151
|
Kuba K, Sato T, Imai Y, Yamaguchi T. Apelin and Elabela/Toddler; double ligands for APJ/Apelin receptor in heart development, physiology, and pathology. Peptides 2019; 111:62-70. [PMID: 29684595 DOI: 10.1016/j.peptides.2018.04.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/13/2022]
Abstract
Apelin is an endogenous peptide ligand for the G protein-coupled receptor APJ/AGTRL1/APLNR and is widely expressed throughout human body. In adult hearts Apelin-APJ/Apelin receptor axis is potently inotropic, vasodilatory, and pro-angiogenic and thereby contributes to maintaining homeostasis in normal and pathological hearts. Apelin-APJ/Apelin receptor is also involved in heart development including endoderm differentiation, heart morphogenesis, and coronary vascular formation. APJ/Apelin receptor had been originally identified as an orphan receptor for its sequence similarity to Angiotensin II type 1 receptor, and it was later deorphanized by identification of Apelin in 1998. Both Apelin and Angiotensin II are substrates for Angiotensin converting enzyme 2 (ACE2), which degrades the peptides and thus negatively regulates their agonistic activities. Elabela/Toddler, which shares little sequence homology with Apelin, has been recently identified as a second endogenous APJ ligand. Elabela plays crucial roles in heart development and disease conditions presumably at time points or at areas of the heart different from Apelin. Apelin and Elabela seem to constitute a spatiotemporal double ligand system to control APJ/Apelin receptor signaling in the heart. These expanding knowledges of Apelin systems would further encourage therapeutic applications of Apelin, Elabela, or their synthetic derivatives for cardiovascular diseases.
Collapse
Affiliation(s)
- Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | - Teruki Sato
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan; Department of Cardiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yumiko Imai
- Laboratory of Regulation of Intractable Infectious Diseases, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
152
|
Sato T, Kuba K. [The functional role of endogenous APJ agonists; Apelin and Elabela/Toddler in cardiovascular diseases]. Nihon Yakurigaku Zasshi 2019; 153:172-178. [PMID: 30971657 DOI: 10.1254/fpj.153.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Apelin is an endogenous peptide ligand for APJ receptor, which is widely expressed in human body, and exerts various physiological effects such as vasodilation, inotropic effect, water balance, heart development, angiogenesis and energy metabolism. The beneficial effects of Apelin in cardiovascular diseases have been elucidated, and the roles of Apelin in aging-associated diseases are recently implicated. The mechanisms for therapeutic effects of Aplein include an antagonistic action to renin-angiotensin system (RAS) in addition to inotropic and vasodilatory actions. We have revealed that endogenous Apelin negatively regulates RAS via upregulation of Angiotensin converting enzyme 2 (ACE2). In addition, a second ligand for APJ receptor, Elabela/Toddler, was identified as an essential hormone for heart development, and it has been reported to have physiological effects similar to Apelin. We and others have shown that Elabela exerts inotropic and protective effects in the heart. Although the number of heart failure patients is rapidly increasing, the pathophysiology of heart failure remains elusive and further development of new therapeutic option is awaited. Apelin is a unique bifunctional molecule, which has both inotropic and cardioprotective effects in heart failure, and thus further elucidation of the mechanisms for Apelin/Elabela-APJ signaling would contribute to development of a novel therapeutics for heart failure patients.
Collapse
Affiliation(s)
- Teruki Sato
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine
- Department of Cardiology, Akita University Graduate School of Medicine
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine
| |
Collapse
|
153
|
Viswanathan G, Mamazhakypov A, Schermuly RT, Rajagopal S. The Role of G Protein-Coupled Receptors in the Right Ventricle in Pulmonary Hypertension. Front Cardiovasc Med 2018; 5:179. [PMID: 30619886 PMCID: PMC6305072 DOI: 10.3389/fcvm.2018.00179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Pressure overload of the right ventricle (RV) in pulmonary arterial hypertension (PAH) leads to RV remodeling and failure, an important determinant of outcome in patients with PAH. Several G protein-coupled receptors (GPCRs) are differentially regulated in the RV myocardium, contributing to the pathogenesis of RV adverse remodeling and dysfunction. Many pharmacological agents that target GPCRs have been demonstrated to result in beneficial effects on left ventricular (LV) failure, such as beta-adrenergic receptor and angiotensin receptor antagonists. However, the role of such drugs on RV remodeling and performance is not known at this time. Moreover, many of these same receptors are also expressed in the pulmonary vasculature, which could result in complex effects in PAH. This manuscript reviews the role of GPCRs in the RV remodeling and dysfunction and discusses activating and blocking GPCR signaling to potentially attenuate remodeling while promoting improvements of RV function in PAH.
Collapse
Affiliation(s)
- Gayathri Viswanathan
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Argen Mamazhakypov
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Ralph T Schermuly
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
154
|
Zhang Y, Wang Y, Lou Y, Luo M, Lu Y, Li Z, Wang Y, Miao L. Elabela, a newly discovered APJ ligand: Similarities and differences with Apelin. Peptides 2018; 109:23-32. [PMID: 30267732 DOI: 10.1016/j.peptides.2018.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 08/24/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
Abstract
The Apelin/APJ system is involved in a wide range of biological functions. For a long time, Apelin was thought to be the only ligand for APJ. Recently, a new peptide that acts via APJ and has similar functions, called Elabela, was identified. Elabela has beneficial effects on body fluid homeostasis, cardiovascular health, and renal insufficiency, as well as potential benefits for metabolism and diabetes. In this review, the properties and biological functions of this new peptide are discussed in comparison with those of Apelin. Important areas for future study are also discussed, with the consideration that research on Apelin could guide future research on Elabela.
Collapse
Affiliation(s)
- Yixian Zhang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, 40202, USA
| | - Yonggang Wang
- Cardiovascular Center, First Hospital of Jilin University, Changchun 130021, China
| | - Yan Lou
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Manyu Luo
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yue Lu
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Zhuo Li
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yangwei Wang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
155
|
Davenport AP, Kuc RE, Southan C, Maguire JJ. New drugs and emerging therapeutic targets in the endothelin signaling pathway and prospects for personalized precision medicine. Physiol Res 2018; 67:S37-S54. [PMID: 29947527 DOI: 10.33549/physiolres.933872] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the last thirty years since the discovery of endothelin-1, the therapeutic strategy that has evolved in the clinic, mainly in the treatment of pulmonary arterial hypertension, is to block the action of the peptide either at the ET(A) subtype or both receptors using orally active small molecule antagonists. Recently, there has been a rapid expansion in research targeting ET receptors using chemical entities other than small molecules, particularly monoclonal antibody antagonists and selective peptide agonists and antagonists. While usually sacrificing oral bio-availability, these compounds have other therapeutic advantages with the potential to considerably expand drug targets in the endothelin pathway and extend treatment to other pathophysiological conditions. Where the small molecule approach has been retained, a novel strategy to combine two vasoconstrictor targets, the angiotensin AT(1) receptor as well as the ET(A) receptor in the dual antagonist sparsentan has been developed. A second emerging strategy is to combine drugs that have two different targets, the ET(A) antagonist ambrisentan with the phosphodiesterase inhibitor tadalafil, to improve the treatment of pulmonary arterial hypertension. The solving of the crystal structure of the ET(B) receptor has the potential to identify allosteric binding sites for novel ligands. A further key advance is the experimental validation of a single nucleotide polymorphism that has genome wide significance in five vascular diseases and that significantly increases the amount of big endothelin-1 precursor in the plasma. This observation provides a rationale for testing this single nucleotide polymorphism to stratify patients for allocation to treatment with endothelin agents and highlights the potential to use personalized precision medicine in the endothelin field.
Collapse
Affiliation(s)
- A P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
156
|
Apostolidis SA, Stifano G, Tabib T, Rice LM, Morse CM, Kahaleh B, Lafyatis R. Single Cell RNA Sequencing Identifies HSPG2 and APLNR as Markers of Endothelial Cell Injury in Systemic Sclerosis Skin. Front Immunol 2018; 9:2191. [PMID: 30327649 PMCID: PMC6174292 DOI: 10.3389/fimmu.2018.02191] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/04/2018] [Indexed: 01/11/2023] Open
Abstract
Objective: The mechanisms that lead to endothelial cell (EC) injury and propagate the vasculopathy in Systemic Sclerosis (SSc) are not well understood. Using single cell RNA sequencing (scRNA-seq), our goal was to identify EC markers and signature pathways associated with vascular injury in SSc skin. Methods: We implemented single cell sorting and subsequent RNA sequencing of cells isolated from SSc and healthy control skin. We used t-distributed stochastic neighbor embedding (t-SNE) to identify the various cell types. We performed pathway analysis using Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA). Finally, we independently verified distinct markers using immunohistochemistry on skin biopsies and qPCR in primary ECs from SSc and healthy skin. Results: By combining the t-SNE analysis with the expression of known EC markers, we positively identified ECs among the sorted cells. Subsequently, we examined the differential expression profile between the ECs from healthy and SSc skin. Using GSEA and IPA analysis, we demonstrated that the SSc endothelial cell expression profile is enriched in processes associated with extracellular matrix generation, negative regulation of angiogenesis and epithelial-to-mesenchymal transition. Two of the top differentially expressed genes, HSPG2 and APLNR, were independently verified using immunohistochemistry staining and real-time qPCR analysis. Conclusion: ScRNA-seq, differential gene expression and pathway analysis revealed that ECs from SSc patients show a discrete pattern of gene expression associated with vascular injury and activation, extracellular matrix generation and negative regulation of angiogenesis. HSPG2 and APLNR were identified as two of the top markers of EC injury in SSc.
Collapse
Affiliation(s)
- Sokratis A Apostolidis
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | | | - Tracy Tabib
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Lisa M Rice
- Boston University School of Medicine, Boston, MA, United States
| | - Christina M Morse
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Bashar Kahaleh
- Division of Rheumatology and Immunology, Department of Medicine, University of Toledo, Toledo, OH, United States
| | - Robert Lafyatis
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
157
|
Tang N, Hao J, Zhang X, Wu YB, Wang SY, Qi JW, Tian ZZ, Wang B, Chen H, Chen DF, Li ZQ. Characterization, tissue distribution of apela and periprandial, fasting and refeeding changes of apela mRNA in Siberian sturgeon Acipenser baerii. JOURNAL OF FISH BIOLOGY 2018; 93:609-615. [PMID: 29956323 DOI: 10.1111/jfb.13685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Apela identified from zebrafish Danio rerio for the first time in 2013 is a novel endogenous peptide ligand for the apelin receptor. To study the role of apela in regulating fish feeding, the complementary (c) DNA sequence of apela of Siberian sturgeon Acipenser baerii was cloned for the first time. The apela cDNA fragment of 836 bp was obtained by cloning. The open reading frame (ORF) of apela was 165 bp encoding a 54 amino acid, including 22 amino acids signal peptide and two proteolytic sites. Phylogenetic tree analysis showed that A. baerii apela was clustered with mammalian and amphibian sequences. A. baerii apela messeger (m)RNA was widely distributed in 11 tissues related to feeding, with high expressions in brain, oesophagus and stomach, especially in the brain. The level of apela mRNA in brain increased significantly after feeding. On the first day of fasting, apela expression in brain was significantly lower than that of the fed group, but after fasting for 3-15 days, the expression of apela in A. baerii brain was significantly higher than that in the fed group. After refeeding apela mRNA expression was obviously reduced. These results suggest that apela plays a bidirectional role in feeding regulation of A. baerii, which may serve as a short-term satiation factor and a long-term hunger factor.
Collapse
Affiliation(s)
- Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jin Hao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuan B Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shu Y Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jin W Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhen Z Tian
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - De F Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhi Q Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
158
|
Strassheim D, Karoor V, Stenmark K, Verin A, Gerasimovskaya E. A current view of G protein-coupled receptor - mediated signaling in pulmonary hypertension: finding opportunities for therapeutic intervention. ACTA ACUST UNITED AC 2018; 2. [PMID: 31380505 PMCID: PMC6677404 DOI: 10.20517/2574-1209.2018.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathological vascular remodeling is observed in various cardiovascular diseases including pulmonary hypertension (PH), a disease of unknown etiology that has been characterized by pulmonary artery vasoconstriction, right ventricular hypertrophy, vascular inflammation, and abnormal angiogenesis in pulmonary circulation. G protein-coupled receptors (GPCRs) are the largest family in the genome and widely expressed in cardiovascular system. They regulate all aspects of PH pathophysiology and represent therapeutic targets. We overview GPCRs function in vasoconstriction, vasodilation, vascular inflammation-driven remodeling and describe signaling cross talk between GPCR, inflammatory cytokines, and growth factors. Overall, the goal of this review is to emphasize the importance of GPCRs as critical signal transducers and targets for drug development in PH.
Collapse
Affiliation(s)
- Derek Strassheim
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Vijaya Karoor
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.,Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
159
|
Huang Z, He L, Chen Z, Chen L. Targeting drugs to APJ receptor: From signaling to pathophysiological effects. J Cell Physiol 2018; 234:61-74. [DOI: 10.1002/jcp.27047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Zhen Huang
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China Hengyang China
- Department of Pharmacy The First Affiliated Hospital, University Of South China Hengyang China
| | - Lu He
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China Hengyang China
| | - Zhe Chen
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China Hengyang China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China Hengyang China
| |
Collapse
|
160
|
Iyinikkel J, Murray F. GPCRs in pulmonary arterial hypertension: tipping the balance. Br J Pharmacol 2018; 175:3063-3079. [PMID: 29468655 PMCID: PMC6031878 DOI: 10.1111/bph.14172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, fatal disease characterised by increased pulmonary vascular resistance and excessive proliferation of pulmonary artery smooth muscle cells (PASMC). GPCRs, which are attractive pharmacological targets, are important regulators of pulmonary vascular tone and PASMC phenotype. PAH is associated with the altered expression and function of a number of GPCRs in the pulmonary circulation, which leads to the vasoconstriction and proliferation of PASMC and thereby contributes to the imbalance of pulmonary vascular tone associated with PAH; drugs targeting GPCRs are currently used clinically to treat PAH and extensive preclinical work supports the utility of a number of additional GPCRs. Here we review how GPCR expression and function changes with PAH and discuss why GPCRs continue to be relevant drug targets for the disease.
Collapse
Affiliation(s)
- Jean Iyinikkel
- College of Life Sciences and Medicine, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Fiona Murray
- College of Life Sciences and Medicine, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| |
Collapse
|
161
|
Vinel C, Lukjanenko L, Batut A, Deleruyelle S, Pradère JP, Le Gonidec S, Dortignac A, Geoffre N, Pereira O, Karaz S, Lee U, Camus M, Chaoui K, Mouisel E, Bigot A, Mouly V, Vigneau M, Pagano AF, Chopard A, Pillard F, Guyonnet S, Cesari M, Burlet-Schiltz O, Pahor M, Feige JN, Vellas B, Valet P, Dray C. The exerkine apelin reverses age-associated sarcopenia. Nat Med 2018; 24:1360-1371. [PMID: 30061698 DOI: 10.1038/s41591-018-0131-6] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/08/2018] [Indexed: 12/19/2022]
Abstract
Sarcopenia, the degenerative loss of skeletal muscle mass, quality and strength, lacks early diagnostic tools and new therapeutic strategies to prevent the frailty-to-disability transition often responsible for the medical institutionalization of elderly individuals. Herein we report that production of the endogenous peptide apelin, induced by muscle contraction, is reduced in an age-dependent manner in humans and rodents and is positively associated with the beneficial effects of exercise in older persons. Mice deficient in either apelin or its receptor (APLNR) presented dramatic alterations in muscle function with increasing age. Various strategies that restored apelin signaling during aging further demonstrated that this peptide considerably enhanced muscle function by triggering mitochondriogenesis, autophagy and anti-inflammatory pathways in myofibers as well as enhancing the regenerative capacity by targeting muscle stem cells. Taken together, these findings revealed positive regulatory feedback between physical activity, apelin and muscle function and identified apelin both as a tool for diagnosis of early sarcopenia and as the target of an innovative pharmacological strategy to prevent age-associated muscle weakness and restore physical autonomy.
Collapse
Affiliation(s)
- Claire Vinel
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Laura Lukjanenko
- Aging Department, Nestlé Institute of Health Sciences SA, Ecole Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Aurelie Batut
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Simon Deleruyelle
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Jean-Philippe Pradère
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Sophie Le Gonidec
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Alizée Dortignac
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Nancy Geoffre
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Ophelie Pereira
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Sonia Karaz
- Aging Department, Nestlé Institute of Health Sciences SA, Ecole Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Umji Lee
- Aging Department, Nestlé Institute of Health Sciences SA, Ecole Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Mylène Camus
- Institut de Pharmacologie et de Biologie Structurale-CNRS, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale-CNRS, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Etienne Mouisel
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Anne Bigot
- Institut de Myologie, Université Pierre et Marie Curie, Paris 6 UM76, Univ. Paris 6/U974, UMR7215, CNRS, Pitié-Salpétrière-INSERM, UMRS 974, Paris, France
| | - Vincent Mouly
- Institut de Myologie, Université Pierre et Marie Curie, Paris 6 UM76, Univ. Paris 6/U974, UMR7215, CNRS, Pitié-Salpétrière-INSERM, UMRS 974, Paris, France
| | - Mathieu Vigneau
- Institut des Technologies Avancées en Science du Vivant-USR3505 Centre Pierre Potier, Toulouse, France
| | - Allan F Pagano
- Université de Montpellier, Institut National de la Recherche Agronomique, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Angèle Chopard
- Université de Montpellier, Institut National de la Recherche Agronomique, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Fabien Pillard
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | | | - Matteo Cesari
- Gérontopole Toulouse-Purpan UMR 1027, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale-CNRS, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Marco Pahor
- Institute on Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jerome N Feige
- Aging Department, Nestlé Institute of Health Sciences SA, Ecole Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Bruno Vellas
- Gérontopole Toulouse-Purpan UMR 1027, Toulouse, France
| | - Philippe Valet
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Cedric Dray
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
162
|
Panaitescu B, Romero R, Gomez-Lopez N, Pacora P, Erez O, Vadillo-Ortega F, Yeo L, Hassan SS, Hsu CD. ELABELA plasma concentrations are increased in women with late-onset preeclampsia. J Matern Fetal Neonatal Med 2018; 33:5-15. [PMID: 29890874 DOI: 10.1080/14767058.2018.1484089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: ELABELA is a newly discovered peptide hormone that appears to be implicated in the mechanisms leading to preeclampsia, independently of angiogenic factors. The aim of the current study was to investigate whether women with early- or late-onset preeclampsia have altered ELABELA plasma concentrations compared to gestational-age-matched normal pregnant women.Methods: This retrospective cross-sectional study focused on the maternal plasma samples collected from 232 women with a singleton pregnancy who were allocated into the following groups: (1) early-onset preeclampsia (<34 weeks of gestation, N = 56); (2) late-onset preeclampsia (≥34 weeks of gestation, N = 57); and (3) gestational-age-matched controls with a normal pregnancy [(<34 weeks of gestation, N = 59); (≥34 weeks of gestation, N = 60)]. ELABELA plasma concentrations were determined using a validated enzyme immunoassay.Results: (1) ELABELA plasma concentrations are higher in patients with late-onset preeclampsia compared with those from gestational-age-matched controls with a normal pregnancy [median: 7.99 ng/mL (IQR, 5.3-13.95 ng/mL) versus median: 4.17 ng/mL (IQR, 3-11.19 ng/mL), p =.001]; (2) ELABELA plasma concentrations in patients with early-onset preeclampsia do not differ from those of normal pregnant women [median: 6.09 ng/mL (IQR, 2.8-10.66 ng/mL) versus median: 4.02 ng/mL (IQR, 3.26-7.49), p = .32]; and (3) ELABELA plasma concentrations are higher in patients with late-onset preeclampsia compared to those with early-onset preeclampsia [median: 7.99 ng/mL (IQR, 5.3-13.95 ng/mL) versus median: 6.09 ng/mL (IQR, 2.8-10.66 ng/mL), p = .01].Conclusion: ELABELA plasma concentrations are higher in patients with late-onset preeclampsia than in those with a normal pregnancy. However, women with early-onset preeclampsia have similar ELABELA plasma concentrations to those with a normal pregnancy. These findings provide insight into the ELABELA axis during the human syndrome of preeclampsia. In addition, these data support the concept that different pathophysiologic mechanisms are implicated in early- and late-onset preeclampsia.
Collapse
Affiliation(s)
- Bogdan Panaitescu
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, USA.,Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine & Genetics, Wayne State University, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Immunology, Microbiology & Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Lami Yeo
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chaur-Dong Hsu
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
163
|
Abstract
Apelin is a vasoactive peptide and is an endogenous ligand for APJ receptors, which are widely expressed in blood vessels, heart, and cardiovascular regulatory regions of the brain. A growing body of evidence now demonstrates a regulatory role for the apelin/APJ receptor system in cardiovascular physiology and pathophysiology, thus making it a potential target for cardiovascular drug discovery and development. Indeed, ongoing studies are investigating the potential benefits of apelin and apelin-mimetics for disorders such as heart failure and pulmonary arterial hypertension. Apelin causes relaxation of isolated arteries, and systemic administration of apelin typically results in a reduction in systolic and diastolic blood pressure and an increase in blood flow. Nonetheless, vasopressor responses and contraction of vascular smooth muscle in response to apelin have also been observed under certain conditions. The goal of the current review is to summarize major findings regarding the apelin/APJ receptor system in blood vessels, with an emphasis on regulation of vascular tone, and to identify areas of investigation that may provide guidance for the development of novel therapeutic agents that target this system.
Collapse
Affiliation(s)
- Amreen Mughal
- Department of Pharmaceutical Sciences, North Dakota State University Fargo, ND, USA
| | - Stephen T O'Rourke
- Department of Pharmaceutical Sciences, North Dakota State University Fargo, ND, USA.
| |
Collapse
|
164
|
Pritchard N, Kaitu'u-Lino TJ, Gong S, Dopierala J, Smith GCS, Charnock-Jones DS, Tong S. ELABELA/APELA Levels Are Not Decreased in the Maternal Circulation or Placenta among Women with Preeclampsia. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1749-1753. [PMID: 29803833 PMCID: PMC6063996 DOI: 10.1016/j.ajpath.2018.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/11/2018] [Accepted: 04/27/2018] [Indexed: 11/21/2022]
Abstract
The genetic deletion of apelin receptor early endogenous ligand (Elabela; official name APELA) produces a preeclampsia-like phenotype in mice. However, evidence linking ELABELA with human disease is lacking. Therefore, we measured placental mRNA and circulating ELABELA in human samples. ELABELA mRNA (measured by RNA sequencing) was unchanged in 82 preeclamptic placentas compared with 82 matched controls (mean difference, 0.53%; 95% CI, −25.9 to 27.0; P = 0.78). We measured circulating ELABELA in 32 women with preterm preeclampsia (delivered at <34 weeks' gestation) and 32 matched controls sampled at the same gestational age. There was no difference in circulating ELABELA concentrations in the preeclamptic cohort compared with controls (median, 28.5 pg/mL; 95% CI, 5.3 to 63.2 versus median, 20.5 pg/mL; 95% CI, 9.2 to 58.0, respectively); the median difference was 8.0 pg/mL (95% CI, −17.7 to 12.1; P = 0.43). In contrast, soluble FLT1 (a protein with an established association with preeclampsia) mRNA was increased in placental tissue (mean difference, 34.9%; 95% CI, 16.6 to 53.1; P = 0.001), and circulating concentrations were 16.8-fold higher among the preeclamptic cohort (P < 0.0001). In conclusion, we were able to recapitulate the association between circulating soluble FLT1 and preeclampsia, but there was no association with ELABELA. The speculated clinical relevance of observations in the murine model linking ELABELA to preeclampsia likely are incorrect.
Collapse
Affiliation(s)
- Natasha Pritchard
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Sungsam Gong
- Department of Obstetrics and Gynaecology, University of Cambridge; National Institute for Health Research Cambridge Comprehensive Biomedical Research Centre, Cambridge, United Kingdom
| | - Justyna Dopierala
- Department of Obstetrics and Gynaecology, University of Cambridge; National Institute for Health Research Cambridge Comprehensive Biomedical Research Centre, Cambridge, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge; National Institute for Health Research Cambridge Comprehensive Biomedical Research Centre, Cambridge, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - D Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge; National Institute for Health Research Cambridge Comprehensive Biomedical Research Centre, Cambridge, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Tong
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
165
|
Antushevich H, Wójcik M. Review: Apelin in disease. Clin Chim Acta 2018; 483:241-248. [PMID: 29750964 DOI: 10.1016/j.cca.2018.05.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
Apelin, a regulatory peptide, is a ligand of the APJ receptor that belongs to the G protein-coupled receptor family. Apelin and APJ are widely distributed in the body and play potential physiological roles in the cytoprotection of many internal organs. This review article summarizes information about the roles of the apelin/APJ system in neurological, metabolic, hypertension, respiratory, gastrointestinal, hepatic, kidney and cancerous diseases. It is suggested that apelin positively affects the treatment of non-cancerous diseases and may be considered as a therapeutic drug in many illnesses. However, in cancers, apelin appears as a tumour growth stimulator, and its suggested role is as a marker in the diagnosis of tumour cancers in tissues. In summary, apelin has certain therapeutic abilities and can be useful in the treatment of, e.g., insulin resistance, hypertension, etc., but it also can sometimes serve as a negative factor.
Collapse
Affiliation(s)
- Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Department of Genetic Engineering, Instytucka 3, 05-110 Jabłonna, Poland.
| | - Maciej Wójcik
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Department of Genetic Engineering, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|
166
|
Murza A, Trân K, Bruneau-Cossette L, Lesur O, Auger-Messier M, Lavigne P, Sarret P, Marsault É. Apelins, ELABELA, and their derivatives: Peptidic regulators of the cardiovascular system and beyond. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexandre Murza
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Kien Trân
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Laurent Bruneau-Cossette
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Olivier Lesur
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Mannix Auger-Messier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Pierre Lavigne
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Philippe Sarret
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Éric Marsault
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| |
Collapse
|
167
|
Xu J, Chen L, Jiang Z, Li L. Biological functions of Elabela, a novel endogenous ligand of APJ receptor. J Cell Physiol 2018; 233:6472-6482. [PMID: 29350399 DOI: 10.1002/jcp.26492] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/17/2018] [Indexed: 12/31/2022]
Abstract
The G protein-coupled receptor APJ and its cognate ligand, apelin, are widely expressed throughout human body. They are implicated in different key physiological processes such as angiogenesis, cardiovascular functions, fluid homeostasis, and energy metabolism regulation. Recently, a new endogenous peptidic ligand of APJ, named Elabela, has been identified and shown to play a crucial role in embryonic development. In addition, increasing evidences show that Elabela is also intimate associated with a large number of physiological processes in adulthood. However, a comprehensive summary of Elabela has not been reported to date. In this review, we provide an overview of the biological functions of Elabela. Collectively, Elabela, a potential therapeutic peptide, exerts diverse biological functions in both embryos and adult organisms, such as dysontogenesis, self-renewing of human embryonic stem cells, endoderm differentiation, heart morphogenesis, cardiac dyfunctions, blood pressure control, angiogenesis, blood pressure control, regulation of food and water intake, bone formation, and kidney diseases.
Collapse
Affiliation(s)
- Jin Xu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, P.R. China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, P.R. China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, P.R. China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
168
|
Besserer-Offroy É, Bérubé P, Côté J, Murza A, Longpré JM, Dumaine R, Lesur O, Auger-Messier M, Leduc R, Marsault É, Sarret P. The hypotensive effect of activated apelin receptor is correlated with β-arrestin recruitment. Pharmacol Res 2018. [PMID: 29530600 DOI: 10.1016/j.phrs.2018.02.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The apelinergic system is an important player in the regulation of both vascular tone and cardiovascular function, making this physiological system an attractive target for drug development for hypertension, heart failure and ischemic heart disease. Indeed, apelin exerts a positive inotropic effect in humans whilst reducing peripheral vascular resistance. In this study, we investigated the signaling pathways through which apelin exerts its hypotensive action. We synthesized a series of apelin-13 analogs whereby the C-terminal Phe13 residue was replaced by natural or unnatural amino acids. In HEK293 cells expressing APJ, we evaluated the relative efficacy of these compounds to activate Gαi1 and GαoA G-proteins, recruit β-arrestins 1 and 2 (βarrs), and inhibit cAMP production. Calculating the transduction ratio for each pathway allowed us to identify several analogs with distinct signaling profiles. Furthermore, we found that these analogs delivered i.v. to Sprague-Dawley rats exerted a wide range of hypotensive responses. Indeed, two compounds lost their ability to lower blood pressure, while other analogs significantly reduced blood pressure as apelin-13. Interestingly, analogs that did not lower blood pressure were less effective at recruiting βarrs. Finally, using Spearman correlations, we established that the hypotensive response was significantly correlated with βarr recruitment but not with G protein-dependent signaling. In conclusion, our results demonstrated that the βarr recruitment potency is involved in the hypotensive efficacy of activated APJ.
Collapse
Affiliation(s)
- Élie Besserer-Offroy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Patrick Bérubé
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Jérôme Côté
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Alexandre Murza
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Robert Dumaine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Olivier Lesur
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Mannix Auger-Messier
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Éric Marsault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
169
|
Zhou Q, Zhang K, Guo Y, Chen L, Li L. Elabela-APJ axis contributes to embryonic development and prevents pre-eclampsia in pregnancy. Acta Biochim Biophys Sin (Shanghai) 2018; 50:319-321. [PMID: 29342224 DOI: 10.1093/abbs/gmx143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Qionglin Zhou
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Kai Zhang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Yu Guo
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| |
Collapse
|
170
|
Trân K, Murza A, Sainsily X, Coquerel D, Côté J, Belleville K, Haroune L, Longpré JM, Dumaine R, Salvail D, Lesur O, Auger-Messier M, Sarret P, Marsault É. A Systematic Exploration of Macrocyclization in Apelin-13: Impact on Binding, Signaling, Stability, and Cardiovascular Effects. J Med Chem 2018; 61:2266-2277. [DOI: 10.1021/acs.jmedchem.7b01353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kien Trân
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Alexandre Murza
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Xavier Sainsily
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - David Coquerel
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Jérôme Côté
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Karine Belleville
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Lounès Haroune
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Jean-Michel Longpré
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Robert Dumaine
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Dany Salvail
- IPS Thérapeutique Inc., Sherbrooke J1G 5J6, Québec, Canada
| | - Olivier Lesur
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Mannix Auger-Messier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Éric Marsault
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| |
Collapse
|
171
|
Disease severity impacts the relationship of apelin with arterial function in patients with rheumatoid arthritis. Clin Rheumatol 2018; 37:1481-1491. [DOI: 10.1007/s10067-018-4013-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/26/2022]
|
172
|
Hensley MK, Levine A, Gladwin MT, Lai YC. Emerging therapeutics in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2018; 314:L769-L781. [PMID: 29388467 DOI: 10.1152/ajplung.00259.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive and often fatal illness presenting with nonspecific symptoms of dyspnea, lower extremity edema, and exercise intolerance. Pathologically, endothelial dysfunction leads to abnormal intimal and smooth muscle proliferation along with reduced apoptosis, resulting in increased pulmonary vascular resistance and elevated pulmonary pressures. PH is subdivided into five World Health Organization groups based on the disease pathology and specific cause. While there are Food and Drug Administration-approved medications for the treatment of pulmonary arterial hypertension (PAH; Group 1 PH), as well as for chronic thromboembolic PH (Group 4 PH), the morbidity and mortality remain high. Moreover, there are no approved therapies for other forms of PH (Groups 2, 3, and 5) at present. New research has identified molecular targets that mediate vasodilation, anti-inflammatory, and antifibrotic changes within the pulmonary vasculature. Given that PAH is the most commonly studied form of PH worldwide and because recent studies have led to better mechanistic understanding of this devastating disease, in this review we attempt to provide an updated overview of new therapeutic approaches under investigation for the treatment of PH, with a particular focus on PAH, as well as to offer guidelines for future investigations.
Collapse
Affiliation(s)
- Matthew K Hensley
- Division of Pulmonary and Critical Care Medicine, University of Michigan , Ann Arbor, Michigan
| | - Andrea Levine
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Yen-Chun Lai
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
173
|
Coquerel D, Sainsily X, Dumont L, Sarret P, Marsault É, Auger-Messier M, Lesur O. The apelinergic system as an alternative to catecholamines in low-output septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:10. [PMID: 29347994 PMCID: PMC5774146 DOI: 10.1186/s13054-018-1942-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
Catecholamines, in concert with fluid resuscitation, have long been recommended in the management of septic shock. However, not all patients respond positively and controversy surrounding the efficacy-to-safety profile of catecholamines has emerged, trending toward decatecholaminization. Contextually, it is time to re-examine the “maintaining blood pressure” paradigm by identifying safer and life-saving alternatives. We put in perspective the emerging and growing knowledge on a promising alternative avenue: the apelinergic system. This target exhibits invaluable pleiotropic properties, including inodilator activity, cardio-renal protection, and control of fluid homeostasis. Taken together, its effects are expected to be greatly beneficial for patients in septic shock.
Collapse
Affiliation(s)
- David Coquerel
- Division of Intensive Care Units, Department of Medicine, Université de Sherbrooke, 3001 - 12e Avenue Nord, Sherbrooke, QC, J1H 5 N4, Canada
| | - Xavier Sainsily
- Division of Cardiology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Pharmacology Institute of Sherbrooke, Faculty of Medecine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Lauralyne Dumont
- Division of Intensive Care Units, Department of Medicine, Université de Sherbrooke, 3001 - 12e Avenue Nord, Sherbrooke, QC, J1H 5 N4, Canada.,Division of Cardiology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Pharmacology Institute of Sherbrooke, Faculty of Medecine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Éric Marsault
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Pharmacology Institute of Sherbrooke, Faculty of Medecine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mannix Auger-Messier
- Division of Cardiology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Olivier Lesur
- Division of Intensive Care Units, Department of Medicine, Université de Sherbrooke, 3001 - 12e Avenue Nord, Sherbrooke, QC, J1H 5 N4, Canada. .,Pharmacology Institute of Sherbrooke, Faculty of Medecine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
174
|
Kurowska P, Barbe A, Różycka M, Chmielińska J, Dupont J, Rak A. Apelin in Reproductive Physiology and Pathology of Different Species: A Critical Review. Int J Endocrinol 2018; 2018:9170480. [PMID: 29977292 PMCID: PMC6011052 DOI: 10.1155/2018/9170480] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/02/2018] [Indexed: 02/08/2023] Open
Abstract
Apelin has been isolated from the bovine stomach extracts as an endogenous ligand of the previously orphan receptor APJ. Expression of the apelinergic system (apelin and APJ) was described in many organs where pleiotropic effects like regulation of food intake, body weight, or cardiovascular and immune function were described. Recent studies have shown that apelin also plays an important role in the regulation of female and male reproduction. Some data showed that the gene and protein of apelin/APJ are expressed in the hypothalamic-pituitary-gonad (HPG) axis tissue. Thus, apelin is synthesized locally in the hypothalamus, pituitary, ovaries, and testis of many species and has autocrine and/or paracrine effects. Most research indicates that apelin has an inhibitory effect on gonadotropin secretion and participates in the direct regulation of steroidogenesis, cell proliferation, and apoptosis in gonads. The article summarizes also results of a series of recent studies on the effect of apelin on reproduction pathology, like polycystic ovarian syndrome, endometriosis, and ovarian cancer. Many of these pathologies are still in critical need of therapeutic intervention, and recent studies have found that apelin can be targets in reproductive pathological states.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Alix Barbe
- INRA, Unité Physiologie de la Reproduction et des Comportements, 37-380 Nouzilly, France
| | - Marta Różycka
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Justyna Chmielińska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Joelle Dupont
- INRA, Unité Physiologie de la Reproduction et des Comportements, 37-380 Nouzilly, France
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| |
Collapse
|
175
|
The mechanism of all- trans retinoic acid in the regulation of apelin expression in vascular endothelial cells. Biosci Rep 2017; 37:BSR20170684. [PMID: 29070519 PMCID: PMC5725614 DOI: 10.1042/bsr20170684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 01/02/2023] Open
Abstract
The apelin gene can promote vascular endothelial cell (VEC) proliferation, migration, and angiogenesis. However, the molecular mechanism for regulation of the apelin gene is still unknown. Real-time PCR and Western blotting analysis were employed to detect the effect of all-trans retinoic acid (ATRA) in up-regulating apelin expression in human umbilical vein endothelial cells (HUVECs). Furthermore, the in vivo study also indicated that ATRA could increase apelin expression in balloon-injured arteries of rats, which is consistent with the results from the cultured HUVECs. To ensure whether retinoic acid receptor (RAR) α (RARα) could be induced by ATRA in regulating apelin, the expression of RARα was tested with a siRNA method to knock down RARα or adenovirus vector infection to overexpress RARα. The results showed that ATRA could up-regulate apelin expression time- and dose- dependently in HUVECs. ATRA could induce a RARα increase; however, the expression of RARβ and RARγ were unchanged. The blocking of RARα signaling reduced the response of apelin to ATRA when HUVECs were treated with RARα antagonists (Ro 41-5253) or the use of siRNA against RARα (si-RARα) knockdown RARα expression before using ATRA. In addition, induction of RARα overexpression by infection with pAd-GFP-RARα further increased the induction of apelin by ATRA. These results suggested that ATRA up-regulated apelin expression by promoting RARα signaling.
Collapse
|
176
|
Abstract
Apelin and apela (ELABELA/ELA/Toddler) are two peptide ligands for a class A G-protein-coupled receptor named the apelin receptor (AR/APJ/APLNR). Ligand-AR interactions have been implicated in regulation of the adipoinsular axis, cardiovascular system, and central nervous system alongside pathological processes. Each ligand may be processed into a variety of bioactive isoforms endogenously, with apelin ranging from 13 to 55 amino acids and apela from 11 to 32, typically being cleaved C-terminal to dibasic proprotein convertase cleavage sites. The C-terminal region of the respective precursor protein is retained and is responsible for receptor binding and subsequent activation. Interestingly, both apelin and apela exhibit isoform-dependent variability in potency and efficacy under various physiological and pathological conditions, but most studies focus on a single isoform. Biophysical behavior and structural properties of apelin and apela isoforms show strong correlations with functional studies, with key motifs now well determined for apelin. Unlike its ligands, the AR has been relatively difficult to characterize by biophysical techniques, with most characterization to date being focused on effects of mutagenesis. This situation may improve following a recently reported AR crystal structure, but there are still barriers to overcome in terms of comprehensive biophysical study. In this review, we summarize the three components of the apelinergic system in terms of structure-function correlation, with a particular focus on isoform-dependent properties, underlining the potential for regulation of the system through multiple endogenous ligands and isoforms, isoform-dependent pharmacological properties, and biological membrane-mediated receptor interaction. © 2018 American Physiological Society. Compr Physiol 8:407-450, 2018.
Collapse
Affiliation(s)
- Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Calem Kenward
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
177
|
Frump AL, Bonnet S, de Jesus Perez VA, Lahm T. Emerging role of angiogenesis in adaptive and maladaptive right ventricular remodeling in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2017; 314:L443-L460. [PMID: 29097426 DOI: 10.1152/ajplung.00374.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Right ventricular (RV) function is the primary prognostic factor for both morbidity and mortality in pulmonary hypertension (PH). RV hypertrophy is initially an adaptive physiological response to increased overload; however, with persistent and/or progressive afterload increase, this response frequently transitions to more pathological maladaptive remodeling. The mechanisms and disease processes underlying this transition are mostly unknown. Angiogenesis has recently emerged as a major modifier of RV adaptation in the setting of pressure overload. A novel paradigm has emerged that suggests that angiogenesis and angiogenic signaling are required for RV adaptation to afterload increases and that impaired and/or insufficient angiogenesis is a major driver of RV decompensation. Here, we summarize our current understanding of the concepts of maladaptive and adaptive RV remodeling, discuss the current literature on angiogenesis in the adapted and failing RV, and identify potential therapeutic approaches targeting angiogenesis in RV failure.
Collapse
Affiliation(s)
- Andrea L Frump
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University , Quebec City, Quebec , Canada
| | - Vinicio A de Jesus Perez
- Division of Pulmonary/Critical Care, Stanford University School of Medicine , Stanford, California.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine , Stanford, California
| | - Tim Lahm
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,Richard L. Roudebush Veterans Affairs Medical Center , Indianapolis, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
178
|
Li L, Zhou Q, Li X, Chen L. Elabela-APJ axis: a novel therapy target for cardiovascular diseases. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1042-1043. [PMID: 29036564 DOI: 10.1093/abbs/gmx098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 01/13/2023] Open
Affiliation(s)
- Lanfang Li
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Qionglin Zhou
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xiaoxiao Li
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| |
Collapse
|
179
|
Abstract
OBJECTIVES Apelin-13 was recently proposed as an alternative to the recommended β-adrenergic drugs for supporting endotoxin-induced myocardial dysfunction. Since Apelin-13 signals through its receptor (Apelin peptide jejunum) to exert singular inotropic/vasotropic actions and to optimize body fluid balance, this candidate pathway might benefit septic shock management. Whether the newly discovered ELABELA (ELA), a second endogenous ligand of the Apelin peptide jejunum receptor highly expressed in the kidney, further improves cardio-renal impairment remains unknown. DESIGN, SETTING, AND SUBJECTS Interventional study in a rat model of septic shock (128 adult males) to assess the effects of ELA and Apelin-13 on vascular and cardio-renal function. Experiments were performed in a tertiary care University-based research institute. INTERVENTIONS Polymicrobial sepsis-induced cardiac dysfunction was produced by cecal ligation puncture to assess hemodynamic efficacy, cardioprotection, and biomechanics under acute or continuous infusions of the apelinergic agonists ELA or Apelin-13 (39 and 15 µg/kg/hr, respectively) versus normal saline. MEASUREMENTS AND MAIN RESULTS Apelinergic agonists improved 72-hour survival after sepsis induction, with ELA providing the best clinical outcome after 24 hours. Apelinergic agonist infusion counteracted cecal ligation puncture-induced myocardial dysfunction by improving left ventricular pressure-volume relationship. ELA-treated cecal ligation puncture rats were the only group to 1) display a significant improvement in left ventricular filling as shown by increased E-wave velocity and left ventricular end-diastolic volume, 2) exhibit a higher plasma volume, and 3) limit kidney injury and free-water clearance. These beneficial renal effects were superior to Apelin-13, likely because full-length ELA enabled a distinctive regulation of pituitary vasopressin release. CONCLUSIONS Activation of the apelinergic system by exogenous ELA or Apelin-13 infusion improves cardiovascular function and survival after cecal ligation puncture-induced sepsis. However, ELA proved better than Apelin-13 by improving fluid homeostasis, cardiovascular hemodynamics recovery, and limiting kidney dysfunction in a vasopressinergic-dependent manner.
Collapse
|
180
|
Neto-Neves EM, Frump AL, Vayl A, Kline JA, Lahm T. Isolated heart model demonstrates evidence of contractile and diastolic dysfunction in right ventricles from rats with sugen/hypoxia-induced pulmonary hypertension. Physiol Rep 2017; 5:5/19/e13438. [PMID: 29038355 PMCID: PMC5641930 DOI: 10.14814/phy2.13438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 01/29/2023] Open
Abstract
Although extensively used for the study of left ventricular function, limited experience exists with the isolated heart model in the evaluation of right ventricular (RV) function. In particular, no published experience exists with this tool in sugen/hypoxia‐induced pulmonary hypertension (SuHx‐PH), a frequently used model of severe and progressive PH. We sought to characterize markers of RV contractile and diastolic function in SuHx‐PH and to establish their relationship with markers of maladaptive RV remodeling. Hearts were excised from anesthetized Sprague Dawley rats with or without SuHx‐PH and perfused via the aorta using a Langendorff preparation. We explored the Frank–Starling relationship of RV function (RV developed pressure, dP/dtmax, and dP/dtmin; all normalized to RV mass) by increasing RV end‐diastolic pressure (RVEDP) from 0 to 40 mmHg. Functional studies were complemented by quantification of RV pro‐apoptotic signaling (bcl2/bax), procontractile signaling (apelin), and stress response signaling (p38MAPK activation). Pearson's correlation analysis was performed for functional and biochemical parameters. SuHx‐RVs exhibited severe RV dysfunction with marked hypertrophy and decreased echocardiographic cardiac output. For any given RVEDP, SuHx‐RVs demonstrated less developed pressure and lower dP/dtmax, as well as less pronounced dP/dtmin, suggestive of decreased contractile and diastolic function. SuHx‐RVs exhibited decreased bcl2/bax ratios, apelin expression, and p38MAPK activation. Bcl2/bax and apelin RNA abundance correlated positively with RV developed pressure and dP/dtmax and negatively with dP/dtmin. p38MAPK activation correlated positively with RV developed pressure. We conclude that SuHx‐RVs exhibit severe contractile and diastolic dysfunction. Increased pro‐apoptotic signaling and attenuated procontractile and stress response signaling may contribute to these functional alterations.
Collapse
Affiliation(s)
- Evandro M Neto-Neves
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrea L Frump
- Department of Medicine, Division of Pulmonary, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alexandra Vayl
- Department of Medicine, Division of Pulmonary, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jeffrey A Kline
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana .,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
181
|
Affiliation(s)
- Robert C. Wirka
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
182
|
O’Carroll AM, Salih S, Griffiths PR, Bijabhai A, Knepper MA, Lolait SJ. Expression and functional implications of the renal apelinergic system in rodents. PLoS One 2017; 12:e0183094. [PMID: 28817612 PMCID: PMC5560558 DOI: 10.1371/journal.pone.0183094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/28/2017] [Indexed: 02/06/2023] Open
Abstract
Apelin binds to the G protein-coupled apelin receptor (APJ; gene name aplnr) to modulate diverse physiological systems including cardiovascular function, and hydromineral and metabolic balance. Recently a second endogenous ligand for APJ, named apela, has been discovered. We confirm that apela activates signal transduction pathways (ERK activation) in cells expressing the cloned rat APJ. Previous studies suggest that exogenous apela is diuretic, attributable wholly or in part to an action on renal APJ. Thus far the cellular distribution of apela in the kidney has not been reported. We have utilized in situ hybridization histochemistry to reveal strong apela labelling in the inner medulla (IM), with lower levels observed in the inner stripe of the outer medulla (ISOM), of rat and mouse kidneys. This contrasts with renal aplnr expression where the converse is apparent, with intense labelling in the ISOM (consistent with vasa recta labelling) and low-moderate hybridization in the IM, in addition to labelling of glomeruli. Apelin is found in sparsely distributed cells amongst more prevalent aplnr-labelled cells in extra-tubular regions of the medulla. This expression profile is supported by RNA-Seq data that shows that apela, but not apelin or aplnr, is highly expressed in microdissected rat kidney tubules. If endogenous tubular apela promotes diuresis in the kidney it could conceivably do this by interacting with APJ in vasculature, or via an unknown receptor in the tubules. The comparative distribution of apela, apelin and aplnr in the rodent kidney lays the foundation for future work on how the renal apelinergic system interacts.
Collapse
Affiliation(s)
- Anne-Marie O’Carroll
- Bristol Medical School, HW-LINE, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Sabrine Salih
- Bristol Medical School, HW-LINE, University of Bristol, Bristol, United Kingdom
| | - Philip R. Griffiths
- Bristol Medical School, HW-LINE, University of Bristol, Bristol, United Kingdom
| | - Aarifah Bijabhai
- Bristol Medical School, HW-LINE, University of Bristol, Bristol, United Kingdom
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen J. Lolait
- Bristol Medical School, HW-LINE, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
183
|
Abstract
A large body of evidence indicates that genome annotation pipelines have biased our view of coding sequences because they generally undersample small proteins and peptides. The recent development of genome-wide translation profiling reveals the prevalence of small/short open reading frames (smORFs or sORFs), which are scattered over all classes of transcripts, including both mRNAs and presumptive long noncoding RNAs. Proteomic approaches further confirm an unexpected variety of smORF-encoded peptides (SEPs), representing an overlooked reservoir of bioactive molecules. Indeed, functional studies in a broad range of species from yeast to humans demonstrate that SEPs can harbor key activities for the control of development, differentiation, and physiology. Here we summarize recent advances in the discovery and functional characterization of smORF/SEPs and discuss why these small players can no longer be ignored with regard to genome function.
Collapse
Affiliation(s)
- Serge Plaza
- Laboratoire de Recherches en Sciences Végétales, Université de Toulouse, Université Paul Sabatier, 31326 Castanet Tolosan, France; .,CNRS, UMR5546, Laboratoire de Recherches en Sciences Végétales, 31326 Castanet Tolosan, France
| | - Gerben Menschaert
- Department of Mathematical Modeling, Statistics and Bioinformatics, University of Ghent, 9000 Gent, Belgium
| | - François Payre
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Université Paul Sabatier, 31062 Toulouse, France;
| |
Collapse
|
184
|
History and conceptual developments in vascular biology and angiogenesis research: a personal view. Angiogenesis 2017; 20:463-478. [DOI: 10.1007/s10456-017-9569-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023]
|
185
|
Abstract
In 2004, when the protein estimate from the finished human genome was only 24,000, the surprise was compounded as reviewed estimates fell to 19,000 by 2014. However, variability in the total canonical protein counts (i.e. excluding alternative splice forms) of open reading frames (ORFs) in different annotation portals persists. This work assesses these differences and possible causes. A 16-year analysis of Ensembl and UniProtKB/Swiss-Prot shows convergence to a protein number of ~20,000. The former had shown some yo-yoing, but both have now plateaued. Nine major annotation portals, reviewed at the beginning of 2017, gave a spread of counts from 21,819 down to 18,891. The 4-way cross-reference concordance (within UniProt) between Ensembl, Swiss-Prot, Entrez Gene and the Human Gene Nomenclature Committee (HGNC) drops to 18,690, indicating methodological differences in protein definitions and experimental existence support between sources. The Swiss-Prot and neXtProt evidence criteria include mass spectrometry peptide verification and also cross-references for antibody detection from the Human Protein Atlas. Notwithstanding, hundreds of Swiss-Prot entries are classified as non-coding biotypes by HGNC. The only inference that protein numbers might still rise comes from numerous reports of small ORF (smORF) discovery. However, while there have been recent cases of protein verifications from previous miss-annotation of non-coding RNA, very few have passed the Swiss-Prot curation and genome annotation thresholds. The post-genomic era has seen both advances in data generation and improvements in the human reference assembly. Notwithstanding, current numbers, while persistently discordant, show that the earlier yo-yoing has largely ceased. Given the importance to biology and biomedicine of defining the canonical human proteome, the task will need more collaborative inter-source curation combined with broader and deeper experimental confirmation in vivo and in vitro of proteins predicted in silico. The eventual closure could be well be below ~19,000.
Collapse
Affiliation(s)
- Christopher Southan
- IUPHAR/BPS Guide to Pharmacology, Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|