151
|
Torres Filho I, Nguyen NM, Jivani R, Terner J, Romfh P, Vakhshoori D, Ward KR. Oxygen saturation monitoring using resonance Raman spectroscopy. J Surg Res 2015; 201:425-31. [PMID: 27020828 DOI: 10.1016/j.jss.2015.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 11/13/2022]
Abstract
BACKGROUND The knowledge of hemoglobin oxygen saturation (SO2) and tissue oxygenation is critical to identify the presence of shock and therapeutic options. The resonance vibrational enhancement of hemoglobin allows measurement of oxy- and deoxy species of hemoglobin and resonance Raman spectroscopy (RRS-StO2) has been successfully used to measure aggregate microvascular oxygenation. We tested the hypothesis that noninvasive oxygen saturation measured by RRS-StO2 could serve as surrogate of systemic central venous SO2. METHODS In anesthetized rats, measurements of RRS-StO2 made in oral mucosa, skin, muscle, and liver were compared with measurements of central venous SO2 using traditional multi-wavelength oximetry. Various oxygenation levels were obtained using a stepwise hemorrhage while over 100 paired blood samples and Raman-based measurements were performed. The relationships between RRS-StO2 and clinically important systemic blood parameters were also evaluated. RRS-StO2 measurements were made in 3-mm diameter tissue areas using a microvascular oximeter and a handheld probe. RESULTS Significant correlations were found between venous SO2 and RRS-StO2 measurements made in the oral mucosa (r = 0.913, P < 0.001), skin (r = 0.499, P < 0.01), and liver (r = 0.611, P < 0.05). The mean difference between sublingual RRS-StO2 and blood sample SO2 values was 5.4 ± 1.6%. Sublingual RRS-StO2 also correlated with lactate (r = 0.909, P < 0.01), potassium (r = 0.757, P < 0.01), and pH (r = 0.703, P < 0.05). CONCLUSIONS Raman-based oxygen saturation is a promising technique for the noninvasive evaluation of oxygenation in skin, thin tissues, and solid organs. Under certain conditions, sublingual RRS-StO2 measurements correlate with central venous SO2.
Collapse
Affiliation(s)
- Ivo Torres Filho
- Department of Anesthesiology, Virginia Commonwealth University and the Virginia Commonwealth University Reanimation Engineering Science Center, Richmond, Virginia; Department of Emergency Medicine, Virginia Commonwealth University and the Virginia Commonwealth University Reanimation Engineering Science Center, Richmond, Virginia; Damage Control Resuscitation, U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas.
| | - Nguyen M Nguyen
- Department of Anesthesiology, Virginia Commonwealth University and the Virginia Commonwealth University Reanimation Engineering Science Center, Richmond, Virginia
| | - Rizwan Jivani
- Department of Anesthesiology, Virginia Commonwealth University and the Virginia Commonwealth University Reanimation Engineering Science Center, Richmond, Virginia
| | - James Terner
- Department of Chemistry, Virginia Commonwealth University and the Virginia Commonwealth University Reanimation Engineering Science Center, Richmond, Virginia
| | | | | | - Kevin R Ward
- Department of Emergency Medicine and the Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
152
|
The Influence of Music on Prefrontal Cortex during Episodic Encoding and Retrieval of Verbal Information: A Multichannel fNIRS Study. Behav Neurol 2015; 2015:707625. [PMID: 26508813 PMCID: PMC4609813 DOI: 10.1155/2015/707625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/02/2015] [Accepted: 05/11/2015] [Indexed: 11/24/2022] Open
Abstract
Music can be thought of as a complex stimulus able to enrich the encoding of an event thus boosting its subsequent retrieval. However, several findings suggest that music can also interfere with memory performance. A better understanding of the behavioral and neural processes involved can substantially improve knowledge and shed new light on the most efficient music-based interventions. Based on fNIRS studies on music, episodic encoding, and the dorsolateral prefrontal cortex (PFC), this work aims to extend previous findings by monitoring the entire lateral PFC during both encoding and retrieval of verbal material. Nineteen participants were asked to encode lists of words presented with either background music or silence and subsequently tested during a free recall task. Meanwhile, their PFC was monitored using a 48-channel fNIRS system. Behavioral results showed greater chunking of words under the music condition, suggesting the employment of associative strategies for items encoded with music. fNIRS results showed that music provided a less demanding way of modulating both episodic encoding and retrieval, with a general prefrontal decreased activity under the music versus silence condition. This suggests that music-related memory processes rely on specific neural mechanisms and that music can positively influence both episodic encoding and retrieval of verbal information.
Collapse
|
153
|
Piao D, Barbour RL, Graber HL, Lee DC. On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. I. Steady-state with homogeneous medium. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:105005. [PMID: 26465613 PMCID: PMC4881291 DOI: 10.1117/1.jbo.20.10.105005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/28/2015] [Indexed: 05/03/2023]
Abstract
This work analytically examines some dependences of the differential pathlength factor (DPF) for steady-state photon diffusion in a homogeneous medium on the shape, dimension, and absorption and reduced scattering coefficients of the medium. The medium geometries considered include a semi-infinite geometry, an infinite-length cylinder evaluated along the azimuthal direction, and a sphere. Steady-state photon fluence rate in the cylinder and sphere geometries is represented by a form involving the physical source, its image with respect to the associated extrapolated half-plane, and a radius-dependent term, leading to simplified formula for estimating the DPFs. With the source-detector distance and medium optical properties held fixed across all three geometries, and equal radii for the cylinder and sphere, the DPF is the greatest in the semi-infinite and the smallest in the sphere geometry. When compared to the results from finite-element method, the DPFs analytically estimated for 10 to 25 mm source–detector separations on a sphere of 50 mm radius with μa=0.01 mm(−1) and μ′s=1.0 mm(−1) are on average less than 5% different. The approximation for sphere, generally valid for a diameter≥20 times of the effective attenuation pathlength, may be useful for rapid estimation of DPFs in near-infrared spectroscopy of an infant head and for short source–detector separation.
Collapse
Affiliation(s)
- Daqing Piao
- Oklahoma State University, School of Electrical and Computer Engineering, Stillwater, Oklahoma 74078, United States
- Address all correspondence to: Daqing Piao, E-mail:
| | - Randall L. Barbour
- SUNY Downstate Medical Center, Department of Pathology, Brooklyn, New York 11203, United States
- NIRx Medical Technologies LLC, Glen Head, New York 11545, United States
| | - Harry L. Graber
- NIRx Medical Technologies LLC, Glen Head, New York 11545, United States
| | - Daniel C. Lee
- University of Oklahoma College of Medicine, Department of Surgery, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
154
|
Laguë-Beauvais M, Fraser SA, Desjardins-Crépeau L, Castonguay N, Desjardins M, Lesage F, Bherer L. Shedding light on the effect of priority instructions during dual-task performance in younger and older adults: A fNIRS study. Brain Cogn 2015; 98:1-14. [DOI: 10.1016/j.bandc.2015.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/04/2014] [Accepted: 05/12/2015] [Indexed: 11/17/2022]
|
155
|
Kamran MA, Jeong MY, Mannan MMN. Optimal hemodynamic response model for functional near-infrared spectroscopy. Front Behav Neurosci 2015; 9:151. [PMID: 26136668 PMCID: PMC4468613 DOI: 10.3389/fnbeh.2015.00151] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/23/2015] [Indexed: 11/13/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > t critical and p-value < 0.05).
Collapse
Affiliation(s)
- Muhammad A Kamran
- Department of Cogno-Mechatronics Engineering, Pusan National University Busan, Korea
| | - Myung Yung Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University Busan, Korea
| | - Malik M N Mannan
- Department of Cogno-Mechatronics Engineering, Pusan National University Busan, Korea
| |
Collapse
|
156
|
Alexandre F, Derosiere G, Papaiordanidou M, Billot M, Varray A. Cortical motor output decreases after neuromuscular fatigue induced by electrical stimulation of the plantar flexor muscles. Acta Physiol (Oxf) 2015; 214:124-34. [PMID: 25740017 DOI: 10.1111/apha.12478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/29/2014] [Accepted: 03/02/2015] [Indexed: 11/30/2022]
Abstract
AIM Neuromuscular electrical stimulation (NMES) causes early onset of neuromuscular fatigue. Peripheral electrophysiological explorations suggest that supra-spinal alterations are involved through sensitive afferent pathways. As sensory input is projected over the primary somatosensory cortex (S1), S1 area involvement in inhibiting the central motor drive can be hypothesized. This study assessed cortical activity under a fatiguing NMES protocol at low frequency. METHODS Twenty healthy males performed five NMES sequences of 17 trains over the plantar flexors (30 Hz, 4 s on/6 s off). Before and after each sequence, neuromuscular tests composed of maximal voluntary contractions (MVCs) were carried out. Cortical activity was assessed during MVCs with functional near-infrared spectroscopy over S1 and primary motor (M1) areas, through oxy- [HbO] and deoxy-haemoglobin [HbR] variation. Electrophysiological data (H-reflex during MVC, EMG activity and level of voluntary activation) were also recorded. RESULTS MVC torque significantly decreased after the first 17 NMES trains (P < 0.001). The electrophysiological data were consistent with supra-spinal alterations. In addition, [HbO] declined significantly during the protocol over the S1 and M1 areas from the first 17 NMES trains (P < 0.01 and P < 0.001 respectively), while [HbR] increased (P < 0.05 and P < 0.01 respectively), indicating early decline in cortical activity over both primary cortical areas. CONCLUSIONS The declining cortical activity over the M1 area is highly consistent with the electrophysiological findings and supports motor cortex involvement in the loss of force after a fatiguing NMES protocol. In addition, the declining cortical activity over the S1 area indicates that the decreased motor output from M1 is not due to increased S1 inhibitory activity.
Collapse
Affiliation(s)
- F. Alexandre
- Movement To Health; Euromov; Montpellier University; Montpellier France
- Fontalvie; Clinique du Souffle ‘la Vallonie’; Lodève France
| | - G. Derosiere
- Movement To Health; Euromov; Montpellier University; Montpellier France
- Biomedical Engineering Research Group; National University of Ireland; Maynooth Ireland
| | - M. Papaiordanidou
- Movement To Health; Euromov; Montpellier University; Montpellier France
- Institut des Sciences du Mouvement; Aix-Marseille University; Marseille France
| | - M. Billot
- Movement To Health; Euromov; Montpellier University; Montpellier France
| | - A. Varray
- Movement To Health; Euromov; Montpellier University; Montpellier France
| |
Collapse
|
157
|
Haigh S, Cooper N, Wilkins A. Cortical excitability and the shape of the haemodynamic response. Neuroimage 2015; 111:379-84. [DOI: 10.1016/j.neuroimage.2015.02.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 01/14/2015] [Accepted: 02/16/2015] [Indexed: 11/29/2022] Open
|
158
|
Weyand S, Schudlo L, Takehara-Nishiuchi K, Chau T. Usability and performance-informed selection of personalized mental tasks for an online near-infrared spectroscopy brain-computer interface. NEUROPHOTONICS 2015; 2:025001. [PMID: 26158005 PMCID: PMC4478988 DOI: 10.1117/1.nph.2.2.025001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/10/2015] [Indexed: 05/29/2023]
Abstract
Brain-computer interfaces (BCIs) allow individuals to use only cognitive activities to interact with their environment. The widespread use of BCIs is limited, due in part to their lack of user-friendliness. The main goal of this work was to develop a more user-centered BCI and determine if: (1) individuals can acquire control of an online near-infrared spectroscopy BCI via usability and performance-informed selection of mental tasks without compromising classification accuracy and (2) the combination of usability and performance-informed selection of mental tasks yields subjective ease-of-use ratings that exceed those attainable with prescribed mental tasks. Twenty able-bodied participants were recruited. Half of the participants served as a control group, using the state-of-the-art prescribed mental strategies. The other half of the participants comprised the study group, choosing their own personalized mental strategies out of eleven possible tasks. It was concluded that users were, in fact, able to acquire control of the more user-centered BCI without a significant change in accuracy compared to the prescribed task BCI. Furthermore, the personalized BCI yielded higher subjective ease-of-use ratings than the prescribed BCI. Average online accuracies of [Formula: see text] and [Formula: see text] were achieved by the personalized and prescribed mental task groups, respectively.
Collapse
Affiliation(s)
- Sabine Weyand
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada
- University of Toronto, Institute of Biomaterials and Biomedical Engineering, Ontario M5S 3G9, Canada
| | - Larissa Schudlo
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada
- University of Toronto, Institute of Biomaterials and Biomedical Engineering, Ontario M5S 3G9, Canada
| | | | - Tom Chau
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada
- University of Toronto, Institute of Biomaterials and Biomedical Engineering, Ontario M5S 3G9, Canada
| |
Collapse
|
159
|
Jeppesen J, Beniczky S, Johansen P, Sidenius P, Fuglsang-Frederiksen A. Exploring the capability of wireless near infrared spectroscopy as a portable seizure detection device for epilepsy patients. Seizure 2015; 26:43-8. [DOI: 10.1016/j.seizure.2015.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/23/2015] [Accepted: 01/25/2015] [Indexed: 10/24/2022] Open
|
160
|
The physiological responses to repeated upper-body sprint exercise in highly trained athletes. Eur J Appl Physiol 2015; 115:1381-91. [DOI: 10.1007/s00421-015-3128-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
|
161
|
Developmental patterns of expressive language hemispheric lateralization in children, adolescents and adults using functional near-infrared spectroscopy. Neuropsychologia 2015; 68:117-25. [DOI: 10.1016/j.neuropsychologia.2015.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 12/29/2022]
|
162
|
Acute exercise stress reveals cerebrovascular benefits associated with moderate gains in cardiorespiratory fitness. J Cereb Blood Flow Metab 2014; 34:1873-6. [PMID: 25269518 PMCID: PMC4269737 DOI: 10.1038/jcbfm.2014.142] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/30/2014] [Indexed: 12/17/2022]
Abstract
Elevated cardiorespiratory fitness improves resting cerebral perfusion, although to what extent this is further amplified during acute exposure to exercise stress and the corresponding implications for cerebral oxygenation remain unknown. To examine this, we recruited 12 moderately active and 12 sedentary healthy males. Middle cerebral artery blood velocity (MCAv) and prefrontal cortical oxyhemoglobin (cO(2)Hb) concentration were monitored continuously at rest and throughout an incremental cycling test to exhaustion. Despite a subtle elevation in the maximal oxygen uptake (active: 52±9 ml/kg per minute versus sedentary: 33±5 ml/kg per minute, P<0.05), resting MCAv was not different between groups. However, more marked increases in both MCAv (+28±13% versus +18±6%, P<0.05) and cO(2)Hb (+5±4% versus -2±3%, P<0.05) were observed in the active group during the transition from low- to moderate-intensity exercise. Collectively, these findings indicate that the long-term benefits associated with moderate increase in physical activity are not observed in the resting state and only become apparent when the cerebrovasculature is challenged by acute exertional stress. This has important clinical implications when assessing the true extent of cerebrovascular adaptation.
Collapse
|
163
|
Amiri M, Pouliot P, Bonnéry C, Leclerc PO, Desjardins M, Lesage F, Joanette Y. An Exploration of the Effect of Hemodynamic Changes Due to Normal Aging on the fNIRS Response to Semantic Processing of Words. Front Neurol 2014; 5:249. [PMID: 25520697 PMCID: PMC4248672 DOI: 10.3389/fneur.2014.00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/12/2014] [Indexed: 11/13/2022] Open
Abstract
Like other neuroimaging techniques assessing cerebral blood oxygenation, near-infrared spectroscopy (NIRS) has been applied in many neurocognitive studies. With NIRS, neural activation can be explored indirectly via hemodynamic changes in the imaged region. In studies of aging, changes in baseline physiology and brain anatomy confound NIRS measures seeking to investigate age-related changes in neuronal activity. The field is thus hampered by the complexity of the aging process itself, and statistical inferences from functional data acquired by optical imaging techniques must be interpreted with care. Multimodal integration of NIRS with both structural and baseline physiological assessments is crucial to avoid misinterpreting neuroimaging signals. In this study, a combination of two different optical techniques, anatomical MRI and Arterial Spin Labeling (ASL), was used to investigate age-related changes in activation during a lexical-semantic processing task. Quantitative analysis revealed decreased baseline oxyhemoglobin and cerebral blood flow in the older adults. Using baseline physiology measures as regressors in the investigation of functional concentration changes when doing analyses of variance, we found significant changes in task-induced areas of activity. In the right hemisphere, more significant age-related activity was observed around the junction of the inferior frontal gyrus and inferior precentral sulcus, along with engagement of Wernicke's area. In the left hemisphere, the degree and extent of frontal activation, including the dorsolateral prefrontal cortex and inferior frontal gyrus, differed between age groups. Measuring background physiological differences and using their values as regressors in statistical analyses allowed a more appropriate, age-corrected understanding of the functional differentiations between age groups. Age-corrected baselines are thus essential to investigate which components of the NIRS signal are altered by aging.
Collapse
Affiliation(s)
- Mahnoush Amiri
- Laboratory of Optical and Molecular Imaging, Biomedical Engineering, Polytechnique Montreal , Montreal, QC , Canada ; Laboratory of Neuropsychology of Language, Research Center; Aging Neuroscience, Institut Universitaire de Gériatrie de Montréal , Montreal, QC , Canada
| | - Philippe Pouliot
- Laboratory of Optical and Molecular Imaging, Biomedical Engineering, Polytechnique Montreal , Montreal, QC , Canada ; Montreal Heart Institute , Montreal, QC , Canada
| | - Clément Bonnéry
- Laboratory of Optical and Molecular Imaging, Biomedical Engineering, Polytechnique Montreal , Montreal, QC , Canada
| | - Paul-Olivier Leclerc
- Laboratory of Neuropsychology of Language, Research Center; Aging Neuroscience, Institut Universitaire de Gériatrie de Montréal , Montreal, QC , Canada ; Biomedical Engineering Institute, University of Montreal , Montreal, QC , Canada
| | - Michèle Desjardins
- Laboratory of Optical and Molecular Imaging, Biomedical Engineering, Polytechnique Montreal , Montreal, QC , Canada
| | - Frédéric Lesage
- Laboratory of Optical and Molecular Imaging, Biomedical Engineering, Polytechnique Montreal , Montreal, QC , Canada ; Montreal Heart Institute , Montreal, QC , Canada
| | - Yves Joanette
- Laboratory of Neuropsychology of Language, Research Center; Aging Neuroscience, Institut Universitaire de Gériatrie de Montréal , Montreal, QC , Canada ; Faculty of Medicine, University of Montreal , Montreal, QC , Canada
| |
Collapse
|
164
|
Vermeij A, van Beek AHEA, Reijs BLR, Claassen JAHR, Kessels RPC. An exploratory study of the effects of spatial working-memory load on prefrontal activation in low- and high-performing elderly. Front Aging Neurosci 2014; 6:303. [PMID: 25414665 PMCID: PMC4220690 DOI: 10.3389/fnagi.2014.00303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/17/2014] [Indexed: 12/14/2022] Open
Abstract
Older adults show more bilateral prefrontal activation during cognitive performance than younger adults, who typically show unilateral activation. This over-recruitment has been interpreted as compensation for declining structure and function of the brain. Here we examined how the relationship between behavioral performance and prefrontal activation is modulated by different levels of working-memory load. Eighteen healthy older adults (70.8 ± 5.0 years; MMSE 29.3 ± 0.9) performed a spatial working-memory task (n-back). Oxygenated ([O2Hb]) and deoxygenated ([HHb]) hemoglobin concentration changes were registered by two functional Near-Infrared Spectroscopy (fNIRS) channels located over the left and right prefrontal cortex. Increased working-memory load resulted in worse performance compared to the control condition. [O2Hb] increased with rising working-memory load in both fNIRS channels. Based on the performance in the high working-memory load condition, the group was divided into low and high performers. A significant interaction effect of performance level and hemisphere on [O2Hb] increase was found, indicating that high performers were better able to keep the right prefrontal cortex engaged under high cognitive demand. Furthermore, in the low performers group, individuals with a larger decline in task performance from the control to the high working-memory load condition had a larger bilateral increase of [O2Hb]. The high performers did not show a correlation between performance decline and working-memory load related prefrontal activation changes. Thus, additional bilateral prefrontal activation in low performers did not necessarily result in better cognitive performance. Our study showed that bilateral prefrontal activation may not always be successfully compensatory. Individual behavioral performance should be taken into account to be able to distinguish successful and unsuccessful compensation or declined neural efficiency.
Collapse
Affiliation(s)
- Anouk Vermeij
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands ; Department of Geriatric Medicine, Radboud University Medical Center Nijmegen, Netherlands
| | - Arenda H E A van Beek
- Department of Geriatric Medicine, Radboud University Medical Center Nijmegen, Netherlands
| | - Babette L R Reijs
- Department of Psychiatry and Neuropsychology, Maastricht University Maastricht, Netherlands
| | - Jurgen A H R Claassen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands ; Department of Geriatric Medicine, Radboud University Medical Center Nijmegen, Netherlands
| | - Roy P C Kessels
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands ; Department of Geriatric Medicine, Radboud University Medical Center Nijmegen, Netherlands ; Department of Medical Psychology, Radboud University Medical Center Nijmegen, Netherlands
| |
Collapse
|
165
|
Blokland Y, Spyrou L, Thijssen D, Eijsvogels T, Colier W, Floor-Westerdijk M, Vlek R, Bruhn J, Farquhar J. Combined EEG-fNIRS decoding of motor attempt and imagery for brain switch control: an offline study in patients with tetraplegia. IEEE Trans Neural Syst Rehabil Eng 2014; 22:222-9. [PMID: 24608682 DOI: 10.1109/tnsre.2013.2292995] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Combining electrophysiological and hemodynamic features is a novel approach for improving current performance of brain switches based on sensorimotor rhythms (SMR). This study was conducted with a dual purpose: to test the feasibility of using a combined electroencephalogram/functional near-infrared spectroscopy (EEG-fNIRS) SMR-based brain switch in patients with tetraplegia, and to examine the performance difference between motor imagery and motor attempt for this user group. A general improvement was found when using both EEG and fNIRS features for classification as compared to using the single-modality EEG classifier, with average classification rates of 79% for attempted movement and 70% for imagined movement. For the control group, rates of 87% and 79% were obtained, respectively, where the "attempted movement" condition was replaced with "actual movement." A combined EEG-fNIRS system might be especially beneficial for users who lack sufficient control of current EEG-based brain switches. The average classification performance in the patient group for attempted movement was significantly higher than for imagined movement using the EEG-only as well as the combined classifier, arguing for the case of a paradigm shift in current brain switch research.
Collapse
|
166
|
Developmental changes in frontal lobe function during a verbal fluency task: a multi-channel near-infrared spectroscopy study. Brain Dev 2014; 36:844-52. [PMID: 24512679 DOI: 10.1016/j.braindev.2014.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 12/30/2013] [Accepted: 01/13/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Near-infrared spectroscopy (NIRS) is commonly used to investigate continuous changes of brain activation and has excellent time resolution. Verbal fluency task (VFT) is widely used as a neuropsychological test of frontal lobe function. The aim of this study was to investigate normal developmental change in frontal lobe function during VFT performance using multi-channel NIRS, specifically focusing on oxygenation hemoglobin (oxyHb) changes. METHODS The subjects were 9 adults and 37 childrens who were all healthy right-handed volunteers. Children were divided into four age groups (group A, 6-8 years; group B, 9-11 years; group C, 12-14 years; group D, 15-18 years). The [oxyHb] changes were measured with 22 channels of NIRS during VFT. We defined the frontopolar region as the region of interest for analysis, and calculated the Z-score to compare the data between groups. RESULTS The task performance changed with age. There were significant differences between group A and other groups. The Z-score of [oxyHb] also significantly increased with age, when comparing adults to groups A and B. The task performances decreased with time in all groups. In contrast, [oxyHb] only continued to increase in the adult group. CONCLUSION The verbal retrieval functions begin to mature in early adolescence and continue to grow up to adulthood.
Collapse
|
167
|
Lloyd-Fox S, Richards JE, Blasi A, Murphy DGM, Elwell CE, Johnson MH. Coregistering functional near-infrared spectroscopy with underlying cortical areas in infants. NEUROPHOTONICS 2014; 1:025006. [PMID: 25558463 PMCID: PMC4280679 DOI: 10.1117/1.nph.1.2.025006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 05/20/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is becoming a popular tool in developmental neuroscience for mapping functional localized brain responses. However, as it cannot provide information about underlying anatomy, researchers have begun to conduct spatial registration of fNIRS channels to cortical anatomy in adults. The current work investigated this issue with infants by coregistering fNIRS and magnetic resonance imaging (MRI) data from 55 individuals. Our findings suggest that fNIRS channels can be reliably registered with regions in the frontal and temporal cortex of infants from 4 to 7 months of age. Although some macro-anatomical regions are difficult to consistently define, others are more stable and fNIRS channels on an age-appropriate MRI template are often consistent with individual infant MRIs. We have generated a standardized scalp surface map of fNIRS channel locators to reliably locate cortical regions for fNIRS developmental researchers. This new map can be used to identify the inferior frontal gyrus, superior temporal sulcus (STS) region [which includes the superior and middle temporal gyri (MTG) nearest to the STS], and MTG and temporal-parietal regions in 4- to 7-month-old infants. Future work will model data for the whole head, taking into account the properties of light transport in tissue, and expanding to different ages across development.
Collapse
Affiliation(s)
- Sarah Lloyd-Fox
- Birkbeck, University of London, Centre for Brain and Cognitive Development, Malet Street, London WC1E 7HX, United Kingdom
- Address all correspondence to: Sarah Lloyd-Fox, E-mail:
| | - John E. Richards
- University of South Carolina, Institute for Mind and Brain, Department of Psychology, Columbia, South Carolina 29208, United States
| | - Anna Blasi
- Birkbeck, University of London, Centre for Brain and Cognitive Development, Malet Street, London WC1E 7HX, United Kingdom
| | - Declan G. M. Murphy
- Institute of Psychiatry, Sackler Institute for Translational Neurodevelopment, King’s College London, London SE5 8AF, United Kingdom
| | - Clare E. Elwell
- University College London, Department of Medical Physics and Bioengineering, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Mark H. Johnson
- Birkbeck, University of London, Centre for Brain and Cognitive Development, Malet Street, London WC1E 7HX, United Kingdom
| |
Collapse
|
168
|
Kamran MA, Hong KS. Reduction of physiological effects in fNIRS waveforms for efficient brain-state decoding. Neurosci Lett 2014; 580:130-6. [PMID: 25111978 DOI: 10.1016/j.neulet.2014.07.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/20/2014] [Accepted: 07/31/2014] [Indexed: 11/28/2022]
Abstract
This paper presents a methodology for online estimation of brain activities with reduction in the effects of physiological noises in functional near-infrared spectroscopy signals. The input-output characteristics of a hemodynamic response are modeled as an autoregressive moving average model together with exogenous physical signals (i.e., ARMAX). In contrast to the fixed design matrix in the conventional general linear model, the proposed model incorporates the temporal variations in the experimental paradigm as well as in the hemodynamics. The performance of the proposed method has been tested by using box-car type functions followed by individual tapping tasks. The results and their significance were verified using t-statistics indicating that ARMAX seems to be better able to track/reveal the hemodynamic response. Also, online brain-activation maps were generated for localizing brain activities. Experimental results are compared with those of the existing conventional GLM-based method.
Collapse
Affiliation(s)
- M Ahmad Kamran
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 609-735, Republic of Korea.
| | - Keum-Shik Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 609-735, Republic of Korea; School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 609-735, Republic of Korea.
| |
Collapse
|
169
|
Kopton IM, Kenning P. Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research. Front Hum Neurosci 2014; 8:549. [PMID: 25147517 PMCID: PMC4124877 DOI: 10.3389/fnhum.2014.00549] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 07/07/2014] [Indexed: 11/23/2022] Open
Abstract
Over the last decade, the application of neuroscience to economic research has gained in importance and the number of neuroeconomic studies has grown extensively. The most common method for these investigations is fMRI. However, fMRI has limitations (particularly concerning situational factors) that should be countered with other methods. This review elaborates on the use of functional Near-Infrared Spectroscopy (fNIRS) as a new and promising tool for investigating economic decision making both in field experiments and outside the laboratory. We describe results of studies investigating the reliability of prototype NIRS studies, as well as detailing experiments using conventional and stationary fNIRS devices to analyze this potential. This review article shows that further research using mobile fNIRS for studies on economic decision making outside the laboratory could be a fruitful avenue helping to develop the potential of a new method for field experiments outside the laboratory.
Collapse
Affiliation(s)
- Isabella M Kopton
- Department of Corporate Management and Economics, Zeppelin Universität Friedrichshafen, Germany
| | - Peter Kenning
- Department of Corporate Management and Economics, Zeppelin Universität Friedrichshafen, Germany ; Faculty of Business Administration and Economics, Heinrich-Heine-Universität Düsseldorf, Germany
| |
Collapse
|
170
|
Lee JH, Park YH, Kim HS, Kim JT. Comparison of two devices using near-infrared spectroscopy for the measurement of tissue oxygenation during a vascular occlusion test in healthy volunteers (INVOS® vs. InSpectra™). J Clin Monit Comput 2014; 29:271-8. [DOI: 10.1007/s10877-014-9595-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/28/2014] [Indexed: 11/24/2022]
|
171
|
Goodwin JR, Gaudet CR, Berger AJ. Short-channel functional near-infrared spectroscopy regressions improve when source-detector separation is reduced. NEUROPHOTONICS 2014; 1:015002. [PMID: 26157972 PMCID: PMC4478749 DOI: 10.1117/1.nph.1.1.015002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/15/2014] [Accepted: 06/10/2014] [Indexed: 05/07/2023]
Abstract
In functional near-infrared spectroscopy (fNIRS) of human cerebral hemodynamics, dedicated surface-sensitive recording channels are useful for regressing out background hemodynamics and isolating activation-specific responses. A wide variety of source-detector separations have been utilized for this purpose. Here, we report a direct comparison of regression performance between two extremes of the reported range, 13 and 6 mm. Measurements of visual stimulation response (flickering radial checkerboard) were obtained from nine adults using a standard commercial source-detector grid with 13-mm diagonals, into which three extra detector fibers were placed to provide 6-mm channels at certain locations. When the NIRS recordings (17 total trials) were processed, the contrast-to-noise ratio was significantly higher with 6-mm regression channels than with 13 mm. The advantage could be due in part to the undesired sensing of brain activity by the 13-mm channels. We suggest that shorter distances be considered for optimal removal of superficial hemodynamics in NIRS signals from the adult brain.
Collapse
Affiliation(s)
- James R. Goodwin
- University of Rochester, The Institute of Optics, Rochester, New York 14627, United States
- Queensland University of Technology, School of Chemistry, Physics and Mechanical Engineering, Brisbane, Queensland 4000, Australia
- Address all correspondence to: J. R. Goodwin, E-mail:
| | - Chantel R. Gaudet
- University of Rochester, The Institute of Optics, Rochester, New York 14627, United States
| | - Andrew J. Berger
- University of Rochester, The Institute of Optics, Rochester, New York 14627, United States
- University of Rochester, Department of Biomedical Engineering, Rochester, New York 14627, United States
| |
Collapse
|
172
|
Cortical implication in lower voluntary muscle force production in non-hypoxemic COPD patients. PLoS One 2014; 9:e100961. [PMID: 24971775 PMCID: PMC4074123 DOI: 10.1371/journal.pone.0100961] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/02/2014] [Indexed: 11/19/2022] Open
Abstract
Recent studies have shown that muscle alterations cannot totally explain peripheral muscle weakness in COPD. Cerebral abnormalities in COPD are well documented but have never been implicated in muscle torque production. The purpose of this study was to assess the neural correlates of quadriceps torque control in COPD patients. Fifteen patients (FEV1 54.1±3.6% predicted) and 15 age- and sex-matched healthy controls performed maximal (MVCs) and submaximal (SVCs) voluntary contractions at 10, 30 and 50% of the maximal voluntary torque of the knee extensors. Neural activity was quantified with changes in functional near-infrared spectroscopy oxyhemoglobin (fNIRS-HbO) over the contralateral primary motor (M1), primary somatosensory (S1), premotor (PMC) and prefrontal (PFC) cortical areas. In parallel to the lower muscle torque, the COPD patients showed lower increase in HbO than healthy controls over the M1 (p<0.05), PMC (p<0.05) and PFC areas (p<0.01) during MVCs. In addition, they exhibited lower HbO changes over the M1 (p<0.01), S1 (p<0.05) and PMC (p<0.01) areas during SVCs at 50% of maximal torque and altered motor control characterized by higher torque fluctuations around the target. The results show that low muscle force production is found in a context of reduced motor cortex activity, which is consistent with central nervous system involvement in COPD muscle weakness.
Collapse
|
173
|
Ishikuro K, Urakawa S, Takamoto K, Ishikawa A, Ono T, Nishijo H. Cerebral functional imaging using near-infrared spectroscopy during repeated performances of motor rehabilitation tasks tested on healthy subjects. Front Hum Neurosci 2014; 8:292. [PMID: 24860474 PMCID: PMC4026732 DOI: 10.3389/fnhum.2014.00292] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/21/2014] [Indexed: 11/29/2022] Open
Abstract
To investigate the relationship between the frontal and sensorimotor cortices and motor learning, hemodynamic responses were recorded from the frontal and sensorimotor cortices using functional near infrared spectroscopy (NIRS) while healthy subjects performed motor learning tasks used in rehabilitation medicine. Whole-head NIRS recordings indicated that response latencies in the anterior dorsomedial prefrontal cortex (aDMPFC) were shorter than in other frontal and parietal areas. Furthermore, the increment rate of the hemodynamic responses in the aDMPFC across the eight repeated trials significantly correlated with those in the other areas, as well as with the improvement rate of task performance across the 8 repeated trials. In the second experiment, to dissociate scalp- and brain-derived hemodynamic responses, hemodynamic responses were recorded from the head over the aDMPFC using a multi-distance probe arrangement. Six probes (a single source probe and 5 detectors) were linearly placed 6 mm apart from each of the neighboring probes. Using independent component analyses of hemodynamic signals from the 5 source-detector pairs, we dissociated scalp- and brain-derived components of the hemodynamic responses. Hemodynamic responses corrected for scalp-derived responses over the aDMPFC significantly increased across the 8 trials and correlated with task performance. In the third experiment, subjects were required to perform the same task with and without transcranial direct current stimulation (tDCS) of the aDMPFC before the task. The tDCS significantly improved task performance. These results indicate that the aDMPFC is crucial for improved performance in repetitive motor learning.
Collapse
Affiliation(s)
- Koji Ishikuro
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Susumu Urakawa
- Department of Neurophysiotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Kouich Takamoto
- Department of Neurophysiotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Akihiro Ishikawa
- Medical Systems Division, R & D Department, Shimadzu, Co. Ltd. Kyoto, Japan
| | - Taketoshi Ono
- Department of Neurophysiotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| |
Collapse
|
174
|
Ferreri L, Bigand E, Perrey S, Muthalib M, Bard P, Bugaiska A. Less Effort, Better Results: How Does Music Act on Prefrontal Cortex in Older Adults during Verbal Encoding? An fNIRS Study. Front Hum Neurosci 2014; 8:301. [PMID: 24860481 PMCID: PMC4026694 DOI: 10.3389/fnhum.2014.00301] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/24/2014] [Indexed: 11/13/2022] Open
Abstract
Several neuroimaging studies of cognitive aging revealed deficits in episodic memory abilities as a result of prefrontal cortex (PFC) limitations. Improving episodic memory performance despite PFC deficits is thus a critical issue in aging research. Listening to music stimulates cognitive performance in several non-purely musical activities (e.g., language and memory). Thus, music could represent a rich and helpful source during verbal encoding and therefore help subsequent retrieval. Furthermore, such benefit could be reflected in less demand of PFC, which is known to be crucial for encoding processes. This study aimed to investigate whether music may improve episodic memory in older adults while decreasing the PFC activity. Sixteen healthy older adults (μ = 64.5 years) encoded lists of words presented with or without a musical background while their dorsolateral prefrontal cortex (DLPFC) activity was monitored using a eight-channel continuous-wave near-infrared spectroscopy (NIRS) system (Oxymon Mk III, Artinis, The Netherlands). Behavioral results indicated a better source-memory performance for words encoded with music compared to words encoded with silence (p < 0.05). Functional NIRS data revealed bilateral decrease of oxyhemoglobin values in the music encoding condition compared to the silence condition (p < 0.05), suggesting that music modulates the activity of the DLPFC during encoding in a less-demanding direction. Taken together, our results indicate that music can help older adults in memory performances by decreasing their PFC activity. These findings open new perspectives about music as tool for episodic memory rehabilitation on special populations with memory deficits due to frontal lobe damage such as Alzheimer’s patients.
Collapse
Affiliation(s)
- Laura Ferreri
- Laboratoire d'Etude de l'Apprentissage et du Développement (LEAD), CNRS UMR 5022, University of Burgundy , Dijon , France
| | - Emmanuel Bigand
- Laboratoire d'Etude de l'Apprentissage et du Développement (LEAD), CNRS UMR 5022, University of Burgundy , Dijon , France
| | - Stephane Perrey
- Movement to Health (M2H), EuroMov, Montpellier-1 University , Montpellier , France
| | - Makii Muthalib
- Movement to Health (M2H), EuroMov, Montpellier-1 University , Montpellier , France
| | - Patrick Bard
- Laboratoire d'Etude de l'Apprentissage et du Développement (LEAD), CNRS UMR 5022, University of Burgundy , Dijon , France
| | - Aurélia Bugaiska
- Laboratoire d'Etude de l'Apprentissage et du Développement (LEAD), CNRS UMR 5022, University of Burgundy , Dijon , France
| |
Collapse
|
175
|
Zhang L, Sun J, Sun B, Luo Q, Gong H. Studying hemispheric lateralization during a Stroop task through near-infrared spectroscopy-based connectivity. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:57012. [PMID: 24862561 DOI: 10.1117/1.jbo.19.5.057012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/30/2014] [Indexed: 05/28/2023]
Abstract
ABSTRACT. Near-infrared spectroscopy (NIRS) is a developing and promising functional brain imaging technology. Developing data analysis methods to effectively extract meaningful information from collected data is the major bottleneck in popularizing this technology. In this study, we measured hemodynamic activity of the prefrontal cortex (PFC) during a color-word matching Stroop task using NIRS. Hemispheric lateralization was examined by employing traditional activation and novel NIRS-based connectivity analyses simultaneously. Wavelet transform coherence was used to assess intrahemispheric functional connectivity. Spearman correlation analysis was used to examine the relationship between behavioral performance and activation/functional connectivity, respectively. In agreement with activation analysis, functional connectivity analysis revealed leftward lateralization for the Stroop effect and correlation with behavioral performance. However, functional connectivity was more sensitive than activation for identifying hemispheric lateralization. Granger causality was used to evaluate the effective connectivity between hemispheres. The results showed increased information flow from the left to the right hemispheres for the incongruent versus the neutral task, indicating a leading role of the left PFC. This study demonstrates that the NIRS-based connectivity can reveal the functional architecture of the brain more comprehensively than traditional activation, helping to better utilize the advantages of NIRS.
Collapse
Affiliation(s)
- Lei Zhang
- Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, MoE Key L
| | - Jinyan Sun
- Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, MoE Key L
| | - Bailei Sun
- Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, MoE Key L
| | - Qingming Luo
- Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, MoE Key L
| | - Hui Gong
- Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, MoE Key L
| |
Collapse
|
176
|
Towards a near infrared spectroscopy-based estimation of operator attentional state. PLoS One 2014; 9:e92045. [PMID: 24632819 PMCID: PMC3954803 DOI: 10.1371/journal.pone.0092045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/19/2014] [Indexed: 12/02/2022] Open
Abstract
Given the critical risks to public health and safety that can involve lapses in attention (e.g., through implication in workplace accidents), researchers have sought to develop cognitive-state tracking technologies, capable of alerting individuals engaged in cognitively demanding tasks of potentially dangerous decrements in their levels of attention. The purpose of the present study was to address this issue through an investigation of the reliability of optical measures of cortical correlates of attention in conjunction with machine learning techniques to distinguish between states of full attention and states characterized by reduced attention capacity during a sustained attention task. Seven subjects engaged in a 30 minutes duration sustained attention reaction time task with near infrared spectroscopy (NIRS) monitoring over the prefrontal and the right parietal areas. NIRS signals from the first 10 minutes of the task were considered as characterizing the ‘full attention’ class, while the NIRS signals from the last 10 minutes of the task were considered as characterizing the ‘attention decrement’ class. A two-class support vector machine algorithm was exploited to distinguish between the two levels of attention using appropriate NIRS-derived signal features. Attention decrement occurred during the task as revealed by the significant increase in reaction time in the last 10 compared to the first 10 minutes of the task (p<.05). The results demonstrate relatively good classification accuracy, ranging from 65 to 90%. The highest classification accuracy results were obtained when exploiting the oxyhemoglobin signals (i.e., from 77 to 89%, depending on the cortical area considered) rather than the deoxyhemoglobin signals (i.e., from 65 to 66%). Moreover, the classification accuracy increased to 90% when using signals from the right parietal area rather than from the prefrontal cortex. The results support the feasibility of developing cognitive tracking technologies using NIRS and machine learning techniques.
Collapse
|
177
|
Influence of dietary nitrate supplementation on physiological and cognitive responses to incremental cycle exercise. Respir Physiol Neurobiol 2014; 193:11-20. [DOI: 10.1016/j.resp.2013.12.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 11/17/2022]
|
178
|
Lynch JM, Buckley EM, Schwab PJ, Busch DR, Hanna BD, Putt ME, Licht DJ, Yodh AG. Noninvasive optical quantification of cerebral venous oxygen saturation in humans. Acad Radiol 2014; 21:162-7. [PMID: 24439329 PMCID: PMC4126245 DOI: 10.1016/j.acra.2013.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/20/2013] [Accepted: 10/17/2013] [Indexed: 10/25/2022]
Abstract
RATIONALE AND OBJECTIVES Cerebral oxygen extraction, defined as the difference between arterial and venous oxygen saturations (SaO2 and SvO2), is a critical parameter for managing intensive care patients at risk for neurological collapse. Although quantification of SaO2 is easily performed with pulse oximetry or moderately invasive arterial blood draws in peripheral vessels, cerebral SvO2 is frequently not monitored because of the invasiveness and risk associated with obtaining jugular bulb or super vena cava (SVC) blood samples. MATERIALS AND METHODS In this study, near-infrared spectroscopy (NIRS) was used to noninvasively measure cerebral SvO2 in anesthetized and mechanically ventilated pediatric patients (n = 10). To quantify SvO2, the NIRS signal component that fluctuates at the respiration frequency is isolated. This respiratory component is dominated by the venous portion of the interrogated vasculature. The NIRS measurements of SvO2 were validated against the clinical gold standard: invasively measured oxygen saturations from SVC blood samples. This technique was also applied in healthy volunteers (n = 5) without mechanical ventilation to illustrate its potential for use in healthy populations with natural airways. RESULTS Ten pediatric patients with pulmonary hypertension were studied. In these patients, SvO2 in the SVC exhibited good agreement with NIRS-measured SvO2 (R(2) = 0.80, P = .001, slope = 1.16 ± 0.48). Furthermore, in the healthy adult volunteers, mean (standard deviation) NIRS-measured SvO2 was 79.4 (6.8)%. This value is in good agreement with the expected average central venous saturation reported in literature. CONCLUSION Respiration frequency-selected NIRS can noninvasively quantify cerebral SvO2. This bedside technique can be used to help assess brain health in neurologically unstable patients.
Collapse
Affiliation(s)
- Jennifer M Lynch
- University of Pennsylvania, Department of Physics and Astronomy, 209 South 33rd St, Philadelphia, PA 19104.
| | - Erin M Buckley
- Athinuola A. Martinos Center for Biomedical Imaging, The Optics Division, Charlestown, Massachusetts
| | - Peter J Schwab
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David R Busch
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Brian D Hanna
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mary E Putt
- University of Pennsylvania, Department of Biostatistics and Epidemiology, Philadelphia, Pennsylvania
| | - Daniel J Licht
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Arjun G Yodh
- University of Pennsylvania, Department of Physics and Astronomy, 209 South 33rd St, Philadelphia, PA 19104
| |
Collapse
|
179
|
Desjardins M, Berti R, Pouliot P, Dubeau S, Lesage F. Multimodal study of the hemodynamic response to hypercapnia in anesthetized aged rats. Neurosci Lett 2014; 563:33-7. [PMID: 24480251 DOI: 10.1016/j.neulet.2014.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
Abstract
With aging, the brain undergoes changes in metabolism and perfusion, both of which influence the widely used blood-oxygenation-level-dependent (BOLD) MRI signal. To isolate the vascular effects associated with age, this study measured the response to a hypercapnic challenge using different imaging modalities in 19 young (3 months-old) and 13 old (24 months-old) Long-Evans rats. Intrinsic optical imaging was used to measure oxy (HbO), deoxy (HbR) and total (HbT) hemoglobin concentration changes, laser speckle for cerebral blood flow (CBF) changes, and MRI for the BOLD signal. Older rats had smaller HbO (41% smaller), HbT (50%) and CBF (34%) responses, but the temporal dynamics did not exhibit significant age differences. The ratio of CBV to CBF responses was also smaller in older adults, potentially indicating a change in the compliance of vessels.
Collapse
Affiliation(s)
- Michèle Desjardins
- Institut de Génie Biomédical, Dpt. de Génie Électrique, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7, Canada; Montreal Heart Institute, 5000 rue Bélanger, Montréal, QC, H1T 1C8, Canada.
| | - Romain Berti
- Institut de Génie Biomédical, Dpt. de Génie Électrique, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7, Canada; Montreal Heart Institute, 5000 rue Bélanger, Montréal, QC, H1T 1C8, Canada
| | - Philippe Pouliot
- Institut de Génie Biomédical, Dpt. de Génie Électrique, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7, Canada; Montreal Heart Institute, 5000 rue Bélanger, Montréal, QC, H1T 1C8, Canada
| | - Simon Dubeau
- Institut de Génie Biomédical, Dpt. de Génie Électrique, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7, Canada; Montreal Heart Institute, 5000 rue Bélanger, Montréal, QC, H1T 1C8, Canada
| | - Frédéric Lesage
- Institut de Génie Biomédical, Dpt. de Génie Électrique, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7, Canada; Montreal Heart Institute, 5000 rue Bélanger, Montréal, QC, H1T 1C8, Canada
| |
Collapse
|
180
|
Alderliesten T, De Vis J, Lemmers P, van Bel F, Benders M, Hendrikse J, Petersen E. Simultaneous quantitative assessment of cerebral physiology using respiratory-calibrated MRI and near-infrared spectroscopy in healthy adults. Neuroimage 2014; 85 Pt 1:255-63. [DOI: 10.1016/j.neuroimage.2013.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022] Open
|
181
|
Very-low-frequency oscillations of cerebral hemodynamics and blood pressure are affected by aging and cognitive load. Neuroimage 2014; 85 Pt 1:608-15. [DOI: 10.1016/j.neuroimage.2013.04.107] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/04/2013] [Accepted: 04/26/2013] [Indexed: 11/22/2022] Open
|
182
|
Koenraadt KLM, Roelofsen EGJ, Duysens J, Keijsers NLW. Cortical control of normal gait and precision stepping: An fNIRS study. Neuroimage 2014; 85 Pt 1:415-22. [PMID: 23631980 DOI: 10.1016/j.neuroimage.2013.04.070] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/29/2013] [Accepted: 04/19/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Koen L M Koenraadt
- Sint Maartenskliniek Nijmegen, Department of Research, PO box 9011, 6500 GM Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
183
|
Rupp T, Esteve F, Bouzat P, Lundby C, Perrey S, Levy P, Robach P, Verges S. Cerebral hemodynamic and ventilatory responses to hypoxia, hypercapnia, and hypocapnia during 5 days at 4,350 m. J Cereb Blood Flow Metab 2014; 34:52-60. [PMID: 24064493 PMCID: PMC3887348 DOI: 10.1038/jcbfm.2013.167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/31/2013] [Accepted: 08/26/2013] [Indexed: 01/18/2023]
Abstract
This study investigated the changes in cerebral near-infrared spectroscopy (NIRS) signals, cerebrovascular and ventilatory responses to hypoxia and CO2 during altitude exposure. At sea level (SL), after 24 hours and 5 days at 4,350 m, 11 healthy subjects were exposed to normoxia, isocapnic hypoxia, hypercapnia, and hypocapnia. The following parameters were measured: prefrontal tissue oxygenation index (TOI), oxy- (HbO2), deoxy- and total hemoglobin (HbTot) concentrations with NIRS, blood velocity in the middle cerebral artery (MCAv) with transcranial Doppler and ventilation. Smaller prefrontal deoxygenation and larger ΔHbTot in response to hypoxia were observed at altitude compared with SL (day 5: ΔHbO2-0.6±1.1 versus -1.8±1.3 μmol/cmper mm Hg and ΔHbTot 1.4±1.3 versus 0.7±1.1 μmol/cm per mm Hg). The hypoxic MCAv and ventilatory responses were enhanced at altitude. Prefrontal oxygenation increased less in response to hypercapnia at altitude compared with SL (day 5: ΔTOI 0.3±0.2 versus 0.5±0.3% mm Hg). The hypercapnic MCAv and ventilatory responses were decreased and increased, respectively, at altitude. Hemodynamic responses to hypocapnia did not change at altitude. Short-term altitude exposure improves cerebral oxygenation in response to hypoxia but decreases it during hypercapnia. Although these changes may be relevant for conditions such as exercise or sleep at altitude, they were not associated with symptoms of acute mountain sickness.
Collapse
Affiliation(s)
- Thomas Rupp
- 1] INSERM U1042, Grenoble, France [2] HP2 laboratory, Joseph Fourier University, Grenoble, France
| | - François Esteve
- 1] U836/team 6, INSERM, Grenoble, France [2] Grenoble Institute of Neurosciences, Joseph Fourier University, Grenoble, France
| | - Pierre Bouzat
- 1] U836/team 6, INSERM, Grenoble, France [2] Grenoble Institute of Neurosciences, Joseph Fourier University, Grenoble, France
| | - Carsten Lundby
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Stéphane Perrey
- Movement To Health (M2H), Montpellier-1 University, Euromov, France
| | - Patrick Levy
- 1] INSERM U1042, Grenoble, France [2] HP2 laboratory, Joseph Fourier University, Grenoble, France
| | - Paul Robach
- 1] INSERM U1042, Grenoble, France [2] HP2 laboratory, Joseph Fourier University, Grenoble, France [3] Ecole Nationale de Ski et d'Alpinisme, Chamonix, France
| | - Samuel Verges
- 1] INSERM U1042, Grenoble, France [2] HP2 laboratory, Joseph Fourier University, Grenoble, France
| |
Collapse
|
184
|
Scholkmann F, Kleiser S, Metz AJ, Zimmermann R, Mata Pavia J, Wolf U, Wolf M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014; 85 Pt 1:6-27. [PMID: 23684868 DOI: 10.1016/j.neuroimage.2013.05.004] [Citation(s) in RCA: 1099] [Impact Index Per Article: 99.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/12/2013] [Accepted: 05/03/2013] [Indexed: 01/09/2023] Open
|
185
|
Ehlis AC, Schneider S, Dresler T, Fallgatter AJ. Application of functional near-infrared spectroscopy in psychiatry. Neuroimage 2014; 85 Pt 1:478-88. [DOI: 10.1016/j.neuroimage.2013.03.067] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/14/2022] Open
|
186
|
Basso Moro S, Cutini S, Ursini ML, Ferrari M, Quaresima V. Prefrontal cortex activation during story encoding/retrieval: a multi-channel functional near-infrared spectroscopy study. Front Hum Neurosci 2013; 7:925. [PMID: 24427131 PMCID: PMC3876278 DOI: 10.3389/fnhum.2013.00925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/17/2013] [Indexed: 12/14/2022] Open
Abstract
Encoding, storage and retrieval constitute three fundamental stages in information processing and memory. They allow for the creation of new memory traces, the maintenance and the consolidation of these traces over time, and the access and recover of the stored information from short or long-term memory. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique that measures concentration changes of oxygenated-hemoglobin (O2Hb) and deoxygenated-hemoglobin (HHb) in cortical microcirculation blood vessels by means of the characteristic absorption spectra of hemoglobin in the near-infrared range. In the present study, we monitored, using a 16-channel fNIRS system, the hemodynamic response during the encoding and retrieval processes (EP and RP, respectively) over the prefrontal cortex (PFC) of 13 healthy subjects (27.2 ± 2.6 years) while were performing the “Logical Memory Test” (LMT) of the Wechsler Memory Scale. A LMT-related PFC activation was expected; specifically, it was hypothesized a neural dissociation between EP and RP. The results showed a heterogeneous O2Hb/HHb response over the mapped area during the EP and the RP, with a O2Hb progressive and prominent increment in ventrolateral PFC (VLPFC) since the beginning of the EP. During the RP a broader activation, including the VLPFC, the dorsolateral PFC and the frontopolar cortex, was observed. This could be explained by the different contributions of the PFC regions in the EP and the RP. Considering the fNIRS applicability for the hemodynamic monitoring during the LMT performance, this study has demonstrated that fNIRS could be utilized as a valuable clinical diagnostic tool, and that it has the potential to be adopted in patients with cognitive disorders or slight working memory deficits.
Collapse
Affiliation(s)
- Sara Basso Moro
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Simone Cutini
- Department of General Psychology, University of Padua Padova, Italy
| | - Maria Laura Ursini
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Marco Ferrari
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| |
Collapse
|
187
|
Oudegeest-Sander MH, van Beek AHEA, Abbink K, Olde Rikkert MGM, Hopman MTE, Claassen JAHR. Assessment of dynamic cerebral autoregulation and cerebrovascular CO2 reactivity in ageing by measurements of cerebral blood flow and cortical oxygenation. Exp Physiol 2013; 99:586-98. [PMID: 24363382 DOI: 10.1113/expphysiol.2013.076455] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
With ageing, cerebral blood flow velocity (CBFV) decreases; however, to what extent dynamic cerebral autoregulation and cerebrovascular CO2 reactivity are influenced by ageing is unknown. The aim was to examine the dynamic responses of CBFV and cortical oxygenation to changes in blood pressure (BP) and arterial CO2 across different ages. Fifty-eight participants in three age groups were included, as follows: young (n = 20, 24 ± 2 years old), elderly (n = 20, 66 ± 1 years old), and older elderly (n = 18, 78 ± 3 years old). The CBFV was measured using transcranial Doppler ultrasound, simultaneously with oxyhaemoglobin (O2Hb) using near-infrared spectroscopy and beat-to-beat BP measurements using Finapres. Postural manoeuvres were performed to induce haemodynamic fluctuations. Cerebrovascular CO2 reactivity was tested with hyperventilation and CO2 inhalation. With age, CBFV decreased (young 59 ± 12 cm s(-1), elderly 48 ± 7 cm s(-1) and older elderly 42 ± 9 cm s(-1), P < 0.05) and cerebrovascular resistance increased (1.46 ± 0.58, 1.81 ± 0.36 and 1.98 ± 0.52 mmHg cm(-1) s(-1), respectively, P < 0.05). Normalized gain (autoregulatory damping) increased with age for BP-CBFV (0.88 ± 0.18, 1.31 ± 0.30 and 1.06 ± 0.34, respectively, P < 0.05) and CBFV-O2Hb (0.10 ± 0.09, 0.12 ± 0.04 and 0.17 ± 0.08, respectively, P < 0.05) during the repeated sit-stand manoeuvre at 0.05 Hz. Even though the absolute changes in CBFV and cerebrovascular resistance index during the cerebrovascular CO2 reactivity were higher in the young group, the percentage changes in CBFV, cerebrovascular resistance index and O2Hb were similar in all age groups. In conclusion, there was no decline in dynamic cerebral autoregulation and cerebrovascular CO2 reactivity with increasing age up to 86 years. Despite the decrease in cerebral blood flow velocity and increase in cerebrovascular resistance with advancing age, CBFV and cortical oxygenation were not compromised in these elderly humans during manoeuvres that mimic daily life activities.
Collapse
Affiliation(s)
- Madelijn H Oudegeest-Sander
- * Department of Geriatric Medicine (925), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
188
|
Ferreri L, Aucouturier JJ, Muthalib M, Bigand E, Bugaiska A. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study. Front Hum Neurosci 2013; 7:779. [PMID: 24339807 PMCID: PMC3857524 DOI: 10.3389/fnhum.2013.00779] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/29/2013] [Indexed: 11/13/2022] Open
Abstract
Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer's patients.
Collapse
Affiliation(s)
- Laura Ferreri
- Laboratory for the Study of Learning and Development, CNRS UMR 5022, Department of Psychology, University of BurgundyDijon, France
| | | | - Makii Muthalib
- Movement to Health, EUROMOV, Montpellier-1 UniversityMontpellier, France
| | - Emmanuel Bigand
- Laboratory for the Study of Learning and Development, CNRS UMR 5022, Department of Psychology, University of BurgundyDijon, France
| | - Aurelia Bugaiska
- Laboratory for the Study of Learning and Development, CNRS UMR 5022, Department of Psychology, University of BurgundyDijon, France
| |
Collapse
|
189
|
Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy. Neuroimage 2013; 87:190-8. [PMID: 24220040 DOI: 10.1016/j.neuroimage.2013.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/19/2013] [Accepted: 11/02/2013] [Indexed: 11/20/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) measures slow hemodynamic signals noninvasively to indirectly infer the neuronal activity in the brain. However, it remains a controversy on whether this optical measurement technique can detect the optical neuronal signal, which reflects the optical changes directly associated with neuronal activity, within the visual cortex of human and non-human primates. By carefully reviewing the important factors in the detection of optical neuronal signals, we aim to investigate the feasibility of performing NIRS measurements of optical neuronal signals within the visual cortex in humans. To ensure a strong optical neuronal response, a full-field circular black and white reversing checkerboard stimulus was presented, and the reversal frequency was carefully chosen. We used a homemade continuous wave (CW) NIRS system with high detection sensitivity (of the order of 0.1 pW) to record a large area of the visual cortex (approximately 6 × 14 cm(2)). EEG was simultaneously acquired with the optical signal. Based on the mathematical morphology, we adapted the filter proposed by Gratton et al. to remove the influence of arterial pulsation and facilitate the detection and elimination of unknown artifacts from the data. We obtained reliable optical neuronal signals in 77% of the participants (10 out of 13). The amplitudes (latencies) of the obtained optical neuronal signals corresponding to the 785 and 850 nm wavelengths were 0.017 ± 0.003% (94.7 ± 8.4 ms) and 0.025 ± 0.006% (99.0 ± 7.7 ms), respectively. There were no significant differences between the latencies of the N75 component of the visual evoked potential (VEP) and optical neuronal signals at either wavelength. This is the first study to report optical neuronal signals within the visual cortex in the intact human brain using a CW NIRS system. These results indicate the feasibility of measuring noninvasive optical neuronal signals using a CW NIRS system with high detection sensitivity.
Collapse
|
190
|
Koenraadt KLM, Duysens J, Rijken H, van Nes IJW, Keijsers NLW. Preserved foot motor cortex in patients with complete spinal cord injury: a functional near-infrared spectroscopic study. Neurorehabil Neural Repair 2013; 28:179-87. [PMID: 24213959 DOI: 10.1177/1545968313508469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Since the brain is intact, persons with a spinal cord injury (SCI) might benefit from a brain-computer interface (BCI) to improve mobility by making use of functional near-infrared spectroscopy (fNIRS). OBJECTIVE We aimed to use fNIRS to detect contralateral primary motor cortex activity during attempted foot movements in participants with complete SCI. METHODS A 6-channel fNIRS, including 2 reference channels, measured relative concentration changes of oxy- (HbO) and deoxy-hemoglobin (HbR) in the contralateral motor cortex for the right foot. Seven subjects, studied within 18 months after injury, performed 12 trials of attempted right foot and real hand movements. RESULTS T tests revealed significant HbO and HbR responses of the left motor cortex for attempted foot movements, but not for right hand movements. A 2-way repeated-measures analysis of variance revealed a larger decrease in HbR for attempted foot movements compared to hand movements. Individual results show major interindividual differences in (number of) channels activated and the sensitive chromophore (HbR or HbO). CONCLUSIONS On group level, activity in the motor cortex of the foot can be measured with fNIRS in patients with complete SCI during attempted foot movements and might in principle be used in future BCI studies and applications.
Collapse
|
191
|
Prefrontal Cortex Activated Bilaterally by a Tilt Board Balance Task: A Functional Near-Infrared Spectroscopy Study in a Semi-Immersive Virtual Reality Environment. Brain Topogr 2013; 27:353-65. [DOI: 10.1007/s10548-013-0320-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/25/2013] [Indexed: 12/14/2022]
|
192
|
Koenraadt KLM, Duysens J, Meddeler BM, Keijsers NLW. Hand tapping at mixed frequencies requires more motor cortex activity compared to single frequencies: an fNIRS study. Exp Brain Res 2013; 231:231-7. [DOI: 10.1007/s00221-013-3686-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|
193
|
Derosiere G, Billot M, Ward ET, Perrey S. Adaptations of Motor Neural Structures' Activity to Lapses in Attention. Cereb Cortex 2013; 25:66-74. [DOI: 10.1093/cercor/bht206] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
194
|
Strangman GE, Li Z, Zhang Q. Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template. PLoS One 2013; 8:e66319. [PMID: 23936292 PMCID: PMC3731322 DOI: 10.1371/journal.pone.0066319] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/29/2013] [Indexed: 11/29/2022] Open
Abstract
Understanding the spatial and depth sensitivity of non-invasive near-infrared spectroscopy (NIRS) measurements to brain tissue–i.e., near-infrared neuromonitoring (NIN) – is essential for designing experiments as well as interpreting research findings. However, a thorough characterization of such sensitivity in realistic head models has remained unavailable. In this study, we conducted 3,555 Monte Carlo (MC) simulations to densely cover the scalp of a well-characterized, adult male template brain (Colin27). We sought to evaluate: (i) the spatial sensitivity profile of NIRS to brain tissue as a function of source-detector separation, (ii) the NIRS sensitivity to brain tissue as a function of depth in this realistic and complex head model, and (iii) the effect of NIRS instrument sensitivity on detecting brain activation. We found that increasing the source-detector (SD) separation from 20 to 65 mm provides monotonic increases in sensitivity to brain tissue. For every 10 mm increase in SD separation (up to ∼45 mm), sensitivity to gray matter increased an additional 4%. Our analyses also demonstrate that sensitivity in depth (S) decreases exponentially, with a “rule-of-thumb” formula S = 0.75*0.85depth. Thus, while the depth sensitivity of NIRS is not strictly limited, NIN signals in adult humans are strongly biased towards the outermost 10–15 mm of intracranial space. These general results, along with the detailed quantitation of sensitivity estimates around the head, can provide detailed guidance for interpreting the likely sources of NIRS signals, as well as help NIRS investigators design and plan better NIRS experiments, head probes and instruments.
Collapse
Affiliation(s)
- Gary E Strangman
- Neural Systems Group, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts, USA.
| | | | | |
Collapse
|
195
|
Discomfort and the cortical haemodynamic response to coloured gratings. Vision Res 2013; 89:47-53. [DOI: 10.1016/j.visres.2013.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/26/2013] [Accepted: 07/03/2013] [Indexed: 11/19/2022]
|
196
|
Kamran MA, Hong KS. Linear parameter-varying model and adaptive filtering technique for detecting neuronal activities: an fNIRS study. J Neural Eng 2013; 10:056002. [PMID: 23893789 DOI: 10.1088/1741-2560/10/5/056002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique that measures brain activities by using near-infrared light of 650-950 nm wavelength. The major advantages of fNIRS are its low cost, portability, and good temporal resolution as a plausible solution to real-time imaging. Recent research has shown the great potential of fNIRS as a tool for brain-computer interfaces. APPROACH This paper presents the first novel technique for fNIRS-based modelling of brain activities using the linear parameter-varying (LPV) method and adaptive signal processing. The output signal of each channel is assumed to be an output of an LPV system with unknown coefficients that are optimally estimated by the affine projection algorithm. The parameter vector is assumed to be Gaussian. MAIN RESULTS The general linear model (GLM) is very popular and is a commonly used method for the analysis of functional MRI data, but it has certain limitations in the case of optical signals. The proposed model is more efficient in the sense that it allows the user to define more states. Moreover, unlike most previous models, it is online. The present results, showing improvement, were verified by random finger-tapping tasks in extensive experiments. We used 24 states, which can be reduced or increased depending on the cost of computation and requirements. SIGNIFICANCE The t-statistics were employed to determine the activation maps and to verify the significance of the results. Comparison of the proposed technique and two existing GLM-based algorithms shows an improvement in the estimation of haemodynamic response. Additionally, the convergence of the proposed algorithm is shown by error reduction in consecutive iterations.
Collapse
Affiliation(s)
- M Ahmad Kamran
- Department of Cogno-Mechatronics Engineering, Pusan National University, San 30 Jangjeon-dong Geumjeong-gu, Busan 609-735, Korea
| | | |
Collapse
|
197
|
Mesquita RC, Faseyitan OK, Turkeltaub PE, Buckley EM, Thomas A, Kim MN, Durduran T, Greenberg JH, Detre JA, Yodh AG, Hamilton RH. Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:067006. [PMID: 23757042 PMCID: PMC3678989 DOI: 10.1117/1.jbo.18.6.067006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcranial magnetic stimulation (TMS) modulates processing in the human brain and is therefore of interest as a treatment modality for neurologic conditions. During TMS administration, an electric current passing through a coil on the scalp creates a rapidly varying magnetic field that induces currents in the cerebral cortex. The effects of low-frequency (1 Hz), repetitive TMS (rTMS) on motor cortex cerebral blood flow (CBF) and tissue oxygenation in seven healthy adults, during/after 20 min stimulation, is reported. Noninvasive optical methods are employed: diffuse correlation spectroscopy (DCS) for blood flow and diffuse optical spectroscopy (DOS) for hemoglobin concentrations. A significant increase in median CBF (33%) on the side ipsilateral to stimulation was observed during rTMS and persisted after discontinuation. The measured hemodynamic parameter variations enabled computation of relative changes in cerebral metabolic rate of oxygen consumption during rTMS, which increased significantly (28%) in the stimulated hemisphere. By contrast, hemodynamic changes from baseline were not observed contralateral to rTMS administration (all parameters, p>0.29). In total, these findings provide new information about hemodynamic/metabolic responses to low-frequency rTMS and, importantly, demonstrate the feasibility of DCS/DOS for noninvasive monitoring of TMS-induced physiologic effects.
Collapse
Affiliation(s)
- Rickson C Mesquita
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study. Neuroimage 2013; 85 Pt 1:451-60. [PMID: 23684867 DOI: 10.1016/j.neuroimage.2013.05.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/17/2013] [Accepted: 05/03/2013] [Indexed: 12/14/2022] Open
Abstract
Previous functional near-infrared spectroscopy (fNIRS) studies indicated that the prefrontal cortex (PFC) is involved in the maintenance of the postural balance after external perturbations. So far, no studies have been conducted to investigate the PFC hemodynamic response to virtual reality (VR) tasks that could be adopted in the field of functional neurorehabilitation. The aim of this fNIRS study was to assess PFC oxygenation response during an incremental and a control swing balance task (ISBT and CSBT, respectively) in a semi-immersive VR environment driven by a depth-sensing camera. It was hypothesized that: i) the PFC would be bilaterally activated in response to the increase of the ISBT difficulty, as this cortical region is involved in the allocation of attentional resources to maintain postural control; and ii) the PFC activation would be greater in the right than in the left hemisphere considering its dominance for visual control of body balance. To verify these hypotheses, 16 healthy male subjects were requested to stand barefoot while watching a 3 dimensional virtual representation of themselves projected onto a screen. They were asked to maintain their equilibrium on a virtual blue swing board susceptible to external destabilizing perturbations (i.e., randomizing the forward-backward direction of the impressed pulse force) during a 3-min ISBT (performed at four levels of difficulty) or during a 3-min CSBT (performed constantly at the lowest level of difficulty of the ISBT). The center of mass (COM), at each frame, was calculated and projected on the floor. When the subjects were unable to maintain the COM over the board, this became red (error). After each error, the time required to bring back the COM on the board was calculated (returning time). An eight-channel continuous wave fNIRS system was employed for measuring oxygenation changes (oxygenated-hemoglobin, O2Hb; deoxygenated-hemoglobin, HHb) related to the PFC activation (Brodmann Areas 10, 11 and 46). The results have indicated that the errors increased between the first and the second level of difficulty of the ISBT, then decreased and remained constant; the returning time progressively increased during the first three levels of difficulty and then remained constant. During the CSBT, the errors and the returning time did not change. In the ISBT, the increase of the first three levels of difficulty was accompanied by a progressive increase in PFC O2Hb and a less consistent decrease in HHb. A tendency to plateau was observable for PFC O2Hb and HHb changes in the fourth level of difficulty of the ISBT, which could be partly explained by a learning effect. A right hemispheric lateralization was not found. A lower amplitude of increase in O2Hb and decrease in HHb was found in the PFC in response to the CSBT with respect to the ISBT. This study has demonstrated that the oxygenation increased over the PFC while performing an ISBT in a semi-immersive VR environment. These data reinforce the involvement of the PFC in attention-demanding balance tasks. Considering the adaptability of this virtual balance task to specific neurological disorders, the absence of motion sensing devices, and the motivating/safe semi-immersive VR environment, the ISBT adopted in this study could be considered valuable for diagnostic testing and for assessing the effectiveness of functional neurorehabilitation.
Collapse
|
199
|
Ando S, Hatamoto Y, Sudo M, Kiyonaga A, Tanaka H, Higaki Y. The effects of exercise under hypoxia on cognitive function. PLoS One 2013; 8:e63630. [PMID: 23675496 PMCID: PMC3651238 DOI: 10.1371/journal.pone.0063630] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 04/04/2013] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence suggests that cognitive function improves during a single bout of moderate exercise. In contrast, exercise under hypoxia may compromise the availability of oxygen. Given that brain function and tissue integrity are dependent on a continuous and sufficient oxygen supply, exercise under hypoxia may impair cognitive function. However, it remains unclear how exercise under hypoxia affects cognitive function. The purpose of this study was to examine the effects of exercise under different levels of hypoxia on cognitive function. Twelve participants performed a cognitive task at rest and during exercise at various fractions of inspired oxygen (FIO2: 0.209, 0.18, and 0.15). Exercise intensity corresponded to 60% of peak oxygen uptake under normoxia. The participants performed a Go/No-Go task requiring executive control. Cognitive function was evaluated using the speed of response (reaction time) and response accuracy. We monitored pulse oximetric saturation (SpO2) and cerebral oxygenation to assess oxygen availability. SpO2 and cerebral oxygenation progressively decreased during exercise as the FIO2 level decreased. Nevertheless, the reaction time in the Go-trial significantly decreased during moderate exercise. Hypoxia did not affect reaction time. Neither exercise nor difference in FIO2 level affected response accuracy. An additional experiment indicated that cognitive function was not altered without exercise. These results suggest that the improvement in cognitive function is attributable to exercise, and that hypoxia has no effects on cognitive function at least under the present experimental condition. Exercise-cognition interaction should be further investigated under various environmental and exercise conditions.
Collapse
Affiliation(s)
- Soichi Ando
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
200
|
Minett GM, Duffield R, Billaut F, Cannon J, Portus MR, Marino FE. Cold-water immersion decreases cerebral oxygenation but improves recovery after intermittent-sprint exercise in the heat. Scand J Med Sci Sports 2013; 24:656-66. [PMID: 23458430 DOI: 10.1111/sms.12060] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2013] [Indexed: 11/26/2022]
Abstract
This study examined the effects of post-exercise cooling on recovery of neuromuscular, physiological, and cerebral hemodynamic responses after intermittent-sprint exercise in the heat. Nine participants underwent three post-exercise recovery trials, including a control (CONT), mixed-method cooling (MIX), and cold-water immersion (10 °C; CWI). Voluntary force and activation were assessed simultaneously with cerebral oxygenation (near-infrared spectroscopy) pre- and post-exercise, post-intervention, and 1-h and 24-h post-exercise. Measures of heart rate, core temperature, skin temperature, muscle damage, and inflammation were also collected. Both cooling interventions reduced heart rate, core, and skin temperature post-intervention (P < 0.05). CWI hastened the recovery of voluntary force by 12.7 ± 11.7% (mean ± SD) and 16.3 ± 10.5% 1-h post-exercise compared to MIX and CONT, respectively (P < 0.01). Voluntary force remained elevated by 16.1 ± 20.5% 24-h post-exercise after CWI compared to CONT (P < 0.05). Central activation was increased post-intervention and 1-h post-exercise with CWI compared to CONT (P < 0.05), without differences between conditions 24-h post-exercise (P > 0.05). CWI reduced cerebral oxygenation compared to MIX and CONT post-intervention (P < 0.01). Furthermore, cooling interventions reduced cortisol 1-h post-exercise (P < 0.01), although only CWI blunted creatine kinase 24-h post-exercise compared to CONT (P < 0.05). Accordingly, improvements in neuromuscular recovery after post-exercise cooling appear to be disassociated with cerebral oxygenation, rather reflecting reductions in thermoregulatory demands to sustain force production.
Collapse
Affiliation(s)
- G M Minett
- School of Human Movement Studies, Charles Sturt University, Bathurst, NSW, Australia.,School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, Qld, Australia
| | - R Duffield
- School of Human Movement Studies, Charles Sturt University, Bathurst, NSW, Australia.,Sport and Exercise Discipline Group, UTS: Health, University of Technology Sydney (UTS), Lindfield, NSW, Australia
| | - F Billaut
- Institut National du Sport du Québec, Montréal, QC, Canada.,School of Sport and Exercise Science, Victoria University, Melbourne, Vic, Australia
| | - J Cannon
- School of Human Movement Studies, Charles Sturt University, Bathurst, NSW, Australia
| | - M R Portus
- Sport Science Sport Medicine Unit, Cricket Australia Centre of Excellence, Albion, Qld, Australia.,Praxis Sport Science, Paddington, Qld, Australia
| | - F E Marino
- School of Human Movement Studies, Charles Sturt University, Bathurst, NSW, Australia
| |
Collapse
|