
Abstract
NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese beta-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice. Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in beta-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.
Collapse
|
183
|
|
184
|
Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 2009; 137:47-59. [PMID: 19345186 DOI: 10.1016/j.cell.2009.01.038] [Citation(s) in RCA: 738] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/29/2008] [Accepted: 01/15/2009] [Indexed: 12/20/2022]
Abstract
Nurr1, an orphan nuclear receptor, plays an essential role in the generation and maintenance of dopaminergic neurons in the brain. Rare mutations in Nurr1 are associated with familial Parkinson's disease, but the underlying basis for this relationship has not been established. Here, we demonstrate that Nurr1 unexpectedly functions to inhibit expression of pro-inflammatory neurotoxic mediators in both microglia and astrocytes. Reduced Nurr1 expression results in exaggerated inflammatory responses in microglia that are further amplified by astrocytes, leading to the production of factors that cause death of tyrosine hydroxylase-expressing neurons. Nurr1 exerts anti-inflammatory effects by docking to NF-kappaB-p65 on target inflammatory gene promoters in a signal-dependent manner. Subsequently, Nurr1 recruits the CoREST corepressor complex, resulting in clearance of NF-kappaB-p65 and transcriptional repression. These studies suggest that Nurr1 protects against loss of dopaminergic neurons in Parkinson's disease in part by limiting the production of neurotoxic mediators by microglia and astrocytes.
Collapse
Affiliation(s)
- Kaoru Saijo
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, California, CA 92093, USA.
| | | | | | | | | | | | | | | |
Collapse
|
185
|
St-Onge M, Dumas A, Michaud A, Laflamme C, Dussault AA, Pouliot M. Impact of anti-inflammatory agents on the gene expression profile of stimulated human neutrophils: unraveling endogenous resolution pathways. PLoS One 2009; 4:e4902. [PMID: 19295914 PMCID: PMC2654409 DOI: 10.1371/journal.pone.0004902] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 02/09/2009] [Indexed: 01/25/2023] Open
Abstract
Adenosine, prostaglandin E(2), or increased intracellular cyclic AMP concentration each elicit potent anti-inflammatory events in human neutrophils by inhibiting functions such as phagocytosis, superoxide production, adhesion and cytokine release. However, the endogenous molecular pathways mediating these actions are poorly understood. In the present study, we examined their impact on the gene expression profile of stimulated neutrophils. Purified blood neutrophils from healthy donors were stimulated with a cocktail of inflammatory agonists in the presence of at least one of the following anti-inflammatory agents: adenosine A(2A) receptor agonist CGS 21680, prostaglandin E(2), cyclic-AMP-elevating compounds forskolin and RO 20-1724. Total RNA was analyzed using gene chips and real-time PCR. Genes encoding transcription factors, enzymes and regulatory proteins, as well as secreted cytokines/chemokines showed differential expression. We identified 15 genes for which the anti-inflammatory agents altered mRNA levels. The agents affected the expression profile in remarkably similar fashion, suggesting a central mechanism limiting cell activation. We have identified a set of genes that may be part of important resolution pathways that interfere with cell activation. Identification of these pathways will improve understanding of the capacity of tissues to terminate inflammatory responses and contribute to the development of therapeutic strategies based on endogenous resolution.
Collapse
Affiliation(s)
- Mireille St-Onge
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Aline Dumas
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Annick Michaud
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Cynthia Laflamme
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Andrée-Anne Dussault
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Marc Pouliot
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
186
|
Kardys I, van Tiel CM, de Vries CJ, Pannekoek H, Uitterlinden AG, Hofman A, Witteman JC, de Maat MP. Haplotypes of theNR4A2/NURR1gene and cardiovascular disease: The Rotterdam Study. Hum Mutat 2009; 30:417-23. [DOI: 10.1002/humu.20902] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
187
|
You B, Jiang YY, Chen S, Yan G, Sun J. The orphan nuclear receptor Nur77 suppresses endothelial cell activation through induction of IkappaBalpha expression. Circ Res 2009; 104:742-9. [PMID: 19213954 DOI: 10.1161/circresaha.108.192286] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endothelial inflammation plays a critical role in the development and progression of cardiovascular disease, albeit the mechanisms need to be fully elucidated. Nur77 is highly expressed in vascular endothelial cells (ECs) and plays a role in the regulation of cell proliferation and angiogenesis; its role in vascular inflammation, however, remains unknown. Treatment of human umbilical vein ECs (HUVECs) with tumor necrosis factor (TNF)-alpha substantially increased the transcription and protein expression of Nur77 in a dose and time-dependent manner, as determined by Northern blot and Western blot analysis. Adenovirus mediated overexpression of Nur77 markedly increased the intracellular levels of IkappaBalpha by approximately 4-fold, whereas overexpression of dominant negative Nur77 (DN-Nur77), which lacks its transactivation domain, had no effect on IkappaBalpha expression, suggesting that Nur77 is an important transcriptional factor in controlling IkappaBalpha expression in ECs. Furthermore, overexpression of Nur77 significantly increased IkappaBalpha promoter activity via directly binding to a Nur77 response element in the IkappaBalpha promoter. Importantly, overexpression of Nur77, but not DN-Nur77, protected ECs against the TNF-alpha- and interleukin-1beta-induced endothelial activation, as characterized by attenuation in the nuclear factor kappaB activation, expression of adhesion molecules ICAM-1 and VCAM-1, and monocytic adherence to ECs. These results indicate that Nur77 negatively regulates the TNF-alpha- and interleukin-1beta-induced vascular EC activation by transcriptionally upregulation of IkappaBalpha expression.
Collapse
Affiliation(s)
- Bei You
- Department of Pharmacology, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
188
|
Nomiyama T, Zhao Y, Gizard F, Findeisen HM, Heywood EB, Jones KL, Conneely OM, Bruemmer D. Deficiency of the NR4A neuron-derived orphan receptor-1 attenuates neointima formation after vascular injury. Circulation 2009; 119:577-86. [PMID: 19153266 DOI: 10.1161/circulationaha.108.822056] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The neuron-derived orphan receptor-1 (NOR1) belongs to the evolutionary highly conserved and most ancient NR4A subfamily of the nuclear hormone receptor superfamily. Members of this subfamily function as early-response genes regulating key cellular processes, including proliferation, differentiation, and survival. Although NOR1 has previously been demonstrated to be required for smooth muscle cell proliferation in vitro, the role of this nuclear receptor for the proliferative response underlying neointima formation and target genes trans-activated by NOR1 remain to be defined. METHODS AND RESULTS Using a model of guidewire-induced arterial injury, we demonstrate decreased neointima formation in NOR1(-/-) mice compared with wild-type mice. In vitro, NOR1-deficient smooth muscle cells exhibit decreased proliferation as a result of a G(1)-->S phase arrest of the cell cycle and increased apoptosis in response to serum deprivation. NOR1 deficiency alters phosphorylation of the retinoblastoma protein by preventing mitogen-induced cyclin D1 and D2 expression. Conversely, overexpression of NOR1 induces cyclin D1 expression and the transcriptional activity of the cyclin D1 promoter in transient reporter assays. Gel shift and chromatin immunoprecipitation assays identified a putative response element for NR4A receptors in the cyclin D1 promoter, to which NOR1 is recruited in response to mitogenic stimulation. Finally, we provide evidence that these observations are applicable in vivo by demonstrating decreased cyclin D1 expression during neointima formation in NOR1-deficient mice. CONCLUSIONS These experiments characterize cyclin D1 as an NOR1-regulated target gene in smooth muscle cells and demonstrate that NOR1 deficiency decreases neointima formation in response to vascular injury.
Collapse
Affiliation(s)
- Takashi Nomiyama
- 575 Wethington Bldg, 900 S Limestone St, Lexington, KY 40536-0200, USA
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Abstract
The NR4A orphan nuclear receptor subfamily is comprised of the highly homologous receptors Nur77 (NR4A1), Nurr1 (NR4A2), and NOR1 (NR4A3). These evolutionarily conserved and ancient receptors function as ligand-independent transcription factors that regulate the expression of overlapping target genes. As early response genes, the basal expression level of these receptors is low but rapidly induced as a result of changes in environmental cues. The transcriptional activity of these receptors is primarily regulated by gene induction and posttranslational modifications of the receptor including phosphorylation. NR4A receptors were initially identified in the brain and early functional studies suggested a role for these receptors in signal- and cell-specific stimulation of both apoptosis and proliferation. More recent studies have revealed much broader functions of these orphan receptors including the regulation of genes involved in cancer, metabolism, energy balance, atherosclerosis, and vascular remodeling. In this review, we will discuss our current understanding of the molecular biology of NR4A receptors and summarize recent studies suggesting an important role of these orphan receptors in vascular biology.
Collapse
|
190
|
Shibata N, Glass CK. Regulation of macrophage function in inflammation and atherosclerosis. J Lipid Res 2008; 50 Suppl:S277-81. [PMID: 18987388 DOI: 10.1194/jlr.r800063-jlr200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis can be considered as both a chronic inflammatory disease and a lipid metabolism disorder. Innate immunity pathways have long been suspected to contribute to the initiation and progression of atherosclerosis. This suggests that crosstalk between lipid metabolism and innate immunity pathways plays an important role for the development and/or the prevention of atherosclerosis. However, it is not fully defined how innate immunity affects lipid metabolism. Macrophages play a central role in atherogenesis through the accumulation of cholesterol and the production of inflammatory mediators and cytokines. Liver X receptors (LXRs) exert an important atheroprotective effect in the macrophage. In addition to regulating cholesterol metabolism, LXRs are also negative regulators of macrophage inflammatory gene responses. In this review, we will discuss the roles of LXRs in the macrophage as key factors that link innate immunity and lipid metabolism.
Collapse
Affiliation(s)
- Norihito Shibata
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | | |
Collapse
|
191
|
Fu S, Zhao H, Shi J, Abzhanov A, Crawford K, Ohno-Machado L, Zhou J, Du Y, Kuo WP, Zhang J, Jiang M, Jin JG. Peripheral arterial occlusive disease: global gene expression analyses suggest a major role for immune and inflammatory responses. BMC Genomics 2008; 9:369. [PMID: 18673543 PMCID: PMC2529314 DOI: 10.1186/1471-2164-9-369] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 08/01/2008] [Indexed: 11/17/2022] Open
Abstract
Background Peripheral arterial disease (PAD), a major manifestation of atherosclerosis, is associated with significant cardiovascular morbidity, limb loss and death. However, mechanisms underlying the genesis and progression of the disease are far from clear. Genome-wide gene expression profiling of clinical samples may represent an effective approach to gain relevant information. Results After histological classification, a total of 30 femoral artery samples, including 11 intermediate lesions, 14 advanced lesions and 5 normal femoral arteries, were profiled using Affymetrix microarray platform. Following real-time RT-PCR validation, different algorithms of gene selection and clustering were applied to identify differentially expressed genes. Under a stringent cutoff, i.e., a false discovery rate (FDR) <0.5%, we found 366 genes were differentially regulated in intermediate lesions and 447 in advanced lesions. Of these, 116 genes were overlapped between intermediate and advanced lesions, including 68 up-regulated genes and 48 down-regulated ones. In these differentially regulated genes, immune/inflammatory genes were significantly up-regulated in different stages of PAD, (85/230 in intermediate lesions, 37/172 in advanced lesions). Through literature mining and pathway analysis using different databases such as Gene Ontology (GO), and the Kyoto Encyclopedia of Gene and Genomics (KEGG), genes involved in immune/inflammatory responses were significantly enriched in up-regulated genes at different stages of PAD(p < 0.05), revealing a significant correlation between immune/inflammatory responses and disease progression. Moreover, immune-related pathways such as Toll-like receptor signaling and natural killer cell mediated cytotoxicity were particularly enriched in intermediate and advanced lesions (P < 0.05), highlighting their pathogenic significance during disease progression. Conclusion Lines of evidence revealed in this study not only support previous hypotheses, primarily based on studies of animal models and other types of arterial disease, that inflammatory responses may influence the development of PAD, but also permit the recognition of a wide spectrum of immune/inflammatory genes that can serve as signatures for disease progression in PAD. Further studies of these signature molecules may eventually allow us to develop more sophisticated protocols for pharmaceutical interventions.
Collapse
Affiliation(s)
- Shijun Fu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Bibliography. Current world literature. Lipid metabolism. Curr Opin Lipidol 2008; 19:314-21. [PMID: 18460925 DOI: 10.1097/mol.0b013e328303e27e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
193
|
Pearen MA, Myers SA, Raichur S, Ryall JG, Lynch GS, Muscat GEO. The orphan nuclear receptor, NOR-1, a target of beta-adrenergic signaling, regulates gene expression that controls oxidative metabolism in skeletal muscle. Endocrinology 2008; 149:2853-65. [PMID: 18325999 DOI: 10.1210/en.2007-1202] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
beta 1-3-Adrenoreceptor (AR)-deficient mice are unable to regulate energy expenditure and develop diet-induced obesity on a high-fat diet. We determined previously that beta2-AR agonist treatment activated expression of the mRNA encoding the orphan nuclear receptor, NOR-1, in muscle cells and plantaris muscle. Here we show that beta2-AR agonist treatment significantly and transiently activated the expression of NOR-1 (and the other members of the NR4A subgroup) in slow-twitch oxidative soleus muscle and fast-twitch glycolytic tibialis anterior muscle. The activation induced by beta-adrenergic signaling is consistent with the involvement of protein kinase A, MAPK, and phosphorylation of cAMP response element-binding protein. Stable cell lines transfected with a silent interfering RNA targeting NOR-1 displayed decreased palmitate oxidation and lactate accumulation. In concordance with these observations, ATP production in the NOR-1 silent interfering RNA (but not control)-transfected cells was resistant to (azide-mediated) inhibition of oxidative metabolism and expressed significantly higher levels of hypoxia inducible factor-1alpha. In addition, we observed the repression of genes that promote fatty acid oxidation (peroxisomal proliferator-activated receptor-gamma coactivator-1alpha/beta and lipin-1alpha) and trichloroacetic acid cycle-mediated carbohydrate (pyruvate) oxidation [pyruvate dehydrogenase phosphatase 1 regulatory and catalytic subunits (pyruvate dehydrogenase phosphatases-1r and -c)]. Furthermore, we observed that beta2-AR agonist administration in mouse skeletal muscle induced the expression of genes that activate fatty acid oxidation and modulate pyruvate use, including PGC-1alpha, lipin-1alpha, FOXO1, and PDK4. Finally, we demonstrate that NOR-1 is recruited to the lipin-1alpha and PDK-4 promoters, and this is consistent with NOR-1-mediated regulation of these genes. In conclusion, NOR-1 is necessary for oxidative metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, The University of Queensland, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
194
|
Abstract
It is well known that the steroid hormone glucocorticoid and its nuclear receptor regulate the inflammatory process, a crucial component in the pathophysiological process related to human diseases that include atherosclerosis, obesity and type II diabetes, inflammatory bowel disease, Alzheimer's disease, multiple sclerosis, and liver tumors. Growing evidence demonstrates that orphan and adopted orphan nuclear receptors, such as peroxisome proliferator-activated receptors, liver x receptors, the farnesoid x receptor, NR4As, retinoid x receptors, and the pregnane x receptor, regulate the inflammatory and metabolic profiles in a ligand-dependent or -independent manner in human and animal models. This review summarizes the regulatory roles of these nuclear receptors in the inflammatory process and the underlying mechanisms.
Collapse
Affiliation(s)
- Kun Wang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
195
|
O'Kane M, Markham T, McEvoy AN, Fearon U, Veale DJ, FitzGerald O, Kirby B, Murphy EP. Increased Expression of the Orphan Nuclear Receptor NURR1 in Psoriasis and Modulation following TNF-α Inhibition. J Invest Dermatol 2008; 128:300-10. [PMID: 17671512 DOI: 10.1038/sj.jid.5701023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The orphan nuclear receptor NURR1 belongs to the NR4A subfamily of transcription factors which are emerging as important mediators of cytokine and growth factor signaling. The transcriptional function of these ligand-independent and constitutively active receptors is controlled at the level of expression and nuclear localization. This study examines the expression of NURR1 in psoriasis and biological effects on this receptor following inhibition of tumor necrosis factor-alpha (TNF-alpha) signaling. We report increased expression of NURR1 mRNA and protein in involved psoriasis skin compared with uninvolved and normal skin, which correlates significantly (P=0.0055) with clinical measures of the psoriasis area and severity index. Enhanced NURR1 expression localizes to both nucleus and cytoplasm of cells of involved epidermis, blood vessels, and inflammatory infiltrates, in contrast to predominant cytoplasmic distribution in uninvolved and normal skin. Endogenous NURR1 levels are rapidly and selectively increased in response to proinflammatory agonists and growth factors in normal dermal endothelial cells. Following TNF-alpha inhibition with infliximab or etanercept, NURR1 mRNA and protein levels in involved skin are significantly decreased and cytoplasmic distribution is restored. These findings establish the aberrant expression and distribution of NURR1 in psoriasis and suggest that clinical benefits of TNF-alpha inhibition may be mediated through altered NURR1 activity.
Collapse
Affiliation(s)
- Marina O'Kane
- College of Life Sciences, UCD Veterinary Sciences Centre, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Zhao Y, Liu Y, Zheng D. Alpha 1-antichymotrypsin/SerpinA3 is a novel target of orphan nuclear receptor Nur77. FEBS J 2008; 275:1025-38. [PMID: 18248459 DOI: 10.1111/j.1742-4658.2008.06269.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nur77 is one member of the nuclear receptor superfamily. As a transcription factor, Nur77 participates in a variety of biological processes, including T cell development, inflammatory responses, steroid hormone synthesis, and hepatic glucose metabolism. It typically acts via binding to the Nur77 responsive element (NBRE) in the promoter regions of its target genes. In the present study, we identified a novel Nur77-regulated gene, alpha1-antichymotrypsin/SerpinA3, via an approach combining computational prediction and wet-laboratory validations. First, we identified 483 candidate genes via a human genome-wide scan for NBREs in their proximal promoters. Three out of 14 function-associated genes were further identified to be transactivated by Nur77 in luciferase reporter gene assays in HEK 293T cells. The transactivation assay proved that the NBRE (-182 to -175) in the SerpinA3 promoter region is a novel Nur77-dependent functional motif in HEK 293T and HepG2 cells. Electrophoretic mobility shift and chromatin immunoprecipitation assays demonstrated that Nur77 physically associates with the SerpinA3 promoter region both in vitro and in vivo. Nur77 overexpression and RNA interference-mediated Nur77 gene knockdown analysis confirmed that SerpinA3 is indeed a novel Nur77-targeted gene. These data may throw light on the function of Nur77 in inflammatory responses and acute-phase reactions as well as the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Yongjuan Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | |
Collapse
|
197
|
Tiwari R, Singh V, Barthwal M. Macrophages: An elusive yet emerging therapeutic target of atherosclerosis. Med Res Rev 2008; 28:483-544. [DOI: 10.1002/med.20118] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
198
|
Abstract
Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that regulate development, reproduction, and metabolism of lipids, drugs and energy. The importance of this family of proteins in metabolic disease is exemplified by NR ligands used in the clinic or under exploratory development for the treatment of diabetes mellitus, dyslipidemia, hypercholesterolemia, or other metabolic abnormalities. Genetic studies in humans and rodents support the notion that NRs control a wide variety of metabolic processes by regulating the expression of genes encoding key enzymes, transporters and other proteins involved in metabolic homeostasis. Current knowledge of complex NR metabolic networks is summarized here.
Collapse
|
199
|
Abstract
PURPOSE OF REVIEW The nuclear orphan receptors Nur77 (NR4A1), Nurr1 (NR4A2) and NOR-1 (NR4A3) are known to be involved in T-cell apoptosis, brain development, and the hypothalamic-pituitary-adrenal axis. Here, we review our current understanding of the NR4A nuclear receptors in processes that are relevant to vascular disease. RECENT FINDINGS NR4A nuclear receptors have recently been described to play a role in metabolism by regulating gluconeogenesis, lipolysis, energy expenditure, and adipogenesis. The function of NR4A nuclear receptors has also extensively been investigated in cells crucial in vascular lesion formation, such as macrophages, endothelial cells and smooth muscle cells. SUMMARY The involvement of NR4A nuclear receptors in both metabolism and in processes in the vessel wall supports a substantial role for NR4A nuclear receptors in the development of vascular disease.
Collapse
Affiliation(s)
- Thijs W H Pols
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
200
|
Wu-Wong JR, Nakane M, Ma J, Ruan X, Kroeger PE. Elevated phosphorus modulates vitamin D receptor-mediated gene expression in human vascular smooth muscle cells. Am J Physiol Renal Physiol 2007; 293:F1592-604. [PMID: 17715259 DOI: 10.1152/ajprenal.00492.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clinical observations show that an increase in serum inorganic phosphorus (Pi) is linked to higher cardiovascular (CV) mortality, while vitamin D receptor (VDR) agonist therapy is associated with survival benefit in stage 5 chronic kidney disease. Smooth muscle cells (SMCs) play an important role in CV pathophysiology, but the interaction between Pi and the VDR signaling pathway in SMCs is not known. Real-time RT-PCR studies revealed that elevated Pi (2.06 mM) modulated VDR-mediated regulation of a panel of genes including thrombomodulin and osteopontin in SMCs. DNA microarray results demonstrated that increasing Pi from 0.9 to 2.06 mM exerted a widespread modulating effect on VDR-mediated gene expression. A total of 325 target genes were affected by paricalcitol at 0.9 mM Pi, with 195 up- and 130 downregulated. The number of target genes affected by paricalcitol at 2.06 mM Pi decreased to 86, with 55 up- and 31 downregulated. VDR-mediated gene expression in As4.1 cells (a juxtaglomerular cell-like cell line derived from kidney tumors in SV40 T-antigen transgenic mice) and peroxisome proliferator-activated receptor (PPAR)gamma-mediated gene expression in SMCs were also altered by elevated Pi, suggesting that the observation is not unique to VDR in SMCs. Mechanism analysis showed that elevated Pi had no significant effect on VDR or PPARgamma protein level but altered the cytosolic vs. nuclear distribution of NF-kappaB or nuclear receptor corepressor 1 (NCoR1). Our results demonstrate for the first time that elevated Pi affects VDR-mediated gene expression in human coronary artery SMCs and the effect is not limited to VDR in SMCs.
Collapse
|