151
|
Semi-Automatic Reconstruction of Patient-Specific Stented Coronaries based on Data Assimilation and Computer Aided Design. Cardiovasc Eng Technol 2022; 13:517-534. [PMID: 34993928 DOI: 10.1007/s13239-021-00570-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/26/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE The interplay between geometry and hemodynamics is a significant factor in the development of cardiovascular diseases. This is particularly true for stented coronary arteries. To elucidate this factor, an accurate patient-specific analysis requires the reconstruction of the geometry following the stent deployment for a computational fluid dynamics (CFD) investigation. The image-based reconstruction is troublesome for the different possible positions of the stent struts in the lumen and the coronary wall. However, the accurate inclusion of the stent footprint in the hemodynamic analysis is critical for detecting abnormal stress conditions and flow disturbances, particularly for thick struts like in bioresorbable scaffolds. Here, we present a novel reconstruction methodology that relies on Data Assimilation and Computer Aided Design. METHODS The combination of the geometrical model of the undeployed stent and image-based data assimilated by a variational approach allows the highly automated reconstruction of the skeleton of the stent. A novel approach based on computational mechanics defines the map between the intravascular frame of reference (called L-view) and the 3D geometry retrieved from angiographies. Finally, the volumetric expansion of the stent skeleton needs to be self-intersection free for the successive CFD studies; this is obtained by using implicit representations based on the definition of Nef-polyhedra. RESULTS We assessed our approach on a vessel phantom, with less than 10% difference (properly measured) vs. a customized manual (and longer) procedure previously published, yet with a significant higher level of automation and a shorter turnaround time. Computational hemodynamics results were even closer. We tested the approach on two patient-specific cases as well. CONCLUSIONS The method presented here has a high level of automation and excellent accuracy performances, so it can be used for larger studies involving patient-specific geometries.
Collapse
|
152
|
OUP accepted manuscript. Eur Heart J Cardiovasc Imaging 2022; 23:1482-1491. [DOI: 10.1093/ehjci/jeac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Indexed: 11/13/2022] Open
|
153
|
Stone PH, Coskun AU. Coronary angiography-based shear stress computation to identify high-risk coronary artery plaques: Are we there yet? Atherosclerosis 2022; 342:25-27. [DOI: 10.1016/j.atherosclerosis.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/01/2022]
|
154
|
Wu J, Wang P, Zhou L, Zhang D, Chen Q, Mao C, Su W, Huo Y, Peng J, Yin X, Chen G. Hemodynamics derived from computational fluid dynamics based on magnetic resonance angiography is associated with functional outcomes in atherosclerotic middle cerebral artery stenosis. Quant Imaging Med Surg 2022; 12:688-698. [PMID: 34993111 DOI: 10.21037/qims-21-337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/23/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND To investigate the relationship between fluid-attenuated inversion recovery (FLAIR) vascular hyperintensity (FVH), hemodynamics, and functional outcome in atherosclerotic middle cerebral artery (MCA) stenosis using a computational fluid dynamics (CFD) model based on magnetic resonance angiography (MRA), according to a modified Rankin Scale (mRS) at 3 months. METHODS A total of 120 patients with 50-99% atherosclerotic MCA stenosis were included. The training and internal validation groups were composed of 99 participants and 21 participants, respectively. Demographic, imaging data, and functional outcome (mRS at 3 months) were collected. Hemodynamic parameters were obtained from the CFD model. The FVH score was based on the number of territories where FVH is positive, according to the spatial distribution in the Alberta Stroke Program Early Computed Tomography Score (ASPECTS). The prediction models were constructed according to clinical and hemodynamic parameters using multivariate logistic analysis. The DeLong test compared areas under the curves (AUCs) of the models. RESULTS The multivariable logistic regression analysis showed that the National Institute of Health Stroke Scale (NIHSS) at admission, hypertension, hyperlipidemia, the ratio of wall shear stress before treatment (WSSRbefore), and difference in the ratio of wall shear stress (WSSR) were independently associated with functional outcome (all P<0.05). In the training group before treatment, the AUC of model 1a (only clinical variables) and 2a (clinical variables with addition of WSSRbefore) were 0.750 and 0.802. After treatment, the AUC of model 1b (only clinical variables) and 2b (clinical variables with addition of difference in WSSR) were 0.815 and 0.883, respectively. The AUC of models with hemodynamic parameters was significantly higher than the models based on clinical variables only (all P<0.05, DeLong test). In the internal validation group before treatment, the AUC of the model (clinical variables) was 0.782, and that of the model (clinical variables and WSSRbefore) was 0.800. After treatment, the AUC of the model (clinical variables) was 0.833, and that of the model (clinical variables and difference in WSSR) was 0.861. There were no significant differences between the good and the poor functional outcome group concerning FVHbefore scores before treatment (0.30±0.81 vs. 0.26±0.97; P=0.321) and FVHafter scores after treatment (0.08±0.39 vs. 0.00±0.00; P=0.244). CONCLUSIONS Hemodynamics was associated with functional outcomes in patients with ischemic stroke attributed to atherosclerotic MCA stenosis, while FVH was not. Hemodynamic parameters were of great importance in the prediction models.
Collapse
Affiliation(s)
- Jiahua Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Leilei Zhou
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Danfeng Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Cunnan Mao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen Su
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yingsong Huo
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin Peng
- Intervention Department, Chenggong Hospital Affiliated to Xiamen University, Xiamen, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guozhong Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
155
|
Miller HA, Schake MA, Bony BA, Curtis ET, Gee CC, McCue IS, Ripperda TJ, Chatzizisis YS, Kievit FM, Pedrigi RM. Smooth muscle cells affect differential nanoparticle accumulation in disturbed blood flow-induced murine atherosclerosis. PLoS One 2021; 16:e0260606. [PMID: 34882722 PMCID: PMC8659666 DOI: 10.1371/journal.pone.0260606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that leads to the formation of plaques in the inner lining of arteries. Plaques form over a range of phenotypes, the most severe of which is vulnerable to rupture and causes most of the clinically significant events. In this study, we evaluated the efficacy of nanoparticles (NPs) to differentiate between two plaque phenotypes based on accumulation kinetics in a mouse model of atherosclerosis. This model uses a perivascular cuff to induce two regions of disturbed wall shear stress (WSS) on the inner lining of the instrumented artery, low (upstream) and multidirectional (downstream), which, in turn, cause the development of an unstable and stable plaque phenotype, respectively. To evaluate the influence of each WSS condition, in addition to the final plaque phenotype, in determining NP uptake, mice were injected with NPs at intermediate and fully developed stages of plaque growth. The kinetics of artery wall uptake were assessed in vivo using dynamic contrast-enhanced magnetic resonance imaging. At the intermediate stage, there was no difference in NP uptake between the two WSS conditions, although both were different from the control arteries. At the fully-developed stage, however, NP uptake was reduced in plaques induced by low WSS, but not multidirectional WSS. Histological evaluation of plaques induced by low WSS revealed a significant inverse correlation between the presence of smooth muscle cells and NP accumulation, particularly at the plaque-lumen interface, which did not exist with other constituents (lipid and collagen) and was not present in plaques induced by multidirectional WSS. These findings demonstrate that NP accumulation can be used to differentiate between unstable and stable murine atherosclerosis, but accumulation kinetics are not directly influenced by the WSS condition. This tool could be used as a diagnostic to evaluate the efficacy of experimental therapeutics for atherosclerosis.
Collapse
Affiliation(s)
- Hunter A. Miller
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Morgan A. Schake
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Badrul Alam Bony
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Evan T. Curtis
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Connor C. Gee
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Ian S. McCue
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Thomas J. Ripperda
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Yiannis S. Chatzizisis
- Cardiovascular Division, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Forrest M. Kievit
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
- * E-mail: (RMP); (FMK)
| | - Ryan M. Pedrigi
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
- * E-mail: (RMP); (FMK)
| |
Collapse
|
156
|
Yang S, Koo BK, Narula J. Interactions Between Morphological Plaque Characteristics and Coronary Physiology: From Pathophysiological Basis to Clinical Implications. JACC Cardiovasc Imaging 2021; 15:1139-1151. [PMID: 34922863 DOI: 10.1016/j.jcmg.2021.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022]
Abstract
High-risk coronary plaque refers to a distinct set of plaque characteristics prone to future coronary events. Coronary physiology represents a group of indexes reflective of the local physiological environment and hemodynamic changes in the macrovascular and microvascular system. Although a large body of evidence has supported the clinical relevance of these 2 factors, currently, identifying plaque morphology cannot reliably capture the lesion subset that causes hard events. Also, the guideline-directed approach based on physiological indexes cannot fully predict and prevent clinical events. In parallel, there is accumulating evidence that these 2 aspects of coronary artery disease influence each other with significant clinical implications, despite traditionally being considered to have separate effects on significances, treatments, and outcomes. In this state-of-the-art review, we explore the clinical evidence of pathophysiological interplay of physiological indexes related to local hemodynamics, epicardial stenosis, and microvascular dysfunction with plaque morphological characteristics that provide a better understanding of the nature of coronary events. Furthermore, we examine the emerging data on the complementary role between plaque morphology and coronary physiology in prognostication and how to apply this concept to overcome the limitations of individual assessment alone. Finally, we propose the potential benefit of integrative assessment of coronary anatomy, plaque quantity and quality, and physiological aspects of a target lesion and vessels for personalized risk profiling and optimized treatment strategy.
Collapse
Affiliation(s)
- Seokhun Yang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea; Institute on Aging, Seoul National University, Seoul, Korea.
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
157
|
Dilba K, van Dam-Nolen DHK, Korteland SA, van der Kolk AG, Kassem M, Bos D, Koudstaal PJ, Nederkoorn PJ, Hendrikse J, Kooi ME, Gijsen FJH, van der Steen AFW, van der Lugt A, Wentzel JJ. The Association Between Time-Varying Wall Shear Stress and the Development of Plaque Ulcerations in Carotid Arteries From the Plaque at Risk Study. Front Cardiovasc Med 2021; 8:732646. [PMID: 34869634 PMCID: PMC8636734 DOI: 10.3389/fcvm.2021.732646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose: Shear stress (WSS) is involved in the pathophysiology of atherosclerotic disease and might affect plaque ulceration. In this case-control study, we compared carotid plaques that developed a new ulcer during follow-up and plaques that remained silent for their exposure to time-dependent oscillatory shear stress parameters at baseline. Materials and Methods: Eighteen patients who underwent CTA and MRI of their carotid arteries at baseline and 2 years follow-up were included. These 18 patients consisted of six patients who demonstrated a new ulcer and 12 control patients selected from a larger cohort with similar MRI-based plaque characteristics as the ulcer group. (Oscillatory) WSS parameters [time average WSS, oscillatory shear index (OSI), and relative residence time (RRT)] were calculated using computational fluid dynamics applying the MRI-based geometry of the carotid arteries and compared among plaques (wall thickness>2 mm) with and without ulceration (Mann–Whitney U test) and ulcer-site vs. non-ulcer-site within the plaque (Wilcoxon signed rank test). More detailed analysis on ulcer cases was performed and the predictive value of oscillatory WSS parameters was calculated using linear and logistic mixed-effect regression models. Results: The ulcer group demonstrated no difference in maximum WSS [9.9 (6.6–18.5) vs. 13.6 (9.7–17.7) Pa, p = 0.349], a lower maximum OSI [0.04 (0.01–0.10) vs. 0.12 (0.06–0.20) p = 0.019] and lower maximum RRT [1.25 (0.78–2.03) Pa−1 vs. 2.93 (2.03–5.28) Pa−1, p = 0.011] compared to controls. The location of the ulcer (ulcer-site) within the plaque was not always at the maximal WSS, but demonstrated higher average WSS, lower average RRT and OSI at the ulcer-site compared to the non-ulcer-sites. High WSS (WSS>4.3 Pa) and low RRT (RRT < 0.25 Pa) were associated with ulceration with an odds ratio of 3.6 [CI 2.1–6.3] and 2.6 [CI 1.54–4.44] respectively, which remained significant after adjustment for wall thickness. Conclusion: In this explorative study, ulcers were not exclusively located at plaque regions exposed to the highest WSS, OSI, or RRT, but high WSS and low RRT regions had a significantly higher odds to present ulceration within the plaque even after adjustment for wall thickness.
Collapse
Affiliation(s)
- Kristine Dilba
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dianne H K van Dam-Nolen
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Suze-Anne Korteland
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Anja G van der Kolk
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mohamed Kassem
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Daniel Bos
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Peter J Koudstaal
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Paul J Nederkoorn
- Department of Neurology, University Medical Centers Amsterdam, Amsterdam, Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - M Eline Kooi
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Frank J H Gijsen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Anton F W van der Steen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jolanda J Wentzel
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
158
|
Kim S, Jing B, Lindsey BD. Forward-viewing estimation of 3D blood flow velocity fields by intravascular ultrasound: Influence of the catheter on velocity estimation in stenoses. ULTRASONICS 2021; 117:106558. [PMID: 34461527 PMCID: PMC8448960 DOI: 10.1016/j.ultras.2021.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Coronary artery disease is the most common type of cardiovascular disease, affecting > 18 million adults, and is responsible for > 365 k deaths per year in the U.S. alone. Wall shear stress (WSS) is an emerging indicator of likelihood of plaque rupture in coronary artery disease, however, non-invasive estimation of 3-D blood flow velocity and WSS is challenging due to the requirement for high spatial resolution at deep penetration depths in the presence of significant cardiac motion. Thus we propose minimally-invasive imaging with a catheter-based, 3-D intravascular forward-viewing ultrasound (FV US) transducer and present experiments to quantify the effect of the catheter on flow disturbance in stenotic vessel phantoms with realistic velocities and luminal diameters for both peripheral (6.33 mm) and coronary (4.74 mm) arteries. An external linear array ultrasound transducer was used to quantify 2-D velocity fields in vessel phantoms under various conditions of catheter geometry, luminal diameter, and position of the catheter relative to the stenosis at a frame rate of 5000 frames per second via a particle imaging velocimetry (PIV) approach. While a solid catheter introduced an underestimation of velocity measurement by > 20% relative to the case without a catheter, the hollow catheter introduced < 10% velocity overestimation, indicating that a hollow catheter design allowing internal blood flow reduces hemodynamic disturbance. In addition, for both peripheral and coronary arteries, the hollow catheter introduced < 3% deviation in flow velocity at the minimum luminal area compared to the control case. Finally, an initial comparison was made between velocity measurements acquired using a low frequency, catheter-based, 3-D intravascular FV US transducer and external linear array measurements, with relative error < 12% throughout the region of interest for a flow rate of 150 mL/min. While further system development is required, results suggest intravascular ultrasound characterization of blood flow velocity fields in stenotic vessels could be feasible with appropriate catheter design.
Collapse
Affiliation(s)
- Saeyoung Kim
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, 801 Ferst Dr., Atlanta, GA 30332, USA; Georgia Institute of Technology, Interdisciplinary BioEngineering Graduate Program, 315 Ferst Dr., Atlanta, GA 30332, USA
| | - Bowen Jing
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Brooks D Lindsey
- Georgia Institute of Technology, Interdisciplinary BioEngineering Graduate Program, 315 Ferst Dr., Atlanta, GA 30332, USA; Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, 313 Ferst Dr NW, Atlanta, GA 30332, USA.
| |
Collapse
|
159
|
Corti A, Colombo M, Migliavacca F, Rodriguez Matas JF, Casarin S, Chiastra C. Multiscale Computational Modeling of Vascular Adaptation: A Systems Biology Approach Using Agent-Based Models. Front Bioeng Biotechnol 2021; 9:744560. [PMID: 34796166 PMCID: PMC8593007 DOI: 10.3389/fbioe.2021.744560] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
The widespread incidence of cardiovascular diseases and associated mortality and morbidity, along with the advent of powerful computational resources, have fostered an extensive research in computational modeling of vascular pathophysiology field and promoted in-silico models as a support for biomedical research. Given the multiscale nature of biological systems, the integration of phenomena at different spatial and temporal scales has emerged to be essential in capturing mechanobiological mechanisms underlying vascular adaptation processes. In this regard, agent-based models have demonstrated to successfully embed the systems biology principles and capture the emergent behavior of cellular systems under different pathophysiological conditions. Furthermore, through their modular structure, agent-based models are suitable to be integrated with continuum-based models within a multiscale framework that can link the molecular pathways to the cell and tissue levels. This can allow improving existing therapies and/or developing new therapeutic strategies. The present review examines the multiscale computational frameworks of vascular adaptation with an emphasis on the integration of agent-based approaches with continuum models to describe vascular pathophysiology in a systems biology perspective. The state-of-the-art highlights the current gaps and limitations in the field, thus shedding light on new areas to be explored that may become the future research focus. The inclusion of molecular intracellular pathways (e.g., genomics or proteomics) within the multiscale agent-based modeling frameworks will certainly provide a great contribution to the promising personalized medicine. Efforts will be also needed to address the challenges encountered for the verification, uncertainty quantification, calibration and validation of these multiscale frameworks.
Collapse
Affiliation(s)
- Anna Corti
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Monika Colombo
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.,Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Switzerland
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Jose Felix Rodriguez Matas
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Stefano Casarin
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States.,Center for Computational Surgery, Houston Methodist Research Institute, Houston, TX, United States.,Houston Methodist Academic Institute, Houston, TX, United States
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.,PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
160
|
Candreva A, Pagnoni M, Rizzini ML, Mizukami T, Gallinoro E, Mazzi V, Gallo D, Meier D, Shinke T, Aben JP, Nagumo S, Sonck J, Munhoz D, Fournier S, Barbato E, Heggermont W, Cook S, Chiastra C, Morbiducci U, De Bruyne B, Muller O, Collet C. Risk of myocardial infarction based on endothelial shear stress analysis using coronary angiography. Atherosclerosis 2021; 342:28-35. [PMID: 34815069 DOI: 10.1016/j.atherosclerosis.2021.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Wall shear stress (WSS) has been associated with atherogenesis and plaque progression. The present study assessed the value of WSS analysis derived from conventional coronary angiography to detect lesions culprit for future myocardial infarction (MI). METHODS AND RESULTS Three-dimensional quantitative coronary angiography (3DQCA), was used to calculate WSS and pressure drop in 80 patients. WSS descriptors were compared between 80 lesions culprit of future MI and 108 non-culprit lesions (controls). Endothelium-blood flow interaction was assessed by computational fluid dynamics (10.8 ± 1.41 min per vessel). Median time between baseline angiography and MI was 25.9 (21.9-29.8) months. Mean patient age was 70.3 ± 12.7. Clinical presentation was STEMI in 35% and NSTEMI in 65%. Culprit lesions showed higher percent area stenosis (%AS), translesional vFFR difference (ΔvFFR), time-averaged WSS (TAWSS) and topological shear variation index (TSVI) compared to non-culprit lesions (p < 0.05 for all). TSVI was superior to TAWSS in predicting MI (AUC-TSVI = 0.77, 95%CI 0.71-0.84 vs. AUC-TAWSS = 0.61, 95%CI 0.53-0.69, p < 0.001). The addition of TSVI increased predictive and reclassification abilities compared to a model based on %AS and ΔvFFR (NRI = 1.04, p < 0.001, IDI = 0.22, p < 0.001). CONCLUSIONS A 3DQCA-based WSS analysis was feasible and can identify lesions culprit for future MI. The combination of area stenoses, pressure gradients and WSS predicted the occurrence of MI. TSVI, a novel WSS descriptor, showed strong predictive capacity to detect lesions prone to cause MI.
Collapse
Affiliation(s)
- Alessandro Candreva
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Dept. of Cardiology, Zurich University Hospital, Zurich, Switzerland; Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Mattia Pagnoni
- Dept. of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Maurizio Lodi Rizzini
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Takuya Mizukami
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Dept. of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Emanuele Gallinoro
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Dept. of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Valentina Mazzi
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Diego Gallo
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - David Meier
- Dept. of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Toshiro Shinke
- Dept. of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | | | - Sakura Nagumo
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Dept. of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Jeroen Sonck
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Dept. of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Daniel Munhoz
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Dept. of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy; Department of Internal Medicine, University of Campinas (Unicamp), Campinas, Brazil
| | - Stephane Fournier
- Dept. of Cardiology, Lausanne University Hospital, Lausanne, Switzerland; Dept. of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Dept. of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Stephane Cook
- Department of Cardiology, HFR Fribourg, Fribourg, Switzerland
| | - Claudio Chiastra
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Dept. of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Oliver Muller
- Dept. of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium.
| |
Collapse
|
161
|
Wang L, Zhu J, Maehara A, Lv R, Qu Y, Zhang X, Guo X, Billiar KL, Chen L, Ma G, Mintz GS, Tang D. Quantifying Patient-Specific in vivo Coronary Plaque Material Properties for Accurate Stress/Strain Calculations: An IVUS-Based Multi-Patient Study. Front Physiol 2021; 12:721195. [PMID: 34759832 PMCID: PMC8575450 DOI: 10.3389/fphys.2021.721195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction: Mechanical forces are closely associated with plaque progression and rupture. Precise quantifications of biomechanical conditions using in vivo image-based computational models depend heavily on the accurate estimation of patient-specific plaque mechanical properties. Currently, mechanical experiments are commonly performed on ex vivo cardiovascular tissues to determine plaque material properties. Patient-specific in vivo coronary material properties are scarce in the existing literature. Methods:In vivo Cine intravascular ultrasound and virtual histology intravascular ultrasound (IVUS) slices were acquired at 20 plaque sites from 13 patients. A three-dimensional thin-slice structure-only model was constructed for each slice to obtain patient-specific in vivo material parameter values following an iterative scheme. Effective Young's modulus (YM) was calculated to indicate plaque stiffness for easy comparison purposes. IVUS-based 3D thin-slice models using in vivo and ex vivo material properties were constructed to investigate their impacts on plaque wall stress/strain (PWS/PWSn) calculations. Results: The average YM values in the axial and circumferential directions for the 20 plaque slices were 599.5 and 1,042.8 kPa, respectively, 36.1% lower than those from published ex vivo data. The YM values in the circumferential direction of the softest and stiffest plaques were 103.4 and 2,317.3 kPa, respectively. The relative difference of mean PWSn on lumen using the in vivo and ex vivo material properties could be as high as 431%, while the relative difference of mean PWS was much lower, about 3.07% on average. Conclusion: There is a large inter-patient and intra-patient variability in the in vivo plaque material properties. In vivo material properties have a great impact on plaque stress/strain calculations. In vivo plaque material properties have a greater impact on strain calculations. Large-scale-patient studies are needed to further verify our findings.
Collapse
Affiliation(s)
- Liang Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jian Zhu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Akiko Maehara
- The Cardiovascular Research Foundation, Columbia University, New York, NY, United States
| | - Rui Lv
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yangyang Qu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaoguo Zhang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaoya Guo
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Kristen L Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Lijuan Chen
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Gary S Mintz
- The Cardiovascular Research Foundation, Columbia University, New York, NY, United States
| | - Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
162
|
The definition of low wall shear stress and its effect on plaque progression estimation in human coronary arteries. Sci Rep 2021; 11:22086. [PMID: 34764316 PMCID: PMC8586146 DOI: 10.1038/s41598-021-01232-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/14/2021] [Indexed: 01/08/2023] Open
Abstract
Wall shear stress (WSS), the frictional force of the blood on the vessel wall, plays a crucial role in atherosclerotic plaque development. Low WSS has been associated with plaque growth, however previous research used different approaches to define low WSS to investigate its effect on plaque progression. In this study, we used four methodologies to allocate low, mid and high WSS in one dataset of human coronary arteries and investigated the predictive power of low WSS for plaque progression. Coronary reconstructions were based on multimodality imaging, using intravascular ultrasound and CT-imaging. Vessel-specific flow was measured using Doppler wire and computational fluid dynamics was performed to calculate WSS. The absolute WSS range varied greatly between the coronary arteries. On the population level, the established pattern of most plaque progression at low WSS was apparent in all methodologies defining the WSS categories. However, for the individual patient, when using measured flow to determine WSS, the absolute WSS values range so widely, that the use of absolute thresholds to determine low WSS was not appropriate to identify regions at high risk for plaque progression.
Collapse
|
163
|
Owen DG, de Oliveira DC, Neale EK, Shepherd DET, Espino DM. Numerical modelling of blood rheology and platelet activation through a stenosed left coronary artery bifurcation. PLoS One 2021; 16:e0259196. [PMID: 34731193 PMCID: PMC8565790 DOI: 10.1371/journal.pone.0259196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/14/2021] [Indexed: 01/09/2023] Open
Abstract
Coronary bifurcations are prone to atherosclerotic plaque growth, experiencing regions of reduced wall shear stress (WSS) and increased platelet adhesion. This study compares effects across different rheological approaches on hemodynamics, combined with a shear stress exposure history model of platelets within a stenosed porcine bifurcation. Simulations used both single/multiphase blood models to determine which approach best predicts phenomena associated with atherosclerosis and atherothrombosis. A novel Lagrangian platelet tracking model was used to evaluate residence time and shear history of platelets indicating likely regions of thrombus formation. Results show a decrease in area of regions with pathologically low time-averaged WSS with the use of multiphase models, particularly in a stenotic bifurcation. Significant non-Newtonian effects were observed due to low-shear and varying hematocrit levels found on the outer walls of the bifurcation and distal to the stenosis. Platelet residence time increased 11% in the stenosed artery, with exposure times to low-shear sufficient for red blood cell aggregation (>1.5 s). increasing the risk of thrombosis. This shows stenotic artery hemodynamics are inherently non-Newtonian and multiphase, with variations in hematocrit (0.163-0.617) and elevated vorticity distal to stenosis (+15%) impairing the function of the endothelium via reduced time-averaged WSS regions, rheological properties and platelet activation/adhesion.
Collapse
Affiliation(s)
- David G. Owen
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Diana C. de Oliveira
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Emma K. Neale
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Duncan E. T. Shepherd
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Daniel M. Espino
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
164
|
Liu H, Wingert A, Wang X, Zhang J, Sun J, Chen F, Khalid SG, Gong Y, Xia L, Jiang J, Wang J, Zheng D. Consistency in Geometry Among Coronary Atherosclerotic Plaques Extracted From Computed Tomography Angiography. Front Physiol 2021; 12:715265. [PMID: 34712147 PMCID: PMC8546263 DOI: 10.3389/fphys.2021.715265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022] Open
Abstract
Background: The three-dimensional (3D) geometry of coronary atherosclerotic plaques is associated with plaque growth and the occurrence of coronary artery disease. However, there is a lack of studies on the 3D geometric properties of coronary plaques. We aim to investigate if coronary plaques of different sizes are consistent in geometric properties. Methods: Nineteen cases with symptomatic stenosis caused by atherosclerotic plaques in the left coronary artery were included. Based on attenuation values on computed tomography angiography images, coronary atherosclerotic plaques and calcifications were identified, 3D reconstructed, and manually revised. Multidimensional geometric parameters were measured on the 3D models of plaques and calcifications. Linear and non-linear (i.e., power function) fittings were used to investigate the relationship between multidimensional geometric parameters (length, surface area, volume, etc.). Pearson correlation coefficient (r), R-squared, and p-values were used to evaluate the significance of the relationship. The analysis was performed based on cases and plaques, respectively. Significant linear relationship was defined as R-squared > 0.25 and p < 0.05. Results: In total, 49 atherosclerotic plaques and 56 calcifications were extracted. In the case-based analysis, significant linear relationships were found between number of plaques and number of calcifications (r = 0.650, p = 0.003) as well as total volume of plaques (r = 0.538, p = 0.018), between number of calcifications and total volume of plaques (r = 0.703, p = 0.001) as well as total volume of calcification (r = 0.646, p = 0.003), and between the total volumes of plaques and calcifications (r = 0.872, p < 0.001). In plaque-based analysis, the power function showed higher R-squared values than the linear function in fitting the relationships of multidimensional geometric parameters. Two presumptions of plaque geometry in different growth stages were proposed with simplified geometric models developed. In the proposed models, the exponents in the power functions of geometric parameters were in accordance with the fitted values. Conclusion: In patients with coronary artery disease, coronary plaques and calcifications are positively related in number and volume. Different coronary plaques are consistent in the relationship between geometry parameters in different dimensions.
Collapse
Affiliation(s)
- Haipeng Liu
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom.,Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Aleksandra Wingert
- Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Xinhong Wang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jucheng Zhang
- Department of Clinical Engineering, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jianzhong Sun
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Syed Ghufran Khalid
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom.,Department of Medical Physics, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Yinglan Gong
- Key Laboratory for Biomedical Engineering of Ministry of Education, Institute of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Ling Xia
- Key Laboratory for Biomedical Engineering of Ministry of Education, Institute of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Jun Jiang
- Department of Cardiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jian'an Wang
- Department of Cardiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Dingchang Zheng
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| |
Collapse
|
165
|
Lu G, Ye W, Ou J, Li X, Tan Z, Li T, Liu H. Coronary Computed Tomography Angiography Assessment of High-Risk Plaques in Predicting Acute Coronary Syndrome. Front Cardiovasc Med 2021; 8:743538. [PMID: 34660742 PMCID: PMC8517134 DOI: 10.3389/fcvm.2021.743538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023] Open
Abstract
Coronary computed tomography angiography (CCTA) is a comprehensive, non-invasive and cost-effective imaging assessment approach, which can provide the ability to identify the characteristics and morphology of high-risk atherosclerotic plaques associated with acute coronary syndrome (ACS). The development of CCTA and latest advances in emerging technologies, such as computational fluid dynamics (CFD), have made it possible not only to identify the morphological characteristics of high-risk plaques non-invasively, but also to assess the hemodynamic parameters, the environment surrounding coronaries and so on, which may help to predict the risk of ACS. In this review, we present how CCTA was used to characterize the composition and morphology of high-risk plaques prone to ACS and the current role of CCTA, including emerging CCTA technologies, advanced analysis, and characterization techniques in prognosticating the occurrence of ACS.
Collapse
Affiliation(s)
- Guanyu Lu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,College of Medicine, Shantou University, Shantou, China
| | - Weitao Ye
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiehao Ou
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinyun Li
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zekun Tan
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tingyu Li
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hui Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,College of Medicine, Shantou University, Shantou, China
| |
Collapse
|
166
|
Li Z, Jiang W, Diao J, Chen C, Xu K, Fan H, Yan F. Segmentary strategy in modeling of cardiovascular system with blood supply to regional skin. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
167
|
Yang S, Choi G, Zhang J, Lee JM, Hwang D, Doh JH, Nam CW, Shin ES, Cho YS, Choi SY, Chun EJ, Nørgaard BL, Nieman K, Otake H, Penicka M, Bruyne BD, Kubo T, Akasaka T, Taylor CA, Koo BK. Association Among Local Hemodynamic Parameters Derived From CT Angiography and Their Comparable Implications in Development of Acute Coronary Syndrome. Front Cardiovasc Med 2021; 8:713835. [PMID: 34589527 PMCID: PMC8475759 DOI: 10.3389/fcvm.2021.713835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Association among local hemodynamic parameters and their implications in development of acute coronary syndrome (ACS) have not been fully investigated. Methods: A total of 216 lesions in ACS patients undergoing coronary CT angiography (CCTA) before 1–24 months from ACS event were analyzed. High-risk plaque on CCTA was defined as a plaque with ≥2 of low-attenuation plaque, positive remodeling, spotty calcification, and napkin-ring sign. With the use of computational fluid dynamics analysis, fractional flow reserve (FFR) derived from CCTA (FFRCT) and local hemodynamic parameters including wall shear stress (WSS), axial plaque stress (APS), pressure gradient (PG) across the lesion, and delta FFRCT across the lesion (ΔFFRCT) were obtained. The association among local hemodynamics and their discrimination ability for culprit lesions from non-culprit lesions were compared. Results: A total of 66 culprit lesions for later ACS and 150 non-culprit lesions were identified. WSS, APS, PG, and ΔFFRCT were strongly correlated with each other (all p < 0.001). This association was persistent in all lesion subtypes according to a vessel, lesion location, anatomical severity, high-risk plaque, or FFRCT ≤ 0.80. In discrimination of culprit lesions causing ACS from non-culprit lesions, WSS, PG, APS, and ΔFFRCT were independent predictors after adjustment for lesion characteristics, high-risk plaque, and FFRCT ≤ 0.80; and all local hemodynamic parameters significantly improved the predictive value for culprit lesions of high-risk plaque and FFRCT ≤ 0.80 (all p < 0.05). The risk prediction model for culprit lesions with FFRCT ≤ 0.80, high-risk plaque, and ΔFFRCT had a similar or superior discrimination ability to that with FFRCT ≤ 0.80, high-risk plaque, and WSS, APS, or PG; and the addition of WSS, APS, or PG into ΔFFRCT did not improve the model performance. Conclusions: Local hemodynamic indices were significantly intercorrelated, and all indices similarly provided additive and independent predictive values for ACS risk over high-risk plaque and impaired FFRCT.
Collapse
Affiliation(s)
- Seokhun Yang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University, Seoul, South Korea
| | - Gilwoo Choi
- HeartFlow Inc., Redwood City, CA, United States
| | - Jinlong Zhang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Joo Myung Lee
- Department of Internal Medicine and Cardiovascular Center, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Doyeon Hwang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University, Seoul, South Korea
| | - Joon-Hyung Doh
- Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, South Korea
| | - Chang-Wook Nam
- Department of Medicine, Dongsan Medical Center, Keimyung University, Daegu, South Korea
| | - Eun-Seok Shin
- Department of Cardiology, Ulsan Hospital, Ulsan, South Korea
| | - Young-Seok Cho
- Cardiovascular Center, Sejong General Hospital, Incheon, South Korea
| | - Su-Yeon Choi
- Department of Medicine, Healthcare System Gangnam Center, Seoul National University, Seoul, South Korea
| | - Eun Ju Chun
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Bjarne L Nørgaard
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Koen Nieman
- School of Medicine, Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Hiromasa Otake
- Division of Cardiovascular and Respiratory Medicine, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | | | | - Takashi Kubo
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Charles A Taylor
- HeartFlow Inc., Redwood City, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University, Seoul, South Korea.,Institute on Aging, Seoul National University, Seoul, South Korea
| |
Collapse
|
168
|
Liu H, Lan L, Abrigo J, Ip HL, Soo Y, Zheng D, Wong KS, Wang D, Shi L, Leung TW, Leng X. Comparison of Newtonian and Non-newtonian Fluid Models in Blood Flow Simulation in Patients With Intracranial Arterial Stenosis. Front Physiol 2021; 12:718540. [PMID: 34552505 PMCID: PMC8450390 DOI: 10.3389/fphys.2021.718540] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Background Newtonian fluid model has been commonly applied in simulating cerebral blood flow in intracranial atherosclerotic stenosis (ICAS) cases using computational fluid dynamics (CFD) modeling, while blood is a shear-thinning non-Newtonian fluid. We aimed to investigate the differences of cerebral hemodynamic metrics quantified in CFD models built with Newtonian and non-Newtonian fluid assumptions, in patients with ICAS. Methods We built a virtual artery model with an eccentric 75% stenosis and performed static CFD simulation. We also constructed CFD models in three patients with ICAS of different severities in the luminal stenosis. We performed static simulations on these models with Newtonian and two non-Newtonian (Casson and Carreau-Yasuda) fluid models. We also performed transient simulations on another patient-specific model. We measured translesional pressure ratio (PR) and wall shear stress (WSS) values in all CFD models, to reflect the changes in pressure and WSS across a stenotic lesion. In all the simulations, we compared the PR and WSS values in CFD models derived with Newtonian, Casson, and Carreau-Yasuda fluid assumptions. Results In all the static and transient simulations, the Newtonian/non-Newtonian difference on PR value was negligible. As to WSS, in static models (virtual and patient-specific), the rheological difference was not obvious in areas with high WSS, but observable in low WSS areas. In the transient model, the rheological difference of WSS areas with low WSS was enhanced, especially during diastolic period. Conclusion Newtonian fluid model could be applicable for PR calculation, but caution needs to be taken when using the Newtonian assumption in simulating WSS especially in severe ICAS cases.
Collapse
Affiliation(s)
- Haipeng Liu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.,Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| | - Linfang Lan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jill Abrigo
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hing Lung Ip
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Yannie Soo
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Dingchang Zheng
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| | - Ka Sing Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Defeng Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas W Leung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Xinyi Leng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
169
|
Adriaenssens T, Allard-Ratick MP, Thondapu V, Sugiyama T, Raffel OC, Barlis P, Poon EKW, Araki M, Nakajima A, Minami Y, Takano M, Kurihara O, Fuster V, Kakuta T, Jang IK. Optical Coherence Tomography of Coronary Plaque Progression and Destabilization: JACC Focus Seminar Part 3/3. J Am Coll Cardiol 2021; 78:1275-1287. [PMID: 34531029 DOI: 10.1016/j.jacc.2021.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
The development of optical coherence tomography (OCT) has revolutionized our understanding of coronary artery disease. In vivo OCT research has paralleled with advances in computational fluid dynamics, providing additional insights in the various hemodynamic factors influencing plaque growth and stability. Recent OCT studies introduced a new concept of plaque healing in relation to clinical presentation. In addition to known mechanisms of acute coronary syndromes such as plaque rupture and plaque erosion, a new classification of calcified plaque was recently reported. This review will focus on important new insights that OCT has provided in recent years into coronary plaque development, progression, and destabilization, with a focus on the role of local hemodynamics and endothelial shear stress, the layered plaque (signature of previous subclinical plaque destabilization and healing), and the calcified culprit plaque.
Collapse
Affiliation(s)
- Tom Adriaenssens
- Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Marc P Allard-Ratick
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vikas Thondapu
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tomoyo Sugiyama
- Department of Cardiology, Tsuchiura Kyodo General Hospital, Tsuchiura, Ibaraki, Japan
| | | | - Peter Barlis
- Department of Medicine, St Vincent's Hospital, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Eric K W Poon
- Department of Medicine, St Vincent's Hospital, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Makoto Araki
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Akihiro Nakajima
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yoshiyasu Minami
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masamichi Takano
- Cardiovascular Center, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Osamu Kurihara
- Cardiovascular Center, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Valentin Fuster
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Tsunekazu Kakuta
- Department of Cardiology, Tsuchiura Kyodo General Hospital, Tsuchiura, Ibaraki, Japan
| | - Ik-Kyung Jang
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Cardiology Division, Kyung Hee University Hospital, Seoul, South Korea.
| |
Collapse
|
170
|
Tian S, Pan W, Peng J, Wang H, Deng B, Liang Y, Li X, Liu H, Wang Y, Luo B, Du J. Hemodynamic Responses in Carotid Bifurcation Induced by Enhanced External Counterpulsation Stimulation in Healthy Controls and Patients With Neurological Disorders. Front Physiol 2021; 12:717080. [PMID: 34531762 PMCID: PMC8438206 DOI: 10.3389/fphys.2021.717080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022] Open
Abstract
Enhanced external counterpulsation is a Food and Drug Administration–approved, non-invasive, assisted circulation therapy for ischemic cardiovascular and cerebrovascular diseases. Previous studies have confirmed that EECP stimulation induces largely different cerebral hemodynamic responses in patients with ischemic stroke and healthy controls. However, the underlying mechanisms remain uncertain. We hypothesize that different blood redistributions at the carotid bifurcation may play a key role. Ten subjects were enrolled in this study, namely, five patients with neurological disorders and five young healthy volunteers as controls. Magnetic resonance angiography (MRA) was performed on the carotid artery. All the subjects received a single session of EECP treatment, with external cuff pressures ranging from 20 to 40 kPa. Vascular ultrasound measurements were taken in the common carotid artery (CCA), external carotid artery (ECA) and internal carotid artery (ICA). Three-dimensional patient-specific numerical models were developed to calculate the WSS-derived hemodynamic factors. The results indicated that EECP increased CCA and ECA blood flow in both groups. The ICA blood flow in the patient group exhibited a mean increase of 6.67% during EECP treatment compared with the pre-EECP condition; a mean decrease of 9.2% was observed in the healthy control group. EECP increased the averaged wall shear stress (AWSS) throughout the carotid bifurcation in the patient group; the ICA AWSS of the healthy group decreased during EECP. In both groups, the oscillatory shear index (OSI) in the ICA increased proportionally with external cuff pressure. In addition, the relative resident time (RRT) was constant or slightly decreased in the CCA and ECA in both groups but increased in the ICA. We suggest that the benefits of EECP to patients with neurological disorders may partly result from blood flow promotion in the ICA and increase in WSS at the carotid bifurcation. In the healthy subjects, the ICA blood flow remained constant during EECP, although the CCA blood flow increased significantly. A relatively low external cuff pressure (20 kPa) is recommended as the optimal treatment pressure for better hemodynamic effects. This study may play an important role in the translation of physiological benefits of EECP treatment in populations with or without neurological disorders.
Collapse
Affiliation(s)
- Shuai Tian
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-sen University, Shenzhen, China
| | - Wei Pan
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-sen University, Shenzhen, China
| | - Junping Peng
- Department of Radiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hui Wang
- Department of Ultrasound, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bin Deng
- Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-sen University, Shenzhen, China
| | - Yi Liang
- Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-sen University, Shenzhen, China
| | - Xinghua Li
- Medical Imaging Center, Chongming Medical Technology Company, Shenzhen, China
| | - Huahui Liu
- Department of Radiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yujia Wang
- Department of Ultrasound, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bin Luo
- Department of Neurosurgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jianhang Du
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-sen University, Shenzhen, China.,National Health Commission Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
171
|
Effect of Subject-Specific, Spatially Reduced, and Idealized Boundary Conditions on the Predicted Hemodynamic Environment in the Murine Aorta. Ann Biomed Eng 2021; 49:3255-3266. [PMID: 34528150 DOI: 10.1007/s10439-021-02851-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
Mouse models of atherosclerosis have become effective resources to study atherogenesis, including the relationship between hemodynamics and lesion development. Computational methods aid the prediction of the in vivo hemodynamic environment in the mouse vasculature, but careful selection of inflow and outflow boundary conditions (BCs) is warranted to promote model accuracy. Herein, we investigated the impact of animal-specific versus reduced/idealized flow boundary conditions on predicted blood flow patterns in the mouse thoracic aorta. Blood velocities were measured in the aortic root, arch branch vessel, and descending aorta in ApoE-/- mice using phase-contrast MRI. Computational geometries were derived from micro-CT imaging and combinations of high-fidelity or reduced/idealized MR-derived BCs were applied to predict the bulk flow field and hemodynamic metrics (e.g., wall shear stress, WSS; cross-flow index, CFI). Results demonstrate that pressure-free outlet BCs significantly overestimate outlet flow rates as compared to measured values. When compared to models that incorporate 3-component inlet velocity data [[Formula: see text]] and time-varying outlet mass flow splits [[Formula: see text]] (i.e., high-fidelity model), neglecting in-plane inlet velocity components (i.e., [Formula: see text])) leads to errors in WSS and CFI values ranging from 10 to 30% across the model domain whereas the application of a steady outlet mass flow splits results in negligible differences in these hemodynamics metrics. This investigation highlights that 3-component inlet velocity data and at least steady mass flow splits are required for accurate predictions of flow patterns in the mouse thoracic aorta.
Collapse
|
172
|
Freidoonimehr N, Chin R, Zander A, Arjomandi M. A Review on the Effect of Temporal Geometric Variations of the Coronary Arteries on the Wall Shear Stress and Pressure Drop. J Biomech Eng 2021; 144:1115053. [PMID: 34318321 DOI: 10.1115/1.4051923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 11/08/2022]
Abstract
Temporal variations of the coronary arteries during a cardiac cycle are defined as the superposition of the changes in the position, curvature, and torsion of the coronary artery axis markers and the variations in the lumen cross-sectional shape due to the distensible wall motion induced by the pulse pressure and contraction of the myocardium in a cardiac cycle. This review discusses whether modeling of the temporal variations of the coronary arteries is needed for the investigation of hemodynamics specifically in time-critical applications such as a clinical environment. The numerical modelings in the literature that model or disregard the temporal variations of the coronary arteries on the hemodynamic parameters are discussed. The results in the literature show that neglecting the effects of temporal geometric variations is expected to result in about 5% deviation of the time-averaged pressure drop and wall shear stress values and also about 20% deviation of the temporal variations of hemodynamic parameters, such as time-dependent wall shear stress and oscillatory shear index. This review study can be considered as a guide for future studies to outline the conditions in which temporal variations of the coronary arteries can be neglected while providing a reliable estimation of hemodynamic parameters.
Collapse
Affiliation(s)
- Navid Freidoonimehr
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Rey Chin
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Anthony Zander
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Maziar Arjomandi
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
173
|
Lv R, Maehara A, Matsumura M, Wang L, Zhang C, Huang M, Guo X, Samady H, Giddens DP, Zheng J, Mintz GS, Tang D. Using Optical Coherence Tomography and Intravascular Ultrasound Imaging to Quantify Coronary Plaque Cap Stress/Strain and Progression: A Follow-Up Study Using 3D Thin-Layer Models. Front Bioeng Biotechnol 2021; 9:713525. [PMID: 34497800 PMCID: PMC8419245 DOI: 10.3389/fbioe.2021.713525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate plaque cap thickness quantification and cap stress/strain calculations are of fundamental importance for vulnerable plaque research. To overcome uncertainties due to intravascular ultrasound (IVUS) resolution limitation, IVUS and optical coherence tomography (OCT) coronary plaque image data were combined together to obtain accurate and reliable cap thickness data, stress/strain calculations, and reliable plaque progression predictions. IVUS, OCT, and angiography baseline and follow-up data were collected from nine patients (mean age: 69; m: 5) at Cardiovascular Research Foundation with informed consent obtained. IVUS and OCT slices were coregistered and merged to form IVUS + OCT (IO) slices. A total of 114 matched slices (IVUS and OCT, baseline and follow-up) were obtained, and 3D thin-layer models were constructed to obtain stress and strain values. A generalized linear mixed model (GLMM) and least squares support vector machine (LSSVM) method were used to predict cap thickness change using nine morphological and mechanical risk factors. Prediction accuracies by all combinations (511) of those predictors with both IVUS and IO data were compared to identify optimal predictor(s) with their best accuracies. For the nine patients, the average of minimum cap thickness from IVUS was 0.17 mm, which was 26.08% lower than that from IO data (average = 0.23 mm). Patient variations of the individual errors ranged from ‒58.11 to 20.37%. For maximum cap stress between IO and IVUS, patient variations of the individual errors ranged from ‒30.40 to 46.17%. Patient variations of the individual errors of maximum cap strain values ranged from ‒19.90 to 17.65%. For the GLMM method, the optimal combination predictor using IO data had AUC (area under the ROC curve) = 0.926 and highest accuracy = 90.8%, vs. AUC = 0.783 and accuracy = 74.6% using IVUS data. For the LSSVM method, the best combination predictor using IO data had AUC = 0.838 and accuracy = 75.7%, vs. AUC = 0.780 and accuracy = 69.6% using IVUS data. This preliminary study demonstrated improved plaque cap progression prediction accuracy using accurate cap thickness data from IO slices and the differences in cap thickness, stress/strain values, and prediction results between IVUS and IO data. Large-scale studies are needed to verify our findings.
Collapse
Affiliation(s)
- Rui Lv
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Akiko Maehara
- The Cardiovascular Research Foundation, Columbia University, New York, NY, United States
| | - Mitsuaki Matsumura
- The Cardiovascular Research Foundation, Columbia University, New York, NY, United States
| | - Liang Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Caining Zhang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Mengde Huang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiaoya Guo
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Don. P. Giddens
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, United States
| | - Gary S. Mintz
- The Cardiovascular Research Foundation, Columbia University, New York, NY, United States
| | - Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
174
|
Yong ASC, Pargaonkar VS, Wong CCY, Javadzdegan A, Yamada R, Tanaka S, Kimura T, Rogers IS, Sen I, Kritharides L, Schnittger I, Tremmel JA. Abnormal shear stress and residence time are associated with proximal coronary atheroma in the presence of myocardial bridging. Int J Cardiol 2021; 340:7-13. [PMID: 34375705 DOI: 10.1016/j.ijcard.2021.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/12/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Atheromatous plaques tend to form in the coronary segments proximal to a myocardial bridge (MB), but the mechanism of this occurrence remains unclear. This study evaluates the relationship between blood flow perturbations and plaque formation in patients with an MB. METHODS AND RESULTS A total of 92 patients with an MB in the mid left anterior descending artery (LAD) and 20 patients without an MB were included. Coronary angiography, intravascular ultrasound, and coronary physiology measurements were performed. A moving-boundary computational fluid dynamics algorithm was used to derive wall shear stress (WSS) and peak residence time (PRT). Patients with an MB had lower WSS (0.46 ± 0.21 vs. 0.96 ± 0.33 Pa, p < 0.001) and higher maximal plaque burden (33.6 ± 15.0 vs. 14.2 ± 5.8%, p < 0.001) within the proximal LAD compared to those without. Plaque burden in the proximal LAD correlated significantly with proximal WSS (r = -0.51, p < 0.001) and PRT (r = 0.60, p < 0.001). In patients with an MB, the site of maximal plaque burden occurred 23.4 ± 13.3 mm proximal to the entrance of the MB, corresponding to the site of PRT. CONCLUSIONS Regions of low WSS and high PRT occur in arterial segments proximal to an MB, and this is associated with the degree and location of coronary atheroma formation.
Collapse
Affiliation(s)
- Andy S C Yong
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia; Department of Cardiology, Concord Hospital, The University of Sydney, Sydney, Australia
| | | | - Christopher C Y Wong
- Department of Cardiology, Concord Hospital, The University of Sydney, Sydney, Australia
| | - Ashkan Javadzdegan
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Ryotaro Yamada
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Shigemitsu Tanaka
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Takumi Kimura
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Ian S Rogers
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Itsu Sen
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Leonard Kritharides
- Department of Cardiology, Concord Hospital, The University of Sydney, Sydney, Australia
| | - Ingela Schnittger
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
175
|
Mazzi V, De Nisco G, Hoogendoorn A, Calò K, Chiastra C, Gallo D, Steinman DA, Wentzel JJ, Morbiducci U. Early Atherosclerotic Changes in Coronary Arteries are Associated with Endothelium Shear Stress Contraction/Expansion Variability. Ann Biomed Eng 2021; 49:2606-2621. [PMID: 34324092 PMCID: PMC8455396 DOI: 10.1007/s10439-021-02829-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although unphysiological wall shear stress (WSS) has become the consensus hemodynamic mechanism for coronary atherosclerosis, the complex biomechanical stimulus affecting atherosclerosis evolution is still undetermined. This has motivated the interest on the contraction/expansion action exerted by WSS on the endothelium, obtained through the WSS topological skeleton analysis. This study tests the ability of this WSS feature, alone or combined with WSS magnitude, to predict coronary wall thickness (WT) longitudinal changes. Nine coronary arteries of hypercholesterolemic minipigs underwent imaging with local WT measurement at three time points: baseline (T1), after 5.6 ± 0.9 (T2), and 7.6 ± 2.5 (T3) months. Individualized computational hemodynamic simulations were performed at T1 and T2. The variability of the WSS contraction/expansion action along the cardiac cycle was quantified using the WSS topological shear variation index (TSVI). Alone or combined, high TSVI and low WSS significantly co-localized with high WT at the same time points and were significant predictors of thickening at later time points. TSVI and WSS magnitude values in a physiological range appeared to play an atheroprotective role. Both the variability of the WSS contraction/expansion action and WSS magnitude, accounting for different hemodynamic effects on the endothelium, (1) are linked to WT changes and (2) concur to identify WSS features leading to coronary atherosclerosis.
Collapse
Affiliation(s)
- Valentina Mazzi
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - Giuseppe De Nisco
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - Ayla Hoogendoorn
- Department of Cardiology, Biomedical Engineering, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Karol Calò
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - Claudio Chiastra
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - Diego Gallo
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - David A Steinman
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada
| | - Jolanda J Wentzel
- Department of Cardiology, Biomedical Engineering, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Umberto Morbiducci
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy.
| |
Collapse
|
176
|
Teng EL, Masutani EM, Yeoman B, Fung J, Lian R, Ngo B, Kumar A, Placone JK, Lo Sardo V, Engler AJ. High shear stress enhances endothelial permeability in the presence of the risk haplotype at 9p21.3. APL Bioeng 2021; 5:036102. [PMID: 34327295 PMCID: PMC8315817 DOI: 10.1063/5.0054639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are exceedingly common in non-coding loci, and while they are significantly associated with a myriad of diseases, their specific impact on cellular dysfunction remains unclear. Here, we show that when exposed to external stressors, the presence of risk SNPs in the 9p21.3 coronary artery disease (CAD) risk locus increases endothelial monolayer and microvessel dysfunction. Endothelial cells (ECs) derived from induced pluripotent stem cells of patients carrying the risk haplotype (R/R WT) differentiated similarly to their non-risk and isogenic knockout (R/R KO) counterparts. Monolayers exhibited greater permeability and reactive oxygen species signaling when the risk haplotype was present. Addition of the inflammatory cytokine TNFα further enhanced EC monolayer permeability but independent of risk haplotype; TNFα also did not substantially alter haplotype transcriptomes. Conversely, when wall shear stress was applied to ECs in a microfluidic vessel, R/R WT vessels were more permeable at lower shear stresses than R/R KO vessels. Transcriptomes of sheared cells clustered more by risk haplotype than by patient or clone, resulting in significant differential regulation of EC adhesion and extracellular matrix genes vs static conditions. A subset of previously identified CAD risk genes invert expression patterns in the presence of high shear concomitant with altered cell adhesion genes, vessel permeability, and endothelial erosion in the presence of the risk haplotype, suggesting that shear stress could be a regulator of non-coding loci with a key impact on CAD.
Collapse
Affiliation(s)
- Evan L Teng
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Evan M Masutani
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Benjamin Yeoman
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Jessica Fung
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Rachel Lian
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Brenda Ngo
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Aditya Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Jesse K Placone
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Valentina Lo Sardo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
177
|
Hemodynamic Analysis of a Three-Point Suture During Tapering Technique for Microanastomosis Using Computational Fluid Dynamics. J Craniofac Surg 2021; 32:2749-2752. [PMID: 34238882 PMCID: PMC8549452 DOI: 10.1097/scs.0000000000007859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The tapering technique is one of the useful methods of anastomosing 2 vessels with large discrepancies during microanastomoses. When the tapering technique is used, a three-point suture is always present. The authors analyzed the most appropriate suture technique for this using computational fluid dynamics. This aspect has not previously been addressed. Three different suture techniques were simulated:
Three single-knot sutures (Type I); Two single-knot sutures forming an X-shape (Type II); and A single continuous ligature through the vascular wall (Type III).
Vascular models of these 3 types were created. The streamline, wall shear stress, and oscillatory shear index at the anastomosis site were measured using a previously prepared venous model. Streamline disruption was most severe for Type II. In all 3 types, the highest wall shear stress was recorded at the suture peak protruding into the vessel. The maximum oscillatory shear index was highest in Type II, and lowest in Type III. The present results suggest that Type III is the best three-point suturing method for the tapering technique.
Collapse
|
178
|
Evans PC, Fragiadaki M, Morris PD, Serbanovic-Canic J. Shear stress: the dark energy of atherosclerotic plaques. Cardiovasc Res 2021; 117:1811-1813. [PMID: 33146373 PMCID: PMC8262631 DOI: 10.1093/cvr/cvaa315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Paul C Evans
- Cardiovascular Disease Theme, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Maria Fragiadaki
- Cardiovascular Disease Theme, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Paul D Morris
- Cardiovascular Disease Theme, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jovana Serbanovic-Canic
- Cardiovascular Disease Theme, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
179
|
Zuin M, Rigatelli G, Zuliani G, Roncon L. Helical flow as a new determinant of coronary plaque vulnerability: a glimpse into the future. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2021; 74:643. [PMID: 33775590 DOI: 10.1016/j.rec.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Marco Zuin
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Giovanni Zuliani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Loris Roncon
- Department of Cardiology, Rovigo General Hospital, Rovigo, Italy
| |
Collapse
|
180
|
Zuin M, Rigatelli G, Zuliani G, Roncon L. Helical flow as a new determinant of coronary plaque vulnerability: a glimpse into the future. Rev Esp Cardiol 2021; 74:643. [PMID: 33775590 DOI: 10.1016/j.recesp.2021.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Marco Zuin
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Giovanni Zuliani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Loris Roncon
- Department of Cardiology, Rovigo General Hospital, Rovigo, Italy
| |
Collapse
|
181
|
Kalykakis GE, Antonopoulos AS, Pitsargiotis T, Siogkas P, Exarchos T, Kafouris P, Sakelarios A, Liga R, Tzifa A, Giannopoulos A, Scholte AJHA, Kaufmann PA, Parodi O, Knuuti J, Fotiadis DI, Neglia D, Anagnostopoulos CD. Relationship of Endothelial Shear Stress with Plaque Features with Coronary CT Angiography and Vasodilating Capability with PET. Radiology 2021; 300:549-556. [PMID: 34184936 DOI: 10.1148/radiol.2021204381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Advances in three-dimensional reconstruction techniques and computational fluid dynamics of coronary CT angiography (CCTA) data sets make feasible evaluation of endothelial shear stress (ESS) in the vessel wall. Purpose To investigate the relationship between CCTA-derived computational fluid dynamics metrics, anatomic and morphologic characteristics of coronary lesions, and their comparative performance in predicting impaired coronary vasodilating capability assessed by using PET myocardial perfusion imaging (MPI). Materials and Methods In this retrospective study, conducted between October 2019 and September 2020, coronary vessels in patients with stable chest pain and with intermediate probability of coronary artery disease who underwent both CCTA and PET MPI with oxygen 15-labeled water or nitrogen 13 ammonia and quantification of myocardial blood flow were analyzed. CCTA images were used in assessing stenosis severity, lesion-specific total plaque volume (PV), noncalcified PV, calcified PV, and plaque phenotype. PET MPI was used in assessing significant coronary stenosis. The predictive performance of the CCTA-derived parameters was evaluated by using area under the receiver operating characteristic curve (AUC) analysis. Results There were 92 coronary vessels evaluated in 53 patients (mean age, 65 years ± 7; 31 men). ESS was higher in lesions with greater than 50% stenosis versus those without significant stenosis (mean, 15.1 Pa ± 30 vs 4.6 Pa ± 4 vs 3.3 Pa ± 3; P = .004). ESS was higher in functionally significant versus nonsignificant lesions (median, 7 Pa [interquartile range, 5-23 Pa] vs 2.6 Pa [interquartile range, 1.8-5 Pa], respectively; P ≤ .001). Adding ESS to stenosis severity improved prediction (change in AUC, 0.10; 95% CI: 0.04, 0.17; P = .002) for functionally significant lesions. Conclusion The combination of endothelial shear stress with coronary CT angiography (CCTA) stenosis severity improved prediction of an abnormal PET myocardial perfusion imaging result versus CCTA stenosis severity alone. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Kusmirek and Wieben in this issue.
Collapse
Affiliation(s)
- Georgios-Eleftherios Kalykakis
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Alexios S Antonopoulos
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Thomas Pitsargiotis
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Panagiotis Siogkas
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Themistoklis Exarchos
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Pavlos Kafouris
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Antonis Sakelarios
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Riccardo Liga
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Aphrodite Tzifa
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Andreas Giannopoulos
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Arthur J H A Scholte
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Philipp A Kaufmann
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Oberdan Parodi
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Juhani Knuuti
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Dimitrios I Fotiadis
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Danilo Neglia
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| | - Constantinos D Anagnostopoulos
- From the Department of Informatics, Ionian University, Kerkyra, Greece (G.E.K., T.E.); Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 115 27 Athens, Greece (G.E.K., T.P., P.K., C.D.A.); CMR Unit, Royal Brompton Hospital, London, England (A.S.A.); Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece (T.P.); Department of Materials Science and Engineering University of Ioannina, Ioannina, Greece (P.S., D.I.F.); Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece (P.K.); Biomedical Research Institute-FORTH, Ioannina, Greece (A.S.); Cardiothoracic and Vascular Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (R.L.); Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (A.T.); Cardiac Imaging (P.A.K.) Department of Nuclear Medicine (A.G.), University Hospital Zurich, Zurich, Switzerland (A.G.); Department of Cardiology, Heart Lung Center, Leiden University Medical Centre, Leiden, the Netherlands (A.J.H.A.S.); Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy (O.P., D.N.); Institute of Information Science and Technologies, National Research Council-CNR, Pisa, Italy (O.P.); PET Center, University Hospital and University of Turku, Turku, Finland (J.K.); Cardiovascular Department, Fondazione Toscana G. Monasterio, Pisa, Italy (D.N.); and Sant'Anna School of Advanced Studies, Pisa, Italy (D.N.)
| |
Collapse
|
182
|
Kuchumov AG, Vedeneev V, Samartsev V, Khairulin A, Ivanov O. Patient-specific fluid-structure interaction model of bile flow: comparison between 1-way and 2-way algorithms. Comput Methods Biomech Biomed Engin 2021; 24:1693-1717. [PMID: 34176396 DOI: 10.1080/10255842.2021.1910942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gallbladder disease is one of the most spread pathologies in the world. Despite the number of operations dealing with biliary surgery increases, the number of postoperative complications is also high. The aim of this study is to show the influence of the biliary system pathology on bile flow character and to numerically assess the effect of surgical operation (cholecystectomy) on the fluid dynamics in the extrahepatic biliary tree, and also to reveal the difference between 1-way and 2-way FSI algorithms on the results. Moreover, the bile viscosity and biliary tree geometry influence on the choledynamics were evaluated. Bile velocity, pressure, wall shear stress (WSS), displacements and von Mises stress distributions in the extrahepatic biliary tree are presented, and comparison is made between a healthy and a lithogenic bile. The patient-specific biliary tree model is created using magnetic resonance imaging (MRI) and imported in a commercial finite element analysis software. It is found that in the case of lithogenic bile, velocities have lower magnitude while pressures are higher. Furthermore, stress analysis of the bile ducts shows that the WSS distribution is found mostly prevailing in the common hepatic duct and common bile duct areas. It is shown that when it is necessary to evaluate the bile flow dynamics in urgent medical situations, 1-way analysis is acceptable. Nevertheless, 2-way FSI provides more accurate data, if necessary to evaluate the stress-strain state of bile ducts. The proposed model can be applied to medical practice to reduce the number of post-operative complications.
Collapse
Affiliation(s)
- Alex G Kuchumov
- Department of Computational Mathematics, Mechanics, and Biomechanics, Perm National Research Polytechnic University, Perm, Russian Federation.,Mathematical Center, Kazan Federal University, Kazan, Russian Federation
| | - Vasily Vedeneev
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russian Federation.,Institute of Mechanics, Moscow, Russian Federation
| | - Vladimir Samartsev
- Department of General Surgery, Perm State Medical University, Perm, Russian Federation
| | - Aleksandr Khairulin
- Department of Computational Mathematics, Mechanics, and Biomechanics, Perm National Research Polytechnic University, Perm, Russian Federation
| | - Oleg Ivanov
- Institute of Mechanics of Moscow State University, Moscow, Russian Federation
| |
Collapse
|
183
|
Yu T, Xie X, Wei H, Shen H, Wu Q, Zhang X, Ji H, Tian Q, Song J, Bi H. Choroidal changes in lens-induced myopia in guinea pigs. Microvasc Res 2021; 138:104213. [PMID: 34171364 DOI: 10.1016/j.mvr.2021.104213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION This study aimed to determine the role of the choroid in lens-induced myopia (LIM) in guinea pigs. METHODS Guinea pigs were randomly divided into two groups: a normal control (NC) group and a LIM group. Refraction and axial length (AL) were measured by streak retinoscopy and A-scan ultrasonography. The choroidal thickness (ChT), vessel density of the choriocapillaris (VDCC) and vessel density of the choroidal layer (VDCL) were assessed by Spectral-domain Optical Coherence Tomography Angiography (SD-OCT). In addition, the choroidal expression of nitric oxide synthase (NOS) enzymes at the mRNA and protein levels was analyzed by real-time fluorescence quantitative PCR, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry. RESULTS In the LIM group, refraction and AL were increased significantly compared with those in the NC group at 2 weeks (refraction: LIM vs. NC, -4.23 ± 0.43 D vs. 2.20 ± 0.48 D; AL: LIM vs. NC, 8.36 ± 0.05 mm vs. 8.22 ± 0.03 mm) and 4 weeks (refraction: LIM vs. NC, -5.88 ± 0.49 D vs. 1.63 ± 0.41 D; AL: 8.57 ± 0.06 mm vs. 8.40 ± 0.04 mm). The ChT and VDCC were decreased significantly compared with those in the NC group at 2 weeks (ChT: LIM vs. NC, 60.92 ± 8.15 μm vs. 79.11 ± 7.47 μm; VDCC: LIM vs. NC, 23.43 ± 3.85% vs. 28.74 ± 4.11%) and 4 weeks (ChT: LIM vs. NC, 48.43 ± 6.85 μm vs. 76.38 ± 7.84 μm; VDCC: LIM vs. NC, 21.29 ± 2.17% vs. 27.64 ± 2.91%). The VDCL was also decreased compared with that in the NC group at 2 weeks and 4 weeks (NC vs. LIM, 24.87 ± 5.16% vs. 22.45 ± 3.26%; 23.37 ± 5.85% vs. 21.39 ± 2.62%; all P > 0.05). Moreover, the ChT was positively correlated with the VDCC and VDCL. The mRNA and protein expression of NOS enzymes (eNOS and nNOS) was increased. CONCLUSIONS During the development of myopia, the ChT, VDCC and VDCL were decreased, while NOS expression in the choroid was increased. The expression of NOS was negatively correlated with the ChT, VDCC and VDCL. NO may play an important role in regulating the choroid during myopia development.
Collapse
Affiliation(s)
- Ting Yu
- Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, PR China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, PR China
| | - Xiaofeng Xie
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, PR China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, PR China
| | - Huixia Wei
- Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, PR China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, PR China
| | - Hui Shen
- People's Hospital of Rizhao, No. 126#, Tai'an Road, Rizhao 276826, PR China
| | - Qiuxin Wu
- Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, PR China; Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, PR China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, PR China
| | - Xiuyan Zhang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, PR China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, PR China
| | - HaiFeng Ji
- Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, PR China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, PR China
| | - QingMei Tian
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, PR China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, PR China
| | - Jike Song
- Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, PR China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, PR China.
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, PR China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, PR China.
| |
Collapse
|
184
|
Boussoussou M, Vattay B, Szilveszter B, Kolossváry M, Simon J, Vecsey-Nagy M, Merkely B, Maurovich-Horvat P. Functional assessment of coronary plaques using CT based hemodynamic simulations: Current status, technical principles and clinical value. IMAGING 2021. [DOI: 10.1556/1647.2020.00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractIn recent years, coronary computed tomography angiography (CCTA) has emerged as an accurate and safe non-invasive imaging modality in terms of detecting and excluding coronary artery disease (CAD). In the latest European Society of Cardiology Guidelines CCTA received Class I recommendation for the evaluation of patients with stable chest pain with low to intermediate clinical likelihood of CAD. Despite its high negative predictive value, the diagnostic performance of CCTA is limited by the relatively low specificity, especially in patients with heavily calcified lesions. The discrepancy between the degree of stenosis and ischemia is well established based on both invasive and non-invasive tests. The rapid evolution of computational flow dynamics has allowed the simulation of CCTA derived fractional flow reserve (FFR-CT), which improves specificity by combining anatomic and functional information regarding coronary atherosclerosis. FFR-CT has been extensively validated against invasively measured FFR as the reference standard. Due to recent technological advancements FFR-CT values can also be calculated locally, without offsite processing. Wall shear stress (WSS) and axial plaque stress (APS) are additional key hemodynamic elements of atherosclerotic plaque characteristics, which can also be measured using CCTA images. Current evidence suggests that WSS and APS are important hemodynamic features of adverse coronary plaques. CCTA based hemodynamic calculations could therefore improve prognostication and the management of patients with stable CAD.
Collapse
Affiliation(s)
- Melinda Boussoussou
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Borbála Vattay
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Bálint Szilveszter
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Márton Kolossváry
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Judit Simon
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Milán Vecsey-Nagy
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| |
Collapse
|
185
|
A multi-objective optimization of stent geometries. J Biomech 2021; 125:110575. [PMID: 34186293 DOI: 10.1016/j.jbiomech.2021.110575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/06/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
Stents are scaffolding cardiovascular implants used to restore blood flow in narrowed arteries. However, the presence of the stent alters local blood flow and shear stresses on the surrounding arterial wall, which can cause adverse tissue responses and increase the risk of adverse outcomes. There is a need for optimization of stent designs for hemodynamic performance. We used multi-objective optimization to identify ideal combinations of design variables by assessing potential trade-offs based on common hemodynamic indices associated with clinical risk and mechanical performance of the stents. We studied seven design variables including strut cross-section, strut dimension, strut angle, cell alignment, cell height, connector type and connector arrangement. Optimization objectives were the percentage of vessel area exposed to adversely low time averaged WSS (TAWSS) and adversely high Wall Shear Stress (WSS) assessed using computational fluid dynamics modeling, as well as radial stiffness of the stent using FEA simulation. Two multi-objective optimization algorithms were used and compared to iteratively predict ideal designs. Out of 50 designs, three best designs with respect to each of the three objectives, and two designs in regard to overall performance were identified.
Collapse
|
186
|
Raziani Y, Othman BS. Ointment therapy and prevention of cannulation-induced superficial phlebitis. VEINS AND LYMPHATICS 2021. [DOI: 10.4081/vl.2021.9800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The primary aim of this prospective randomized trial is to determine the effect of clobetasol ointment with nitroglycerin ointment on the prevention of phlebitis caused by cannulation. The target sample is 144 patients admitted to surgical ward, randomized to 3 groups. the data collection tools included demographic information, information about intravenous treatment and phlebitis measurement scale. In the intervention groups, after venipuncture, 1.5 cm of ointments (clobetasol and nitroglycerin) was applied n three time periods of 24, 48 and 72 hours from the time of venipuncture. In the first 24 hours after cannulation, there was no significant difference between the three groups. But at 48 and 72 hours after placement, the difference between intervention and control groups was significant (P<0.0001). It is recommended to use clobetasol ointment and nitroglycerin ointment to prevent the occurrence of phlebitis in patients who need long-term use of cannula (more than 48 hours).
Collapse
|
187
|
Assessment with clinical data of a coupled bio-hemodynamics numerical model to predict leukocyte adhesion in coronary arteries. Sci Rep 2021; 11:12680. [PMID: 34135399 PMCID: PMC8208986 DOI: 10.1038/s41598-021-92084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022] Open
Abstract
Numerical simulations of coupled hemodynamics and leukocyte transport and adhesion inside coronary arteries have been performed. Realistic artery geometries have been obtained for a set of four patients from intravascular ultrasound and angiography images. The numerical model computes unsteady three-dimensional blood hemodynamics and leukocyte concentration in the blood. Wall-shear stress dependent leukocyte adhesion is also computed through agent-based modeling rules, fully coupled to the hemodynamics and leukocyte transport. Numerical results have a good correlation with clinical data. Regions where high adhesion is predicted by the simulations coincide to a good approximation with artery segments presenting plaque increase, as documented by clinical data from baseline and six-month follow-up exam of the same artery. In addition, it is observed that the artery geometry and, in particular, the tortuosity of the centerline are a primary factor in determining the spatial distribution of wall-shear stress, and of the resulting leukocyte adhesion patterns. Although further work is required to overcome the limitations of the present model and ultimately quantify plaque growth in the simulations, these results are encouraging towards establishing a predictive methodology for atherosclerosis progress.
Collapse
|
188
|
Coronary Computer Tomography Angiography in 2021-Acquisition Protocols, Tips and Tricks and Heading beyond the Possible. Diagnostics (Basel) 2021; 11:diagnostics11061072. [PMID: 34200866 PMCID: PMC8230532 DOI: 10.3390/diagnostics11061072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
Recent technological advances, together with an increasing body of evidence from randomized trials, have placed coronary computer tomography angiography (CCTA) in the center of the diagnostic workup of patients with coronary artery disease. The method was proven reliable in the diagnosis of relevant coronary artery stenosis. Furthermore, it can identify different stages of the atherosclerotic process, including early atherosclerotic changes of the coronary vessel wall, a quality not met by other non-invasive tests. In addition, newer computational software can measure the hemodynamic relevance (fractional flow reserve) of a certain stenosis. In addition, if required, information related to cardiac and valvular function can be provided with specific protocols. Importantly, recent trials have highlighted the prognostic relevance of CCTA in patients with coronary artery disease, which helped establishing CCTA as the first-line method for the diagnostic work-up of such patients in current guidelines. All this can be gathered in one relatively fast examination with minimal discomfort for the patient and, with newer machines, with very low radiation exposure. Herein, we provide an overview of the current technical aspects, indications, pitfalls, and new horizons with CCTA, providing examples from our own clinical practice.
Collapse
|
189
|
Urschel K, Tauchi M, Achenbach S, Dietel B. Investigation of Wall Shear Stress in Cardiovascular Research and in Clinical Practice-From Bench to Bedside. Int J Mol Sci 2021; 22:5635. [PMID: 34073212 PMCID: PMC8198948 DOI: 10.3390/ijms22115635] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/16/2022] Open
Abstract
In the 1900s, researchers established animal models experimentally to induce atherosclerosis by feeding them with a cholesterol-rich diet. It is now accepted that high circulating cholesterol is one of the main causes of atherosclerosis; however, plaque localization cannot be explained solely by hyperlipidemia. A tremendous amount of studies has demonstrated that hemodynamic forces modify endothelial athero-susceptibility phenotypes. Endothelial cells possess mechanosensors on the apical surface to detect a blood stream-induced force on the vessel wall, known as "wall shear stress (WSS)", and induce cellular and molecular responses. Investigations to elucidate the mechanisms of this process are on-going: on the one hand, hemodynamics in complex vessel systems have been described in detail, owing to the recent progress in imaging and computational techniques. On the other hand, investigations using unique in vitro chamber systems with various flow applications have enhanced the understanding of WSS-induced changes in endothelial cell function and the involvement of the glycocalyx, the apical surface layer of endothelial cells, in this process. In the clinical setting, attempts have been made to measure WSS and/or glycocalyx degradation non-invasively, for the purpose of their diagnostic utilization. An increasing body of evidence shows that WSS, as well as serum glycocalyx components, can serve as a predicting factor for atherosclerosis development and, most importantly, for the rupture of plaques in patients with high risk of coronary heart disease.
Collapse
Affiliation(s)
| | | | | | - Barbara Dietel
- Department of Medicine 2—Cardiology and Angiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum, 91054 Erlangen, Germany; (K.U.); (M.T.); (S.A.)
| |
Collapse
|
190
|
Leistner DM, Kränkel N, Meteva D, Abdelwahed YS, Seppelt C, Stähli BE, Rai H, Skurk C, Lauten A, Mochmann HC, Fröhlich G, Rauch-Kröhnert U, Flores E, Riedel M, Sieronski L, Kia S, Strässler E, Haghikia A, Dirks F, Steiner JK, Mueller DN, Volk HD, Klotsche J, Joner M, Libby P, Landmesser U. Differential immunological signature at the culprit site distinguishes acute coronary syndrome with intact from acute coronary syndrome with ruptured fibrous cap: results from the prospective translational OPTICO-ACS study. Eur Heart J 2021; 41:3549-3560. [PMID: 33080003 DOI: 10.1093/eurheartj/ehaa703] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/15/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS Acute coronary syndromes with intact fibrous cap (IFC-ACS), i.e. caused by coronary plaque erosion, account for approximately one-third of ACS. However, the underlying pathophysiological mechanisms as compared with ACS caused by plaque rupture (RFC-ACS) remain largely undefined. The prospective translational OPTICO-ACS study programme investigates for the first time the microenvironment of ACS-causing culprit lesions (CL) with intact fibrous cap by molecular high-resolution intracoronary imaging and simultaneous local immunological phenotyping. METHODS AND RESULTS The CL of 170 consecutive ACS patients were investigated by optical coherence tomography (OCT) and simultaneous immunophenotyping by flow cytometric analysis as well as by effector molecule concentration measurements across the culprit lesion gradient (ratio local/systemic levels). Within the study cohort, IFC caused 24.6% of ACS while RFC-ACS caused 75.4% as determined and validated by two independent OCT core laboratories. The IFC-CL were characterized by lower lipid content, less calcification, a thicker overlying fibrous cap, and largely localized near a coronary bifurcation as compared with RFC-CL. The microenvironment of IFC-ACS lesions demonstrated selective enrichment in both CD4+ and CD8+ T-lymphocytes (+8.1% and +11.2%, respectively, both P < 0.05) as compared with RFC-ACS lesions. T-cell-associated extracellular circulating microvesicles (MV) were more pronounced in IFC-ACS lesions and a significantly higher amount of CD8+ T-lymphocytes was detectable in thrombi aspirated from IFC-culprit sites. Furthermore, IFC-ACS lesions showed increased levels of the T-cell effector molecules granzyme A (+22.4%), perforin (+58.8%), and granulysin (+75.4%) as compared with RFC plaques (P < 0.005). Endothelial cells subjected to culture in disturbed laminar flow conditions, i.e. to simulate coronary flow near a bifurcation, demonstrated an enhanced adhesion of CD8+T cells. Finally, both CD8+T cells and their cytotoxic effector molecules caused endothelial cell death, a key potential pathophysiological mechanism in IFC-ACS. CONCLUSIONS The OPTICO-ACS study emphasizes a novel mechanism in the pathogenesis of IFC-ACS, favouring participation of the adaptive immune system, particularly CD4+ and CD8+ T-cells and their effector molecules. The different immune signatures identified in this study advance the understanding of coronary plaque progression and may provide a basis for future development of personalized therapeutic approaches to ACS with IFC. TRIAL REGISTRATION The study was registered at clinicalTrials.gov (NCT03129503).
Collapse
Affiliation(s)
- David M Leistner
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany.,Berlin Institute of Health (BIH), Berlin 10117, Germany
| | - Nicolle Kränkel
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Denitsa Meteva
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Youssef S Abdelwahed
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany.,Berlin Institute of Health (BIH), Berlin 10117, Germany
| | - Claudio Seppelt
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Barbara E Stähli
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Himanshu Rai
- DZHK (German Centre for Cardiovascular Research) Partner Site Munch, Munich, 80636, Germany
| | - Carsten Skurk
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Alexander Lauten
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Hans-Christian Mochmann
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany
| | - Georg Fröhlich
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Ursula Rauch-Kröhnert
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Eduardo Flores
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany
| | - Matthias Riedel
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Lara Sieronski
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Sylvia Kia
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Elisabeth Strässler
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Arash Haghikia
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany.,Berlin Institute of Health (BIH), Berlin 10117, Germany
| | - Fabian Dirks
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,Berlin Institute of Health (BIH), Berlin 10117, Germany
| | - Julia K Steiner
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Dominik N Mueller
- DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany.,Berlin Institute of Health (BIH), Berlin 10117, Germany.,Experimental and Clinical Research Centre (ECRC), a cooperation of Charité University Medicine Berlin and Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.,Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH), Berlin 10117, Germany.,Institute for Medical Immunology and BIH Centre for Regenerative Therapies (BCRT), and Berlin Centre for Advanced Therapies (BeCAT), Charité University Medicine Berlin, Berlin 13353, Germany
| | - Jens Klotsche
- German Rheumatism Research Centre Berlin, and Institute for Social Medicine, Epidemiology und Heath Economy, Charité University Medicine Berlin, Campus Charité Mitte, Berlin 10117, Germany
| | - Michael Joner
- Department of Cardiology and ISAR Research Centre, German Heart Centre, Munich, 80636, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Munch, Munich, 80636, Germany
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, USA
| | - Ulf Landmesser
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany.,Berlin Institute of Health (BIH), Berlin 10117, Germany
| |
Collapse
|
191
|
Li B, Xu K, Liu J, Mao B, Li N, Sun H, Zhang Z, Zhao X, Yang H, Zhang L, Du T, Du J, Liu Y. A Numerical Model for Simulating the Hemodynamic Effects of Enhanced External Counterpulsation on Coronary Arteries. Front Physiol 2021; 12:656224. [PMID: 33912072 PMCID: PMC8072480 DOI: 10.3389/fphys.2021.656224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022] Open
Abstract
Traditional enhanced external counterpulsation (EECP) used for the clinical treatment of patients with coronary heart disease only assesses diastolic/systolic blood pressure (Q = D/S > 1.2). However, improvement of the hemodynamic environment surrounding vascular endothelial cells of coronary arteries after long-term application of EECP is the basis of the treatment. Currently, the quantitative hemodynamic mechanism is not well understood. In this study, a standard 0D/3D geometric multi-scale model of the coronary artery was established to simulate the hemodynamic effects of different counterpulsation modes on the vascular endothelium. In this model, the neural regulation caused by counterpulsation was thoroughly considered. Two clinical trials were carried out to verify the numerical calculation model. The results demonstrated that the increase in counterpulsation pressure amplitude and pressurization duration increased coronary blood perfusion and wall shear stress (WSS) and reduced the oscillatory shear index (OSI) of the vascular wall. However, the impact of pressurization duration was the predominant factor. The results of the standard model and the two real individual models indicated that a long pressurization duration would cause more hemodynamic risk areas by resulting in excessive WSS, which could not be reflected by the change in the Q value. Therefore, long-term pressurization during each cardiac cycle therapy is not recommended for patients with coronary heart disease and clinical treatment should not just pay attention to the change in the Q value. Additional physiological indicators can be used to evaluate the effects of counterpulsation treatment.
Collapse
Affiliation(s)
- Bao Li
- Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| | - Ke Xu
- Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| | - Jincheng Liu
- Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| | - Boyan Mao
- The School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Na Li
- Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| | - Hao Sun
- Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| | - Zhe Zhang
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, China
| | - Xi Zhao
- Philips (China) Investment Company, Shanghai, China
| | - Haisheng Yang
- Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| | - Liyuan Zhang
- Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| | - Tianming Du
- Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| | - Jianhang Du
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Youjun Liu
- Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
192
|
Affiliation(s)
- Michael Y Henein
- Institute of Public Health and Clinical Medicine, 8075Umea University, Sweden.,Brunel University, Middlesex, United Kingdom.,St George's University London, United Kingdom
| | - Federico Vancheri
- Department of Internal Medicine, S. Elia Hospital, Caltanissetta, Italy
| |
Collapse
|
193
|
Impact of Malapposed and Overlapping Stents on Hemodynamics: A 2D Parametric Computational Fluid Dynamics Study. MATHEMATICS 2021. [DOI: 10.3390/math9080795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite significant progress, malapposed or overlapped stents are a complication that affects daily percutaneous coronary intervention (PCI) procedures. These malapposed stents affect blood flow and create a micro re-circulatory environment. These disturbances are often associated with a change in Wall Shear Stress (WSS), Time-averaged WSS (TAWSS), relative residence time (RRT) and oscillatory character of WSS and disrupt the delicate balance of vascular biology, providing a possible source of thrombosis and restenosis. In this study, 2D axisymmetric parametric computational fluid dynamics (CFD) simulations were performed to systematically analyze the hemodynamic effects of malapposition and stent overlap for two types of stents (drug-eluting stent and a bioresorbable stent). The results of the modeling are mainly analyzed using streamlines, TAWSS, oscillatory shear index (OSI) and RRT. The risks of restenosis and thrombus are evaluated according to commonly accepted thresholds for TAWSS and OSI. The small malapposition distances (MD) cause both low TAWSS and high OSI, which are potential adverse outcomes. The region of low OSI decrease with MD. Overlap configurations produce areas with low WSS and high OSI. The affected lengths are relatively insensitive to the overlap distance. The effects of strut size are even more sensitive and adverse for overlap configurations compared to a well-applied stent.
Collapse
|
194
|
Li Z, Jiang W, Salerno S, Li Y, Chen Y, Xu Z, Wang G. Acute Hemodynamic Improvement by Thermal Vasodilation inside the Abdominal and Iliac Arterial Segments of Young Sedentary Individuals. J Vasc Res 2021; 58:191-206. [PMID: 33823509 DOI: 10.1159/000514588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/19/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To study the hemodynamic response to lower leg heating intervention (LLHI) inside the abdominal and iliac arterial segments (AIAS) of young sedentary individuals. METHODS A Doppler measurement of blood flow was conducted for 5 young sedentary adults with LLHI. Heating durations of 0, 20, and 40 min were considered. A lumped parameter model (LPM) was used to ascertain the hemodynamic mechanism. The hemodynamics were determined via numerical approaches. RESULTS Ultrasonography revealed that the blood flow waveform shifted upwards under LLHI; in particular, the mean flow increased significantly (p < 0.05) with increasing heating duration. The LPM showed that its mechanism depends on the reduction in afterload resistance, not on the inertia of blood flow and arterial compliance. The time-averaged wall shear stress, time-averaged production rate of nitric oxide, and helicity in the external iliac arteries increased more significantly than in other segments as the heating duration increased, while the oscillation shear index (OSI) and relative residence time (RRT) in the AIAS declined with increasing heating duration. There was a more obvious helicity response in the bilateral external iliac arteries than the OSI and RRT responses. CONCLUSION LLHI can effectively induce a positive hemodynamic environment in the AIAS of young sedentary individuals.
Collapse
Affiliation(s)
- Zhongyou Li
- Laboratory of Biomechanical Engineering, Department of Applied Mechanics, College of Architecture & Environment, Sichuan University, Chengdu, China
| | - Wentao Jiang
- Laboratory of Biomechanical Engineering, Department of Applied Mechanics, College of Architecture & Environment, Sichuan University, Chengdu, China
| | - Stephen Salerno
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Yu Chen
- Laboratory of Biomechanical Engineering, Department of Applied Mechanics, College of Architecture & Environment, Sichuan University, Chengdu, China
| | - Zhi Xu
- Laboratory of Biomechanical Engineering, Department of Applied Mechanics, College of Architecture & Environment, Sichuan University, Chengdu, China.,Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Guanshi Wang
- Laboratory of Biomechanical Engineering, Department of Applied Mechanics, College of Architecture & Environment, Sichuan University, Chengdu, China
| |
Collapse
|
195
|
Guo X, Maehara A, Matsumura M, Wang L, Zheng J, Samady H, Mintz GS, Giddens DP, Tang D. Predicting plaque vulnerability change using intravascular ultrasound + optical coherence tomography image-based fluid-structure interaction models and machine learning methods with patient follow-up data: a feasibility study. Biomed Eng Online 2021; 20:34. [PMID: 33823858 PMCID: PMC8025351 DOI: 10.1186/s12938-021-00868-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/13/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Coronary plaque vulnerability prediction is difficult because plaque vulnerability is non-trivial to quantify, clinically available medical image modality is not enough to quantify thin cap thickness, prediction methods with high accuracies still need to be developed, and gold-standard data to validate vulnerability prediction are often not available. Patient follow-up intravascular ultrasound (IVUS), optical coherence tomography (OCT) and angiography data were acquired to construct 3D fluid-structure interaction (FSI) coronary models and four machine-learning methods were compared to identify optimal method to predict future plaque vulnerability. METHODS Baseline and 10-month follow-up in vivo IVUS and OCT coronary plaque data were acquired from two arteries of one patient using IRB approved protocols with informed consent obtained. IVUS and OCT-based FSI models were constructed to obtain plaque wall stress/strain and wall shear stress. Forty-five slices were selected as machine learning sample database for vulnerability prediction study. Thirteen key morphological factors from IVUS and OCT images and biomechanical factors from FSI model were extracted from 45 slices at baseline for analysis. Lipid percentage index (LPI), cap thickness index (CTI) and morphological plaque vulnerability index (MPVI) were quantified to measure plaque vulnerability. Four machine learning methods (least square support vector machine, discriminant analysis, random forest and ensemble learning) were employed to predict the changes of three indices using all combinations of 13 factors. A standard fivefold cross-validation procedure was used to evaluate prediction results. RESULTS For LPI change prediction using support vector machine, wall thickness was the optimal single-factor predictor with area under curve (AUC) 0.883 and the AUC of optimal combinational-factor predictor achieved 0.963. For CTI change prediction using discriminant analysis, minimum cap thickness was the optimal single-factor predictor with AUC 0.818 while optimal combinational-factor predictor achieved an AUC 0.836. Using random forest for predicting MPVI change, minimum cap thickness was the optimal single-factor predictor with AUC 0.785 and the AUC of optimal combinational-factor predictor achieved 0.847. CONCLUSION This feasibility study demonstrated that machine learning methods could be used to accurately predict plaque vulnerability change based on morphological and biomechanical factors from multi-modality image-based FSI models. Large-scale studies are needed to verify our findings.
Collapse
Affiliation(s)
- Xiaoya Guo
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
- Department of Mathematics, Southeast University, Nanjing, 210096, China.
| | - Akiko Maehara
- The Cardiovascular Research Foundation, Columbia University, New York, NY, 10022, USA
| | - Mitsuaki Matsumura
- The Cardiovascular Research Foundation, Columbia University, New York, NY, 10022, USA
| | - Liang Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, 63110, USA
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30307, USA
| | - Gary S Mintz
- The Cardiovascular Research Foundation, Columbia University, New York, NY, 10022, USA
| | - Don P Giddens
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30307, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dalin Tang
- Department of Mathematics, Southeast University, Nanjing, 210096, China.
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
196
|
Xia L, Zhang B, Sun Y, Chen B, Yu Z. Analysis of Syk/PECAM-1 signaling pathway in low shear stress induced atherosclerosis based on ultrasound imaging. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 201:105953. [PMID: 33571923 DOI: 10.1016/j.cmpb.2021.105953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Low shear stress (LSS) has been demonstrated to be involved in function of vascular endothelial cells. Here we tested the hypothesis that activation of Syk played an important in LSS-induced atherosclerosis via PECAM-1 signaling pathway. METHODS In vitro, primary human umbilical vein endothelial cells (HUVECs) were stimulated with parallel plate flow chamber system for 12h under normal shear stress (NSS, 15dyne/cm2), LSS (5dyne/cm2) and high shear stress (HSS, 25dyne/cm2), respectively, followed by inflammatory response analysis. In vivo, animal models of rat fed atherogenic diet were treated with LSS stimulation by constricting abdominal aorta with a blunted needle (0.6mm in diameter). The spatial distribution of WSS of blood vessels was generated by WSS quantitative analysis software through color Doppler flow imaging with a high-frequency small animal ultrasound system. Small molecule R406, a well-demonstrated Syk inhibitor, was applied to animals as well as HUVEC cells. RESULTS In vivo, comparison with the control group was performed, the mean value of WSS distribution of blood vessels was lower in LSS model rat. LSS promoted expression of phosphorylated PECAM-1 (p-PECAM-1) and Syk in LSS model rats. Compared with control group, endothelial cells of the abdominal aorta become less elongated and more polygonal in LSS group, and had a slender shape in LSS with R406 group. In vitro, LSS increased the expression of p-PECAM-1, Syk and NF-κB in HUVECs. Inhibition of Syk attenuated LSS-induced inflammatory response. CONCLUSIONS Activation of Syk resulted in LSS-induced inflammatory response via PECAM-1 signaling pathway both in vitro and in vivo. Syk might be involved in morphological changes of ECs under the influence of LSS.
Collapse
Affiliation(s)
- Lianghua Xia
- Department of Ultrasound in Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Bo Zhang
- Department of Ultrasound in Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yuqing Sun
- Department of Ultrasound in Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Bingguan Chen
- Department of Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zuoren Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
197
|
Lee CH, Lee SH, Cho YI, Jeong SK. Association of Carotid Artery Endothelial Signal Intensity Gradient with Unilateral Large Artery Ischemic Stroke. Cerebrovasc Dis 2021; 50:270-278. [PMID: 33756458 DOI: 10.1159/000514141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Common carotid artery (CCA) and internal carotid artery (ICA) are aligned linearly, but their hemodynamic role in ischemic stroke has not been studied in depth. OBJECTIVES We aimed to investigate whether CCA and ICA endothelial shear stress (ESS) could be associated with the ischemic stroke of large artery atherosclerosis (LAA). METHODS We enrolled consecutive patients with unilateral ischemic stroke of LAA and healthy controls aged >60 years in the stroke center of Jeonbuk National University Hospital. All patients and controls were examined with carotid artery time-of-flight magnetic resonance angiography, and their endothelial signal intensity gradients (SIGs) were determined, as a measure of ESS. The effect of right or left unilateral stroke on the association between carotid artery endothelial SIG and ischemic stroke of LAA was assessed. RESULTS In total, the results from 132 patients with ischemic stroke of LAA and 121 controls were analyzed. ICA endothelial SIG showed significant and independent associations with the same-sided unilateral ischemic stroke of LAA, even after adjusting for the potential confounders including carotid stenosis, whereas CCA endothelial SIG showed a significant association with the presence of the ischemic stroke of LAA. CONCLUSION Although CCA and ICA are located with continuity, the hemodynamics and their roles in large artery ischemic stroke should be considered separately. Further studies are needed to delineate the pathophysiologic roles of ESS in CCA and ICA for large artery ischemic stroke.
Collapse
Affiliation(s)
- Chan-Hyuk Lee
- Department of Neurology, Jeonbuk National University Hospital, Research Institute of Clinical Medicine, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sang Hyuk Lee
- Equipment Qualification Center for Nuclear Power Plants, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Young I Cho
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania, USA
| | - Seul-Ki Jeong
- Visual Intelligence Laboratory, Seul-Ki Jeong Neurology Clinic, Seoul, Republic of Korea,
| |
Collapse
|
198
|
Multi-patient study for coronary vulnerable plaque model comparisons: 2D/3D and fluid-structure interaction simulations. Biomech Model Mechanobiol 2021; 20:1383-1397. [PMID: 33759037 PMCID: PMC8298251 DOI: 10.1007/s10237-021-01450-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/07/2021] [Indexed: 12/05/2022]
Abstract
Several image-based computational models have been used to perform mechanical analysis for atherosclerotic plaque progression and vulnerability investigations. However, differences of computational predictions from those models have not been quantified at multi-patient level. In vivo intravascular ultrasound (IVUS) coronary plaque data were acquired from seven patients. Seven 2D/3D models with/without circumferential shrink, cyclic bending and fluid–structure interactions (FSI) were constructed for the seven patients to perform model comparisons and quantify impact of 2D simplification, circumferential shrink, FSI and cyclic bending plaque wall stress/strain (PWS/PWSn) and flow shear stress (FSS) calculations. PWS/PWSn and FSS averages from seven patients (388 slices for 2D and 3D thin-layer models) were used for comparison. Compared to 2D models with shrink process, 2D models without shrink process overestimated PWS by 17.26%. PWS change at location with greatest curvature change from 3D FSI models with/without cyclic bending varied from 15.07% to 49.52% for the seven patients (average = 30.13%). Mean Max-FSS, Min-FSS and Ave-FSS from the flow-only models under maximum pressure condition were 4.02%, 11.29% and 5.45% higher than those from full FSI models with cycle bending, respectively. Mean PWS and PWSn differences between FSI and structure-only models were only 4.38% and 1.78%. Model differences had noticeable patient variations. FSI and flow-only model differences were greater for minimum FSS predictions, notable since low FSS is known to be related to plaque progression. Structure-only models could provide PWS/PWSn calculations as good approximations to FSI models for simplicity and time savings in calculation.
Collapse
|
199
|
Won KB, Heo R, Park HB, Lee BK, Lin FY, Hadamitzky M, Kim YJ, Sung JM, Conte E, Andreini D, Pontone G, Budoff MJ, Gottlieb I, Chun EJ, Cademartiri F, Maffei E, Marques H, de Araújo Gonçalves P, Leipsic JA, Lee SE, Shin S, Choi JH, Virmani R, Samady H, Chinnaiyan K, Berman DS, Narula J, Shaw LJ, Bax JJ, Min JK, Chang HJ. Atherogenic index of plasma and the risk of rapid progression of coronary atherosclerosis beyond traditional risk factors. Atherosclerosis 2021; 324:46-51. [PMID: 33813155 DOI: 10.1016/j.atherosclerosis.2021.03.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The atherogenic index of plasma (AIP) has been suggested as a marker of plasma atherogenicity. This study aimed to assess the association between AIP and the rapid progression of coronary atherosclerosis using serial coronary computed tomography angiography (CCTA). METHODS A total of 1488 adults (60.9 ± 9.2 years, 58.9% male) who underwent serial CCTA with a median inter-scan period of 3.4 years were included. AIP was defined as the base 10 logarithm of the ratio of the concentrations of triglyceride to high-density lipoprotein cholesterol. Rapid plaque progression (RPP) was defined as the change of percentage atheroma volume (PAV) ≥1.0%/year. All participants were divided into three groups based on AIP tertiles. RESULTS Baseline total PAV (median [interquartile range (IQR)]) (%) (group I [lowest]: 1.91 [0.00, 6.21] vs. group II: 2.82 [0.27, 8.83] vs. group III [highest]: 2.70 [0.41, 7.50]), the annual change of total PAV (median [IQR]) (%/year) (group I: 0.27 [0.00, 0.81] vs. group II: 0.37 [0.04, 1.11] vs. group III: 0.45 [0.06, 1.25]), and the incidence of RPP (group I: 19.7% vs. group II: 27.3% vs. group III: 31.4%) were significantly different among AIP tertiles (all p < 0.05). In multiple logistic regression analysis, the risk of RPP was increased in group III (odds ratio: 1.52, 95% confidence interval: 1.02-2.26; p = 0.042) compared to group I after adjusting for clinical factors and baseline total PAV. CONCLUSIONS Based on serial CCTA findings, AIP is an independent predictive marker for RPP beyond traditional risk factors.
Collapse
Affiliation(s)
- Ki-Bum Won
- Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea; Department of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea; Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Ran Heo
- Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea; Department of Cardiology, Hanyang University Seoul Hospital, Hanyang University College of Medicine, Seoul, South Korea
| | - Hyung-Bok Park
- Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea; Department of Cardiology, Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
| | - Byoung Kwon Lee
- Department of Cardiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Fay Y Lin
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Martin Hadamitzky
- Department of Radiology and Nuclear Medicine, German Heart Center Munich, Munich, Germany
| | - Yong-Jin Kim
- Division of Cardiology, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | - Ji Min Sung
- Department of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea; Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | | | | | | | - Matthew J Budoff
- Department of Medicine, Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Ilan Gottlieb
- Department of Radiology, Casa de Saude São Jose, Rio de Janeiro, Brazil
| | - Eun Ju Chun
- Seoul National University Bundang Hospital, Sungnam, South Korea
| | | | - Erica Maffei
- Department of Radiology, Area Vasta 1/ASUR Marche, Urbino, Italy
| | - Hugo Marques
- UNICA, Unit of Cardiovascular Imaging, Hospital da Luz, Lisboa, Portugal
| | - Pedro de Araújo Gonçalves
- UNICA, Unit of Cardiovascular Imaging, Hospital da Luz, Lisboa, Portugal; Nova Medical School, Lisbon, Portugal
| | - Jonathon A Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Sang-Eun Lee
- Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea; Department of Cardiology, Ewha Womans University Seoul Hospital, Seoul, South Korea
| | - Sanghoon Shin
- Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea; Department of Cardiology, Ewha Womans University Seoul Hospital, Seoul, South Korea
| | - Jung Hyun Choi
- Department of Cardiology, Pusan University Hospital, Busan, South Korea
| | - Renu Virmani
- Department of Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Habib Samady
- Department of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Daniel S Berman
- Department of Imaging and Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, And Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, NY, USA
| | - Leslee J Shaw
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - James K Min
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Hyuk-Jae Chang
- Department of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea; Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea.
| |
Collapse
|
200
|
Vardhan M, Randles A. Application of physics-based flow models in cardiovascular medicine: Current practices and challenges. BIOPHYSICS REVIEWS 2021; 2:011302. [PMID: 38505399 PMCID: PMC10903374 DOI: 10.1063/5.0040315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 03/21/2024]
Abstract
Personalized physics-based flow models are becoming increasingly important in cardiovascular medicine. They are a powerful complement to traditional methods of clinical decision-making and offer a wealth of physiological information beyond conventional anatomic viewing using medical imaging data. These models have been used to identify key hemodynamic biomarkers, such as pressure gradient and wall shear stress, which are associated with determining the functional severity of cardiovascular diseases. Importantly, simulation-driven diagnostics can help researchers understand the complex interplay between geometric and fluid dynamic parameters, which can ultimately improve patient outcomes and treatment planning. The possibility to compute and predict diagnostic variables and hemodynamics biomarkers can therefore play a pivotal role in reducing adverse treatment outcomes and accelerate development of novel strategies for cardiovascular disease management.
Collapse
Affiliation(s)
- M. Vardhan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - A. Randles
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|