151
|
Alterations at the cross-bridge level are associated with a paradoxical gain of muscle function in vivo in a mouse model of nemaline myopathy. PLoS One 2014; 9:e109066. [PMID: 25268244 PMCID: PMC4182639 DOI: 10.1371/journal.pone.0109066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 09/09/2014] [Indexed: 11/29/2022] Open
Abstract
Nemaline myopathy is the most common disease entity among non-dystrophic skeletal muscle congenital diseases. The first disease causing mutation (Met9Arg) was identified in the gene encoding α-tropomyosinslow gene (TPM3). Considering the conflicting findings of the previous studies on the transgenic (Tg) mice carrying the TPM3Met9Arg mutation, we investigated carefully the effect of the Met9Arg mutation in 8–9 month-old Tg(TPM3)Met9Arg mice on muscle function using a multiscale methodological approach including skinned muscle fibers analysis and invivo investigations by magnetic resonance imaging and 31-phosphorus magnetic resonance spectroscopy. While invitro maximal force production was reduced in Tg(TPM3)Met9Arg mice as compared to controls, invivo measurements revealed an improved mechanical performance in the transgenic mice as compared to the former. The reduced invitro muscle force might be related to alterations occuring at the cross-bridges level with muscle-specific underlying mechanisms. In vivo muscle improvement was not associated with any changes in either muscle volume or energy metabolism. Our findings indicate that TPM3(Met9Arg) mutation leads to a mild muscle weakness invitro related to an alteration at the cross-bridges level and a paradoxical gain of muscle function invivo. These results clearly point out that invitro alterations are muscle-dependent and do not necessarily translate into similar changes invivo.
Collapse
|
152
|
Kazmierczak K, Yuan CC, Liang J, Huang W, Rojas AI, Szczesna-Cordary D. Remodeling of the heart in hypertrophy in animal models with myosin essential light chain mutations. Front Physiol 2014; 5:353. [PMID: 25295008 PMCID: PMC4170140 DOI: 10.3389/fphys.2014.00353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/29/2014] [Indexed: 01/19/2023] Open
Abstract
Cardiac hypertrophy represents one of the most important cardiovascular problems yet the mechanisms responsible for hypertrophic remodeling of the heart are poorly understood. In this report we aimed to explore the molecular pathways leading to two different phenotypes of cardiac hypertrophy in transgenic mice carrying mutations in the human ventricular myosin essential light chain (ELC). Mutation-induced alterations in the heart structure and function were studied in two transgenic (Tg) mouse models carrying the A57G (alanine to glycine) substitution or lacking the N-terminal 43 amino acid residues (Δ43) from the ELC sequence. The first model represents an HCM disease as the A57G mutation was shown to cause malignant HCM outcomes in humans. The second mouse model is lacking the region of the ELC that was shown to be important for a direct interaction between the ELC and actin during muscle contraction. Our earlier studies demonstrated that >7 month old Tg-Δ43 mice developed substantial cardiac hypertrophy with no signs of histopathology or fibrosis. Tg mice did not show abnormal cardiac function compared to Tg-WT expressing the full length human ventricular ELC. Previously reported pathological morphology in Tg-A57G mice included extensive disorganization of myocytes and interstitial fibrosis with no abnormal increase in heart mass observed in >6 month-old animals. In this report we show that strenuous exercise can trigger hypertrophy and pathologic cardiac remodeling in Tg-A57G mice as early as 3 months of age. In contrast, no exercise-induced changes were noted for Tg-Δ43 hearts and the mice maintained a non-pathological cardiac phenotype. Based on our results, we suggest that exercise-elicited heart remodeling in Tg-A57G mice follows the pathological pathway leading to HCM, while it induces no abnormal response in Tg-Δ43 mice.
Collapse
Affiliation(s)
- Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA
| | - Chen-Ching Yuan
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA
| | - Wenrui Huang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA
| | - Ana I Rojas
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
153
|
Månsson A. Hypothesis and theory: mechanical instabilities and non-uniformities in hereditary sarcomere myopathies. Front Physiol 2014; 5:350. [PMID: 25309450 PMCID: PMC4163974 DOI: 10.3389/fphys.2014.00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/26/2014] [Indexed: 12/23/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM), due to point mutations in genes for sarcomere proteins such as myosin, occurs in 1/500 people and is the most common cause of sudden death in young individuals. Similar mutations in skeletal muscle, e.g., in the MYH7 gene for slow myosin found in both the cardiac ventricle and slow skeletal muscle, may also cause severe disease but the severity and the morphological changes are often different. In HCM, the modified protein function leads, over years to decades, to secondary remodeling with substantial morphological changes, such as hypertrophy, myofibrillar disarray, and extensive fibrosis associated with severe functional deterioration. Despite intense studies, it is unclear how the moderate mutation-induced changes in protein function cause the long-term effects. In hypertrophy of the heart due to pressure overload (e.g., hypertension), mechanical stress in the myocyte is believed to be major initiating stimulus for activation of relevant cell signaling cascades. Here it is considered how expression of mutated proteins, such as myosin or regulatory proteins, could have similar consequences through one or both of the following mechanisms: (1) contractile instabilities within each sarcomere (with more than one stable velocity for a given load), (2) different tension generating capacities of cells in series. These mechanisms would have the potential to cause increased tension and/or stretch of certain cells during parts of the cardiac cycle. Modeling studies are used to illustrate these ideas and experimental tests are proposed. The applicability of similar ideas to skeletal muscle is also postulated, and differences between heart and skeletal muscle are discussed.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University Kalmar, Sweden
| |
Collapse
|
154
|
Messer AE, Marston SB. Investigating the role of uncoupling of troponin I phosphorylation from changes in myofibrillar Ca(2+)-sensitivity in the pathogenesis of cardiomyopathy. Front Physiol 2014; 5:315. [PMID: 25202278 PMCID: PMC4142463 DOI: 10.3389/fphys.2014.00315] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/02/2014] [Indexed: 12/12/2022] Open
Abstract
Contraction in the mammalian heart is controlled by the intracellular Ca(2+) concentration as it is in all striated muscle, but the heart has an additional signaling system that comes into play to increase heart rate and cardiac output during exercise or stress. β-adrenergic stimulation of heart muscle cells leads to release of cyclic-AMP and the activation of protein kinase A which phosphorylates key proteins in the sarcolemma, sarcoplasmic reticulum and contractile apparatus. Troponin I (TnI) and Myosin Binding Protein C (MyBP-C) are the prime targets in the myofilaments. TnI phosphorylation lowers myofibrillar Ca(2+)-sensitivity and increases the speed of Ca(2+)-dissociation and relaxation (lusitropic effect). Recent studies have shown that this relationship between Ca(2+)-sensitivity and TnI phosphorylation may be unstable. In familial cardiomyopathies, both dilated and hypertrophic (DCM and HCM), a mutation in one of the proteins of the thin filament often results in the loss of the relationship (uncoupling) and blunting of the lusitropic response. For familial dilated cardiomyopathy in thin filament proteins it has been proposed that this uncoupling is causative of the phenotype. Uncoupling has also been found in human heart tissue from patients with hypertrophic obstructive cardiomyopathy as a secondary effect. Recently, it has been found that Ca(2+)-sensitizing drugs can promote uncoupling, whilst one Ca(2+)-desensitizing drug Epigallocatechin 3-Gallate (EGCG) can reverse uncoupling. We will discuss recent findings about the role of uncoupling in the development of cardiomyopathies and the molecular mechanism of the process.
Collapse
Affiliation(s)
- Andrew E. Messer
- National Heart & Lung Institute, Imperial College LondonLondon, UK
| | | |
Collapse
|
155
|
Helms AS, Davis FM, Coleman D, Bartolone SN, Glazier AA, Pagani F, Yob JM, Sadayappan S, Pedersen E, Lyons R, Westfall MV, Jones R, Russell MW, Day SM. Sarcomere mutation-specific expression patterns in human hypertrophic cardiomyopathy. ACTA ACUST UNITED AC 2014; 7:434-43. [PMID: 25031304 DOI: 10.1161/circgenetics.113.000448] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Heterozygous mutations in sarcomere genes in hypertrophic cardiomyopathy (HCM) are proposed to exert their effect through gain of function for missense mutations or loss of function for truncating mutations. However, allelic expression from individual mutations has not been sufficiently characterized to support this exclusive distinction in human HCM. METHODS AND RESULTS Sarcomere transcript and protein levels were analyzed in septal myectomy and transplant specimens from 46 genotyped HCM patients with or without sarcomere gene mutations and 10 control hearts. For truncating mutations in MYBPC3, the average ratio of mutant:wild-type transcripts was ≈1:5, in contrast to ≈1:1 for all sarcomere missense mutations, confirming that nonsense transcripts are uniquely unstable. However, total MYBPC3 mRNA was significantly increased by 9-fold in HCM samples with MYBPC3 mutations compared with control hearts and with HCM samples without sarcomere gene mutations. Full-length MYBPC3 protein content was not different between MYBPC3 mutant HCM and control samples, and no truncated proteins were detected. By absolute quantification of abundance with multiple reaction monitoring, stoichiometric ratios of mutant sarcomere proteins relative to wild type were strikingly variable in a mutation-specific manner, with the fraction of mutant protein ranging from 30% to 84%. CONCLUSIONS These results challenge the concept that haploinsufficiency is a unifying mechanism for HCM caused by MYBPC3 truncating mutations. The range of allelic imbalance for several missense sarcomere mutations suggests that certain mutant proteins may be more or less stable or incorporate more or less efficiently into the sarcomere than wild-type proteins. These mutation-specific properties may distinctly influence disease phenotypes.
Collapse
Affiliation(s)
- Adam S Helms
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Frank M Davis
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - David Coleman
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Sarah N Bartolone
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Amelia A Glazier
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Francis Pagani
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Jaime M Yob
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Sakthivel Sadayappan
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Ellen Pedersen
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Robert Lyons
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Margaret V Westfall
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Richard Jones
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Mark W Russell
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Sharlene M Day
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.).
| |
Collapse
|
156
|
Wijnker PJM, Sequeira V, Witjas-Paalberends ER, Foster DB, dos Remedios CG, Murphy AM, Stienen GJM, van der Velden J. Phosphorylation of protein kinase C sites Ser42/44 decreases Ca(2+)-sensitivity and blunts enhanced length-dependent activation in response to protein kinase A in human cardiomyocytes. Arch Biochem Biophys 2014; 554:11-21. [PMID: 24814372 PMCID: PMC4121669 DOI: 10.1016/j.abb.2014.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
Protein kinase C (PKC)-mediated phosphorylation of troponin I (cTnI) at Ser42/44 is increased in heart failure. While studies in rodents demonstrated that PKC-mediated Ser42/44 phosphorylation decreases maximal force and ATPase activity, PKC incubation of human cardiomyocytes did not affect maximal force. We investigated whether Ser42/44 pseudo-phosphorylation affects force development and ATPase activity using troponin exchange in human myocardium. Additionally, we studied if pseudo-phosphorylated Ser42/44 modulates length-dependent activation of force, which is regulated by protein kinase A (PKA)-mediated cTnI-Ser23/24 phosphorylation. Isometric force was measured in membrane-permeabilized cardiomyocytes exchanged with human recombinant wild-type troponin or troponin mutated at Ser42/44 or Ser23/24 into aspartic acid (D) or alanine (A) to mimic phosphorylation and dephosphorylation, respectively. In troponin-exchanged donor cardiomyocytes experiments were repeated after PKA incubation. ATPase activity was measured in troponin-exchanged cardiac muscle strips. Compared to wild-type, 42D/44D decreased Ca(2+)-sensitivity without affecting maximal force in failing and donor cardiomyocytes. In donor myocardium, 42D/44D did not affect maximal ATPase activity or tension cost. Interestingly, 42D/44D blunted the length-dependent increase in Ca(2+)-sensitivity induced upon PKA-mediated phosphorylation. Since the drop in Ca(2+)-sensitivity at physiological Ca(2+)-concentrations is relatively large phosphorylation of Ser42/44 may result in a decrease of force and associated ATP utilization in the human heart.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Vasco Sequeira
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| | - E Rosalie Witjas-Paalberends
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| | - D Brian Foster
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Ross Bldg 1144/720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | - Anne M Murphy
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Ross Bldg 1144/720 Rutland Avenue, Baltimore, MD 21205, USA.
| | - Ger J M Stienen
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands.
| | - Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; ICIN-Netherlands Heart Institute, Utrecht, The Netherlands.
| |
Collapse
|
157
|
Najafi A, Schlossarek S, van Deel ED, van den Heuvel N, Güçlü A, Goebel M, Kuster DWD, Carrier L, van der Velden J. Sexual dimorphic response to exercise in hypertrophic cardiomyopathy-associated MYBPC3-targeted knock-in mice. Pflugers Arch 2014; 467:1303-17. [PMID: 25010737 DOI: 10.1007/s00424-014-1570-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 01/02/2023]
Abstract
Hypertrophic cardiomyopathy (HCM), the most common genetic cardiac disorder, is frequently caused by mutations in MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C). Moreover, HCM is the leading cause of sudden cardiac death (SCD) in young athletes. Interestingly, SCD is more likely to occur in male than in female athletes. However, the pathophysiological mechanisms leading to sex-specific differences are poorly understood. Therefore, we studied the effect of sex and exercise on functional properties of the heart and sarcomeres in mice carrying a MYBPC3 point mutation (G > A transition in exon 6) associated with human HCM. Echocardiography followed by isometric force measurements in left ventricular (LV) membrane-permeabilized cardiomyocytes was performed in wild-type (WT) and heterozygous (HET) knock-in mice of both sex (N = 5 per group) in sedentary mice and mice that underwent an 8-week voluntary wheel-running exercise protocol. Isometric force measurements in single cardiomyocytes revealed a lower maximal force generation (F max) of the sarcomeres in male sedentary HET (13.0 ± 1.1 kN/m(2)) compared to corresponding WT (18.4 ± 1.8 kN/m(2)) male mice. Exercise induced a higher F max in HET male mice, while it did not affect HET females. Interestingly, a low cardiac troponin I bisphosphorylation, increased myofilament Ca(2+)-sensitivity, and LV hypertrophy were particularly observed in exercised HET females. In conclusion, in sedentary animals, contractile differences are seen between male and female HET mice. Male and female HET hearts adapted differently to a voluntary exercise protocol, indicating that physiological stimuli elicit a sexually dimorphic cardiac response in heterozygous MYBPC3-targeted knock-in mice.
Collapse
Affiliation(s)
- Aref Najafi
- Department of Physiology, VU University Medical Center, Room B-156, Van der Boechorstraat 7, 1081 BT, Amsterdam, The Netherlands,
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Kobirumaki-Shimozawa F, Inoue T, Shintani SA, Oyama K, Terui T, Minamisawa S, Ishiwata S, Fukuda N. Cardiac thin filament regulation and the Frank-Starling mechanism. J Physiol Sci 2014; 64:221-32. [PMID: 24788476 PMCID: PMC4070490 DOI: 10.1007/s12576-014-0314-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/28/2014] [Indexed: 11/06/2022]
Abstract
The heart has an intrinsic ability to increase systolic force in response to a rise in ventricular filling (the Frank-Starling law of the heart). It is widely accepted that the length dependence of myocardial activation underlies the Frank-Starling law of the heart. Recent advances in muscle physiology have enabled the identification of the factors involved in length-dependent activation, viz., titin (connectin)-based interfilament lattice spacing reduction and thin filament "on-off" regulation, with the former triggering length-dependent activation and the latter determining the number of myosin molecules recruited to thin filaments. Patients with a failing heart have demonstrated reduced exercise tolerance at least in part via depression of the Frank-Starling mechanism. Recent studies revealed that various mutations occur in the thin filament regulatory proteins, such as troponin, in the ventricular muscle of failing hearts, which consequently alter the Frank-Starling mechanism. In this article, we review the molecular mechanisms of length-dependent activation, and the influence of troponin mutations on the phenomenon.
Collapse
Affiliation(s)
- Fuyu Kobirumaki-Shimozawa
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Takahiro Inoue
- Department of Cardiac Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Seine A. Shintani
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-14-9 Okubo, Shinjuku-ku, Tokyo, 169-0072 Japan
| | - Kotaro Oyama
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-14-9 Okubo, Shinjuku-ku, Tokyo, 169-0072 Japan
| | - Takako Terui
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Susumu Minamisawa
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Shin’ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-14-9 Okubo, Shinjuku-ku, Tokyo, 169-0072 Japan
- Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-01/02 Helios, Singapore, 138667 Singapore
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461 Japan
| |
Collapse
|
159
|
Dweck D, Sanchez-Gonzalez MA, Chang AN, Dulce RA, Badger CD, Koutnik AP, Ruiz EL, Griffin B, Liang J, Kabbaj M, Fincham FD, Hare JM, Overton JM, Pinto JR. Long term ablation of protein kinase A (PKA)-mediated cardiac troponin I phosphorylation leads to excitation-contraction uncoupling and diastolic dysfunction in a knock-in mouse model of hypertrophic cardiomyopathy. J Biol Chem 2014; 289:23097-23111. [PMID: 24973218 DOI: 10.1074/jbc.m114.561472] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiac troponin I (cTnI) R21C (cTnI-R21C) mutation has been linked to hypertrophic cardiomyopathy and renders cTnI incapable of phosphorylation by PKA in vivo. Echocardiographic imaging of homozygous knock-in mice expressing the cTnI-R21C mutation shows that they develop hypertrophy after 12 months of age and have abnormal diastolic function that is characterized by longer filling times and impaired relaxation. Electrocardiographic analyses show that older R21C mice have elevated heart rates and reduced cardiovagal tone. Cardiac myocytes isolated from older R21C mice demonstrate that in the presence of isoproterenol, significant delays in Ca(2+) decay and sarcomere relaxation occur that are not present at 6 months of age. Although isoproterenol and stepwise increases in stimulation frequency accelerate Ca(2+)-transient and sarcomere shortening kinetics in R21C myocytes from older mice, they are unable to attain the corresponding WT values. When R21C myocytes from older mice are treated with isoproterenol, evidence of excitation-contraction uncoupling is indicated by an elevation in diastolic calcium that is frequency-dissociated and not coupled to shorter diastolic sarcomere lengths. Myocytes from older mice have smaller Ca(2+) transient amplitudes (2.3-fold) that are associated with reductions (2.9-fold) in sarcoplasmic reticulum Ca(2+) content. This abnormal Ca(2+) handling within the cell may be attributed to a reduction (2.4-fold) in calsequestrin expression in conjunction with an up-regulation (1.5-fold) of Na(+)-Ca(2+) exchanger. Incubation of permeabilized cardiac fibers from R21C mice with PKA confirmed that the mutation prevents facilitation of mechanical relaxation. Altogether, these results indicate that the inability to enhance myofilament relaxation through cTnI phosphorylation predisposes the heart to abnormal diastolic function, reduced accessibility of cardiac reserves, dysautonomia, and hypertrophy.
Collapse
Affiliation(s)
- David Dweck
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Marcos A Sanchez-Gonzalez
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300,; Family Institute, Florida State University, Tallahassee, Florida 32306
| | - Audrey N Chang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Raul A Dulce
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Crystal-Dawn Badger
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Andrew P Koutnik
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Edda L Ruiz
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Brittany Griffin
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Frank D Fincham
- Family Institute, Florida State University, Tallahassee, Florida 32306
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - J Michael Overton
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300,.
| |
Collapse
|
160
|
Puglisi JL, Goldspink PH, Gomes AV, Utter MS, Bers DM, Solaro RJ. Influence of a constitutive increase in myofilament Ca(2+)-sensitivity on Ca(2+)-fluxes and contraction of mouse heart ventricular myocytes. Arch Biochem Biophys 2014; 552-553:50-9. [PMID: 24480308 PMCID: PMC4043955 DOI: 10.1016/j.abb.2014.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/02/2014] [Accepted: 01/18/2014] [Indexed: 11/25/2022]
Abstract
Chronic increases in myofilament Ca(2+)-sensitivity in the heart are known to alter gene expression potentially modifying Ca(2+)-homeostasis and inducing arrhythmias. We tested age-dependent effects of a chronic increase in myofilament Ca(2+)-sensitivity on induction of altered alter gene expression and activity of Ca(2+) transport systems in cardiac myocytes. Our approach was to determine the relative contributions of the major mechanisms responsible for restoring Ca(2+) to basal levels in field stimulated ventricular myocytes. Comparisons were made from ventricular myocytes isolated from non-transgenic (NTG) controls and transgenic mice expressing the fetal, slow skeletal troponin I (TG-ssTnI) in place of cardiac TnI (cTnI). Replacement of cTnI by ssTnI induces an increase in myofilament Ca(2+)-sensitivity. Comparisons included myocytes from relatively young (5-7months) and older mice (11-13months). Employing application of caffeine in normal Tyrode and in 0Na(+) 0Ca(2+) solution, we were able to dissect the contribution of the sarcoplasmic reticulum Ca(2+) pump (SR Ca(2+)-ATPase), the Na(+)/Ca(2+) exchanger (NCX), and "slow mechanisms" representing the activity of the sarcolemmal Ca(2+) pump and the mitochondrial Ca(2+) uniporter. The relative contribution of the SR Ca(2+)-ATPase to restoration of basal Ca(2+) levels in younger TG-ssTnI myocytes was lower than in NTG (81.12±2.8% vs 92.70±1.02%), but the same in the older myocytes. Younger and older NTG myocytes demonstrated similar contributions from the SR Ca(2+)-ATPase and NCX to restoration of basal Ca(2+). However, the slow mechanisms for Ca(2+) removal were increased in the older NTG (3.4±0.3%) vs the younger NTG myocytes (1.4±0.1%). Compared to NTG, younger TG-ssTnI myocytes demonstrated a significantly bigger contribution of the NCX (16±2.7% in TG vs 6.9±0.9% in NTG) and slow mechanisms (3.3±0.4% in TG vs 1.4±0.1% in NTG). In older TG-ssTnI myocytes the contributions were not significantly different from NTG (NCX: 4.9±0.6% in TG vs 5.5±0.7% in NTG; slow mechanisms: 2.5±0.3% in TG vs 3.4±0.3% in NTG). Our data indicate that constitutive increases in myofilament Ca(2+)-sensitivity alter the relative significance of the NCX transport system involved in Ca(2+)-homeostasis only in a younger group of mice. This modification may be of significance in early changes in altered gene expression and electrical stability hearts with increased myofilament Ca-sensitivity.
Collapse
Affiliation(s)
- Jose L Puglisi
- Department of Pharmacology, University of California Davis, Davis, CA 95616, United States
| | - Paul H Goldspink
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, CA 95616, United States
| | - Megan S Utter
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA 95616, United States
| | - R John Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States.
| |
Collapse
|
161
|
Witjas-Paalberends ER, Ferrara C, Scellini B, Piroddi N, Montag J, Tesi C, Stienen GJM, Michels M, Ho CY, Kraft T, Poggesi C, van der Velden J. Faster cross-bridge detachment and increased tension cost in human hypertrophic cardiomyopathy with the R403Q MYH7 mutation. J Physiol 2014; 592:3257-72. [PMID: 24928957 DOI: 10.1113/jphysiol.2014.274571] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The first mutation associated with hypertrophic cardiomyopathy (HCM) is the R403Q mutation in the gene encoding β-myosin heavy chain (β-MyHC). R403Q locates in the globular head of myosin (S1), responsible for interaction with actin, and thus motor function of myosin. Increased cross-bridge relaxation kinetics caused by the R403Q mutation might underlie increased energetic cost of tension generation; however, direct evidence is absent. Here we studied to what extent cross-bridge kinetics and energetics are related in single cardiac myofibrils and multicellular cardiac muscle strips of three HCM patients with the R403Q mutation and nine sarcomere mutation-negative HCM patients (HCMsmn). Expression of R403Q was on average 41 ± 4% of total MYH7 mRNA. Cross-bridge slow relaxation kinetics in single R403Q myofibrils was significantly higher (P < 0.0001) than in HCMsmn myofibrils (0.47 ± 0.02 and 0.30 ± 0.02 s(-1), respectively). Moreover, compared to HCMsmn, tension cost was significantly higher in the muscle strips of the three R403Q patients (2.93 ± 0.25 and 1.78 ± 0.10 μmol l(-1) s(-1) kN(-1) m(-2), respectively) which showed a positive linear correlation with relaxation kinetics in the corresponding myofibril preparations. This correlation suggests that faster cross-bridge relaxation kinetics results in an increase in energetic cost of tension generation in human HCM with the R403Q mutation compared to HCMsmn. Therefore, increased tension cost might contribute to HCM disease in patients carrying the R403Q mutation.
Collapse
Affiliation(s)
| | - Claudia Ferrara
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Beatrice Scellini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Nicoletta Piroddi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Judith Montag
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ger J M Stienen
- Department of Physiology, VU University Medical Centre, Amsterdam, The Netherlands Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | - Michelle Michels
- Thorax Centre, Cardiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Carolyn Y Ho
- Brigham and Women's Hospital, Cardiology, Boston, USA
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Jolanda van der Velden
- Department of Physiology, VU University Medical Centre, Amsterdam, The Netherlands ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
162
|
Witjas-Paalberends ER, Güçlü A, Germans T, Knaapen P, Harms HJ, Vermeer AMC, Christiaans I, Wilde AAM, Dos Remedios C, Lammertsma AA, van Rossum AC, Stienen GJM, van Slegtenhorst M, Schinkel AF, Michels M, Ho CY, Poggesi C, van der Velden J. Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations. Cardiovasc Res 2014; 103:248-57. [PMID: 24835277 DOI: 10.1093/cvr/cvu127] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Disease mechanisms regarding hypertrophic cardiomyopathy (HCM) are largely unknown and disease onset varies. Sarcomere mutations might induce energy depletion for which until now there is no direct evidence at sarcomere level in human HCM. This study investigated if mutations in genes encoding myosin-binding protein C (MYBPC3) and myosin heavy chain (MYH7) underlie changes in the energetic cost of contraction in the development of human HCM disease. METHODS AND RESULTS Energetic cost of contraction was studied in vitro by measurements of force development and ATPase activity in cardiac muscle strips from 26 manifest HCM patients (11 MYBPC3mut, 9 MYH7mut, and 6 sarcomere mutation-negative, HCMsmn). In addition, in vivo, the ratio between external work (EW) and myocardial oxygen consumption (MVO2) to obtain myocardial external efficiency (MEE) was determined in 28 pre-hypertrophic mutation carriers (14 MYBPC3mut and 14 MYH7mut) and 14 healthy controls using [(11)C]-acetate positron emission tomography and cardiovascular magnetic resonance imaging. Tension cost (TC), i.e. ATPase activity during force development, was higher in MYBPC3mut and MYH7mut compared with HCMsmn at saturating [Ca(2+)]. TC was also significantly higher in MYH7mut at submaximal, more physiological [Ca(2+)]. EW was significantly lower in both mutation carrier groups, while MVO2 did not differ. MEE was significantly lower in both mutation carrier groups compared with controls, showing the lowest efficiency in MYH7 mutation carriers. CONCLUSION We provide direct evidence that sarcomere mutations perturb the energetic cost of cardiac contraction. Gene-specific severity of cardiac abnormalities may underlie differences in disease onset and suggests that early initiation of metabolic treatment may be beneficial, in particular, in MYH7 mutation carriers.
Collapse
Affiliation(s)
- E Rosalie Witjas-Paalberends
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Ahmet Güçlü
- Department of Cardiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ICIN Netherlands Heart Institute, Utrecht, The Netherlands
| | - Tjeerd Germans
- Department of Cardiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Paul Knaapen
- Department of Cardiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Hendrik J Harms
- Department of Radiology and Nuclear Medicine, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Alexa M C Vermeer
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Imke Christiaans
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Cris Dos Remedios
- Institute for Biomedical Research, Muscle Research Unit, University of Sydney, Sydney, Australia
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Albert C van Rossum
- Department of Cardiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ger J M Stienen
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | | | - Arend F Schinkel
- Thorax Center, Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michelle Michels
- Thorax Center, Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carolyn Y Ho
- Brigham and Women's Hospital, Cardiology, Boston, MA, USA
| | - Corrado Poggesi
- Department of Physiology, University of Florence, Florence, Italy
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands ICIN Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
163
|
Relation of highly sensitive cardiac troponin T in hypertrophic cardiomyopathy to left ventricular mass and cardiovascular risk. Am J Cardiol 2014; 113:1240-5. [PMID: 24513467 DOI: 10.1016/j.amjcard.2013.12.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/08/2013] [Accepted: 12/08/2013] [Indexed: 01/20/2023]
Abstract
Elevated cardiac troponin can be seen in patients with left ventricular (LV) hypertrophy and in asymptomatic subjects with a high a priori risk of cardiovascular disease (CVD). In hypertrophic cardiomyopathy (HC) troponin can be detected as well, but little is known about the contribution of LV mass, on the one hand, and the long-term risk of CVD, on the other. In an observational single-center study of 62 patients with HC, without a history of CVD, we assessed the Framingham Heart 10-year risk score (FH10yrs), LV mass index (LVMI) using magnetic resonance imaging, and highly sensitive cardiac troponin T (hs-cTnT). Hs-cTnT (>3 ng/L) was detectable in 74% of patients (46 of 62). Hs-cTnT was elevated in 26% (16 of 62) of patients (ninety-ninth percentile reference limit of 14 ng/L or more). From 3 to 14 ng/L, patients were older, more often had hypertension, and the FH10yrs was higher. Hs-cTnT correlated positively with LVMI (p<0.001) and maximal wall thickness (p<0.001). In addition, LVMI and hypertension were independently associated with increasing hs-cTnT concentrations in linear regression. Using multivariate binary logistic regression, both LVMI and FH10yrs were independently associated with detectable hs-cTnT levels. In contrast, only LVMI was associated with elevated hs-cTnT levels. In conclusion, hs-cTnT was detectable in 3 quarters and elevated in a quarter of our patients with HC. Although detectable hs-cTnT is associated with both LV mass and CVD risk, elevated hs-cTnT relates to LV mass only. This indicates that hypertrophy more than the risk of CVD seems the most important drive for hs-cTnT to occur in these patients.
Collapse
|
164
|
Barefield D, Kumar M, de Tombe PP, Sadayappan S. Contractile dysfunction in a mouse model expressing a heterozygous MYBPC3 mutation associated with hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2014; 306:H807-15. [PMID: 24464755 PMCID: PMC3949045 DOI: 10.1152/ajpheart.00913.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/19/2014] [Indexed: 12/29/2022]
Abstract
The etiology of hypertrophic cardiomyopathy (HCM) has been ascribed to mutations in genes encoding sarcomere proteins. In particular, mutations in MYBPC3, a gene which encodes cardiac myosin binding protein-C (cMyBP-C), have been implicated in over one third of HCM cases. Of these mutations, 70% are predicted to result in C'-truncated protein products, which are undetectable in tissue samples. Heterozygous carriers of these truncation mutations exhibit varying penetrance of HCM, with symptoms often occurring later in life. We hypothesize that heterozygous carriers of MYBPC3 mutations, while seemingly asymptomatic, have subtle functional impairments that precede the development of overt HCM. This study compared heterozygous (+/t) knock-in MYBPC3 truncation mutation mice with wild-type (+/+) littermates to determine whether functional alterations occur at the whole-heart or single-cell level before the onset of hypertrophy. The +/t mice show ∼40% reduction in MYBPC3 transcription, but no changes in cMyBP-C level, phosphorylation status, or cardiac morphology. Nonetheless, +/t mice show significantly decreased maximal force development at sarcomere lengths of 1.9 μm (+/t 68.5 ± 4.1 mN/mm(2) vs. +/+ 82.2 ± 3.2) and 2.3 μm (+/t 79.2 ± 3.1 mN/mm(2) vs. +/+ 95.5 ± 2.4). In addition, heterozygous mice show significant reductions in vivo in the early/after (E/A) (+/t 1.74 ± 0.12 vs. +/+ 2.58 ± 0.43) and E'/A' (+/t 1.18 ± 0.05 vs. +/+ 1.52 ± 0.15) ratios, indicating diastolic dysfunction. These results suggest that seemingly asymptomatic heterozygous MYBPC3 carriers do suffer impairments that may presage the onset of HCM.
Collapse
Affiliation(s)
- David Barefield
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois
| | | | | | | |
Collapse
|
165
|
Wijnker PJM, Sequeira V, Foster DB, Li Y, Dos Remedios CG, Murphy AM, Stienen GJM, van der Velden J. Length-dependent activation is modulated by cardiac troponin I bisphosphorylation at Ser23 and Ser24 but not by Thr143 phosphorylation. Am J Physiol Heart Circ Physiol 2014; 306:H1171-81. [PMID: 24585778 DOI: 10.1152/ajpheart.00580.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Frank-Starling's law reflects the ability of the heart to adjust the force of its contraction to changes in ventricular filling, a property based on length-dependent myofilament activation (LDA). The threonine at amino acid 143 of cardiac troponin I (cTnI) is prerequisite for the length-dependent increase in Ca(2+) sensitivity. Thr143 is a known target of protein kinase C (PKC) whose activity is increased in cardiac disease. Thr143 phosphorylation may modulate length-dependent myofilament activation in failing hearts. Therefore, we investigated if pseudo-phosphorylation at Thr143 modulates length dependence of force using troponin exchange experiments in human cardiomyocytes. In addition, we studied effects of protein kinase A (PKA)-mediated cTnI phosphorylation at Ser23/24, which has been reported to modulate LDA. Isometric force was measured at various Ca(2+) concentrations in membrane-permeabilized cardiomyocytes exchanged with recombinant wild-type (WT) troponin or troponin mutated at the PKC site Thr143 or Ser23/24 into aspartic acid (D) or alanine (A) to mimic phosphorylation and dephosphorylation, respectively. In troponin-exchanged donor cardiomyocytes experiments were repeated after incubation with exogenous PKA. Pseudo-phosphorylation of Thr143 increased myofilament Ca(2+) sensitivity compared with WT without affecting LDA in failing and donor cardiomyocytes. Subsequent PKA treatment enhanced the length-dependent shift in Ca(2+) sensitivity after WT and 143D exchange. Exchange with Ser23/24 variants demonstrated that pseudo-phosphorylation of both Ser23 and Ser24 is needed to enhance the length-dependent increase in Ca(2+) sensitivity. cTnI pseudo-phosphorylation did not alter length-dependent changes in maximal force. Thus phosphorylation at Thr143 enhances myofilament Ca(2+) sensitivity without affecting LDA, while Ser23/24 bisphosphorylation is needed to enhance the length-dependent increase in myofilament Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Poggesi C, Ho CY. Muscle dysfunction in hypertrophic cardiomyopathy: what is needed to move to translation? J Muscle Res Cell Motil 2014; 35:37-45. [PMID: 24493262 DOI: 10.1007/s10974-014-9374-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/02/2014] [Indexed: 02/04/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomere genes. As such, HCM provides remarkable opportunities to study how changes to the heart's molecular motor apparatus may influence cardiac structure and function. Although the genetic basis of HCM is well-described, there is much more limited understanding of the precise consequences of sarcomere mutations--how they remodel the heart, and how these changes lead to the dramatic clinical consequences associated with HCM. More precise characterization of the mechanisms leading from sarcomere mutation to altered cardiac muscle function is critical to gain insight into fundamental disease biology and phenotypic evolution. Such knowledge will help foster development of novel treatment strategies aimed at correcting and preventing disease development in HCM.
Collapse
Affiliation(s)
- Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 63, 50134, Florence, Italy,
| | | |
Collapse
|
167
|
Heart failure in congenital heart disease: the role of genes and hemodynamics. Pflugers Arch 2014; 466:1025-35. [DOI: 10.1007/s00424-014-1447-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 01/07/2014] [Indexed: 12/28/2022]
|
168
|
Yar S, Monasky MM, Solaro RJ. Maladaptive modifications in myofilament proteins and triggers in the progression to heart failure and sudden death. Pflugers Arch 2014; 466:1189-97. [PMID: 24488009 DOI: 10.1007/s00424-014-1457-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 12/25/2022]
Abstract
In this review, we address the following question: Are modifications at the level of sarcomeric proteins in acquired heart failure early inducers of altered cardiac dynamics and signaling leading to remodeling and progression to decompensation? There is no doubt that most inherited cardiomyopathies are caused by mutations in proteins of the sarcomere. We think this linkage indicates that early changes at the level of the sarcomeres in acquired cardiac disorders may be significant in triggering the progression to failure. We consider evidence that there are rate-limiting mechanisms downstream of the trigger event of Ca(2+) binding to troponin C, which control cardiac dynamics. We discuss new perspectives on how modifications in these mechanisms may be of relevance to redox signaling in diastolic heart failure, to angiotensin II signaling via β-arrestin, and to remodeling related to altered structural rigidity of tropomyosin. We think that these new perspectives provide a rationale for future studies directed at a more thorough understanding of the question driving our review.
Collapse
Affiliation(s)
- Sumeyye Yar
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, M/C 901, Chicago, IL, 60612, USA
| | | | | |
Collapse
|
169
|
Schlossarek S, Frey N, Carrier L. Ubiquitin-proteasome system and hereditary cardiomyopathies. J Mol Cell Cardiol 2013; 71:25-31. [PMID: 24380728 DOI: 10.1016/j.yjmcc.2013.12.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/13/2013] [Accepted: 12/17/2013] [Indexed: 12/14/2022]
Abstract
Adequate protein turnover is essential for cardiac homeostasis. Different protein quality controls are involved in the maintenance of protein homeostasis, including molecular chaperones and co-chaperones, the autophagy-lysosomal pathway, and the ubiquitin-proteasome system (UPS). In the last decade, a series of evidence has underlined a major function of the UPS in cardiac physiology and disease. Particularly, recent studies have shown that dysfunctional proteasomal function leads to cardiac disorders. Hypertrophic and dilated cardiomyopathies are the two most prevalent inherited cardiomyopathies. Both are primarily transmitted as an autosomal-dominant trait and mainly caused by mutations in genes encoding components of the cardiac sarcomere, including a relevant striated muscle-specific E3 ubiquitin ligase. A growing body of evidence indicates impairment of the UPS in inherited cardiomyopathies as determined by measurement of the level of ubiquitinated proteins, the activities of the proteasome and/or the use of fluorescent UPS reporter substrates. The present review will propose mechanisms of UPS impairment in inherited cardiomyopathies, summarize the potential consequences of UPS impairment, including activation of the unfolded protein response, and underline some therapeutic options available to restore proteasome function and therefore cardiac homeostasis and function. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
Affiliation(s)
- Saskia Schlossarek
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Norbert Frey
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany; Department of Cardiology and Angiology, University of Kiel, Kiel, Germany
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany; Inserm, U974, Paris F-75013, France; Université Pierre et Marie Curie- Paris 6, UM 76, CNRS, UMR 7215, Institut de Myologie, IFR14, Paris F-75013, France.
| |
Collapse
|
170
|
Güçlü A, Germans T, Witjas-Paalberends ER, Stienen GJM, Brouwer WP, Harms HJ, Marcus JT, Vonk ABA, Stooker W, Yilmaz A, Klein P, Ten Berg JM, Kluin J, Asselbergs FW, Lammertsma AA, Knaapen P, van Rossum AC, van der Velden J. ENerGetIcs in hypertrophic cardiomyopathy: traNslation between MRI, PET and cardiac myofilament function (ENGINE study). Neth Heart J 2013; 21:567-71. [PMID: 24114686 PMCID: PMC3833912 DOI: 10.1007/s12471-013-0478-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction Hypertrophic cardiomyopathy (HCM) is an autosomal dominant heart disease mostly due to mutations in genes encoding sarcomeric proteins. HCM is characterised by asymmetric hypertrophy of the left ventricle (LV) in the absence of another cardiac or systemic disease. At present it lacks specific treatment to prevent or reverse cardiac dysfunction and hypertrophy in mutation carriers and HCM patients. Previous studies have indicated that sarcomere mutations increase energetic costs of cardiac contraction and cause myocardial dysfunction and hypertrophy. By using a translational approach, we aim to determine to what extent disturbances of myocardial energy metabolism underlie disease progression in HCM. Methods Hypertrophic obstructive cardiomyopathy (HOCM) patients and aortic valve stenosis (AVS) patients will undergo a positron emission tomography (PET) with acetate and cardiovascular magnetic resonance imaging (CMR) with tissue tagging before and 4 months after myectomy surgery or aortic valve replacement + septal biopsy. Myectomy tissue or septal biopsy will be used to determine efficiency of sarcomere contraction in-vitro, and results will be compared with in-vivo cardiac performance. Healthy subjects and non-hypertrophic HCM mutation carriers will serve as a control group. Endpoints Our study will reveal whether perturbations in cardiac energetics deteriorate during disease progression in HCM and whether these changes are attributed to cardiac remodelling or the presence of a sarcomere mutation per se. In-vitro studies in hypertrophied cardiac muscle from HOCM and AVS patients will establish whether sarcomere mutations increase ATP consumption of sarcomeres in human myocardium. Our follow-up imaging study in HOCM and AVS patients will reveal whether impaired cardiac energetics are restored by cardiac surgery.
Collapse
Affiliation(s)
- A Güçlü
- Department of Cardiology, Institute for Cardiovascular Research (ICaR-VU, VU University Medical Center, ZH 5F-13, PO Box 7057, 1007MB, Amsterdam, the Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Li AY, Stevens CM, Liang B, Rayani K, Little S, Davis J, Tibbits GF. Familial hypertrophic cardiomyopathy related cardiac troponin C L29Q mutation alters length-dependent activation and functional effects of phosphomimetic troponin I*. PLoS One 2013; 8:e79363. [PMID: 24260207 PMCID: PMC3832503 DOI: 10.1371/journal.pone.0079363] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
The Ca(2+) binding properties of the FHC-associated cardiac troponin C (cTnC) mutation L29Q were examined in isolated cTnC, troponin complexes, reconstituted thin filament preparations, and skinned cardiomyocytes. While higher Ca(2+) binding affinity was apparent for the L29Q mutant in isolated cTnC, this phenomenon was not observed in the cTn complex. At the level of the thin filament in the presence of phosphomimetic TnI, L29Q cTnC further reduced the Ca(2+) affinity by 27% in the steady-state measurement and increased the Ca(2+) dissociation rate by 20% in the kinetic studies. Molecular dynamics simulations suggest that L29Q destabilizes the conformation of cNTnC in the presence of phosphomimetic cTnI and potentially modulates the Ca(2+) sensitivity due to the changes of the opening/closing equilibrium of cNTnC. In the skinned cardiomyocyte preparation, L29Q cTnC increased Ca(2+) sensitivity in a highly sarcomere length (SL)-dependent manner. The well-established reduction of Ca(2+) sensitivity by phosphomimetic cTnI was diminished by 68% in the presence of the mutation and it also depressed the SL-dependent increase in myofilament Ca(2+) sensitivity. This might result from its modified interaction with cTnI which altered the feedback effects of cross-bridges on the L29Q cTnC-cTnI-Tm complex. This study demonstrates that the L29Q mutation alters the contractility and the functional effects of the phosphomimetic cTnI in both thin filament and single skinned cardiomyocytes and importantly that this effect is highly sarcomere length dependent.
Collapse
Affiliation(s)
- Alison Y. Li
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Charles M. Stevens
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bo Liang
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kaveh Rayani
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sean Little
- Physiology and Cell Biology, The Ohio State University, Columbia, Ohio, United States of America
| | - Jonathan Davis
- Physiology and Cell Biology, The Ohio State University, Columbia, Ohio, United States of America
| | - Glen F. Tibbits
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Cardiovascular Sciences, Child and Family Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
172
|
Sequeira V, Witjas-Paalberends ER, Kuster DWD, van der Velden J. Cardiac myosin-binding protein C: hypertrophic cardiomyopathy mutations and structure-function relationships. Pflugers Arch 2013; 466:201-6. [PMID: 24240729 DOI: 10.1007/s00424-013-1400-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 01/05/2023]
Abstract
Cardiac myosin-binding protein C (cMyBP-C) research has been characterized by two waves. Initial interest was piqued by its discovery in 1973 as a contaminant of myosin preparations from skeletal muscle. The second wave started in 1995 by the discovery that mutations in the gene encoding cMyBP-C cause hypertrophic cardiomyopathy (HCM). In this review, we will address what is known of cMyBP-C's role as a regulator of contraction as well as its role in HCM.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, van der Boechorststraat 7, 1081, BT, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
173
|
van Dijk SJ, Boontje NM, Heymans MW, Ten Cate FJ, Michels M, Dos Remedios C, Dooijes D, van Slegtenhorst MA, van der Velden J, Stienen GJM. Preserved cross-bridge kinetics in human hypertrophic cardiomyopathy patients with MYBPC3 mutations. Pflugers Arch 2013; 466:1619-33. [PMID: 24186209 DOI: 10.1007/s00424-013-1391-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/04/2013] [Accepted: 10/19/2013] [Indexed: 12/23/2022]
Abstract
Mutations in the MYBPC3 gene, encoding cardiac myosin binding protein C (cMyBP-C) are frequent causes of hypertrophic cardiomyopathy (HCM). Previously, we have presented evidence for reduced cMyBP-C expression (haploinsufficiency), in patients with a truncation mutation in MYBPC3. In mice, lacking cMyBP-C cross-bridge kinetics was accelerated. In this study, we investigated whether cross-bridge kinetics was altered in myectomy samples from HCM patients harboring heterozygous MYBPC3 mutations (MYBPC3mut). Isometric force and the rate of force redevelopment (k tr) at different activating Ca(2+) concentrations were measured in mechanically isolated Triton-permeabilized cardiomyocytes from MYBPC3mut (n = 18) and donor (n = 7) tissue. Furthermore, the stretch activation response of cardiomyocytes was measured in tissue from eight MYBPC3mut patients and five donors to assess the rate of initial force relaxation (k 1) and the rate and magnitude of the transient increase in force (k 2 and P 3, respectively) after a rapid stretch. Maximal force development of the cardiomyocytes was reduced in MYBPC3mut (24.5 ± 2.3 kN/m(2)) compared to donor (34.9 ± 1.6 kN/m(2)). The rates of force redevelopment in MYBPC3mut and donor over a range of Ca(2+) concentrations were similar (k tr at maximal activation: 0.63 ± 0.03 and 0.75 ± 0.09 s(-1), respectively). Moreover, the stretch activation parameters did not differ significantly between MYBPC3mut and donor (k 1: 8.5±0.5 and 8.8 ± 0.4 s(-1); k 2: 0.77 ± 0.06 and 0.74 ± 0.09 s(-1); P 3: 0.08 ± 0.01 and 0.09 ± 0.01, respectively). Incubation with protein kinase A accelerated k 1 in MYBPC3mut and donor to a similar extent. Our experiments indicate that, at the cMyBP-C expression levels in this patient group (63 ± 6 % relative to donors), cross-bridge kinetics are preserved and that the depressed maximal force development is not explained by perturbation of cross-bridge kinetics.
Collapse
Affiliation(s)
- Sabine J van Dijk
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Hanft LM, Biesiadecki BJ, McDonald KS. Length dependence of striated muscle force generation is controlled by phosphorylation of cTnI at serines 23/24. J Physiol 2013; 591:4535-47. [PMID: 23836688 PMCID: PMC3784197 DOI: 10.1113/jphysiol.2013.258400] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/02/2013] [Indexed: 01/24/2023] Open
Abstract
According to the Frank-Starling relationship, greater end-diastolic volume increases ventricular output. The Frank-Starling relationship is based, in part, on the length-tension relationship in cardiac myocytes. Recently, we identified a dichotomy in the steepness of length-tension relationships in mammalian cardiac myocytes that was dependent upon protein kinase A (PKA)-induced myofibrillar phosphorylation. Because PKA has multiple myofibrillar substrates including titin, myosin-binding protein-C and cardiac troponin I (cTnI), we sought to define if phosphorylation of one of these molecules could control length-tension relationships. We focused on cTnI as troponin can be exchanged in permeabilized striated muscle cell preparations, and tested the hypothesis that phosphorylation of cTnI modulates length dependence of force generation. For these experiments, we exchanged unphosphorylated recombinant cTn into either a rat cardiac myocyte preparation or a skinned slow-twitch skeletal muscle fibre. In all cases unphosphorylated cTn yielded a shallow length-tension relationship, which was shifted to a steep relationship after PKA treatment. Furthermore, exchange with cTn having cTnI serines 23/24 mutated to aspartic acids to mimic phosphorylation always shifted a shallow length-tension relationship to a steep relationship. Overall, these results indicate that phosphorylation of cTnI serines 23/24 is a key regulator of length dependence of force generation in striated muscle.
Collapse
Affiliation(s)
- Laurin M Hanft
- K. S. McDonald: Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA.
| | | | | |
Collapse
|
175
|
Redwood C, Robinson P. Alpha-tropomyosin mutations in inherited cardiomyopathies. J Muscle Res Cell Motil 2013; 34:285-94. [DOI: 10.1007/s10974-013-9358-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
|
176
|
|
177
|
Witjas-Paalberends ER, Piroddi N, Stam K, van Dijk SJ, Oliviera VS, Ferrara C, Scellini B, Hazebroek M, ten Cate FJ, van Slegtenhorst M, dos Remedios C, Niessen HWM, Tesi C, Stienen GJM, Heymans S, Michels M, Poggesi C, van der Velden J. Mutations in MYH7 reduce the force generating capacity of sarcomeres in human familial hypertrophic cardiomyopathy. Cardiovasc Res 2013; 99:432-41. [PMID: 23674513 DOI: 10.1093/cvr/cvt119] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Familial hypertrophic cardiomyopathy (HCM), frequently caused by sarcomeric gene mutations, is characterized by cellular dysfunction and asymmetric left-ventricular (LV) hypertrophy. We studied whether cellular dysfunction is due to an intrinsic sarcomere defect or cardiomyocyte remodelling. METHODS AND RESULTS Cardiac samples from 43 sarcomere mutation-positive patients (HCMmut: mutations in thick (MYBPC3, MYH7) and thin (TPM1, TNNI3, TNNT2) myofilament genes) were compared with 14 sarcomere mutation-negative patients (HCMsmn), eight patients with secondary LV hypertrophy due to aortic stenosis (LVHao) and 13 donors. Force measurements in single membrane-permeabilized cardiomyocytes revealed significantly lower maximal force generating capacity (Fmax) in HCMmut (21 ± 1 kN/m²) and HCMsmn (26 ± 3 kN/m²) compared with donor (36 ± 2 kN/m²). Cardiomyocyte remodelling was more severe in HCMmut compared with HCMsmn based on significantly lower myofibril density (49 ± 2 vs. 63 ± 5%) and significantly higher cardiomyocyte area (915 ± 15 vs. 612 ± 11 μm²). Low Fmax in MYBPC3mut, TNNI3mut, HCMsmn, and LVHao was normalized to donor values after correction for myofibril density. However, Fmax was significantly lower in MYH7mut, TPM1mut, and TNNT2mut even after correction for myofibril density. In accordance, measurements in single myofibrils showed very low Fmax in MYH7mut, TPM1mut, and TNNT2mut compared with donor (respectively, 73 ± 3, 70 ± 7, 83 ± 6, and 113 ± 5 kN/m²). In addition, force was lower in MYH7mut cardiomyocytes compared with MYBPC3mut, HCMsmn, and donor at submaximal [Ca²⁺]. CONCLUSION Low cardiomyocyte Fmax in HCM patients is largely explained by hypertrophy and reduced myofibril density. MYH7 mutations reduce force generating capacity of sarcomeres at maximal and submaximal [Ca²⁺]. These hypocontractile sarcomeres may represent the primary abnormality in patients with MYH7 mutations.
Collapse
Affiliation(s)
- E Rosalie Witjas-Paalberends
- Laboratory for Physiology, VU University Medical Center, Institute for Cardiovascular Research, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|