151
|
Gök C, Main A, Gao X, Kerekes Z, Plain F, Kuo CW, Robertson AD, Fraser NJ, Fuller W. Insights into the molecular basis of the palmitoylation and depalmitoylation of NCX1. Cell Calcium 2021; 97:102408. [PMID: 33873072 PMCID: PMC8278489 DOI: 10.1016/j.ceca.2021.102408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022]
Abstract
Catalyzed by zDHHC-PAT enzymes and reversed by thioesterases, protein palmitoylation is the only post-translational modification recognized to regulate the sodium/calcium exchanger NCX1. NCX1 palmitoylation occurs at a single site at position 739 in its large regulatory intracellular loop. An amphipathic ɑ-helix between residues 740-756 is a critical for NCX1 palmitoylation. Given the rich background of the structural elements involving in NCX1 palmitoylation, the molecular basis of NCX1 palmitoylation is still relatively poorly understood. Here we found that (1) the identity of palmitoylation machinery of NCX1 controls its spatial organization within the cell, (2) the NCX1 amphipathic ɑ-helix directly interacts with zDHHC-PATs, (3) NCX1 is still palmitoylated when it is arrested in either Golgi or ER, indicating that NCX1 is a substrate for multiple zDHHC-PATs, (4) the thioesterase APT1 but not APT2 as a part of NCX1-depalmitoylation machinery governs subcellular organization of NCX1, (5) APT1 catalyzes NCX1 depalmitoylation in the Golgi but not in the ER. We also report that NCX2 and NCX3 are dually palmitoylated, with important implications for substrate recognition and enzyme catalysis by zDHHC-PATs. Our results could support new molecular or pharmacological strategies targeting the NCX1 palmitoylation and depalmitoylation machinery.
Collapse
Affiliation(s)
- Caglar Gök
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Alice Main
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Xing Gao
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Zsombor Kerekes
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Fiona Plain
- School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, United Kingdom
| | - Chien-Wen Kuo
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Alan D Robertson
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Niall J Fraser
- School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, United Kingdom
| | - William Fuller
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
152
|
Herraiz-Martínez A, Tarifa C, Jiménez-Sábado V, Llach A, Godoy-Marín H, Colino H, Nolla-Colomer C, Casabella S, Izquierdo-Castro P, Benítez I, Benítez R, Roselló-Díez E, Rodríguez-Font E, Viñolas X, Ciruela F, Cinca J, Hove-Madsen L. Influence of sex on intracellular calcium homeostasis in patients with atrial fibrillation. Cardiovasc Res 2021; 118:1033-1045. [PMID: 33788918 PMCID: PMC8930070 DOI: 10.1093/cvr/cvab127] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/30/2021] [Indexed: 11/22/2022] Open
Abstract
Aims Atrial fibrillation (AF) has been associated with intracellular calcium disturbances in human atrial myocytes, but little is known about the potential influence of sex and we here aimed to address this issue. Methods and results Alterations in calcium regulatory mechanisms were assessed in human atrial myocytes from patients without AF or with long-standing persistent or permanent AF. Patch-clamp measurements revealed that L-type calcium current (ICa) density was significantly smaller in males with than without AF (−1.15 ± 0.37 vs. −2.06 ± 0.29 pA/pF) but not in females with AF (−1.88 ± 0.40 vs. −2.21 ± 0.0.30 pA/pF). In contrast, transient inward currents (ITi) were more frequent in females with than without AF (1.92 ± 0.36 vs. 1.10 ± 0.19 events/min) but not in males with AF. Moreover, confocal calcium imaging showed that females with AF had more calcium spark sites than those without AF (9.8 ± 1.8 vs. 2.2 ± 1.9 sites/µm2) and sparks were wider (3.0 ± 0.3 vs. 2.2 ± 0.3 µm) and lasted longer (79 ± 6 vs. 55 ± 8 ms), favouring their fusion into calcium waves that triggers ITIs and afterdepolarizations. This was linked to higher ryanodine receptor phosphorylation at s2808 in women with AF, and inhibition of adenosine A2A or beta-adrenergic receptors that modulate s2808 phosphorylation was able to reduce the higher incidence of ITI in women with AF. Conclusion Perturbations of the calcium homoeostasis in AF is sex-dependent, concurring with increased spontaneous SR calcium release-induced electrical activity in women but not in men, and with diminished ICa density in men only.
Collapse
Affiliation(s)
| | - Carmen Tarifa
- Biomedical Research Institute Barcelona Centre IIBB-CSIC.,IIB Sant Pau
| | | | | | - Hector Godoy-Marín
- Dept. Pathology and Experimental Therapeutics, IDIBELL, Univ. Barcelona, L'Hospitalet de Llobregat, Spain.,Neuroscience Institute, Univ. Barcelona, Spain
| | - Hildegard Colino
- Biomedical Research Institute Barcelona Centre IIBB-CSIC.,IIB Sant Pau
| | | | - Sergi Casabella
- Biomedical Research Institute Barcelona Centre IIBB-CSIC.,IIB Sant Pau
| | | | - Iván Benítez
- Biostatistic Unit, Biomedical Research Institute, IRBLleida, Spain
| | - Raul Benítez
- Dept. Automatic Control, Univ. Politècnica de Catalunya, Barcelona
| | - Elena Roselló-Díez
- Dept. Cardiac Surgery, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Univ. Autònoma de Barcelona, Spain
| | | | - Xavier Viñolas
- Dept. Cardiology, Hospital de la Santa Creu i Sant Pau, Barcelona
| | - Francisco Ciruela
- Dept. Pathology and Experimental Therapeutics, IDIBELL, Univ. Barcelona, L'Hospitalet de Llobregat, Spain.,Neuroscience Institute, Univ. Barcelona, Spain
| | - Juan Cinca
- Dept. Cardiology, Hospital de la Santa Creu i Sant Pau, Barcelona.,CIBERCV.,Univ. Autònoma de Barcelona, Spain
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona Centre IIBB-CSIC.,IIB Sant Pau.,CIBERCV
| |
Collapse
|
153
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, largely associated to morbidity and mortality. Over the past decades, research in appearance and progression of this arrhythmia have turned into significant advances in its management. However, the incidence of AF continues to increase with the aging of the population and many important fundamental and translational underlaying mechanisms remain elusive. Here, we review recent advances in molecular and cellular basis for AF initiation, maintenance and progression. We first provide an overview of the basic molecular and electrophysiological mechanisms that lead and characterize AF. Next, we discuss the upstream regulatory factors conducting the underlying mechanisms which drive electrical and structural AF-associated remodeling, including genetic factors (risk variants associated to AF as transcriptional regulators and genetic changes associated to AF), neurohormonal regulation (i.e., cAMP) and oxidative stress imbalance (cGMP and mitochondrial dysfunction). Finally, we discuss the potential therapeutic implications of those findings, the knowledge gaps and consider future approaches to improve clinical management.
Collapse
|
154
|
Safabakhsh S, Panwar P, Barichello S, Sangha SS, Hanson PJ, Van Petegem F, Laksman Z. THE ROLE OF PHOSPHORYLATION IN ATRIAL FIBRILLATION: A FOCUS ON MASS SPECTROMETRY APPROACHES. Cardiovasc Res 2021; 118:1205-1217. [PMID: 33744917 DOI: 10.1093/cvr/cvab095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/16/2021] [Indexed: 11/14/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide. It is associated with significant increases in morbidity in the form of stroke and heart failure, and a doubling in all-cause mortality. The pathophysiology of AF is incompletely understood, and this has contributed to a lack of effective treatments and disease-modifying therapies. An important cellular process that may explain how risk factors give rise to AF includes post-translational modification (PTM) of proteins. As the most commonly occurring PTM, protein phosphorylation is especially relevant. Although many methods exist for studying protein phosphorylation, a common and highly resolute technique is mass spectrometry (MS). This review will discuss recent evidence surrounding the role of protein phosphorylation in the pathogenesis of AF. MS-based technology to study phosphorylation and uses of MS in other areas of medicine such as oncology will also be presented. Based on these data, future goals and experiments will be outlined that utilize MS technology to better understand the role of phosphorylation in AF and elucidate its role in AF pathophysiology. This may ultimately allow for the development of more effective AF therapies.
Collapse
Affiliation(s)
- Sina Safabakhsh
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pankaj Panwar
- AbCellera Biologicals Inc., Vancouver, British Columbia, Canada
| | - Scott Barichello
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarabjit S Sangha
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, British Columbia, Canada.,Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada
| | - Paul J Hanson
- UBC Heart Lung Innovation Centre, Vancouver, British Columbia, Canada.,UBC Department of Pathology and Laboratory Medicine, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zachary Laksman
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
155
|
Zhang Y, Qi Y, Li JJ, He WJ, Gao XH, Zhang Y, Sun X, Tong J, Zhang J, Deng XL, Du XJ, Xie W. Stretch-induced sarcoplasmic reticulum calcium leak is causatively associated with atrial fibrillation in pressure-overloaded hearts. Cardiovasc Res 2021; 117:1091-1102. [PMID: 32531044 DOI: 10.1093/cvr/cvaa163] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/06/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022] Open
Abstract
AIMS Despite numerous reports documenting an important role of hypertension in the development of atrial fibrillation (AF), the detailed mechanism underlying the pathological process remains incompletely understood. Here, we aim to test the hypothesis that diastolic sarcoplasmic reticulum (SR) Ca2+ leak in atrial myocytes, induced by mechanical stretch due to elevated pressure in the left atrium (LA), plays an essential role in the AF development in pressure-overloaded hearts. METHODS AND RESULTS Isolated mouse atrial myocytes subjected to acute axial stretch displayed an immediate elevation of SR Ca2+ leak. Using a mouse model of transverse aortic constriction (TAC), the relation between stretch, SR Ca2+ leak, and AF susceptibility was further tested. At 36 h post-TAC, SR Ca2+ leak in cardiomyocytes from the LA (with haemodynamic stress), but not right atrium (without haemodynamic stress), significantly increased, which was further elevated at 4 weeks post-TAC. Accordingly, AF susceptibility to atrial burst pacing in the 4-week TAC mice were also significantly increased, which was unaffected by inhibition of atrial fibrosis or inflammation via deletion of galectin-3. Western blotting revealed that type 2 ryanodine receptor (RyR2) in left atrial myocytes of TAC mice was oxidized due to activation and up-regulation of Nox2 and Nox4. Direct rescue of dysfunctional RyR2 with dantrolene or rycal S107 reduced diastolic SR Ca2+ leak in left atrial myocytes and prevented atrial burst pacing stimulated AF. CONCLUSION Our study demonstrated for the first time the increased SR Ca2+ leak mediated by enhanced oxidative stress in left atrial myocytes that is causatively associated with higher AF susceptibility in pressure-overloaded hearts.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ying Qi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, Shaanxi 710049, China
| | - Jing-Jing Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, Shaanxi 710049, China
| | - Wen-Jin He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, Shaanxi 710049, China
| | - Xiao-Hang Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, Shaanxi 710049, China
| | - Yu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xia Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jie Tong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, Shaanxi 710049, China
| | - Jianbao Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, Shaanxi 710049, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiao-Jun Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Wenjun Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, Shaanxi 710049, China
| |
Collapse
|
156
|
Rao AN, Campbell HM, Guan X, Word TA, Wehrens XH, Xia Z, Cooper TA. Reversible cardiac disease features in an inducible CUG repeat RNA-expressing mouse model of myotonic dystrophy. JCI Insight 2021; 6:143465. [PMID: 33497365 PMCID: PMC8021116 DOI: 10.1172/jci.insight.143465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion in the DMPK gene. Expression of pathogenic expanded CUG repeat (CUGexp) RNA causes multisystemic disease by perturbing the functions of RNA-binding proteins, resulting in expression of fetal protein isoforms in adult tissues. Cardiac involvement affects 50% of individuals with DM1 and causes 25% of disease-related deaths. We developed a transgenic mouse model for tetracycline-inducible and heart-specific expression of human DMPK mRNA containing 960 CUG repeats. CUGexp RNA is expressed in atria and ventricles and induced mice exhibit electrophysiological and molecular features of DM1 disease, including cardiac conduction delays, supraventricular arrhythmias, nuclear RNA foci with Muscleblind protein colocalization, and alternative splicing defects. Importantly, these phenotypes were rescued upon loss of CUGexp RNA expression. Transcriptome analysis revealed gene expression and alternative splicing changes in ion transport genes that are associated with inherited cardiac conduction diseases, including a subset of genes involved in calcium handling. Consistent with RNA-Seq results, calcium-handling defects were identified in atrial cardiomyocytes isolated from mice expressing CUGexp RNA. These results identify potential tissue-specific mechanisms contributing to cardiac pathogenesis in DM1 and demonstrate the utility of reversible phenotypes in our model to facilitate development of targeted therapeutic approaches.
Collapse
Affiliation(s)
| | - Hannah M Campbell
- Department of Molecular Physiology and Biophysics, and.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Xiangnan Guan
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Tarah A Word
- Department of Molecular Physiology and Biophysics, and
| | - Xander Ht Wehrens
- Department of Molecular Physiology and Biophysics, and.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Thomas A Cooper
- Department of Molecular and Cellular Biology.,Department of Molecular Physiology and Biophysics, and.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
157
|
Qi MM, Qian LL, Wang RX. Modulation of SK Channels: Insight Into Therapeutics of Atrial Fibrillation. Heart Lung Circ 2021; 30:1130-1139. [PMID: 33642173 DOI: 10.1016/j.hlc.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 11/19/2022]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in the world. Although much technological progress in the treatment of AF has been made, there is an urgent need for better treatment of AF due to its high rates of morbidity and mortality. The anti-arrhythmic drugs currently approved for marketing have significant limitations and side effects such as life-threatening ventricular arrhythmias and hypotension. The small conductance Ca2+-activated K+ channels (SK channels) are dependent on intracellular Ca2+ concentrations, which tightly integrate with membrane potential. Given the predominant expression in the atria of many species, including humans, they are now emerging as a therapeutic target for treating AF. This review aimed to illustrate the characteristics and function of SK channels. Moreover, it discussed the regulation of SK channels and their potential as a therapeutic target of AF.
Collapse
Affiliation(s)
- Miao-Miao Qi
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
158
|
Aguilar M, Dobrev D, Nattel S. Postoperative Atrial Fibrillation: Features, Mechanisms, and Clinical Management. Card Electrophysiol Clin 2021; 13:123-132. [PMID: 33516390 DOI: 10.1016/j.ccep.2020.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advances in atrial fibrillation (AF) management, perioperative medicine, and surgical techniques have reignited an interest in postoperative AF (POAF). POAF results from the interaction among subclinical atrial substrate, surgery-induced substrate, and transient postoperative factors. Prophylaxis for POAF after cardiac surgery is well established but the indications for preoperative treatment in noncardiac surgery need further investigation. A rate-control strategy is adequate for most asymptomatic patients with POAF and anticoagulation should be initiated for POAF more than 48 to 72 hours postsurgery. Research is needed to improve evidence-based management of POAF and guide long-term management in view of the substantial late recurrence-rate.
Collapse
Affiliation(s)
- Martin Aguilar
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada.
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstr. 55, Essen 45122, Germany
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstr. 55, Essen 45122, Germany; IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France
| |
Collapse
|
159
|
Munro ML, van Hout I, Aitken-Buck HM, Sugunesegran R, Bhagwat K, Davis PJ, Lamberts RR, Coffey S, Soeller C, Jones PP. Human Atrial Fibrillation Is Not Associated With Remodeling of Ryanodine Receptor Clusters. Front Cell Dev Biol 2021; 9:633704. [PMID: 33718369 PMCID: PMC7947344 DOI: 10.3389/fcell.2021.633704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/08/2021] [Indexed: 12/02/2022] Open
Abstract
The release of Ca2+ by ryanodine receptor (RyR2) channels is critical for cardiac function. However, abnormal RyR2 activity has been linked to the development of arrhythmias, including increased spontaneous Ca2+ release in human atrial fibrillation (AF). Clustering properties of RyR2 have been suggested to alter the activity of the channel, with remodeling of RyR2 clusters identified in pre-clinical models of AF and heart failure. Whether such remodeling occurs in human cardiac disease remains unclear. This study aimed to investigate the nanoscale organization of RyR2 clusters in AF patients – the first known study to examine this potential remodeling in diseased human cardiomyocytes. Right atrial appendage from cardiac surgery patients with paroxysmal or persistent AF, or without AF (non-AF) were examined using super-resolution (dSTORM) imaging. Significant atrial dilation and cardiomyocyte hypertrophy was observed in persistent AF patients compared to non-AF, with these two parameters significantly correlated. Interestingly, the clustering properties of RyR2 were remarkably unaltered in the AF patients. No significant differences were identified in cluster size (mean ∼18 RyR2 channels), density or channel packing within clusters between patient groups. The spatial organization of clusters throughout the cardiomyocyte was also unchanged across the groups. RyR2 clustering properties did not significantly correlate with patient characteristics. In this first study to examine nanoscale RyR2 organization in human cardiac disease, these findings indicate that RyR2 cluster remodeling is not an underlying mechanism contributing to altered channel function and subsequent arrhythmogenesis in human AF.
Collapse
Affiliation(s)
- Michelle L Munro
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isabelle van Hout
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hamish M Aitken-Buck
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Krishna Bhagwat
- Department of Cardiothoracic Surgery, Dunedin Hospital, Dunedin, New Zealand
| | - Philip J Davis
- Department of Cardiothoracic Surgery, Dunedin Hospital, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sean Coffey
- Department of Medicine and HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Christian Soeller
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Peter P Jones
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
160
|
Garnier A, Bork NI, Jacquet E, Zipfel S, Muñoz-Guijosa C, Baczkó I, Reichenspurner H, Donzeau-Gouge P, Maier LS, Dobrev D, Girdauskas E, Nikolaev VO, Fischmeister R, Molina CE. Mapping genetic changes in the cAMP-signaling cascade in human atria. J Mol Cell Cardiol 2021; 155:10-20. [PMID: 33631188 DOI: 10.1016/j.yjmcc.2021.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/15/2022]
Abstract
AIM To obtain a quantitative expression profile of the main genes involved in the cAMP-signaling cascade in human control atria and in different cardiac pathologies. METHODS AND RESULTS Expression of 48 target genes playing a relevant role in the cAMP-signaling cascade was assessed by RT-qPCR. 113 samples were obtained from right atrial appendages (RAA) of patients in sinus rhythm (SR) with or without atrium dilation, paroxysmal atrial fibrillation (AF), persistent AF or heart failure (HF); and left atrial appendages (LAA) from patients in SR or with AF. Our results show that right and left atrial appendages in donor hearts or from SR patients have similar expression values except for AC7 and PDE2A. Despite the enormous chamber-dependent variability in the gene-expression changes between pathologies, several distinguishable patterns could be identified. PDE8A, PI3Kγ and EPAC2 were upregulated in AF. Different phosphodiesterase (PDE) families showed specific pathology-dependent changes. CONCLUSION By comparing mRNA-expression patterns of the cAMP-signaling cascade related genes in right and left atrial appendages of human hearts and across different pathologies, we show that 1) gene expression is not significantly affected by cardioplegic solution content, 2) it is appropriate to use SR atrial samples as controls, and 3) many genes in the cAMP-signaling cascade are affected in AF and HF but only few of them appear to be chamber (right or left) specific. TOPIC Genetic changes in human diseased atria. TRANSLATIONAL PERSPECTIVE The cyclic AMP signaling pathway is important for atrial function. However, expression patterns of the genes involved in the atria of healthy and diseased hearts are still unclear. We give here a general overview of how different pathologies affect the expression of key genes in the cAMP signaling pathway in human right and left atria appendages. Our study may help identifying new genes of interest as potential therapeutic targets or clinical biomarkers for these pathologies and could serve as a guide in future gene therapy studies.
Collapse
Affiliation(s)
- Anne Garnier
- Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - Nadja I Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany; German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Eric Jacquet
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Svante Zipfel
- Dept. of Cardiovascular Surgery, University Heart Center Hamburg, Germany
| | | | - Istvan Baczkó
- Dept. Pharmacology and Pharmacotherapy, Univ. of Szeged, Hungary
| | | | | | - Lars S Maier
- Dept. Internal Medicine II, University Heart Center, University Hospital Regensburg, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West-German Heart and Vascular Center, Faculty of Medicine, University Duisburg-, Essen, Germany
| | - Evaldas Girdauskas
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany; Dept. of Cardiovascular Surgery, University Heart Center Hamburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany; German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | | | - Cristina E Molina
- Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany; German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| |
Collapse
|
161
|
Mustroph J, Sag CM, Bähr F, Schmidtmann AL, Gupta SN, Dietz A, Islam MMT, Lücht C, Beuthner BE, Pabel S, Baier MJ, El-Armouche A, Sossalla S, Anderson ME, Möllmann J, Lehrke M, Marx N, Mohler PJ, Bers DM, Unsöld B, He T, Dewenter M, Backs J, Maier LS, Wagner S. Loss of CASK Accelerates Heart Failure Development. Circ Res 2021; 128:1139-1155. [PMID: 33593074 DOI: 10.1161/circresaha.120.318170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Julian Mustroph
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Can M Sag
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Felix Bähr
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - Anna-Lena Schmidtmann
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - Shamindra N Gupta
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - Alexander Dietz
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - M M Towhidul Islam
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - Charlotte Lücht
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Bo Eric Beuthner
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - Steffen Pabel
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Maria J Baier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Technical University Dresden, Germany (A.E.-A.)
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.).,Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | | | - Julia Möllmann
- Clinic for Cardiology, Angiology, and Internal Intensive Care, University Clinic Aachen, Germany (J. Möllmann, M.L., N.M.)
| | - Michael Lehrke
- Clinic for Cardiology, Angiology, and Internal Intensive Care, University Clinic Aachen, Germany (J. Möllmann, M.L., N.M.)
| | - Nikolaus Marx
- Clinic for Cardiology, Angiology, and Internal Intensive Care, University Clinic Aachen, Germany (J. Möllmann, M.L., N.M.)
| | - Peter J Mohler
- College of Medicine, the Ohio State University Wexner Medical Center, Columbus (P.J.M.)
| | - Donald M Bers
- College of Biological Sciences, University of California at Davis (D.M.B.)
| | - Bernhard Unsöld
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Tao He
- Department of Molecular Cardiology and Epigenetics, University Clinic Heidelberg, Germany (T.H., M.D., J.B.)
| | - Matthias Dewenter
- Department of Molecular Cardiology and Epigenetics, University Clinic Heidelberg, Germany (T.H., M.D., J.B.)
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, University Clinic Heidelberg, Germany (T.H., M.D., J.B.)
| | - Lars S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Stefan Wagner
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| |
Collapse
|
162
|
Stress-driven cardiac calcium mishandling via a kinase-to-kinase crosstalk. Pflugers Arch 2021; 473:363-375. [PMID: 33590296 PMCID: PMC7940337 DOI: 10.1007/s00424-021-02533-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 01/25/2023]
Abstract
Calcium homeostasis in the cardiomyocyte is critical to the regulation of normal cardiac function. Abnormal calcium dynamics such as altered uptake by the sarcoplasmic reticulum (SR) Ca2+-ATPase and increased diastolic SR calcium leak are involved in the development of maladaptive cardiac remodeling under pathological conditions. Ca2+/calmodulin-dependent protein kinase II-δ (CaMKIIδ) is a well-recognized key molecule in calcium dysregulation in cardiomyocytes. Elevated cellular stress is known as a common feature during pathological remodeling, and c-jun N-terminal kinase (JNK) is an important stress kinase that is activated in response to intrinsic and extrinsic stress stimuli. Our lab recently identified specific actions of JNK isoform 2 (JNK2) in CaMKIIδ expression, activation, and CaMKIIδ-dependent SR Ca2+ mishandling in the stressed heart. This review focuses on the current understanding of cardiac SR calcium handling under physiological and pathological conditions as well as the newly identified contribution of the stress kinase JNK2 in CaMKIIδ-dependent SR Ca2+ abnormal mishandling. The new findings identifying dual roles of JNK2 in CaMKIIδ expression and activation are also discussed in this review.
Collapse
|
163
|
Wang X, Chen X, Dobrev D, Li N. The crosstalk between cardiomyocyte calcium and inflammasome signaling pathways in atrial fibrillation. Pflugers Arch 2021; 473:389-405. [PMID: 33511453 DOI: 10.1007/s00424-021-02515-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmia in adults. The prevalence and incidence of AF is going to increase substantially over the next few decades. Because AF increases the risk of stroke, heart failure, dementia, and others, it severely impacts the quality of life, morbidity, and mortality. Although the pathogenesis of AF is multifaceted and complex, focal ectopic activity and reentry are considered as the fundamental proarrhythmic mechanisms underlying AF development. Over the past 2 decades, large amount of evidence points to the key role of intracellular Ca2+ dysregulation in both initiation and maintenance of AF. More recently, emerging evidence reveal that NLRP3 (NACHT, LRR, PYD domain-containing 3) inflammasome pathway contributes to the substrate of both triggered activity and reentry, ultimately promoting AF. In this article, we review the current state of knowledge on Ca2+ signaling and NLRP3 inflammasome activity in AF. We also discuss the potential crosstalk between these two quintessential contributors to AF promotion.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Xiaohui Chen
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA. .,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
164
|
Bai J, Zhu Y, Lo A, Gao M, Lu Y, Zhao J, Zhang H. In Silico Assessment of Class I Antiarrhythmic Drug Effects on Pitx2-Induced Atrial Fibrillation: Insights from Populations of Electrophysiological Models of Human Atrial Cells and Tissues. Int J Mol Sci 2021; 22:1265. [PMID: 33514068 PMCID: PMC7866025 DOI: 10.3390/ijms22031265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Electrical remodelling as a result of homeodomain transcription factor 2 (Pitx2)-dependent gene regulation was linked to atrial fibrillation (AF) and AF patients with single nucleotide polymorphisms at chromosome 4q25 responded favorably to class I antiarrhythmic drugs (AADs). The possible reasons behind this remain elusive. The purpose of this study was to assess the efficacy of the AADs disopyramide, quinidine, and propafenone on human atrial arrhythmias mediated by Pitx2-induced remodelling, from a single cell to the tissue level, using drug binding models with multi-channel pharmacology. Experimentally calibrated populations of human atrial action po-tential (AP) models in both sinus rhythm (SR) and Pitx2-induced AF conditions were constructed by using two distinct models to represent morphological subtypes of AP. Multi-channel pharmaco-logical effects of disopyramide, quinidine, and propafenone on ionic currents were considered. Simulated results showed that Pitx2-induced remodelling increased maximum upstroke velocity (dVdtmax), and decreased AP duration (APD), conduction velocity (CV), and wavelength (WL). At the concentrations tested in this study, these AADs decreased dVdtmax and CV and prolonged APD in the setting of Pitx2-induced AF. Our findings of alterations in WL indicated that disopyramide may be more effective against Pitx2-induced AF than propafenone and quinidine by prolonging WL.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Yijie Zhu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand; (A.L.); (J.Z.)
| | - Meng Gao
- Department of Computer Science and Technology, College of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand; (A.L.); (J.Z.)
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
165
|
Mesubi OO, Rokita AG, Abrol N, Wu Y, Chen B, Wang Q, Granger JM, Tucker-Bartley A, Luczak ED, Murphy KR, Umapathi P, Banerjee PS, Boronina TN, Cole RN, Maier LS, Wehrens XH, Pomerantz JL, Song LS, Ahima RS, Hart GW, Zachara NE, Anderson ME. Oxidized CaMKII and O-GlcNAcylation cause increased atrial fibrillation in diabetic mice by distinct mechanisms. J Clin Invest 2021; 131:95747. [PMID: 33151911 PMCID: PMC7810480 DOI: 10.1172/jci95747] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) and atrial fibrillation (AF) are major unsolved public health problems, and diabetes is an independent risk factor for AF. However, the mechanism(s) underlying this clinical association is unknown. ROS and protein O-GlcNAcylation (OGN) are increased in diabetic hearts, and calmodulin kinase II (CaMKII) is a proarrhythmic signal that may be activated by ROS (oxidized CaMKII, ox-CaMKII) and OGN (OGN-CaMKII). We induced type 1 (T1D) and type 2 DM (T2D) in a portfolio of genetic mouse models capable of dissecting the role of ROS and OGN at CaMKII and global OGN in diabetic AF. Here, we showed that T1D and T2D significantly increased AF, and this increase required CaMKII and OGN. T1D and T2D both required ox-CaMKII to increase AF; however, we did not detect OGN-CaMKII or a role for OGN-CaMKII in diabetic AF. Collectively, our data affirm CaMKII as a critical proarrhythmic signal in diabetic AF and suggest ROS primarily promotes AF by ox-CaMKII, while OGN promotes AF by a CaMKII-independent mechanism(s). These results provide insights into the mechanisms for increased AF in DM and suggest potential benefits for future CaMKII and OGN targeted therapies.
Collapse
Affiliation(s)
- Olurotimi O. Mesubi
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adam G. Rokita
- Division of Cardiovascular Medicine and Cardiovascular Research Center, Carver College of Medicine, Iowa City, Iowa, USA
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Neha Abrol
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuejin Wu
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Biyi Chen
- Division of Cardiovascular Medicine and Cardiovascular Research Center, Carver College of Medicine, Iowa City, Iowa, USA
| | - Qinchuan Wang
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan M. Granger
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anthony Tucker-Bartley
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth D. Luczak
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin R. Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Priya Umapathi
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Partha S. Banerjee
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tatiana N. Boronina
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert N. Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lars S. Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Xander H. Wehrens
- Department of Molecular Physiology and Biophysics, Department of Medicine (Cardiology), Department of Pediatrics, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Joel L. Pomerantz
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering
| | - Long-Sheng Song
- Division of Cardiovascular Medicine and Cardiovascular Research Center, Carver College of Medicine, Iowa City, Iowa, USA
| | - Rexford S. Ahima
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Gerald W. Hart
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark E. Anderson
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, and
- Department of Physiology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
166
|
Ramakumar V, Kothari SS, Seth S, Kumar S. Reversible complete heart block due to hypercalcaemia. BMJ Case Rep 2021; 14:14/1/e238537. [PMID: 33462026 PMCID: PMC7813424 DOI: 10.1136/bcr-2020-238537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A 65-year-old woman presented to the emergency room with a syncope. An ECG done revealed complete heart block with a narrow QRS escape rhythm and a normal QT interval. Further investigation revealed severe hypercalcaemia and elevated parathormone levels. Her heart block disappeared on correction of the hypercalcaemia. A right inferior parathyroid adenoma was found and surgically removed. Thus, hypercalcaemia may lead to reversible complete heart block without QT interval shortening.
Collapse
Affiliation(s)
| | - Shyam S Kothari
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Seth
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sumit Kumar
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
167
|
Bode D, Semmler L, Wakula P, Hegemann N, Primessnig U, Beindorff N, Powell D, Dahmen R, Ruetten H, Oeing C, Alogna A, Messroghli D, Pieske BM, Heinzel FR, Hohendanner F. Dual SGLT-1 and SGLT-2 inhibition improves left atrial dysfunction in HFpEF. Cardiovasc Diabetol 2021; 20:7. [PMID: 33413413 PMCID: PMC7792219 DOI: 10.1186/s12933-020-01208-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sodium-glucose linked transporter type 2 (SGLT-2) inhibition has been shown to reduce cardiovascular mortality in heart failure independently of glycemic control and prevents the onset of atrial arrhythmias, a common co-morbidity in heart failure with preserved ejection fraction (HFpEF). The mechanism behind these effects is not fully understood, and it remains unclear if they could be further enhanced by additional SGLT-1 inhibition. We investigated the effects of chronic treatment with the dual SGLT-1&2 inhibitor sotagliflozin on left atrial (LA) remodeling and cellular arrhythmogenesis (i.e. atrial cardiomyopathy) in a metabolic syndrome-related rat model of HFpEF. METHODS 17 week-old ZSF-1 obese rats, a metabolic syndrome-related model of HFpEF, and wild type rats (Wistar Kyoto), were fed 30 mg/kg/d sotagliflozin for 6 weeks. At 23 weeks, LA were imaged in-vivo by echocardiography. In-vitro, Ca2+ transients (CaT; electrically stimulated, caffeine-induced) and spontaneous Ca2+ release were recorded by ratiometric microscopy using Ca2+-sensitive fluorescent dyes (Fura-2) during various experimental protocols. Mitochondrial structure (dye: Mitotracker), Ca2+ buffer capacity (dye: Rhod-2), mitochondrial depolarization (dye: TMRE) and production of reactive oxygen species (dye: H2DCF) were visualized by confocal microscopy. Statistical analysis was performed with 2-way analysis of variance followed by post-hoc Bonferroni and student's t-test, as applicable. RESULTS Sotagliflozin ameliorated LA enlargement in HFpEF in-vivo. In-vitro, LA cardiomyocytes in HFpEF showed an increased incidence and amplitude of arrhythmic spontaneous Ca2+ release events (SCaEs). Sotagliflozin significantly reduced the magnitude of SCaEs, while their frequency was unaffected. Sotagliflozin lowered diastolic [Ca2+] of CaT at baseline and in response to glucose influx, possibly related to a ~ 50% increase of sodium sodium-calcium exchanger (NCX) forward-mode activity. Sotagliflozin prevented mitochondrial swelling and enhanced mitochondrial Ca2+ buffer capacity in HFpEF. Sotagliflozin improved mitochondrial fission and reactive oxygen species (ROS) production during glucose starvation and averted Ca2+ accumulation upon glycolytic inhibition. CONCLUSION The SGLT-1&2 inhibitor sotagliflozin ameliorated LA remodeling in metabolic HFpEF. It also improved distinct features of Ca2+-mediated cellular arrhythmogenesis in-vitro (i.e. magnitude of SCaEs, mitochondrial Ca2+ buffer capacity, diastolic Ca2+ accumulation, NCX activity). The safety and efficacy of combined SGLT-1&2 inhibition for the treatment and/or prevention of atrial cardiomyopathy associated arrhythmias should be further evaluated in clinical trials.
Collapse
MESH Headings
- Animals
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Atrial Function, Left/drug effects
- Atrial Remodeling/drug effects
- Calcium Signaling/drug effects
- Disease Models, Animal
- Glycosides/pharmacology
- Heart Atria/drug effects
- Heart Atria/metabolism
- Heart Atria/physiopathology
- Heart Failure/drug therapy
- Heart Failure/etiology
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Metabolic Syndrome/complications
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondrial Dynamics/drug effects
- Mitochondrial Swelling/drug effects
- Rats, Inbred WKY
- Rats, Zucker
- Reactive Oxygen Species/metabolism
- Sodium-Calcium Exchanger/metabolism
- Sodium-Glucose Transporter 1/antagonists & inhibitors
- Sodium-Glucose Transporter 1/metabolism
- Sodium-Glucose Transporter 2/metabolism
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Rats
Collapse
Affiliation(s)
- David Bode
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Lukas Semmler
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Paulina Wakula
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Niklas Hegemann
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - David Powell
- Lexicon Pharmaceuticals, Metabolism Research, Houston, TX, USA
| | - Raphael Dahmen
- Sanofi-Aventis Deutschland GmbH, Research & Development, 65926, Frankfurt am Main, Germany
| | - Hartmut Ruetten
- Sanofi-Aventis Deutschland GmbH, Research & Development, 65926, Frankfurt am Main, Germany
| | - Christian Oeing
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Alessio Alogna
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Daniel Messroghli
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin, 13353, Berlin, Germany
| | - Burkert M Pieske
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin, 13353, Berlin, Germany
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
168
|
Mechanisms underlying pathological Ca 2+ handling in diseases of the heart. Pflugers Arch 2021; 473:331-347. [PMID: 33399957 PMCID: PMC10070045 DOI: 10.1007/s00424-020-02504-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Cardiomyocyte contraction relies on precisely regulated intracellular Ca2+ signaling through various Ca2+ channels and transporters. In this article, we will review the physiological regulation of Ca2+ handling and its role in maintaining normal cardiac rhythm and contractility. We discuss how inherited variants or acquired defects in Ca2+ channel subunits contribute to the development or progression of diseases of the heart. Moreover, we highlight recent insights into the role of protein phosphatase subunits and striated muscle preferentially expressed protein kinase (SPEG) in atrial fibrillation, heart failure, and cardiomyopathies. Finally, this review summarizes current drug therapies and new advances in genome editing as therapeutic strategies for the cardiac diseases caused by aberrant intracellular Ca2+ signaling.
Collapse
|
169
|
Wang W, Shen W, Zhang S, Luo G, Wang K, Xu Y, Zhang H. The Role of CaMKII Overexpression and Oxidation in Atrial Fibrillation-A Simulation Study. Front Physiol 2021; 11:607809. [PMID: 33391023 PMCID: PMC7775483 DOI: 10.3389/fphys.2020.607809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
This simulation study aims to investigate how the Calcium/calmodulin-dependent protein kinase II (CaMKII) overexpression and oxidation would influence the cardiac electrophysiological behavior and its arrhythmogenic mechanism in atria. A new-built CaMKII oxidation module and a refitted CaMKII overexpression module were integrated into a mouse atrial cell model for analyzing cardiac electrophysiological variations in action potential (AP) characteristics and intracellular Ca2+ cycling under different conditions. Simulation results showed that CaMKII overexpression significantly increased the phosphorylation level of its downstream target proteins, resulting in prolonged AP and smaller calcium transient amplitude, and impaired the Ca2+ cycling stability. These effects were exacerbated by extra reactive oxygen species, which oxidized CaMKII and led to continuous high CaMKII activation in both systolic and diastolic phases. Intracellular Ca2+ depletion and sustained delayed afterdepolarizations (DADs) were observed under co-existing CaMKII overexpression and oxidation, which could be effectively reversed by clamping the phosphorylation level of ryanodine receptor (RyR). We also found that the stability of RyR release highly depended on a delicate balance between the level of RyR phosphorylation and sarcoplasmic reticulum Ca2+ concentration, which was closely related to the genesis of DADs. We concluded that the CaMKII overexpression and oxidation have a synergistic role in increasing the activity of CaMKII, and the unstable RyR may be the key downstream target in the CaMKII arrhythmogenic mechanism. Our simulation provides detailed mechanistic insights into the arrhythmogenic effect of CaMKII overexpression and oxidation, which suggests CaMKII as a promising target in the therapy of atrial fibrillation.
Collapse
Affiliation(s)
- Wei Wang
- Shenzhen Key Laboratory of Visual Object Detection and Recognition, Harbin Institute of Technology, Shenzhen, China.,Peng Cheng Lab, Shenzhen, China
| | - Weijian Shen
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Shanzhuo Zhang
- Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Gongning Luo
- Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kuanquan Wang
- Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yong Xu
- Shenzhen Key Laboratory of Visual Object Detection and Recognition, Harbin Institute of Technology, Shenzhen, China
| | - Henggui Zhang
- Peng Cheng Lab, Shenzhen, China.,Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
170
|
Saiyang X, Qingqing W, man X, Chen L, Min Z, Yun X, Wenke S, Haiming W, Xiaofeng Z, Si C, Haipeng G, Wei D, Qizhu T. Activation of Toll-like receptor 7 provides cardioprotection in septic cardiomyopathy-induced systolic dysfunction. Clin Transl Med 2021; 11:e266. [PMID: 33463061 PMCID: PMC7775988 DOI: 10.1002/ctm2.266] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND As a pattern recognition receptor, Toll-like receptor 7 (TLR7) widely presented in the endosomal membrane of various cells. However, the precise role and mechanism of TLR7 in septic cardiomyopathy remain unknown. This study aims to determine the role of TLR7 in cardiac dysfunction during sepsis and explore the mechanism of TLR7 in septic cardiomyopathy. METHODS We generated a mouse model of septic cardiomyopathy by challenging with lipopolysaccharide (LPS). TLR7-knockout (TLR7-/- ), wild-type (WT) mice, cardiac-specific TLR7-transgenic (cTG-TLR7) overexpression, and littermates WT (LWT) mice were subjected to septic model. Additionally, to verify the role and mechanism of TLR7 in vitro, we transfected neonatal rat ventricular myocytes (NRVMs) with Ad-TLR7 and TLR7 siRNA before LPS administration. The effects of TLR7 were assessed by Ca2+ imaging, western blotting, immunostaining, and quantitative real-time polymerase chain reaction (qPCR). RESULTS We found that TLR7 knockout markedly exacerbated sepsis-induced systolic dysfunction. Moreover, cardiomyocytes isolated from TLR7-/- mice displayed weaker Ca2+ handling than that in WT mice in response to LPS. Conversely, TLR7 overexpression alleviated LPS-induced systolic dysfunction, and loxoribine (TLR7-specific agonist) improved LPS-induced cardiac dysfunction. Mechanistically, these optimized effects were associated with enhanced the adenosine (cAMP)-protein kinase A (PKA) pathway, which upregulated phosphorylate-phospholamban (p-PLN) (Ser16) and promoted sarco/endoplasmic reticulum Ca2+ ATPase (Serca) and Ryanodine Receptor 2 (RyR2) expression in the sarcoplasmic reticulum (SR), and ultimately restored Ca2+ handling in response to sepsis. While improved Ca2+ handling was abrogated after H89 (a specific PKA inhibitor) pretreatment in cardiomyocytes isolated from cTG-TLR7 mice. Consistently, TLR7 overexpression improved LPS-induced Ca2+ -handling decrement in NRVMs. Nevertheless, TLR7 knockdown showed a deteriorative phenotype. CONCLUSIONS Our data demonstrated that activation of TLR7 protected against sepsis-induced cardiac dysfunction through promoting cAMP-PKA-PLN pathway, and we revealed that TLR7 might be a novel therapeutic target to block the septic cardiomyopathy and support systolic function during sepsis.
Collapse
Affiliation(s)
- Xie Saiyang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanPeople's Republic of China
| | - Wu Qingqing
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanPeople's Republic of China
| | - Xu man
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanPeople's Republic of China
| | - Liu Chen
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanPeople's Republic of China
| | - Zhang Min
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanPeople's Republic of China
| | - Xing Yun
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanPeople's Republic of China
| | - Shi Wenke
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanPeople's Republic of China
| | - Wu Haiming
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanPeople's Republic of China
| | - Zeng Xiaofeng
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanPeople's Republic of China
| | - Chen Si
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanPeople's Republic of China
| | - Guo Haipeng
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of HealthQilu Hospital of Shandong UniversityJinanChina
- Department of Critical Care MedicineQilu Hospital of Shandong UniversityJinanPeople's Republic of China
| | - Deng Wei
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanPeople's Republic of China
- Department of CardiologyThe Fifth Affiliated Hospital of Xinjiang Medical UniversityÜrümqiChina
| | - Tang Qizhu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanPeople's Republic of China
| |
Collapse
|
171
|
Gök C, Fuller W. Topical review: Shedding light on molecular and cellular consequences of NCX1 palmitoylation. Cell Signal 2020; 76:109791. [DOI: 10.1016/j.cellsig.2020.109791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/21/2023]
|
172
|
Christoph J, Lebert J. Inverse mechano-electrical reconstruction of cardiac excitation wave patterns from mechanical deformation using deep learning. CHAOS (WOODBURY, N.Y.) 2020; 30:123134. [PMID: 33380038 DOI: 10.1063/5.0023751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The inverse mechano-electrical problem in cardiac electrophysiology is the attempt to reconstruct electrical excitation or action potential wave patterns from the heart's mechanical deformation that occurs in response to electrical excitation. Because heart muscle cells contract upon electrical excitation due to the excitation-contraction coupling mechanism, the resulting deformation of the heart should reflect macroscopic action potential wave phenomena. However, whether the relationship between macroscopic electrical and mechanical phenomena is well-defined and unique enough to be utilized for an inverse imaging technique in which mechanical activation mapping is used as a surrogate for electrical mapping has yet to be determined. Here, we provide a numerical proof-of-principle that deep learning can be used to solve the inverse mechano-electrical problem in phenomenological two- and three-dimensional computer simulations of the contracting heart wall, or in elastic excitable media, with muscle fiber anisotropy. We trained a convolutional autoencoder neural network to learn the complex relationship between electrical excitation, active stress, and tissue deformation during both focal or reentrant chaotic wave activity and, consequently, used the network to successfully estimate or reconstruct electrical excitation wave patterns from mechanical deformation in sheets and bulk-shaped tissues, even in the presence of noise and at low spatial resolutions. We demonstrate that even complicated three-dimensional electrical excitation wave phenomena, such as scroll waves and their vortex filaments, can be computed with very high reconstruction accuracies of about 95% from mechanical deformation using autoencoder neural networks, and we provide a comparison with results that were obtained previously with a physics- or knowledge-based approach.
Collapse
Affiliation(s)
- Jan Christoph
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jan Lebert
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
173
|
Parahuleva MS, Kockskämper J, Heger J, Grimm W, Scherer A, Bühler S, Kreutz J, Schulz R, Euler G. Structural, Pro-Inflammatory and Calcium Handling Remodeling Underlies Spontaneous Onset of Paroxysmal Atrial Fibrillation in JDP2-Overexpressing Mice. Int J Mol Sci 2020; 21:E9095. [PMID: 33265909 PMCID: PMC7731172 DOI: 10.3390/ijms21239095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cardiac-specific JDP2 overexpression provokes ventricular dysfunction and atrial dilatation in mice. We performed in vivo studies on JDP2-overexpressing mice to investigate the impact of JDP2 on the predisposition to spontaneous atrial fibrillation (AF). METHODS JDP2-overexpression was started by withdrawal of a doxycycline diet in 4-week-old mice. The spontaneous onset of AF was documented by ECG within 4 to 5 weeks of JDP2 overexpression. Gene expression was analyzed by real-time RT-PCR and Western blots. RESULTS In atrial tissue of JDP2 mice, besides the 3.6-fold increase of JDP2 mRNA, no changes could be detected within one week of JDP2 overexpression. Atrial dilatation and hypertrophy, combined with elongated cardiomyocytes and fibrosis, became evident after 5 weeks of JDP2 overexpression. Electrocardiogram (ECG) recordings revealed prolonged PQ-intervals and broadened P-waves and QRS-complexes, as well as AV-blocks and paroxysmal AF. Furthermore, reductions were found in the atrial mRNA and protein level of the calcium-handling proteins NCX, Cav1.2 and RyR2, as well as of connexin40 mRNA. mRNA of the hypertrophic marker gene ANP, pro-inflammatory MCP1, as well as markers of immune cell infiltration (CD68, CD20) were increased in JDP2 mice. CONCLUSION JDP2 is an important regulator of atrial calcium and immune homeostasis and is involved in the development of atrial conduction defects and arrhythmogenic substrates preceding paroxysmal AF.
Collapse
Affiliation(s)
- Mariana S. Parahuleva
- Internal Medicine/Cardiology and Angiology, University Hospital of Giessen and Marburg, 35033 Marburg, Germany; (W.G.); (J.K.)
| | - Jens Kockskämper
- Biochemical-Pharmacological Centre (BPC) Marburg, Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany; (J.K.); (A.S.); (S.B.)
| | - Jacqueline Heger
- Institute of Physiology, Justus Liebig University, 35392 Giessen, Germany; (J.H.); (R.S.); (G.E.)
| | - Wolfram Grimm
- Internal Medicine/Cardiology and Angiology, University Hospital of Giessen and Marburg, 35033 Marburg, Germany; (W.G.); (J.K.)
| | - Anna Scherer
- Biochemical-Pharmacological Centre (BPC) Marburg, Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany; (J.K.); (A.S.); (S.B.)
| | - Sarah Bühler
- Biochemical-Pharmacological Centre (BPC) Marburg, Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany; (J.K.); (A.S.); (S.B.)
| | - Julian Kreutz
- Internal Medicine/Cardiology and Angiology, University Hospital of Giessen and Marburg, 35033 Marburg, Germany; (W.G.); (J.K.)
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University, 35392 Giessen, Germany; (J.H.); (R.S.); (G.E.)
| | - Gerhild Euler
- Institute of Physiology, Justus Liebig University, 35392 Giessen, Germany; (J.H.); (R.S.); (G.E.)
| |
Collapse
|
174
|
Mason FE, Pronto JRD, Alhussini K, Maack C, Voigt N. Cellular and mitochondrial mechanisms of atrial fibrillation. Basic Res Cardiol 2020; 115:72. [PMID: 33258071 PMCID: PMC7704501 DOI: 10.1007/s00395-020-00827-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/26/2020] [Indexed: 11/06/2022]
Abstract
The molecular mechanisms underlying atrial fibrillation (AF), the most common form of arrhythmia, are poorly understood and therefore target-specific treatment options remain an unmet clinical need. Excitation–contraction coupling in cardiac myocytes requires high amounts of adenosine triphosphate (ATP), which is replenished by oxidative phosphorylation in mitochondria. Calcium (Ca2+) is a key regulator of mitochondrial function by stimulating the Krebs cycle, which produces nicotinamide adenine dinucleotide for ATP production at the electron transport chain and nicotinamide adenine dinucleotide phosphate for the elimination of reactive oxygen species (ROS). While it is now well established that mitochondrial dysfunction plays an important role in the pathophysiology of heart failure, this has been less investigated in atrial myocytes in AF. Considering the high prevalence of AF, investigating the role of mitochondria in this disease may guide the path towards new therapeutic targets. In this review, we discuss the importance of mitochondrial Ca2+ handling in regulating ATP production and mitochondrial ROS emission and how alterations, particularly in these aspects of mitochondrial activity, may play a role in AF. In addition to describing research advances, we highlight areas in which further studies are required to elucidate the role of mitochondria in AF.
Collapse
Affiliation(s)
- Fleur E Mason
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Khaled Alhussini
- Department of Thoracic and Cardiovascular Surgery, University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center Würzburg, University Clinic Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany. .,Department of Internal Medicine I, University Clinic Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany.
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany. .,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany. .,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
175
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
176
|
Ihara K, Sasano T, Hiraoka Y, Togo-Ohno M, Soejima Y, Sawabe M, Tsuchiya M, Ogawa H, Furukawa T, Kuroyanagi H. A missense mutation in the RSRSP stretch of Rbm20 causes dilated cardiomyopathy and atrial fibrillation in mice. Sci Rep 2020; 10:17894. [PMID: 33110103 PMCID: PMC7591520 DOI: 10.1038/s41598-020-74800-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a fatal heart disease characterized by left ventricular dilatation and cardiac dysfunction. Recent genetic studies on DCM have identified causative mutations in over 60 genes, including RBM20, which encodes a regulator of heart-specific splicing. DCM patients with RBM20 mutations have been reported to present with more severe cardiac phenotypes, including impaired cardiac function, atrial fibrillation (AF), and ventricular arrhythmias leading to sudden cardiac death, compared to those with mutations in the other genes. An RSRSP stretch of RBM20, a hotspot of missense mutations found in patients with idiopathic DCM, functions as a crucial part of its nuclear localization signals. However, the relationship between mutations in the RSRSP stretch and cardiac phenotypes has never been assessed in an animal model. Here, we show that Rbm20 mutant mice harboring a missense mutation S637A in the RSRSP stretch, mimicking that in a DCM patient, demonstrated severe cardiac dysfunction and spontaneous AF and ventricular arrhythmias mimicking the clinical state in patients. In contrast, Rbm20 mutant mice with frame-shifting deletion demonstrated less severe phenotypes, although loss of RBM20-dependent alternative splicing was indistinguishable. RBM20S637A protein cannot be localized to the nuclear speckles, but accumulated in cytoplasmic, perinuclear granule-like structures in cardiomyocytes, which might contribute to the more severe cardiac phenotypes.
Collapse
Affiliation(s)
- Kensuke Ihara
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan. .,Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Yuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Marina Togo-Ohno
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Yurie Soejima
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Motoji Sawabe
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Megumi Tsuchiya
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| |
Collapse
|
177
|
Andrade JG, Aguilar M, Atzema C, Bell A, Cairns JA, Cheung CC, Cox JL, Dorian P, Gladstone DJ, Healey JS, Khairy P, Leblanc K, McMurtry MS, Mitchell LB, Nair GM, Nattel S, Parkash R, Pilote L, Sandhu RK, Sarrazin JF, Sharma M, Skanes AC, Talajic M, Tsang TSM, Verma A, Verma S, Whitlock R, Wyse DG, Macle L. The 2020 Canadian Cardiovascular Society/Canadian Heart Rhythm Society Comprehensive Guidelines for the Management of Atrial Fibrillation. Can J Cardiol 2020; 36:1847-1948. [PMID: 33191198 DOI: 10.1016/j.cjca.2020.09.001] [Citation(s) in RCA: 380] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022] Open
Abstract
The Canadian Cardiovascular Society (CCS) atrial fibrillation (AF) guidelines program was developed to aid clinicians in the management of these complex patients, as well as to provide direction to policy makers and health care systems regarding related issues. The most recent comprehensive CCS AF guidelines update was published in 2010. Since then, periodic updates were published dealing with rapidly changing areas. However, since 2010 a large number of developments had accumulated in a wide range of areas, motivating the committee to complete a thorough guideline review. The 2020 iteration of the CCS AF guidelines represents a comprehensive renewal that integrates, updates, and replaces the past decade of guidelines, recommendations, and practical tips. It is intended to be used by practicing clinicians across all disciplines who care for patients with AF. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) system was used to evaluate recommendation strength and the quality of evidence. Areas of focus include: AF classification and definitions, epidemiology, pathophysiology, clinical evaluation, screening and opportunistic AF detection, detection and management of modifiable risk factors, integrated approach to AF management, stroke prevention, arrhythmia management, sex differences, and AF in special populations. Extensive use is made of tables and figures to synthesize important material and present key concepts. This document should be an important aid for knowledge translation and a tool to help improve clinical management of this important and challenging arrhythmia.
Collapse
Affiliation(s)
- Jason G Andrade
- University of British Columbia, Vancouver, British Columbia, Canada; Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada.
| | - Martin Aguilar
- Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada
| | | | - Alan Bell
- University of Toronto, Toronto, Ontario, Canada
| | - John A Cairns
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Jafna L Cox
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Paul Dorian
- University of Toronto, Toronto, Ontario, Canada
| | | | | | - Paul Khairy
- Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | - Girish M Nair
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Stanley Nattel
- Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | - Jean-François Sarrazin
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Mukul Sharma
- McMaster University, Population Health Research Institute, Hamilton, Ontario, Canada
| | | | - Mario Talajic
- Montreal Heart Institute, University of Montreal, Montréal, Quebec, Canada
| | - Teresa S M Tsang
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Atul Verma
- Southlake Regional Health Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Laurent Macle
- Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
178
|
Antiarrhythmic Effect of Ranolazine in Combination with Selective NCX-Inhibition in an Experimental Model of Atrial Fibrillation. Pharmaceuticals (Basel) 2020; 13:ph13100321. [PMID: 33092020 PMCID: PMC7589655 DOI: 10.3390/ph13100321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to investigate the effects of a combination of ranolazine with different selective inhibitors of the Na+/Ca2+-exchanger (NCX) in an established experimental model of atrial fibrillation (AF). Eighteen hearts of New Zealand white rabbits were retrogradely perfused. Atrial catheters were used to record monophasic action potentials (aPRR). Hearts were paced at three different cycle lengths. Thereby, atrial action potential durations (aAPD90), atrial effective refractory periods (aERP) and atrial post-repolarization refractoriness were obtained. Isoproterenol and acetylcholine were employed to increase the occurrence of AF. Thereafter, the hearts were assigned to two groups (n = 9 each group) and additionally perfused with a combination of 10 µM ranolazine and 1 µM of the selective NCX-inhibitor ORM-10103 (group A: Rano-ORM) or 10 µM ranolazine and 1 µM of another NCX-inhibitor, SEA0400 (group B: Rano-SEA). The infusion of Iso/ACh led to a shortening of aAPD90, aERP, aPRR and the occurrence of AF episodes was significantly increased. Additional perfusion with ranolazine and ORM-10103 (group A) significantly prolonged the refractory periods and aPRR and AF episodes were effectively reduced. In group B, Rano-SEA led to a slight decrease in aAPD90 while aERP and aPRR were prolonged. The occurrence of AF episodes was consecutively reduced. To our knowledge, this is the first study investigating the effect of ranolazine combined with different selective NCX-inhibitors in an isolated whole-heart model of AF. Both combinations prolonged aERP and aPRR and thereby suppressed the induction of AF.
Collapse
|
179
|
Campbell H, Aguilar-Sanchez Y, Quick AP, Dobrev D, Wehrens XHT. SPEG: a key regulator of cardiac calcium homeostasis. Cardiovasc Res 2020; 117:2175-2185. [PMID: 33067609 DOI: 10.1093/cvr/cvaa290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022] Open
Abstract
Proper cardiac Ca2+ homeostasis is essential for normal excitation-contraction coupling. Perturbations in cardiac Ca2+ handling through altered kinase activity has been implicated in altered cardiac contractility and arrhythmogenesis. Thus, a better understanding of cardiac Ca2+ handling regulation is vital for a better understanding of various human disease processes. 'Striated muscle preferentially expressed protein kinase' (SPEG) is a member of the myosin light chain kinase family that is key for normal cardiac function. Work within the last 5 years has revealed that SPEG has a crucial role in maintaining normal cardiac Ca2+ handling through maintenance of transverse tubule formation and phosphorylation of junctional membrane complex proteins. Additionally, SPEG has been causally impacted in human genetic diseases such as centronuclear myopathy and dilated cardiomyopathy as well as in common acquired cardiovascular disease such as heart failure and atrial fibrillation. Given the rapidly emerging role of SPEG as a key cardiac Ca2+ regulator, we here present this review in order to summarize recent findings regarding the mechanisms of SPEG regulation of cardiac excitation-contraction coupling in both physiology and human disease. A better understanding of the roles of SPEG will be important for a more complete comprehension of cardiac Ca2+ regulation in physiology and disease.
Collapse
Affiliation(s)
- Hannah Campbell
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuriana Aguilar-Sanchez
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ann P Quick
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dobromir Dobrev
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
180
|
Vagos MR, Arevalo H, Heijman J, Schotten U, Sundnes J. A Novel Computational Model of the Rabbit Atrial Cardiomyocyte With Spatial Calcium Dynamics. Front Physiol 2020; 11:556156. [PMID: 33162894 PMCID: PMC7583320 DOI: 10.3389/fphys.2020.556156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
Models of cardiac electrophysiology are widely used to supplement experimental results and to provide insight into mechanisms of cardiac function and pathology. The rabbit has been a particularly important animal model for studying mechanisms of atrial pathophysiology and atrial fibrillation, which has motivated the development of models for the rabbit atrial cardiomyocyte electrophysiology. Previously developed models include detailed representations of membrane currents and intracellular ionic concentrations, but these so-called “common-pool” models lack a spatially distributed description of the calcium handling system, which reflects the detailed ultrastructure likely found in cells in vivo. Because of the less well-developed T-tubular system in atrial compared to ventricular cardiomyocytes, spatial gradients in intracellular calcium concentrations may play a more significant role in atrial cardiomyocyte pathophysiology, rendering common-pool models less suitable for investigating underlying electrophysiological mechanisms. In this study, we developed a novel computational model of the rabbit atrial cardiomyocyte incorporating detailed compartmentalization of intracellular calcium dynamics, in addition to a description of membrane currents and intracellular processes. The spatial representation of calcium was based on dividing the intracellular space into eighteen different compartments in the transversal direction, each with separate systems for internal calcium storage and release, and tracking ionic fluxes between compartments in addition to the dynamics driven by membrane currents and calcium release. The model was parameterized employing a population-of-models approach using experimental data from different sources. The parameterization of this novel model resulted in a reduced population of models with inherent variability in calcium dynamics and electrophysiological properties, all of which fall within the range of observed experimental values. As such, the population of models may represent natural variability in cardiomyocyte electrophysiology or inherent uncertainty in the underlying experimental data. The ionic model population was also able to reproduce the U-shaped waveform observed in line-scans of triggered calcium waves in atrial cardiomyocytes, characteristic of the absence of T-tubules, resulting in a centripetal calcium wave due to subcellular calcium diffusion. This novel spatial model of the rabbit atrial cardiomyocyte can be used to integrate experimental findings, offering the potential to enhance our understanding of the pathophysiological role of calcium-handling abnormalities under diseased conditions, such as atrial fibrillation.
Collapse
Affiliation(s)
- Márcia R Vagos
- Simula Research Laboratory, Computational Physiology Department, Lysaker, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Hermenegild Arevalo
- Simula Research Laboratory, Computational Physiology Department, Lysaker, Norway.,Center for Cardiological Innovation, Rikshospitalet, Oslo, Norway
| | - Jordi Heijman
- Faculty of Health, Medicine and Life Sciences, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Ulrich Schotten
- Faculty of Health, Medicine and Life Sciences, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Joakim Sundnes
- Simula Research Laboratory, Computational Physiology Department, Lysaker, Norway.,Department of Informatics, University of Oslo, Oslo, Norway.,Center for Cardiological Innovation, Rikshospitalet, Oslo, Norway
| |
Collapse
|
181
|
Mollenhauer M, Mehrkens D, Klinke A, Lange M, Remane L, Friedrichs K, Braumann S, Geißen S, Simsekyilmaz S, Nettersheim FS, Lee S, Peinkofer G, Geisler AC, Geis B, Schwoerer AP, Carrier L, Freeman BA, Dewenter M, Luo X, El-Armouche A, Wagner M, Adam M, Baldus S, Rudolph V. Nitro-fatty acids suppress ischemic ventricular arrhythmias by preserving calcium homeostasis. Sci Rep 2020; 10:15319. [PMID: 32948795 PMCID: PMC7501300 DOI: 10.1038/s41598-020-71870-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/22/2020] [Indexed: 12/01/2022] Open
Abstract
Nitro-fatty acids are electrophilic anti-inflammatory mediators which are generated during myocardial ischemic injury. Whether these species exert anti-arrhythmic effects in the acute phase of myocardial ischemia has not been investigated so far. Herein, we demonstrate that pretreatment of mice with 9- and 10-nitro-octadec-9-enoic acid (nitro-oleic acid, NO2-OA) significantly reduced the susceptibility to develop acute ventricular tachycardia (VT). Accordingly, epicardial mapping revealed a markedly enhanced homogeneity in ventricular conduction. NO2-OA treatment of isolated cardiomyocytes lowered the number of spontaneous contractions upon adrenergic isoproterenol stimulation and nearly abolished ryanodine receptor type 2 (RyR2)-dependent sarcoplasmic Ca2+ leak. NO2-OA also significantly reduced RyR2-phosphorylation by inhibition of increased CaMKII activity. Thus, NO2-OA might be a novel pharmacological option for the prevention of VT development.
Collapse
Affiliation(s)
- Martin Mollenhauer
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany.
| | - Dennis Mehrkens
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/ Angiology, Herz- Und Diabeteszentrum NRW, Ruhr-Universitaet Bochum, Bad Oeynhausen, Germany
| | - Max Lange
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Lisa Remane
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Kai Friedrichs
- Clinic for General and Interventional Cardiology/ Angiology, Herz- Und Diabeteszentrum NRW, Ruhr-Universitaet Bochum, Bad Oeynhausen, Germany
| | - Simon Braumann
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Simon Geißen
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Sakine Simsekyilmaz
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Felix S Nettersheim
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Samuel Lee
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Gabriel Peinkofer
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Anne C Geisler
- General and Interventional Cardiology University Heart Center Hamburg, University Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bianca Geis
- General and Interventional Cardiology University Heart Center Hamburg, University Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Alexander P Schwoerer
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg Eppendorf, DZHK (German Centre of Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucie Carrier
- Experimental Pharmacology and Toxicology, University Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthias Dewenter
- Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Heidelberg/Mannheim, Germany
| | - Xiaojing Luo
- Department of Pharmacology and Toxicology, Technische Universitaet Dresden, Dresden, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Technische Universitaet Dresden, Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Technische Universitaet Dresden, Dresden, Germany
- Clinic for Internal Medicine and Cardiology, Heart Center Dresden, Dresden, Germany
| | - Matti Adam
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/ Angiology, Herz- Und Diabeteszentrum NRW, Ruhr-Universitaet Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
182
|
Lee MA, Raad N, Song MH, Yoo J, Lee M, Jang SP, Kwak TH, Kook H, Choi EK, Cha TJ, Hajjar RJ, Jeong D, Park WJ. The matricellular protein CCN5 prevents adverse atrial structural and electrical remodelling. J Cell Mol Med 2020; 24:11768-11778. [PMID: 32885578 PMCID: PMC7579720 DOI: 10.1111/jcmm.15789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 01/14/2023] Open
Abstract
Atrial structural remodelling including atrial hypertrophy and fibrosis is a key mediator of atrial fibrillation (AF). We previously demonstrated that the matricellular protein CCN5 elicits anti‐fibrotic and anti‐hypertrophic effects in left ventricles under pressure overload. We here determined the utility of CCN5 in ameliorating adverse atrial remodelling and arrhythmias in a murine model of angiotensin II (AngII) infusion. Advanced atrial structural remodelling was induced by AngII infusion in control mice and mice overexpressing CCN5 either through transgenesis (CCN5 Tg) or AAV9‐mediated gene transfer (AAV9‐CCN5). The mRNA levels of pro‐fibrotic and pro‐inflammatory genes were markedly up‐regulated by AngII infusion, which was significantly normalized by CCN5 overexpression. In vitro studies in isolated atrial fibroblasts demonstrated a marked reduction in AngII‐induced fibroblast trans‐differentiation in CCN5‐treated atria. Moreover, while AngII increased the expression of phosphorylated CaMKII and ryanodine receptor 2 levels in HL‐1 cells, these molecular features of AF were prevented by CCN5. Electrophysiological studies in ex vivo perfused hearts revealed a blunted susceptibility of the AAV9‐CCN5–treated hearts to rapid atrial pacing‐induced arrhythmias and concomitant reversal in AngII‐induced atrial action potential prolongation. These data demonstrate the utility of a gene transfer approach targeting CCN5 for reversal of adverse atrial structural and electrophysiological remodelling.
Collapse
Affiliation(s)
- Min-Ah Lee
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Nour Raad
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Min Ho Song
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jimeen Yoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miyoung Lee
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Seung Pil Jang
- Bethphagen, S3-203, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Tae Hwan Kwak
- Bethphagen, S3-203, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hyun Kook
- Basic Research Laboratory, Chonnam National University Medical School, Hwasun-gun, Jeollanam-do, Korea
| | - Eun-Kyoung Choi
- Division of Cardiology, Kosin University Gospel Hospital, Busan, Korea
| | - Tae-Joon Cha
- Division of Cardiology, Kosin University Gospel Hospital, Busan, Korea
| | | | - Dongtak Jeong
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, Ansan, Gyeonggi-do, Korea
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea.,Bethphagen, S3-203, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
183
|
Menzel J, Kownatzki-Danger D, Tokar S, Ballone A, Unthan-Fechner K, Kilisch M, Lenz C, Urlaub H, Mori M, Ottmann C, Shattock MJ, Lehnart SE, Schwappach B. 14-3-3 binding creates a memory of kinase action by stabilizing the modified state of phospholamban. Sci Signal 2020; 13:13/647/eaaz1436. [DOI: 10.1126/scisignal.aaz1436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cardiac membrane protein phospholamban (PLN) is targeted by protein kinase A (PKA) at Ser16and by Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Thr17. β-Adrenergic stimulation and PKA-dependent phosphorylation of Ser16acutely stimulate the sarcoplasmic reticulum calcium pump (SERCA) by relieving its inhibition by PLN. CaMKII-dependent phosphorylation may lead to longer-lasting SERCA stimulation and may sustain maladaptive Ca2+handling. Here, we demonstrated that phosphorylation at either Ser16or Thr17converted PLN into a target for the phosphoadaptor protein 14-3-3 with different affinities. 14-3-3 proteins were localized within nanometers of PLN and endogenous 14-3-3 coimmunoprecipitated with pentameric PLN from cardiac membranes. Molecular dynamics simulations predicted different molecular contacts for peptides phosphorylated at Ser16or Thr17with the binding groove of 14-3-3, resulting in varied binding affinities. 14-3-3 binding protected either PLN phosphosite from dephosphorylation. β-Adrenergic stimulation of isolated adult cardiomyocytes resulted in the membrane recruitment of endogenous 14-3-3. The exogenous addition of 14-3-3 to β-adrenergic–stimulated cardiomyocytes led to prolonged SERCA activation, presumably because 14-3-3 protected PLN pentamers from dephosphorylation. Phosphorylation of Ser16was disrupted by the cardiomyopathy-associated ∆Arg14mutation, implying that phosphorylation of Thr17by CaMKII may become crucial for 14-3-3 recruitment to ∆Arg14PLN. Consistent with PLN acting as a dynamic hub in the control of Ca2+handling, our results identify 14-3-3 binding to PLN as a contractility-augmenting mechanism.
Collapse
Affiliation(s)
- Julia Menzel
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Daniel Kownatzki-Danger
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, Universitätsmedizin Göttingen, Robert-Koch-Straße 42a, 37075 Göttingen, Germany
| | - Sergiy Tokar
- School of Cardiovascular Medicine and Sciences, King’s College London, Westminster Bridge Road, London SE17H, UK
| | - Alice Ballone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, Netherlands
| | - Kirsten Unthan-Fechner
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus Kilisch
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Christof Lenz
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- Max-Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- Max-Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, Netherlands
| | - Michael J. Shattock
- School of Cardiovascular Medicine and Sciences, King’s College London, Westminster Bridge Road, London SE17H, UK
| | - Stephan E. Lehnart
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, Universitätsmedizin Göttingen, Robert-Koch-Straße 42a, 37075 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
- Max-Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| |
Collapse
|
184
|
Genetics and Epigenetics of Atrial Fibrillation. Int J Mol Sci 2020; 21:ijms21165717. [PMID: 32784971 PMCID: PMC7460853 DOI: 10.3390/ijms21165717] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is known to be the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence exponentially increases with age and could reach up to 8% in the elderly population. The management of AF is a complex issue that is addressed by extensive ongoing basic and clinical research. AF centers around different types of disturbances, including ion channel dysfunction, Ca2+-handling abnormalities, and structural remodeling. Genome-wide association studies (GWAS) have uncovered over 100 genetic loci associated with AF. Most of these loci point to ion channels, distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Recently, the discovery of post-transcriptional regulatory mechanisms, involving non-coding RNAs (especially microRNAs), DNA methylation, and histone modification, has allowed to decipher how a normal heart develops and which modifications are involved in reshaping the processes leading to arrhythmias. This review aims to provide a current state of the field regarding the identification and functional characterization of AF-related epigenetic regulatory networks
Collapse
|
185
|
Peng X, Li L, Zhang M, Zhao Q, Wu K, Bai R, Ruan Y, Liu N. Sodium-Glucose Cotransporter 2 Inhibitors Potentially Prevent Atrial Fibrillation by Ameliorating Ion Handling and Mitochondrial Dysfunction. Front Physiol 2020; 11:912. [PMID: 32848857 PMCID: PMC7417344 DOI: 10.3389/fphys.2020.00912] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a novel class of glucose-lowering agents that significantly improve the prognosis of patients with type 2 diabetes (T2D) and heart failure. SGLT2i has recently been implicated in the treatment of atrial fibrillation (AF) with clinical data demonstrating that these agents decrease the incidence of AF events in patients with T2D. Fundamental findings have suggested that SGLT2i may alleviate atrial electrical and structural remodeling. The underlying mechanisms of SGLT2i are likely associated with balancing the sodium and calcium handling disorders and mitigating the mitochondrial dysfunction in atrial myocytes. This review illustrates the advances in understanding the underlying mechanisms of SGLT2i as an evolving treatment modality for AF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
186
|
Heijman J, Muna AP, Veleva T, Molina CE, Sutanto H, Tekook M, Wang Q, Abu-Taha IH, Gorka M, Künzel S, El-Armouche A, Reichenspurner H, Kamler M, Nikolaev V, Ravens U, Li N, Nattel S, Wehrens XHT, Dobrev D. Atrial Myocyte NLRP3/CaMKII Nexus Forms a Substrate for Postoperative Atrial Fibrillation. Circ Res 2020; 127:1036-1055. [PMID: 32762493 DOI: 10.1161/circresaha.120.316710] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE Postoperative atrial fibrillation (POAF) is a common and troublesome complication of cardiac surgery. POAF is generally believed to occur when postoperative triggers act on a preexisting vulnerable substrate, but the underlying cellular and molecular mechanisms are largely unknown. OBJECTIVE To identify cellular POAF mechanisms in right atrial samples from patients without a history of atrial fibrillation undergoing open-heart surgery. METHODS AND RESULTS Multicellular action potentials, membrane ion-currents (perforated patch-clamp), or simultaneous membrane-current (ruptured patch-clamp) and [Ca2+]i-recordings in atrial cardiomyocytes, along with protein-expression levels in tissue homogenates or cardiomyocytes, were assessed in 265 atrial samples from patients without or with POAF. No indices of electrical, profibrotic, or connexin remodeling were noted in POAF, but Ca2+-transient amplitude was smaller, although spontaneous sarcoplasmic reticulum (SR) Ca2+-release events and L-type Ca2+-current alternans occurred more frequently. CaMKII (Ca2+/calmodulin-dependent protein kinase-II) protein-expression, CaMKII-dependent phosphorylation of the cardiac RyR2 (ryanodine-receptor channel type-2), and RyR2 single-channel open-probability were significantly increased in POAF. SR Ca2+-content was unchanged in POAF despite greater SR Ca2+-leak, with a trend towards increased SR Ca2+-ATPase activity. Patients with POAF also showed stronger expression of activated components of the NLRP3 (NACHT, LRR, and PYD domains-containing protein-3)-inflammasome system in atrial whole-tissue homogenates and cardiomyocytes. Acute application of interleukin-1β caused NLRP3-signaling activation and CaMKII-dependent RyR2/phospholamban hyperphosphorylation in an immortalized mouse atrial cardiomyocyte cell-line (HL-1-cardiomyocytes) and enhanced spontaneous SR Ca2+-release events in both POAF cardiomyocytes and HL-1-cardiomyocytes. Computational modeling showed that RyR2 dysfunction and increased SR Ca2+-uptake are sufficient to reproduce the Ca2+-handling phenotype and indicated an increased risk of proarrhythmic delayed afterdepolarizations in POAF subjects in response to interleukin-1β. CONCLUSIONS Preexisting Ca2+-handling abnormalities and activation of NLRP3-inflammasome/CaMKII signaling are evident in atrial cardiomyocytes from patients who subsequently develop POAF. These molecular substrates sensitize cardiomyocytes to spontaneous Ca2+-releases and arrhythmogenic afterdepolarizations, particularly upon exposure to inflammatory mediators. Our data reveal a potential cellular and molecular substrate for this important clinical problem.
Collapse
Affiliation(s)
- Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.).,Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands (J.H., H.S.,)
| | - Azinwi Phina Muna
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.)
| | - Tina Veleva
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.)
| | - Cristina E Molina
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.).,Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (C.E.M., V.N.)
| | - Henry Sutanto
- Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands (J.H., H.S.,)
| | - Marcel Tekook
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.)
| | - Qiongling Wang
- Cardiovascular Research Institute (Q.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Molecular Physiology and Biophysics, Medicine, Pediatrics, Neuroscience, and Center for Space Medicine (Q.W., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Issam H Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.)
| | - Marcel Gorka
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.)
| | - Stephan Künzel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.).,Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Dresden, Germany (S.K., A.E.-A.)
| | - Ali El-Armouche
- Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Dresden, Germany (S.K., A.E.-A.)
| | - Hermann Reichenspurner
- Cardiovascular Surgery, University Heart Center Hamburg and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (H.R.)
| | - Markus Kamler
- Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital Essen, Essen, Germany (M.K.)
| | - Viacheslav Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (C.E.M., V.N.)
| | - Ursula Ravens
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany (U.R.).,Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University of Dresden, Dresden, Germany (U.R.)
| | - Na Li
- Cardiovascular Research Institute (Q.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Medicine (Section of Cardiovascular Research) (N.L.), Baylor College of Medicine, Houston, TX
| | - Stanley Nattel
- Medicine, Montreal Heart Institute and Université de Montréal & Department of Pharmacology and Therapeutics, McGill University Montreal, Canada (S.N.).,IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France (S.N.)
| | - Xander H T Wehrens
- Cardiovascular Research Institute (Q.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Molecular Physiology and Biophysics, Medicine, Pediatrics, Neuroscience, and Center for Space Medicine (Q.W., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.)
| |
Collapse
|
187
|
Mustroph J, Drzymalski M, Baier M, Pabel S, Biedermann A, Memmel B, Durczok M, Neef S, Sag CM, Floerchinger B, Rupprecht L, Schmid C, Zausig Y, Bégis G, Briand V, Ozoux ML, Tamarelle D, Ballet V, Janiak P, Beauverger P, Maier LS, Wagner S. The oral Ca/calmodulin-dependent kinase II inhibitor RA608 improves contractile function and prevents arrhythmias in heart failure. ESC Heart Fail 2020; 7:2871-2883. [PMID: 32691522 PMCID: PMC7524064 DOI: 10.1002/ehf2.12895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/29/2020] [Accepted: 06/24/2020] [Indexed: 01/15/2023] Open
Abstract
Aims Excessive activation of Ca/calmodulin‐dependent kinase II (CaMKII) is of critical importance in heart failure (HF) and atrial fibrillation. Unfortunately, lack of selectivity, specificity, and bioavailability have slowed down development of inhibitors for clinical use. We investigated a novel CaMKIIδ/CaMKIIɣ‐selective, ATP‐competitive, orally available CaMKII inhibitor (RA608) on right atrial biopsies of 119 patients undergoing heart surgery. Furthermore, we evaluated its oral efficacy to prevent deterioration of HF in mice after transverse aortic constriction (TAC). Methods and results In human atrial cardiomyocytes and trabeculae, respectively, RA608 significantly reduced sarcoplasmic reticulum Ca leak, reduced diastolic tension, and increased sarcoplasmic reticulum Ca content. Patch‐clamp recordings confirmed the safety of RA608 in human cardiomyocytes. C57BL6/J mice were subjected to TAC, and left ventricular function was monitored by echocardiography. Two weeks after TAC, RA608 was administered by oral gavage for 7 days. Oral RA608 treatment prevented deterioration of ejection fraction. At 3 weeks after TAC, ejection fraction was 46.1 ± 3.7% (RA608) vs. 34.9 ± 2.6% (vehicle), n = 9 vs. n = 12, P < 0.05, ANOVA, which correlated with significantly less CaMKII autophosphorylation at threonine 287. Moreover, a single oral dose significantly reduced inducibility of atrial and ventricular arrhythmias in CaMKIIδ transgenic mice 4 h after administration. Atrial fibrillation was induced in 6/6 mice for vehicle vs. 1/7 for RA608, P < 0.05, 'n − 1' χ2 test. Ventricular tachycardia was induced in 6/7 for vehicle vs. 2/7 for RA608, P < 0.05, 'n − 1' χ2 test. Conclusions RA608 is the first orally administrable CaMKII inhibitor with potent efficacy in human myocytes. Moreover, oral administration potently inhibits arrhythmogenesis and attenuates HF development in mice in vivo.
Collapse
Affiliation(s)
- Julian Mustroph
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Marzena Drzymalski
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Maria Baier
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Steffen Pabel
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Alexander Biedermann
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Bernadette Memmel
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Melanie Durczok
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Stefan Neef
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Can Martin Sag
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Bernhard Floerchinger
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Leopold Rupprecht
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - York Zausig
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | | | | | | | | | | | - Philip Janiak
- Sanofi Research & Development (R&D), Chilly-Mazarin, France
| | | | - Lars S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| |
Collapse
|
188
|
Junho CVC, Caio-Silva W, Trentin-Sonoda M, Carneiro-Ramos MS. An Overview of the Role of Calcium/Calmodulin-Dependent Protein Kinase in Cardiorenal Syndrome. Front Physiol 2020; 11:735. [PMID: 32760284 PMCID: PMC7372084 DOI: 10.3389/fphys.2020.00735] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinases (CaMKs) are key regulators of calcium signaling in health and disease. CaMKII is the most abundant isoform in the heart; although classically described as a regulator of excitation–contraction coupling, recent studies show that it can also mediate inflammation in cardiovascular diseases (CVDs). Among CVDs, cardiorenal syndrome (CRS) represents a pressing issue to be addressed, considering the growing incidence of kidney diseases worldwide. In this review, we aimed to discuss the role of CaMK as an inflammatory mediator in heart and kidney interaction by conducting an extensive literature review using the database PubMed. Here, we summarize the role and regulating mechanisms of CaMKII present in several quality studies, providing a better understanding for future investigations of CamKII in CVDs. Surprisingly, despite the obvious importance of CaMKII in the heart, very little is known about CaMKII in CRS. In conclusion, more studies are necessary to further understand the role of CaMKII in CRS.
Collapse
Affiliation(s)
| | - Wellington Caio-Silva
- Center of Natural and Human Sciences (CCNH), Universidade Federal do ABC, Santo André, Brazil
| | - Mayra Trentin-Sonoda
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
189
|
Nattel S, Heijman J, Zhou L, Dobrev D. Molecular Basis of Atrial Fibrillation Pathophysiology and Therapy: A Translational Perspective. Circ Res 2020; 127:51-72. [PMID: 32717172 PMCID: PMC7398486 DOI: 10.1161/circresaha.120.316363] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Atrial fibrillation (AF) is a highly prevalent arrhythmia, with substantial associated morbidity and mortality. There have been significant management advances over the past 2 decades, but the burden of the disease continues to increase and there is certainly plenty of room for improvement in treatment options. A potential key to therapeutic innovation is a better understanding of underlying fundamental mechanisms. This article reviews recent advances in understanding the molecular basis for AF, with a particular emphasis on relating these new insights to opportunities for clinical translation. We first review the evidence relating basic electrophysiological mechanisms to the characteristics of clinical AF. We then discuss the molecular control of factors leading to some of the principal determinants, including abnormalities in impulse conduction (such as tissue fibrosis and other extra-cardiomyocyte alterations, connexin dysregulation and Na+-channel dysfunction), electrical refractoriness, and impulse generation. We then consider the molecular drivers of AF progression, including a range of Ca2+-dependent intracellular processes, microRNA changes, and inflammatory signaling. The concept of key interactome-related nodal points is then evaluated, dealing with systems like those associated with CaMKII (Ca2+/calmodulin-dependent protein kinase-II), NLRP3 (NACHT, LRR, and PYD domains-containing protein-3), and transcription-factors like TBX5 and PitX2c. We conclude with a critical discussion of therapeutic implications, knowledge gaps and future directions, dealing with such aspects as drug repurposing, biologicals, multispecific drugs, the targeting of cardiomyocyte inflammatory signaling and potential considerations in intervening at the level of interactomes and gene-regulation. The area of molecular intervention for AF management presents exciting new opportunities, along with substantial challenges.
Collapse
Affiliation(s)
- Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
- IHU Liryc and Fondation Bordeaux Université, Bordeaux, France
| | - Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Liping Zhou
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
| | - Dobromir Dobrev
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
190
|
Jelinkova S, Vilotic A, Pribyl J, Aimond F, Salykin A, Acimovic I, Pesl M, Caluori G, Klimovic S, Urban T, Dobrovolna H, Soska V, Skladal P, Lacampagne A, Dvorak P, Meli AC, Rotrekl V. DMD Pluripotent Stem Cell Derived Cardiac Cells Recapitulate in vitro Human Cardiac Pathophysiology. Front Bioeng Biotechnol 2020; 8:535. [PMID: 32656189 PMCID: PMC7325914 DOI: 10.3389/fbioe.2020.00535] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder characterized by the lack of functional dystrophin. DMD is associated with progressive dilated cardiomyopathy, eventually leading to heart failure as the main cause of death in DMD patients. Although several molecular mechanisms leading to the DMD cardiomyocyte (DMD-CM) death were described, mostly in mouse model, no suitable human CM model was until recently available together with proper clarification of the DMD-CM phenotype and delay in cardiac symptoms manifestation. We obtained several independent dystrophin-deficient human pluripotent stem cell (hPSC) lines from DMD patients and CRISPR/Cas9-generated DMD gene mutation. We differentiated DMD-hPSC into cardiac cells (CC) creating a human DMD-CC disease model. We observed that mutation-carrying cells were less prone to differentiate into CCs. DMD-CCs demonstrated an enhanced cell death rate in time. Furthermore, ion channel expression was altered in terms of potassium (Kir2.1 overexpression) and calcium handling (dihydropyridine receptor overexpression). DMD-CCs exhibited increased time of calcium transient rising compared to aged-matched control, suggesting mishandling of calcium release. We observed mechanical impairment (hypocontractility), bradycardia, increased heart rate variability, and blunted β-adrenergic response connected with remodeling of β-adrenergic receptors expression in DMD-CCs. Overall, these results indicated that our DMD-CC models are functionally affected by dystrophin-deficiency associated and recapitulate functional defects and cardiac wasting observed in the disease. It offers an accurate tool to study human cardiomyopathy progression and test therapies in vitro.
Collapse
Affiliation(s)
- Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center ICRC, St. Anne's University Hospital Brno, Brno, Czechia
| | - Aleksandra Vilotic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jan Pribyl
- CEITEC, Masaryk University, Brno, Czechia
| | - Franck Aimond
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Anton Salykin
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ivana Acimovic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center ICRC, St. Anne's University Hospital Brno, Brno, Czechia.,First Department of Internal Medicine-Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Guido Caluori
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, Brno, Czechia.,First Department of Internal Medicine-Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Simon Klimovic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tomas Urban
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Hana Dobrovolna
- Department of Clinical Biochemistry, St. Anne's University Hospital of Brno, Brno, Czechia
| | - Vladimir Soska
- Department of Clinical Biochemistry, St. Anne's University Hospital of Brno, Brno, Czechia.,Second Clinic of Internal Medicine, Masaryk University of Brno, Brno, Czechia
| | - Petr Skladal
- First Department of Internal Medicine-Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center ICRC, St. Anne's University Hospital Brno, Brno, Czechia
| | - Albano C Meli
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center ICRC, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
191
|
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia encountered in humans and is a significant source of morbidity and mortality. Despite its prevalence, our mechanistic understanding is incomplete, the therapeutic options have limited efficacy, and are often fraught with risks. A better biological understanding of AF is needed to spearhead novel therapeutic avenues. Although "natural" AF is nearly nonexistent in most species, animal models have contributed significantly to our understanding of AF and some therapeutic options. However, the impediments of animal models are also apparent and stem largely from the differences in basic physiology as well as the complexities underlying human AF; these preclude the creation of a "perfect" animal model and have obviated the translation of animal findings. Herein, we review the vast array of AF models available, spanning the mouse heart (weighing 1/1000th of a human heart) to the horse heart (10× heavier than the human heart). We attempt to highlight the features of each model that bring value to our understanding of AF but also the shortcomings and pitfalls. Finally, we borrowed the concept of a SWOT analysis from the business community (which stands for strengths, weaknesses, opportunities, and threats) and applied this introspective type of analysis to animal models for AF. We identify unmet needs and stress that is in the context of rapidly advancing technologies, these present opportunities for the future use of animal models.
Collapse
Affiliation(s)
- Dominik Schüttler
- From the Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University Munich (LMU), Germany (D.S., S.K., P.T., S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany (D.S., S.K., P.T., S.C.).,Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians University Munich (LMU), Germany (D.S., P.T., S.C.)
| | - Aneesh Bapat
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (A.B., K.L., W.J.H.).,Cardiac Arrhythmia Service, Division of Cardiology, Massachusetts General Hospital, Boston (A.B., W.J.H.)
| | - Stefan Kääb
- From the Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University Munich (LMU), Germany (D.S., S.K., P.T., S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany (D.S., S.K., P.T., S.C.)
| | - Kichang Lee
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (A.B., K.L., W.J.H.)
| | - Philipp Tomsits
- From the Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University Munich (LMU), Germany (D.S., S.K., P.T., S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany (D.S., S.K., P.T., S.C.).,Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians University Munich (LMU), Germany (D.S., P.T., S.C.)
| | - Sebastian Clauss
- From the Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University Munich (LMU), Germany (D.S., S.K., P.T., S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany (D.S., S.K., P.T., S.C.).,Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians University Munich (LMU), Germany (D.S., P.T., S.C.)
| | - William J Hucker
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (A.B., K.L., W.J.H.).,Cardiac Arrhythmia Service, Division of Cardiology, Massachusetts General Hospital, Boston (A.B., W.J.H.)
| |
Collapse
|
192
|
Nofi C, Zhang K, Tang YD, Li Y, Migirov A, Ojamaa K, Gerdes AM, Zhang Y. Chronic dantrolene treatment attenuates cardiac dysfunction and reduces atrial fibrillation inducibility in a rat myocardial infarction heart failure model. Heart Rhythm O2 2020; 1:126-135. [PMID: 34113867 PMCID: PMC8183840 DOI: 10.1016/j.hroo.2020.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Cardiac ryanodine receptor 2 (RyR2) dysfunction and elevated diastolic Ca2+ leak have been linked to arrhythmogenesis not only in inherited arrhythmia syndromes but also in acquired forms of heart disease including heart failure (HF) and atrial fibrillation (AF). Thus, stabilizing RyR2 may exert therapeutic effects in these conditions. Objective The purpose of this study was to investigate the effects of stabilizing RyR2 with chronic dantrolene treatment on HF development and AF inducibility in a myocardial infarction (MI)-induced HF model in rats. Methods MI was induced in adult Sprague-Dawley rats by ligation of the left anterior descending coronary artery. Two weeks after MI surgery, rats with large MI (≥40%) were randomly assigned to MI-vehicle (n = 14) or MI-dantrolene (10 mg/kg/d; n = 13) groups. Sham-surgery rats (n = 7) served as controls. Results Compared to the MI-vehicle group, 4-week dantrolene treatment significantly improved cardiac function, with increased left ventricular (LV) fractional shortening (19.48% ± 3.61% vs 15.43% ± 2.65%; P <.01), and decreased LV end-diastolic pressure (12.58 ± 8.52 mm Hg vs 21.91 ± 7.25 mm Hg; P <.01), left atrial diameter (4.97 ± 0.75 mm vs 6.09 ± 1.53 mm; P <.05), and fibrosis content (6.42% ± 0.78% vs 9.76% ± 2.25%; P <.001). Dantrolene significantly decreased AF inducibility (69% in MI-vehicle vs 23% in MI-dantrolene; P <.05). Dantrolene treatment was associated with reduced RyR2 phosphorylation and favorably altered gene expression involving ion channels, sympathetic signaling, oxidative stress, and inflammatory markers. Conclusion Chronic dantrolene treatment attenuated LV dysfunction and reduced AF inducibility, which was associated with decreased RyR2 phosphorylation and normalization of many adverse changes in gene expression. Thus, stabilizing RyR2 with chronic dantrolene treatment is a promising novel strategy for decreasing AF in HF.
Collapse
Affiliation(s)
- Colleen Nofi
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Kuo Zhang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York.,Department of Internal Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Da Tang
- Department of Internal Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Li
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Allan Migirov
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Kaie Ojamaa
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - A Martin Gerdes
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| |
Collapse
|
193
|
Lo ACY, Bai J, Gladding PA, Fedorov VV, Zhao J. Afterdepolarizations and abnormal calcium handling in atrial myocytes with modulated SERCA uptake: a sensitivity analysis of calcium handling channels. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190557. [PMID: 32448059 PMCID: PMC7287332 DOI: 10.1098/rsta.2019.0557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 05/21/2023]
Abstract
Delayed afterdepolarizations (DADs) and spontaneous depolarizations (SDs) are typically triggered by spontaneous diastolic Ca2+ release from the sarcoplasmic reticulum (SR) which is caused by an elevated SR Ca2+-ATPase (SERCA) uptake and dysfunctional ryanodine receptors. However, recent studies on the T-box transcription factor gene (TBX5) demonstrated that abnormal depolarizations could occur despite a reduced SERCA uptake. Similar findings have also been reported in experimental or clinical studies of diabetes and heart failure. To investigate the sensitivity of SERCA in the genesis of DADs/SDs as well as its dependence on other Ca2+ handling channels, we performed systematic analyses using the Maleckar et al. model. Results showed that the modulation of SERCA alone cannot trigger abnormal depolarizations, but can instead affect the interdependency of other Ca2+ handling channels in triggering DADs/SDs. Furthermore, we discovered the existence of a threshold value for the intracellular concentration of Ca2+ ([Ca2+]i) for abnormal depolarizations, which is modulated by the maximum SERCA uptake and the concentration of Ca2+ in the uptake and release compartments in the SR ([Ca2+]up and [Ca2+]rel). For the first time, our modelling study reconciles different mechanisms of abnormal depolarizations in the setting of 'lone' AF, reduced TBX5, diabetes and heart failure, and may lead to more targeted treatment for these patients. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
- Andy C. Y. Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jieyun Bai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, People's Republic of China
| | - Patrick A. Gladding
- Department of Cardiology, Waitemata District Health Board, Auckland, New Zealand
| | - Vadim V. Fedorov
- Department of Physiology and Cell Biology and Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- e-mail:
| |
Collapse
|
194
|
Fakuade FE, Steckmeister V, Seibertz F, Gronwald J, Kestel S, Menzel J, Pronto JRD, Taha K, Haghighi F, Kensah G, Pearman CM, Wiedmann F, Teske AJ, Schmidt C, Dibb KM, El-Essawi A, Danner BC, Baraki H, Schwappach B, Kutschka I, Mason FE, Voigt N. Altered atrial cytosolic calcium handling contributes to the development of postoperative atrial fibrillation. Cardiovasc Res 2020; 117:1790-1801. [PMID: 32520995 PMCID: PMC8208741 DOI: 10.1093/cvr/cvaa162] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/04/2020] [Accepted: 06/04/2020] [Indexed: 01/14/2023] Open
Abstract
Aims Atrial fibrillation (AF) is a commonly occurring arrhythmia after cardiac surgery (postoperative AF, poAF) and is associated with poorer outcomes. Considering that reduced atrial contractile function is a predictor of poAF and that Ca2+ plays an important role in both excitation–contraction coupling and atrial arrhythmogenesis, this study aims to test whether alterations of intracellular Ca2+ handling contribute to impaired atrial contractility and to the arrhythmogenic substrate predisposing patients to poAF. Methods and results Right atrial appendages were obtained from patients in sinus rhythm undergoing open-heart surgery. Cardiomyocytes were investigated by simultaneous measurement of [Ca2+]i and action potentials (APs, patch-clamp). Patients were followed-up for 6 days to identify those with and without poAF. Speckle-tracking analysis of preoperative echocardiography revealed reduced left atrial contraction strain in poAF patients. At the time of surgery, cellular Ca2+ transients (CaTs) and the sarcoplasmic reticulum (SR) Ca2+ content were smaller in the poAF group. CaT decay was slower in poAF, but the decay of caffeine-induced Ca2+ transients was unaltered, suggesting preserved sodium-calcium exchanger function. In agreement, western blots revealed reduced SERCA2a expression in poAF patients but unaltered phospholamban expression/phosphorylation. Computational modelling indicated that reduced SERCA activity promotes occurrence of CaT and AP alternans. Indeed, alternans of CaT and AP occurred more often and at lower stimulation frequencies in atrial myocytes from poAF patients. Resting membrane potential and AP duration were comparable between both groups at various pacing frequencies (0.25–8 Hz). Conclusions Biochemical, functional, and modelling data implicate reduced SERCA-mediated Ca2+ reuptake into the SR as a major contributor to impaired preoperative atrial contractile function and to the pre-existing arrhythmogenic substrate in patients developing poAF.
Collapse
Affiliation(s)
- Funsho E Fakuade
- Institute of Pharmacology and Toxicology, University Medical Centre Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Vanessa Steckmeister
- Institute of Pharmacology and Toxicology, University Medical Centre Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Centre Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Judith Gronwald
- Institute of Pharmacology and Toxicology, University Medical Centre Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Stefanie Kestel
- Institute of Pharmacology and Toxicology, University Medical Centre Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Julia Menzel
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany.,Department of Molecular Biology, University Medical Centre, Humboldtallee 23, 37075 Göttingen, Germany
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology, University Medical Centre Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Karim Taha
- Department of Cardiology, University Medical Centre, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands.,Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP Utrecht, The Netherlands
| | - Fereshteh Haghighi
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany.,Department of Thoracic and Cardiovascular Surgery, University Medical Centre Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - George Kensah
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany.,Department of Thoracic and Cardiovascular Surgery, University Medical Centre Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Charles M Pearman
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Felix Wiedmann
- Department of Cardiology, University Medical Center Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Arco J Teske
- Department of Cardiology, University Medical Centre, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Constanze Schmidt
- Department of Cardiology, University Medical Center Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Katharine M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Aschraf El-Essawi
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany.,Department of Thoracic and Cardiovascular Surgery, University Medical Centre Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany.,Department of Thoracic and Cardiovascular Surgery, Klinikum Braunschweig, Braunschweig, Germany
| | - Bernhard C Danner
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany.,Department of Thoracic and Cardiovascular Surgery, University Medical Centre Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Hassina Baraki
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany.,Department of Thoracic and Cardiovascular Surgery, University Medical Centre Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Blanche Schwappach
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany.,Department of Molecular Biology, University Medical Centre, Humboldtallee 23, 37075 Göttingen, Germany
| | - Ingo Kutschka
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany.,Department of Thoracic and Cardiovascular Surgery, University Medical Centre Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Fleur E Mason
- Institute of Pharmacology and Toxicology, University Medical Centre Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Centre Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| |
Collapse
|
195
|
Laforest B, Dai W, Tyan L, Lazarevic S, Shen KM, Gadek M, Broman MT, Weber CR, Moskowitz IP. Atrial fibrillation risk loci interact to modulate Ca2+-dependent atrial rhythm homeostasis. J Clin Invest 2020; 129:4937-4950. [PMID: 31609246 DOI: 10.1172/jci124231] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/16/2019] [Indexed: 12/30/2022] Open
Abstract
Atrial fibrillation (AF), defined by disorganized atrial cardiac rhythm, is the most prevalent cardiac arrhythmia worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with AF risk, including the cardiogenic transcription factor genes TBX5, GATA4, and NKX2-5. We report that Tbx5 and Gata4 interact with opposite signs for atrial rhythm controls compared with cardiac development. Using mouse genetics, we found that AF pathophysiology caused by Tbx5 haploinsufficiency, including atrial arrhythmia susceptibility, prolonged action potential duration, and ectopic cardiomyocyte depolarizations, were all rescued by Gata4 haploinsufficiency. In contrast, Nkx2-5 haploinsufficiency showed no combinatorial effect. The molecular basis of the TBX5/GATA4 interaction included normalization of intra-cardiomyocyte calcium flux and expression of calcium channel genes Atp2a2 and Ryr2. Furthermore, GATA4 and TBX5 showed antagonistic interactions on an Ryr2 enhancer. Atrial rhythm instability caused by Tbx5 haploinsufficiency was rescued by a decreased dose of phospholamban, a sarco/endoplasmic reticulum Ca2+-ATPase inhibitor, consistent with a role for decreased sarcoplasmic reticulum calcium flux in Tbx5-dependent AF susceptibility. This work defines a link between Tbx5 dose, sarcoplasmic reticulum calcium flux, and AF propensity. The unexpected interactions between Tbx5 and Gata4 in atrial rhythm control suggest that evaluating specific interactions between genetic risk loci will be necessary for ascertaining personalized risk from genetic association data.
Collapse
Affiliation(s)
| | | | - Leonid Tyan
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | | - Michael T Broman
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Ivan P Moskowitz
- Department of Pediatrics, Pathology, and Human Genetics.,Department of Pathology, and
| |
Collapse
|
196
|
Zhang K, Ma Z, Song C, Duan X, Yang Y, Li G. Role of ion channels in chronic intermittent hypoxia-induced atrial remodeling in rats. Life Sci 2020; 254:117797. [PMID: 32417371 DOI: 10.1016/j.lfs.2020.117797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022]
Abstract
AIMS Atrial remodeling, including structural and electrical remodeling, is considered as the substrate in the development of atrial fibrillation (AF). Structural remodeling mainly involves atrial fibrosis, and electrical remodeling is closely related to the changes of ion channels in atrial myocytes. In this study, we aimed to investigate the changes of ion channels in atrial remodeling induced by CIH in rats, which provide the explication for the mechanisms of AF. MATERIALS AND METHODS 80 male Sprague-Dawley rats were randomized into two groups: Control and CIH group (n = 40). CIH rats were subjected to CIH 8 h/d for 30 days. Atrial epicardial conduction velocity, conduction inhomogeneity and AF inducibility were examined. Masson's trichrome staining was used to evaluate the extent of atrial fibrosis, and the expression levels of ion channel subunits were measured by RT-qPCR, Western blot, and IHC, respectively. The remaining 40 rats were used for whole-cell patch clamp experiments. Action potential, INa, ICa-L, Ito were recorded and compared between two groups. KEY FINDINGS CIH rats showed increased AF inducibility, atrial interstitial collagen deposition, APD, expression levels of RyR2, p-RyR2, CaMKII, p-CaMKII, and decreased atrial epicardial conduction velocity, expression levels of Nav1.5, Cav1.2, Kv1.5, Kv4.2, Kv4.3 compared to the Control rats, and the current density of INa, ICa-L, Ito were significantly decreased in CIH group. SIGNIFICANCE We observed significant atrial remodeling induced by CIH in our rat model, which was characterized by changes in ion channels. These changes may be the mechanisms of CIH promoting AF.
Collapse
Affiliation(s)
- Kai Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zuowang Ma
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Chen Song
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xiaorui Duan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yu Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
197
|
Abstract
This review is focusing on the understanding of various factors and components governing and controlling the occurrence of ventricular arrhythmias including (i) the role of various ion channel-related changes in the action potential (AP), (ii) electrocardiograms (ECGs), (iii) some important arrhythmogenic mediators of reperfusion, and pharmacological approaches to their attenuation. The transmembrane potential in myocardial cells is depending on the cellular concentrations of several ions including sodium, calcium, and potassium on both sides of the cell membrane and active or inactive stages of ion channels. The movements of Na+, K+, and Ca2+ via cell membranes produce various currents that provoke AP, determining the cardiac cycle and heart function. A specific channel has its own type of gate, and it is opening and closing under specific transmembrane voltage, ionic, or metabolic conditions. APs of sinoatrial (SA) node, atrioventricular (AV) node, and Purkinje cells determine the pacemaker activity (depolarization phase 4) of the heart, leading to the surface manifestation, registration, and evaluation of ECG waves in both animal models and humans. AP and ECG changes are key factors in arrhythmogenesis, and the analysis of these changes serve for the clarification of the mechanisms of antiarrhythmic drugs. The classification of antiarrhythmic drugs may be based on their electrophysiological properties emphasizing the connection between basic electrophysiological activities and antiarrhythmic properties. The review also summarizes some important mechanisms of ventricular arrhythmias in the ischemic/reperfused myocardium and permits an assessment of antiarrhythmic potential of drugs used for pharmacotherapy under experimental and clinical conditions.
Collapse
Affiliation(s)
- Arpad Tosaki
- Department of Pharmacology, School of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
198
|
Lee JS, Greco L, Migirov A, Li Y, Gerdes AM, Zhang Y. Chronic Dantrolene Treatment Does Not Affect Hypertension, but Attenuates Sympathetic Stimulation Enhanced Atrial Fibrillation Inducibility in SHR. Am J Hypertens 2020; 33:407-413. [PMID: 32060500 DOI: 10.1093/ajh/hpaa021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/11/2019] [Accepted: 02/11/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Ryanodine receptor (RyR) dysfunction in skeletal muscle (RyR1) leads to malignant hyperthermia, and in cardiac muscle (RyR2) triggers cardiac arrhythmias. We hypothesized that RyR dysfunction in vascular smooth muscle could increase vascular resistance and hypertension, and may contribute to increased atrial fibrillation (AF) in hypertension. Thus, stabilizing RyR function with chronic dantrolene treatment may attenuate hypertension and AF inducibility in spontaneously hypertensive rats (SHR). METHODS Male SHR (16 weeks old) were randomized into vehicle- (n = 10) and dantrolene-treated (10 mg/kg/day, n = 10) groups for 4 weeks. Wistar Kyoto (WKY, n = 11) rats served as controls. Blood pressures (BP) were monitored before and during the 4-week treatment. After 4-week treatment, direct BP, echocardiography, and hemodynamics were recorded. AF inducibility tests were performed in vivo at baseline and repeated under sympathetic stimulation (SS). RESULTS Compared with WKY, SHR had significantly higher BP throughout the experimental period. Dantrolene treatment had no effect on BP levels in SHR (final systolic BP 212 ± 9 mm Hg in vehicle group vs. 208 ± 16 mm Hg in dantrolene group, P > 0.05). AF inducibility was very low and not significantly different between 5-month-old WKY and SHR at baseline. However, under SS, AF inducibility and duration were significantly increased in SHR (20% in WKY vs. 60% in SHR-vehicle, P<0.05). Dantrolene treatment significantly attenuated AF inducibility under SS in SHR (60% in vehicle vs. 20% in dantrolene, P < 0.05). CONCLUSIONS Stabilizing RyR with chronic dantrolene treatment does not affect hypertension development in SHR. SHR has increased vulnerability to AF induction under SS, which can be attenuated with dantrolene treatment.
Collapse
Affiliation(s)
- Jae S Lee
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Lisa Greco
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Allan Migirov
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Ying Li
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - A Martin Gerdes
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
199
|
Isaac E, Cooper SM, Jones SA, Loubani M. Do age-associated changes of voltage-gated sodium channel isoforms expressed in the mammalian heart predispose the elderly to atrial fibrillation? World J Cardiol 2020; 12:123-135. [PMID: 32431783 PMCID: PMC7215965 DOI: 10.4330/wjc.v12.i4.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/18/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide. The prevalence of the disease increases with age, strongly implying an age-related process underlying the pathology. At a time when people are living longer than ever before, an exponential increase in disease prevalence is predicted worldwide. Hence unraveling the underlying mechanics of the disease is paramount for the development of innovative treatment and prevention strategies. The role of voltage-gated sodium channels is fundamental in cardiac electrophysiology and may provide novel insights into the arrhythmogenesis of AF. Nav1.5 is the predominant cardiac isoform, responsible for the action potential upstroke. Recent studies have demonstrated that Nav1.8 (an isoform predominantly expressed within the peripheral nervous system) is responsible for cellular arrhythmogenesis through the enhancement of pro-arrhythmogenic currents. Animal studies have shown a decline in Nav1.5 leading to a diminished action potential upstroke during phase 0. Furthermore, the study of human tissue demonstrates an inverse expression of sodium channel isoforms; reduction of Nav1.5 and increase of Nav1.8 in both heart failure and ventricular hypertrophy. This strongly suggests that the expression of voltage-gated sodium channels play a crucial role in the development of arrhythmias in the diseased heart. Targeting aberrant sodium currents has led to novel therapeutic approaches in tackling AF and continues to be an area of emerging research. This review will explore how voltage-gated sodium channels may predispose the elderly heart to AF through the examination of laboratory and clinical based evidence.
Collapse
Affiliation(s)
- Emmanuel Isaac
- Department of Cardiothoracic Surgery, Hull University Teaching Hospitals, Cottingham HU16 5JQ, United Kingdom
| | - Stephanie M Cooper
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Sandra A Jones
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Mahmoud Loubani
- Department of Cardiothoracic Surgery, Hull University Teaching Hospitals, Cottingham HU16 5JQ, United Kingdom
| |
Collapse
|
200
|
Liu T, Xiong F, Qi XY, Xiao J, Villeneuve L, Abu-Taha I, Dobrev D, Huang C, Nattel S. Altered calcium handling produces reentry-promoting action potential alternans in atrial fibrillation-remodeled hearts. JCI Insight 2020; 5:133754. [PMID: 32255765 DOI: 10.1172/jci.insight.133754] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) alters atrial cardiomyocyte (ACM) Ca2+ handling, promoting ectopic beat formation. We examined the effects of AF-associated remodeling on Ca2+-related action potential dynamics and consequences for AF susceptibility. AF was maintained electrically in dogs by right atrial (RA) tachypacing. ACMs isolated from AF dogs showed increased Ca2+ release refractoriness, spontaneous Ca2+ spark frequency, and cycle length (CL) threshold for Ca2+ and action potential duration (APD) alternans versus controls. AF increased the in situ CL threshold for Ca2+/APD alternans and spatial dispersion in Ca2+ release recovery kinetics, leading to spatially discordant alternans associated with reentrant rotor formation and susceptibility to AF induction/maintenance. The clinically available agent dantrolene reduced Ca2+ leak and CL threshold for Ca2+/APD alternans in ACMs and AF dog right atrium, while suppressing AF susceptibility; caffeine increased Ca2+ leak and CL threshold for Ca2+/APD alternans in control dog ACMs and RA tissues. In vivo, the atrial repolarization alternans CL threshold was increased in AF versus control, as was AF vulnerability. Intravenous dantrolene restored repolarization alternans threshold and reduced AF vulnerability. Immunoblots showed reduced expression of total and phosphorylated ryanodine receptors and calsequestrin in AF and unchanged phospholamban/SERCA expression. Thus, along with promoting spontaneous ectopy, AF-induced Ca2+ handling abnormalities favor AF by enhancing vulnerability to repolarization alternans, promoting initiation and maintenance of reentrant activity; dantrolene provides a lead molecule to target this mechanism.
Collapse
Affiliation(s)
- Tao Liu
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, Québec, Canada.,Department of Cardiology, Renmin Hospital of Wuhan University, China.,Cardiovascular Research Institute, Wuhan University, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Feng Xiong
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, Québec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Xiao-Yan Qi
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Jiening Xiao
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Louis Villeneuve
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Germany
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, China.,Cardiovascular Research Institute, Wuhan University, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Stanley Nattel
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, Québec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Germany.,IHU LIRYC Institute, Fondation Bordeaux Université, Bordeaux, France
| |
Collapse
|