151
|
Physical exercise-induced adult neurogenesis: a good strategy to prevent cognitive decline in neurodegenerative diseases? BIOMED RESEARCH INTERNATIONAL 2014; 2014:403120. [PMID: 24818140 PMCID: PMC4000963 DOI: 10.1155/2014/403120] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/16/2014] [Accepted: 02/16/2014] [Indexed: 01/19/2023]
Abstract
Cumulative evidence has indicated that there is an important role for adult hippocampal neurogenesis in cognitive function. With the increasing prevalence of cognitive decline associated with neurodegenerative diseases among the ageing population, physical exercise, a potent enhancer of adult hippocampal neurogenesis, has emerged as a potential preventative strategy/treatment to reduce cognitive decline. Here we review the functional role of adult hippocampal neurogenesis in learning and memory, and how this form of structural plasticity is altered in neurodegenerative diseases known to involve cognitive impairment. We further discuss how physical exercise may contribute to cognitive improvement in the ageing brain by preserving adult neurogenesis, and review the recent approaches for measuring changes in neurogenesis in the live human brain.
Collapse
|
152
|
Phillips O, Squitieri F, Sanchez-Castaneda C, Elifani F, Griguoli A, Maglione V, Caltagirone C, Sabatini U, Di Paola M. The Corticospinal Tract in Huntington's Disease. Cereb Cortex 2014; 25:2670-82. [PMID: 24706734 DOI: 10.1093/cercor/bhu065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is characterized by progressive motor impairment. Therefore, the connectivity of the corticospinal tract (CST), which is the main white matter (WM) pathway that conducts motor impulses from the primary motor cortex to the spinal cord, merits particular attention. WM abnormalities have already been shown in presymptomatic (Pre-HD) and symptomatic HD subjects using magnetic resonance imaging (MRI). In the present study, we examined CST microstructure using diffusion tensor imaging (DTI)-based tractography in 30-direction DTI data collected from 100 subjects: Pre-HD subjects (n = 25), HD patients (n = 25) and control subjects (n = 50), and T2*-weighted (iron sensitive) imaging. Results show decreased fractional anisotropy (FA) and increased axial (AD), and radial diffusivity (RD) in the bilateral CST of HD patients. Pre-HD subjects had elevated iron in the left CST, regionally localized between the brainstem and thalamus. CAG repeat length in conjunction with age, as well as motor (UHDRS) assessment were correlated with CST FA, AD, and RD both in Pre-HD and HD. In the presymptomatic phase, increased iron in the inferior portion supports the "dying back" hypothesis that axonal damage advances in a retrograde fashion. Furthermore, early iron alteration may cause a high level of toxicity, which may contribute to further damage.
Collapse
Affiliation(s)
- O Phillips
- Clinical and Behavioral Neurology Department, Rome, Italy
| | | | | | - F Elifani
- IRCCS Neuromed (Pozzilli), Pozzilli, Italy
| | - A Griguoli
- IRCCS Neuromed (Pozzilli), Pozzilli, Italy
| | - V Maglione
- IRCCS Neuromed (Pozzilli), Pozzilli, Italy
| | - C Caltagirone
- Clinical and Behavioral Neurology Department, Rome, Italy Neuroscience Department, University of Rome 'Tor Vergata', Rome, Italy
| | - U Sabatini
- Radiology Department, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Di Paola
- Clinical and Behavioral Neurology Department, Rome, Italy Department of Internal Medicine and Public Health, University of L'Aquila, Rome, Italy
| |
Collapse
|
153
|
Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH, Scahill RI, Leavitt BR, Stout JC, Paulsen JS, Reilmann R, Unschuld PG, Wexler A, Margolis RL, Tabrizi SJ. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 2014; 10:204-16. [PMID: 24614516 DOI: 10.1038/nrneurol.2014.24] [Citation(s) in RCA: 713] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Huntington disease (HD) can be seen as a model neurodegenerative disorder, in that it is caused by a single genetic mutation and is amenable to predictive genetic testing, with estimation of years to predicted onset, enabling the entire range of disease natural history to be studied. Structural neuroimaging biomarkers show that progressive regional brain atrophy begins many years before the emergence of diagnosable signs and symptoms of HD, and continues steadily during the symptomatic or 'manifest' period. The continued development of functional, neurochemical and other biomarkers raises hopes that these biomarkers might be useful for future trials of disease-modifying therapeutics to delay the onset and slow the progression of HD. Such advances could herald a new era of personalized preventive therapeutics. We describe the natural history of HD, including the timing of emergence of motor, cognitive and emotional impairments, and the techniques that are used to assess these features. Building on this information, we review recent progress in the development of biomarkers for HD, and potential future roles of these biomarkers in clinical trials.
Collapse
Affiliation(s)
- Christopher A Ross
- Division of Neurobiology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Russell L Margolis
- Division of Neurobiology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | |
Collapse
|
154
|
Novak MJ, Seunarine KK, Gibbard CR, Hobbs NZ, Scahill RI, Clark CA, Tabrizi SJ. White matter integrity in premanifest and early Huntington's disease is related to caudate loss and disease progression. Cortex 2014; 52:98-112. [DOI: 10.1016/j.cortex.2013.11.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 08/26/2013] [Accepted: 11/25/2013] [Indexed: 11/26/2022]
|
155
|
Collins LM, Lazic SE, Barker RA. A retrospective analysis of hand tapping as a longitudinal marker of disease progression in Huntington's disease. BMC Neurol 2014; 14:35. [PMID: 24564568 PMCID: PMC3937529 DOI: 10.1186/1471-2377-14-35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 02/21/2014] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Current clinical assessments of motor function in Huntington's Disease (HD) rely on subjective ratings such as the Unified Huntington's Disease Rating scale (UHDRS). The ability to track disease progression using simple, objective, inexpensive, and robust measures would be beneficial. METHODS One objective measure of motor performance is hand-tapping. Over the last 14 years we have routinely collected, using a simple device, the number of taps made by the right and left hand over 30 seconds in HD patients attending our NHS clinics. RESULTS Here we report on a longitudinal cohort of 237 patients, which includes patients at all stages of the disease on a wide range of drug therapies. Hand tapping in these patients declines linearly at a rate of 5.1 taps per year (p < 0.0001; 95% CI = 3.8 to 6.3 taps), and for each additional year of age patients could perform 0.9 fewer taps (main effect of age: p = 0.0007; 95% CI = 0.4 to 1.4). Individual trajectories can vary widely around this average rate of decline, and much of this variation could be attributed to CAG repeat length. Genotype information was available for a subset of 151 patients, and for each additional repeat, patients could perform 5.6 fewer taps (p < 0.0001; 95% CI = 3.3 to 8.0 taps), and progressed at a faster rate of 0.45 fewer taps per year (CAG by time interaction: p = 0.008; 95% CI = 0.12 to 0.78 taps). In addition, for each unit decrease in Total Functional Capacity (TFC) within individuals, the number of taps decreased by 6.3 (95% CI = 5.4 to 7.1, p < 0.0001). CONCLUSIONS Hand tapping is a simple, robust, and reliable marker of disease progression. As such, this simple motor task could be a useful tool by which to assess disease progression as well therapies designed to slow it down.
Collapse
Affiliation(s)
| | - Stanley E Lazic
- In Silico Lead Discovery, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
156
|
Scharmüller W, Ille R, Schienle A. Cerebellar contribution to anger recognition deficits in Huntington's disease. CEREBELLUM (LONDON, ENGLAND) 2013; 12:819-25. [PMID: 23709228 PMCID: PMC4495283 DOI: 10.1007/s12311-013-0492-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although there is increasing evidence that cerebellar loss of grey matter volume (GMV) is associated with affective deficits, this has not been tested for patients suffering from Huntington's disease (HD), who show a pronounced impairment in the recognition of anger. We assessed GMV in 18 symptomatic HD patients and 18 healthy controls using voxel-based morphometry. The GMV of cerebellar subregions was correlated with participants' intensity and accuracy ratings for facial expressions of basic emotions from the Karolinska Directed Emotional Faces (Lundqvist et al. 1998). The patients gave lower and less accurate anger ratings for angry faces than controls. This anger recognition deficit was correlated with atrophy of selected hemispheric and vermal regions of the cerebellum. Furthermore, cerebellar volume reductions of the HD patients were associated with longer disease duration and greater functional impairment. The data imply that anger recognition deficits could potentially serve as indicators of disease onset and progression in HD. Furthermore, the patients might profit from specific affect trainings.
Collapse
Affiliation(s)
- Wilfried Scharmüller
- Clinical Psychology, Department of Psychology, University of Graz, Universitätsplatz 2/III, 8010, Graz, Austria
| | | | | |
Collapse
|
157
|
Anglada-Huguet M, Xifró X, Giralt A, Zamora-Moratalla A, Martín ED, Alberch J. Prostaglandin E2 EP1 receptor antagonist improves motor deficits and rescues memory decline in R6/1 mouse model of Huntington's disease. Mol Neurobiol 2013; 49:784-95. [PMID: 24198227 DOI: 10.1007/s12035-013-8556-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/19/2013] [Indexed: 01/11/2023]
Abstract
In this study, we evaluated the potential beneficial effects of antagonizing prostaglandin E2 (PGE2) EP1 receptor on motor and memory deficits in Huntington's disease (HD). To this aim, we implanted an osmotic mini-pump system to chronically administrate an EP1 receptor antagonist (SC-51089) in the R6/1 mouse model of HD, from 13 to 18 weeks of age, and used different paradigms to assess motor and memory function. SC-51089 administration ameliorated motor coordination and balance dysfunction in R6/1 mice as analyzed by rotarod, balance beam, and vertical pole tasks. Long-term memory deficit was also rescued after EP1 receptor antagonism as assessed by the T-maze spontaneous alternation and the novel object recognition tests. Additionally, treatment with SC-51089 improved the expression of specific synaptic markers and reduced the number of huntingtin nuclear inclusions in the striatum and hippocampus of 18-week-old R6/1 mice. Moreover, electrophysiological studies showed that hippocampal long-term potentiation was significantly recovered in R6/1 mice after EP1 receptor antagonism. Altogether, these results show that the antagonism of PGE2 EP1 receptor has a strong therapeutic effect on R6/1 mice and point out a new therapeutic candidate to treat motor and memory deficits in HD.
Collapse
Affiliation(s)
- Marta Anglada-Huguet
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
158
|
Dendritic spine instability leads to progressive neocortical spine loss in a mouse model of Huntington's disease. J Neurosci 2013; 33:12997-3009. [PMID: 23926255 DOI: 10.1523/jneurosci.5284-12.2013] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Huntington's disease (HD), cognitive symptoms and cellular dysfunction precede the onset of classical motor symptoms and neuronal death in the striatum and cortex by almost a decade. This suggests that the early cognitive deficits may be due to a cellular dysfunction rather than being a consequence of neuronal loss. Abnormalities in dendritic spines are described in HD patients and in HD animal models. Available evidence indicates that altered spine and synaptic plasticity could underlie the motor as well as cognitive symptoms in HD. However, the exact kinetics of spine alterations and plasticity in HD remain unknown. We used long-term two-photon imaging through a cranial window, to track individual dendritic spines in a mouse model of HD (R6/2) as the disease progressed. In vivo imaging over a period of 6 weeks revealed a steady decrease in the density and survival of dendritic spines on cortical neurons of R6/2 mice compared with control littermates. Interestingly, we also observed increased spine formation in R6/2 mice throughout the disease. However, the probability that newly formed spines stabilized and transformed into persistent spines was greatly reduced compared with controls. In cultured neurons we found that mutant huntingtin causes a loss, in particular of mature spines. Furthermore, in R6/2 mice, aggregates of mutant huntingtin associate with dendritic spines. Alterations in dendritic spine dynamics, survival, and density in R6/2 mice were evident before the onset of motor symptoms, suggesting that decreased stability of the cortical synaptic circuitry underlies the early symptoms in HD.
Collapse
|
159
|
Hess CW, Ofori E, Akbar U, Okun MS, Vaillancourt DE. The evolving role of diffusion magnetic resonance imaging in movement disorders. Curr Neurol Neurosci Rep 2013; 13:400. [PMID: 24046183 PMCID: PMC3824956 DOI: 10.1007/s11910-013-0400-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significant advances have allowed diffusion magnetic resonance imaging (MRI) to evolve into a powerful tool in the field of movement disorders that can be used to study disease states and connectivity between brain regions. Diffusion MRI is a promising potential biomarker for Parkinson's disease and other forms of parkinsonism, and may allow the distinction of different forms of parkinsonism. Techniques such as tractography have contributed to our current thinking regarding the pathophysiology of dystonia and possible mechanisms of penetrance. Diffusion MRI measures could potentially assist in monitoring disease progression in Huntington's disease, and in uncovering the nature of the processes and structures involved the development of essential tremor. The ability to represent structural connectivity in vivo also makes diffusion MRI an ideal adjunctive tool for the surgical treatment of movement disorders. We review recent studies using diffusion MRI in movement disorders research and present the current state of the science as well as future directions.
Collapse
Affiliation(s)
- Christopher W. Hess
- Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
- University of Florida Center for Movement Disorders & Neurorestoration, Gainesville, FL, USA
- Neurology Service, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Edward Ofori
- Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - Umer Akbar
- University of Florida Center for Movement Disorders & Neurorestoration, Gainesville, FL, USA
| | - Michael S. Okun
- University of Florida Center for Movement Disorders & Neurorestoration, Gainesville, FL, USA
| | - David E. Vaillancourt
- Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
160
|
Shirbin CA, Chua P, Churchyard A, Lowndes G, Hannan AJ, Pang TY, Chiu E, Stout JC. Cortisol and depression in pre-diagnosed and early stage Huntington's disease. Psychoneuroendocrinology 2013; 38:2439-47. [PMID: 24074804 DOI: 10.1016/j.psyneuen.2012.10.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 01/05/2023]
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis dysfunction and depression have both been shown to occur in Huntington's disease (HD) gene carriers prior to diagnosis (pre-HD) and in diagnosed HD patients. However, the relationship between HPA axis dysfunction and the severity of depressive symptomatology in pre-HD and early-HD has not been systematically examined, despite morning hypercortisolism being a characteristic feature of some subtypes of idiopathic depression. The aim of this study was to investigate whether HPA axis function is related to levels of depression in pre-HD and early-HD. To assess HPA axis function we obtained salivary cortisol concentrations from 20 controls, 20 pre-HD, and 17 early-HD participants at four time points over a 24h period. Depression symptoms were assessed using the Inventory of Depressive Symptomatology - Self-Report. Of the participants who were found not to be depressed, the early-HD group had significantly lower morning cortisol levels relative to pre-HD and controls. In contrast, the early-HD group with at least mild or greater levels of depression symptoms had a comparable cortisol concentration to pre-HD and controls. The results suggest that early-HD may be associated with hypocortisolism. However when depressed, a hyperactive HPA axis response may still be induced in early-HD and lead to cortisol levels that are similar to pre-HD and controls. Our study reveals that cortisol levels in HD may be modified by the presence or absence of depressive symptomatology. Depression may be an important factor for understanding how the HPA axis is affected in HD, particularly in the morning.
Collapse
|
161
|
Faure A, Es-Seddiqi M, Brown BL, Nguyen HP, Riess O, von Hörsten S, Le Blanc P, Desvignes N, Bozon B, El Massioui N, Doyère V. Modified impact of emotion on temporal discrimination in a transgenic rat model of Huntington disease. Front Behav Neurosci 2013; 7:130. [PMID: 24133419 PMCID: PMC3783849 DOI: 10.3389/fnbeh.2013.00130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/10/2013] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is characterized by triad of motor, cognitive, and emotional symptoms along with neuropathology in fronto-striatal circuit and limbic system including amygdala. Emotional alterations, which have a negative impact on patient well-being, represent some of the earliest symptoms of HD and might be related to the onset of the neurodegenerative process. In the transgenic rat model (tgHD rats), evidence suggest emotional alterations at the symptomatic stage along with neuropathology of the central nucleus of amygdala (CE). Studies in humans and animals demonstrate that emotion can modulate time perception. The impact of emotion on time perception has never been tested in HD, nor is it known if that impact could be part of the presymptomatic emotional phenotype of the pathology. The aim of this paper was to characterize the effect of emotion on temporal discrimination in presymptomatic tgHD animals. In the first experiment, we characterized the acute effect of an emotion (fear) conditioned stimulus on temporal discrimination using a bisection procedure, and tested its dependency upon an intact central amygdala. The second experiment was aimed at comparing presymptomatic homozygous transgenic animals at 7-months of age and their wild-type littermates (WT) in their performance on the modulation of temporal discrimination by emotion. Our principal findings show that (1) a fear cue produces a short-lived decrease of temporal precision after its termination, and (2) animals with medial CE lesion and presymptomatic tgHD animals demonstrate an alteration of this emotion-evoked temporal distortion. The results contribute to our knowledge about the presymptomatic phenotype of this HD rat model, showing susceptibility to emotion that may be related to dysfunction of the central nucleus of amygdala.
Collapse
Affiliation(s)
- Alexis Faure
- Centre de Neurosciences Paris-Sud, Université Paris-Sud, UMR 8195 Orsay, France ; Centre National de la Recherche Scientifique Orsay, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
|
163
|
Phillips O, Sanchez-Castaneda C, Elifani F, Maglione V, Di Pardo A, Caltagirone C, Squitieri F, Sabatini U, Di Paola M. Tractography of the corpus callosum in Huntington's disease. PLoS One 2013; 8:e73280. [PMID: 24019913 PMCID: PMC3760905 DOI: 10.1371/journal.pone.0073280] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/18/2013] [Indexed: 12/22/2022] Open
Abstract
White matter abnormalities have been shown in presymptomatic and symptomatic Huntington's disease (HD) subjects using Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI) methods. The largest white matter tract, the corpus callosum (CC), has been shown to be particularly vulnerable; however, little work has been done to investigate the regional specificity of tract abnormalities in the CC. Thus, this study examined the major callosal tracts by applying DTI-based tractography. Using TrackVis, a previously defined region of interest tractography method parcellating CC into seven major tracts based on target region was applied to 30 direction DTI data collected from 100 subjects: presymptomatic HD (Pre-HD) subjects (n=25), HD patients (n=25) and healthy control subjects (n=50). Tractography results showed decreased fractional anisotropy (FA) and increased radial diffusivity (RD) across broad regions of the CC in Pre-HD subjects. Similar though more severe deficits were seen in HD patients. In Pre-HD and HD, callosal FA and RD were correlated with Disease Burden/CAG repeat length as well as motor (UHDRSI) and cognitive (URDRS2) assessments. These results add evidence that CC pathways are compromised prior to disease onset with possible demyelination occurring early in the disease and suggest that CAG repeat length is a contributing factor to connectivity deficits. Furthermore, disruption of these callosal pathways potentially contributes to the disturbances of motor and cognitive processing that characterize HD.
Collapse
Affiliation(s)
- Owen Phillips
- Clinical and Behavioural Neurology Department, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy
| | - Cristina Sanchez-Castaneda
- Radiology Department, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy
| | - Francesca Elifani
- Centre for Neurogenetics and Rare Diseases, Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy
| | - Vittorio Maglione
- Centre for Neurogenetics and Rare Diseases, Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy
| | - Alba Di Pardo
- Centre for Neurogenetics and Rare Diseases, Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy
| | - Carlo Caltagirone
- Clinical and Behavioural Neurology Department, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy
- Neuroscience Department, University of Rome “Tor Vergata,” Rome, Italy
| | - Ferdinando Squitieri
- Centre for Neurogenetics and Rare Diseases, Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy
| | - Umberto Sabatini
- Radiology Department, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy
| | - Margherita Di Paola
- Clinical and Behavioural Neurology Department, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy
- Department of Internal Medicine and Public Health, University of L’Aquila, L’Aquila, Italy
- * E-mail:
| |
Collapse
|
164
|
Kiferle L, Mazzucchi S, Unti E, Pesaresi I, Fabbri S, Nicoletti V, Volterrani D, Cosottini M, Bonuccelli U, Ceravolo R. Nigral involvement and nigrostriatal dysfunction in Huntington's disease: Evidences from an MRI and SPECT study. Parkinsonism Relat Disord 2013; 19:800-5. [DOI: 10.1016/j.parkreldis.2013.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/15/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
|
165
|
Loss of corticostriatal and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington's disease mice. Neurobiol Dis 2013; 60:89-107. [PMID: 23969239 DOI: 10.1016/j.nbd.2013.08.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/22/2013] [Accepted: 08/07/2013] [Indexed: 01/18/2023] Open
Abstract
Motor slowing, forebrain white matter loss, and striatal shrinkage have been reported in premanifest Huntington's disease (HD) prior to overt striatal neuron loss. We carried out detailed LM and EM studies in a genetically precise HD mimic, heterozygous Q140 HD knock-in mice, to examine the possibility that loss of corticostriatal and thalamostriatal terminals prior to striatal neuron loss underlies these premanifest HD abnormalities. In our studies, we used VGLUT1 and VGLUT2 immunolabeling to detect corticostriatal and thalamostriatal (respectively) terminals in dorsolateral (motor) striatum over the first year of life, prior to striatal projection neuron pathology. VGLUT1+ axospinous corticostriatal terminals represented about 55% of all excitatory terminals in striatum, and VGLUT2+ axospinous thalamostriatal terminals represented about 35%, with VGLUT1+ and VGLUT2+ axodendritic terminals accounting for the remainder. In Q140 mice, a significant 40% shortfall in VGLUT2+ axodendritic thalamostriatal terminals and a 20% shortfall in axospinous thalamostriatal terminals were already observed at 1 month of age, but VGLUT1+ terminals were normal in abundance. The 20% deficiency in VGLUT2+ thalamostriatal axospinous terminals persisted at 4 and 12 months in Q140 mice, and an additional 30% loss of VGLUT1+ corticostriatal terminals was observed at 12 months. The early and persistent deficiency in thalamostriatal axospinous terminals in Q140 mice may reflect a development defect, and the impoverishment of this excitatory drive to striatum may help explain early motor defects in Q140 mice and in premanifest HD. The loss of corticostriatal terminals at 1 year in Q140 mice is consistent with prior evidence from other mouse models of corticostriatal disconnection early during progression, and can explain both the measurable bradykinesia and striatal white matter loss in late premanifest HD.
Collapse
|
166
|
Functions of huntingtin in germ layer specification and organogenesis. PLoS One 2013; 8:e72698. [PMID: 23967334 PMCID: PMC3742581 DOI: 10.1371/journal.pone.0072698] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/12/2013] [Indexed: 12/23/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disease caused by abnormal polyglutamine expansion in the huntingtin protein (Htt). Although both Htt and the HD pathogenic mutation (mHtt) are implicated in early developmental events, their individual involvement has not been adequately explored. In order to better define the developmental functions and pathological consequences of the normal and mutant proteins, respectively, we employed embryonic stem cell (ESC) expansion, differentiation and induction experiments using huntingtin knock-out (KO) and mutant huntingtin knock-in (Q111) mouse ESC lines. In KO ESCs, we observed impairments in the spontaneous specification and survival of ectodermal and mesodermal lineages during embryoid body formation and under inductive conditions using retinoic acid and Wnt3A, respectively. Ablation of BAX improves cell survival, but failed to correct defects in germ layer specification. In addition, we observed ensuing impairments in the specification and maturation of neural, hepatic, pancreatic and cardiomyocyte lineages. These developmental deficits occurred in concert with alterations in Notch, Hes1 and STAT3 signaling pathways. Moreover, in Q111 ESCs, we observed differential developmental stage-specific alterations in lineage specification and maturation. We also observed changes in Notch/STAT3 expression and activation. Our observations underscore essential roles of Htt in the specification of ectoderm, endoderm and mesoderm, in the specification of neural and non-neural organ-specific lineages, as well as cell survival during early embryogenesis. Remarkably, these developmental events are differentially deregulated by mHtt, raising the possibility that HD-associated early developmental impairments may contribute not only to region-specific neurodegeneration, but also to non-neural co-morbidities.
Collapse
|
167
|
Rué L, Alcalá-Vida R, López-Soop G, Creus-Muncunill J, Alberch J, Pérez-Navarro E. Early down-regulation of PKCδ as a pro-survival mechanism in Huntington's disease. Neuromolecular Med 2013; 16:25-37. [PMID: 23896721 DOI: 10.1007/s12017-013-8248-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/12/2013] [Indexed: 11/29/2022]
Abstract
A balance between cell survival and apoptosis is crucial to avoid neurodegeneration. Here, we analyzed whether the pro-apoptotic protein PKCδ, and the pro-survival PKCα and βII, were dysregulated in the brain of R6/1 mouse model of Huntington's disease (HD). Protein levels of the three PKCs examined were reduced in all the brain regions analyzed being PKCδ the most affected isoform. Interestingly, PKCδ protein levels were also decreased in the striatum and cortex of R6/2 and Hdh(Q111/Q111) mice, and in the putamen of HD patients. Nuclear PKCδ induces apoptosis, but we detected reduced PKCδ in both cytoplasmic and nuclear enriched fractions from R6/1 mouse striatum, cortex and hippocampus. In addition, we show that phosphorylation and ubiquitination of PKCδ are increased in 30-week-old R6/1 mouse brain. All together these results suggest a pro-survival role of reduced PKCδ levels in response to mutant huntingtin-induced toxicity. In fact, we show that over-expression of PKCδ increases mutant huntingtin-induced cell death in vitro, whereas over-expression of a PKCδ dominant negative form or silencing of endogenous PKCδ partially blocks mutant huntingtin-induced cell death. Finally, we show that the analysis of lamin B protein levels could be a good marker of PKCδ activity, but it is not involved in PKCδ-mediated cell death in mutant huntingtin-expressing cells. In conclusion, our results suggest that neurons increase the degradation of PKCδ as a compensatory pro-survival mechanism in response to mutant huntingtin-induced toxicity that can help to understand why cell death appears late in the disease.
Collapse
Affiliation(s)
- Laura Rué
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Casanova 143, Barcelona, 08036, Spain
| | | | | | | | | | | |
Collapse
|
168
|
Mazarei G, Budac DP, Lu G, Adomat H, Tomlinson Guns ES, Möller T, Leavitt BR. Age-dependent alterations of the kynurenine pathway in the YAC128 mouse model of Huntington disease. J Neurochem 2013; 127:852-67. [PMID: 23786539 DOI: 10.1111/jnc.12350] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 02/03/2023]
Abstract
Indoleamine 2,3 dioxygenase (Ido1), the first and rate-limiting enzyme of the kynurenine pathway (KP), is a striatally enriched gene with increased expression levels in the YAC128 mouse model of Huntington disease (HD). Our objective in this study was to delineate age-related KP alterations in this model. Three enzymes potentially catalyze the first step of the KP; Ido1 and Indoleamine 2,3 dioxygenase-2 were highly expressed in the striatum and Tryptophan 2,3 dioxygenase (Tdo2) in the cerebellum. During development, Ido1 mRNA expression is dynamically regulated and chronically up-regulated in YAC128 mice. Kynurenine (Kyn) to tryptophan (Trp) ratio, a measure of activity in the first step of the KP, was elevated in YAC128 striatum, but no change in Tdo2 mRNA levels or Kyn to Trp ratio was detected in the cerebellum. Ido1 induction was coincident with Trp depletion at 3 months and Kyn accumulation at 12 months of age in striatum. Changes in downstream KP metabolites of YAC128 mice generally followed a biphasic pattern with neurotoxic metabolites reduced at 3 months and increased at 12 months of age. Striatally specific induction of Ido1 and downstream KP alterations suggest involvement in HD pathogenesis, and should be taken into account in future therapeutic developments for HD.
Collapse
Affiliation(s)
- Gelareh Mazarei
- Centre for Molecular Medicine & Therapeutics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
169
|
Sánchez‐Castañeda C, Cherubini A, Elifani F, Péran P, Orobello S, Capelli G, Sabatini U, Squitieri F. Seeking Huntington disease biomarkers by multimodal, cross-sectional basal ganglia imaging. Hum Brain Mapp 2013; 34:1625-35. [PMID: 22359398 PMCID: PMC6870326 DOI: 10.1002/hbm.22019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 11/08/2011] [Accepted: 11/21/2011] [Indexed: 11/05/2022] Open
Abstract
Neurodegeneration of the striatum in Huntington disease (HD) is characterized by loss of medium-spiny neurons, huntingtin nuclear inclusions, reactive gliosis, and iron accumulation. Neuroimaging allows in vivo detection of the macro- and micro-structural changes that occur from presymptomatic stages of the disease (preHD). The aim of our study was to evaluate the reliability of multimodal imaging as an in vivo biomarker of vulnerability and development of the disease and to characterize macro- and micro-structural changes in subcortical nuclei in HD. Macrostructure (T1-weighted images), microstructure (diffusion tensor imaging), and iron content (R 2* relaxometry) of subcortical nuclei and medial temporal lobe structures were evaluated by a 3 T scanner in 17 preHD carriers, 12 early-stage patients and 29 matched controls. We observed a volume reduction and microstructural changes in the basal ganglia (caudate, putamen, and globus pallidus) and iron accumulation in the globus pallidus in both preHD and symptomatic subjects; all these features were significantly more pronounced in patients, in whom degeneration extended to the other subcortical nuclei (i.e., thalamus and accumbens). Mean diffusivity (MD) was the most powerful predictor in models explaining more than 50% of the variability in HD development in the caudate, putamen, and thalamus. These findings suggest that the measurement of MD may further enhance the well-known predictive value of striatal volume to assess disease progression as it is highly sensitive to tissue microimpairment. Multimodal imaging may detect brain changes even in preHD stages.
Collapse
Affiliation(s)
- Cristina Sánchez‐Castañeda
- Department of Radiology, IRCCS Santa Lucia, Rome, Italy
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, IDIBAPS, Barcelona, Spain
| | | | - Francesca Elifani
- Centre for Neurogenetics and Rare Diseases, IRCCS Neuromed, Pozzilli, Italy
| | - Patrice Péran
- Department of Radiology, IRCCS Santa Lucia, Rome, Italy
- INSERM U825, Université Paul‐Sabatier, Toulouse, France
| | - Sara Orobello
- Centre for Neurogenetics and Rare Diseases, IRCCS Neuromed, Pozzilli, Italy
| | - Giovanni Capelli
- Department of Health and Sport Sciences, University of Cassino, University of Cassino, Cassino, Italy
| | | | | |
Collapse
|
170
|
Unschuld PG, Liu X, Shanahan M, Margolis RL, Bassett SS, Brandt J, Schretlen DJ, Redgrave GW, Hua J, Hock C, Reading SA, van Zijl PCM, Pekar JJ, Ross CA. Prefrontal executive function associated coupling relates to Huntington's disease stage. Cortex 2013; 49:2661-73. [PMID: 23906595 DOI: 10.1016/j.cortex.2013.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/06/2013] [Accepted: 05/26/2013] [Indexed: 01/21/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by cytosine-adenine-guanine (CAG)-repeat expansion in the huntingtin (HTT) gene. Early changes that may precede clinical manifestation of movement disorder include executive dysfunction. The aim of this study was to identify functional network correlates of impaired higher cognitive functioning in relation to HD stage. Blood-oxygenation-level-dependent (BOLD) functional-magnetic resonance imaging (fMRI) and structural-MRI were performed in 53 subjects with the HD-mutation (41 prodromals, 12 early affected) and 52 controls. Disease stage was estimated for each subject with HD-mutation based on age, length of the CAG-repeat expansion mutation and also putaminal atrophy. The Tower of London test was administered with three levels of complexity during fMRI as a challenge of executive function. Functional brain networks of interest were identified based on cortical gray matter voxel-clusters with significantly enhanced task-related functional coupling to the medial prefrontal cortex (MPFC) area. While prodromal HD-subjects showed similar performance levels as controls, multivariate analysis of task-related functional coupling to the MPFC identified reduced connectivity in prodromal and early manifest HD-subjects for a cluster including mainly parts of the left premotor area. Secondary testing indicated a significant moderator effect for task complexity on group differences and on the degree of correlation to measures of HD stage. Our data suggest that impaired premotor-MPFC coupling reflects HD stage related dysfunction of cognitive systems involved in executive function and may be present in prodromal HD-subjects that are still cognitively normal. Additional longitudinal studies may reveal temporal relationships between impaired task-related premotor-MPFC coupling and other brain changes in HD.
Collapse
Affiliation(s)
- Paul G Unschuld
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Psychiatry Research and Psychogeriatric Medicine, University of Zürich, Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Valor LM, Guiretti D, Lopez-Atalaya JP, Barco A. Genomic landscape of transcriptional and epigenetic dysregulation in early onset polyglutamine disease. J Neurosci 2013; 33:10471-82. [PMID: 23785159 PMCID: PMC6618595 DOI: 10.1523/jneurosci.0670-13.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 01/09/2023] Open
Abstract
Transcriptional dysregulation is an important early feature of polyglutamine diseases. One of its proposed causes is defective neuronal histone acetylation, but important aspects of this hypothesis, such as the precise genomic topography of acetylation deficits and the relationship between transcriptional and acetylation alterations at the whole-genome level, remain unknown. The new techniques for the mapping of histone post-translational modifications at genomic scale enable such global analyses and are challenging some assumptions about the role of specific histone modifications in gene expression. We examined here the genome-wide correlation of histone acetylation and gene expression defects in a mouse model of early onset Huntington's disease. Our analyses identified hundreds of loci that were hypoacetylated for H3K9,14 and H4K12 in the chromatin of these mice. Surprisingly, few genes with altered transcript levels in mutant mice showed significant changes in these acetylation marks and vice versa. Our screen, however, identified a subset of genes in which H3K9,14 deacetylation and transcriptional dysregulation concur. Genes in this group were consistently affected in different brain areas, mouse models, and tissue from patients, which suggests a role in the etiology of this pathology. Overall, the combination of histone acetylation and gene expression screenings demonstrates that histone deacetylation and transcriptional dysregulation are two early, largely independent, manifestations of polyglutamine disease and suggests that additional epigenetic marks or mechanisms are required for explaining the full range of transcriptional alterations associated with this disorder.
Collapse
Affiliation(s)
- Luis M. Valor
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Deisy Guiretti
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Jose P. Lopez-Atalaya
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Sant Joan d'Alacant, 03550, Alicante, Spain
| |
Collapse
|
172
|
Scahill R. Recent advances in imaging the onset and progression of Huntington’s disease. Neurodegener Dis Manag 2013. [DOI: 10.2217/nmt.13.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Huntington’s disease is a devastating autosomal-dominant neurodegenerative disorder resulting in progressive decline in motor and cognitive function, accompanied by neuropsychiatric disturbances. In vivo imaging can reveal the underlying neuropathological changes that contribute to symptom manifestation. Observational studies of individuals carrying the causative gene have demonstrated that structural and functional brain changes are apparent decades before clinical onset of the disease; imaging measures can predict those individuals who subsequently undergo clinical conversion. Such studies have improved our understanding of neurodegeneration across the disease spectrum and aided the identification of therapeutic targets. Clinical trials of potentially disease-modifying treatments are likely to be investigated in the near future and imaging provides a powerful tool to monitor disease progression and thereby assess therapeutic efficacy.
Collapse
Affiliation(s)
- Rachael Scahill
- Huntington’s Disease Research Group, Department of Neurodegeneration, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| |
Collapse
|
173
|
Nguyen GD, Gokhan S, Molero AE, Mehler MF. Selective roles of normal and mutant huntingtin in neural induction and early neurogenesis. PLoS One 2013; 8:e64368. [PMID: 23691206 PMCID: PMC3653864 DOI: 10.1371/journal.pone.0064368] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/12/2013] [Indexed: 01/08/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by abnormal polyglutamine expansion in the amino-terminal end of the huntingtin protein (Htt) and characterized by progressive striatal and cortical pathology. Previous reports have shown that Htt is essential for embryogenesis, and a recent study by our group revealed that the pathogenic form of Htt (mHtt) causes impairments in multiple stages of striatal development. In this study, we have examined whether HD-associated striatal developmental deficits are reflective of earlier maturational alterations occurring at the time of neurulation by assessing differential roles of Htt and mHtt during neural induction and early neurogenesis using an in vitro mouse embryonic stem cell (ESC) clonal assay system. We demonstrated that the loss of Htt in ESCs (KO ESCs) severely disrupts the specification of primitive and definitive neural stem cells (pNSCs, dNSCs, respectively) during the process of neural induction. In addition, clonally derived KO pNSCs and dNSCs displayed impaired proliferative potential, enhanced cell death and altered multi-lineage potential. Conversely, as observed in HD knock-in ESCs (Q111 ESCs), mHtt enhanced the number and size of pNSC clones, which exhibited enhanced proliferative potential and precocious neuronal differentiation. The transition from Q111 pNSCs to fibroblast growth factor 2 (FGF2)-responsive dNSCs was marked by potentiation in the number of dNSCs and altered proliferative potential. The multi-lineage potential of Q111 dNSCs was also enhanced with precocious neurogenesis and oligodendrocyte progenitor elaboration. The generation of Q111 epidermal growth factor (EGF)-responsive dNSCs was also compromised, whereas their multi-lineage potential was unaltered. These abnormalities in neural induction were associated with differential alterations in the expression profiles of Notch, Hes1 and Hes5. These cumulative observations indicate that Htt is required for multiple stages of neural induction, whereas mHtt enhances this process and promotes precocious neurogenesis and oligodendrocyte progenitor cell elaboration.
Collapse
Affiliation(s)
- Giang D. Nguyen
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Solen Gokhan
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Aldrin E. Molero
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Mark F. Mehler
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Center for Epigenomics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
174
|
Rué L, López-Soop G, Gelpi E, Martínez-Vicente M, Alberch J, Pérez-Navarro E. Brain region- and age-dependent dysregulation of p62 and NBR1 in a mouse model of Huntington's disease. Neurobiol Dis 2013; 52:219-28. [PMID: 23295856 DOI: 10.1016/j.nbd.2012.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/12/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022] Open
Abstract
Huntington's disease is characterized by the formation of protein aggregates, which can be degraded by macroautophagy. Here, we studied protein levels and intracellular distribution of p62 and NBR1, two macroautophagy cargo receptors, during disease progression. In R6/1 mice, p62 and NBR1 protein levels were decreased in all brain regions analyzed early in the disease, whereas at late stages they accumulated in the striatum and hippocampus, but not in the cortex. The accumulation of p62, but not NBR1, occurred in neuronal nuclei, where it co-localized with mutant huntingtin inclusions, both in R6/1 and Huntington's disease patients. Moreover, exportin-1 was selectively decreased in old R6/1 mice brain, and could worsen p62 nuclear accumulation. In conclusion, p62 interacts with mutant huntingtin and is retained in the nucleus along the progression of the disease, mostly in striatal and hippocampal neurons. Thus, cytoplasmic NBR1 might be important to maintain basal levels of selective macroautophagy in these neurons.
Collapse
Affiliation(s)
- Laura Rué
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
175
|
Soldati C, Bithell A, Johnston C, Wong KY, Stanton LW, Buckley NJ. Dysregulation of REST-regulated coding and non-coding RNAs in a cellular model of Huntington's disease. J Neurochem 2013; 124:418-30. [PMID: 23145961 DOI: 10.1111/jnc.12090] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/12/2022]
Abstract
Huntingtin (Htt) protein interacts with many transcriptional regulators, with widespread disruption to the transcriptome in Huntington's disease (HD) brought about by altered interactions with the mutant Htt (muHtt) protein. Repressor Element-1 Silencing Transcription Factor (REST) is a repressor whose association with Htt in the cytoplasm is disrupted in HD, leading to increased nuclear REST and concomitant repression of several neuronal-specific genes, including brain-derived neurotrophic factor (Bdnf). Here, we explored a wide set of HD dysregulated genes to identify direct REST targets whose expression is altered in a cellular model of HD but that can be rescued by knock-down of REST activity. We found many direct REST target genes encoding proteins important for nervous system development, including a cohort involved in synaptic transmission, at least two of which can be rescued at the protein level by REST knock-down. We also identified several microRNAs (miRNAs) whose aberrant repression is directly mediated by REST, including miR-137, which has not previously been shown to be a direct REST target in mouse. These data provide evidence of the contribution of inappropriate REST-mediated transcriptional repression to the widespread changes in coding and non-coding gene expression in a cellular model of HD that may affect normal neuronal function and survival.
Collapse
Affiliation(s)
- Chiara Soldati
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King's College London, London, UK
| | | | | | | | | | | |
Collapse
|
176
|
Rüb U, Hoche F, Brunt ER, Heinsen H, Seidel K, Del Turco D, Paulson HL, Bohl J, von Gall C, Vonsattel JP, Korf HW, den Dunnen WF. Degeneration of the cerebellum in Huntington's disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathol 2013; 23:165-77. [PMID: 22925167 PMCID: PMC8029117 DOI: 10.1111/j.1750-3639.2012.00629.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/09/2012] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) is a polyglutamine disease and characterized neuropathologically by degeneration of the striatum and select layers of the neo- and allocortex. In the present study, we performed a systematic investigation of the cerebellum in eight clinically diagnosed and genetically confirmed HD patients. The cerebellum of all HD patients showed a considerable atrophy, as well as a consistent loss of Purkinje cells and nerve cells of the fastigial, globose, emboliform and dentate nuclei. This pathology was obvious already in HD brains assigned Vonsattel grade 2 striatal atrophy and did not correlate with the extent and distribution of striatal atrophy. Therefore, our findings suggest (i) that the cerebellum degenerates early during HD and independently from the striatal atrophy and (ii) that the onset of the pathological process of HD is multifocal. Degeneration of the cerebellum might contribute significantly to poorly understood symptoms occurring in HD such as impaired rapid alternating movements and fine motor skills, dysarthria, ataxia and postural instability, gait and stance imbalance, broad-based gait and stance, while the morphological alterations (ie ballooned neurons, torpedo-like axonal inclusions) observed in the majority of surviving nerve cells may represent a gateway to the unknown mechanisms of the pathological process of HD.
Collapse
Affiliation(s)
- Udo Rüb
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Automated differentiation of pre-diagnosis Huntington's disease from healthy control individuals based on quadratic discriminant analysis of the basal ganglia: The IMAGE-HD study. Neurobiol Dis 2013; 51:82-92. [DOI: 10.1016/j.nbd.2012.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/31/2012] [Accepted: 10/03/2012] [Indexed: 01/18/2023] Open
|
178
|
Georgiou-Karistianis N, Scahill R, Tabrizi SJ, Squitieri F, Aylward E. Structural MRI in Huntington's disease and recommendations for its potential use in clinical trials. Neurosci Biobehav Rev 2013; 37:480-90. [PMID: 23376047 DOI: 10.1016/j.neubiorev.2013.01.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/02/2013] [Accepted: 01/22/2013] [Indexed: 01/18/2023]
Abstract
Huntington's disease (HD) results in progressive impairment of motor and cognitive function and neuropsychiatric disturbance. There are no disease-modifying treatments available, but HD research is entering a critical phase where promising disease-specific therapies are on the horizon. Thus, a pressing need exists for biomarkers capable of monitoring progression and ultimately determining drug efficacy. Neuroimaging provides a powerful tool for assessing disease progression. However, in order to be accepted as biomarkers for clinical trials, imaging measures must be reproducible, robust to scanner differences, sensitive to disease-related change and demonstrate a relationship to clinically meaningful measures. We provide a review of the current structural imaging literature in HD and highlight inconsistencies between studies. We make recommendations for the standardisation of reporting for future studies, such as appropriate cohort characterisation and documentation of methodologies to facilitate comparisons and inform trial design. We also argue for an intensified effort to consider issues highlighted here so that we have the best chance of assessing the efficacy of the therapeutic benefit in forestalling this devastating disease.
Collapse
|
179
|
Shin H, Kim MH, Lee SJ, Lee KH, Kim MJ, Kim JS, Cho JW. Decreased Metabolism in the Cerebral Cortex in Early-Stage Huntington's Disease: A Possible Biomarker of Disease Progression? J Clin Neurol 2013; 9:21-5. [PMID: 23346156 PMCID: PMC3543905 DOI: 10.3988/jcn.2013.9.1.21] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 07/16/2012] [Accepted: 07/16/2012] [Indexed: 01/28/2023] Open
Abstract
Background and Purpose Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder. Genetic analysis of abnormal CAG expansion in the IT15 gene allows disease confirmation even in the preclinical stage. However, because there is no treatment to cure or delay the progression of this disease, monitoring of biological markers that predict progression is warranted. Methods FDG-PET was applied to 13 patients with genetically confirmed HD in the early stage of the disease. We recorded the initial and follow-up statuses of patients using the Independence Scale (IS) of the Unified Huntington's Disease Rating Scale. The progression rate (PR) was calculated as the annual change in the IS. The patients were divided into two groups with faster and slower progression, using the median value of the PR as the cut-off. FDG-PET data were analyzed using regions of interest, and compared among the two patient groups and 11 age- and sex-matched controls. Results The mean CAG repeat size in patients was 44.7. The CAG repeat length was inversely correlated with the age at onset as reported previously, but was not correlated with the clinical PR. Compared with normal controls, hypometabolism was observed even at very early stages of the disease in the bilateral frontal, temporal, and parietal cortices on FDG-PET. The decreases in metabolism in the bilateral frontal, parietal, and right temporal cortices were much greater in the faster-progression group than in the slower-progression group. Conclusions A decrease in cortical glucose metabolism is suggested as a predictor for identifying a more rapid form of progression in patients with early-stage HD.
Collapse
Affiliation(s)
- Hyeeun Shin
- Department of Neurology, Eulji General Hospital, Eulji University School of Medicine, Deajeon, Korea
| | | | | | | | | | | | | |
Collapse
|
180
|
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease that is characterized by movement abnormalities, cognitive impairment, and abnormal behavior as well as sleep and weight problems. It is an autosomal dominant disorder caused by a mutation in the huntingtin gene on the short arm of chromosome 4, which results in the progressive degeneration of the basal ganglia (caudate, putamen, and globus pallidus), cerebral cortex, brainstem, thalamus, and hypothalamus. This chapter considers four avenues of research: (a) the restoration of neurogenesis as an endogenous cell therapy in HD, (b) fetal tissue transplantation, (c) stem cell transplantation, and finally (d) the use of endogenous trophic factors such as brain derived neurotrophic factor.
Collapse
|
181
|
Berardelli A, Suppa A. Noninvasive brain stimulation in Huntington's disease. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:555-60. [PMID: 24112923 DOI: 10.1016/b978-0-444-53497-2.00044-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Several important advances in the pathophysiology of Huntington's disease (HD) have been achieved by means of neurophysiological techniques designed to investigate the excitability and plasticity of brainstem and cortical circuits in patients with the condition. Studies designed to investigate brainstem reflexes, with paired-pulse and repetitive stimulation of the supraorbital nerve (blink reflex), have demonstrated abnormal excitability and plasticity of brainstem interneurons. In addition, several authors have tested the excitability of the primary motor cortex (M1) with the transcranial magnetic stimulation (TMS) technique and reported abnormal excitability of inhibitory intracortical circuits (cortical silent period, short afferent inhibition). Studies investigating plasticity processes by means of repetitive TMS (rTMS) protocols have demonstrated altered short-term as well as long-term M1 plasticity. Abnormal cortical excitability and plasticity can be present in the early phase of HD and in asymptomatic HD carriers. Evidence from a single study of small cohorts of patients with HD supports the therapeutic application of rTMS for symptomatic improvement of chorea in HD.
Collapse
Affiliation(s)
- Alfredo Berardelli
- Department of Neurology and Psychiatry; Neuromedical Institute, Sapienza University of Rome, Rome, Italy.
| | | |
Collapse
|
182
|
Dougherty SE, Reeves JL, Lesort M, Detloff PJ, Cowell RM. Purkinje cell dysfunction and loss in a knock-in mouse model of Huntington disease. Exp Neurol 2012. [PMID: 23195593 DOI: 10.1016/j.expneurol.2012.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Huntington Disease (HD) is an autosomal dominant neurological disorder characterized by motor, psychiatric and cognitive disturbances. Recent evidence indicates that the viability and function of cerebellar Purkinje cells (PCs) are compromised in an aggressive mouse model of HD. Here we investigate whether this is also the case in the HdhQ200 knock-in mouse model of HD. Using quantitative-real time-PCR and immunofluorescence, we observed a loss of the PC marker and calcium buffer calbindin in 50week-old symptomatic mice. Reductions were also observed in parvalbumin and glutamic acid decarboxylase protein expression, most markedly in the molecular cell layer. Stereological analysis revealed an overall reduction in the PC population in HdhQ200/Q200 mice by nearly 40%, and loose patch electrophysiology of remaining PCs indicated a reduction in firing rate in HD mice compared to control littermates. Taken together, these data demonstrate that PC survival and function are compromised in a mouse model of adult-onset HD and suggest that further experiments should investigate the contribution of PC death and dysfunction to HD-associated motor impairment.
Collapse
Affiliation(s)
- S E Dougherty
- Neuroscience Graduate Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
183
|
Horne EA, Coy J, Swinney K, Fung S, Cherry AET, Marrs WR, Naydenov AV, Lin YH, Sun X, Keene CD, Grouzmann E, Muchowski P, Bates GP, Mackie K, Stella N. Downregulation of cannabinoid receptor 1 from neuropeptide Y interneurons in the basal ganglia of patients with Huntington's disease and mouse models. Eur J Neurosci 2012; 37:429-40. [PMID: 23167744 DOI: 10.1111/ejn.12045] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 09/20/2012] [Accepted: 10/01/2012] [Indexed: 11/29/2022]
Abstract
Cannabinoid receptor 1 (CB(1) receptor) controls several neuronal functions, including neurotransmitter release, synaptic plasticity, gene expression and neuronal viability. Downregulation of CB(1) expression in the basal ganglia of patients with Huntington's disease (HD) and animal models represents one of the earliest molecular events induced by mutant huntingtin (mHtt). This early disruption of neuronal CB(1) signaling is thought to contribute to HD symptoms and neurodegeneration. Here we determined whether CB(1) downregulation measured in patients with HD and mouse models was ubiquitous or restricted to specific striatal neuronal subpopulations. Using unbiased semi-quantitative immunohistochemistry, we confirmed previous studies showing that CB(1) expression is downregulated in medium spiny neurons of the indirect pathway, and found that CB(1) is also downregulated in neuropeptide Y (NPY)/neuronal nitric oxide synthase (nNOS)-expressing interneurons while remaining unchanged in parvalbumin- and calretinin-expressing interneurons. CB(1) downregulation in striatal NPY/nNOS-expressing interneurons occurs in R6/2 mice, Hdh(Q150/Q150) mice and the caudate nucleus of patients with HD. In R6/2 mice, CB(1) downregulation in NPY/nNOS-expressing interneurons correlates with diffuse expression of mHtt in the soma. This downregulation also occludes the ability of cannabinoid agonists to activate the pro-survival signaling molecule cAMP response element-binding protein in NPY/nNOS-expressing interneurons. Loss of CB(1) signaling in NPY/nNOS-expressing interneurons could contribute to the impairment of basal ganglia functions linked to HD.
Collapse
Affiliation(s)
- Eric A Horne
- Department of Pharmacology, University of Washington, 1959 N.E. Pacific St., Seattle, WA 98195-7280, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Samadi P, Boutet A, Rymar VV, Rawal K, Maheux J, Kvann JC, Tomaszewski M, Beaubien F, Cloutier JF, Levesque D, Sadikot AF. Relationship between BDNF expression in major striatal afferents, striatum morphology and motor behavior in the R6/2 mouse model of Huntington's disease. GENES BRAIN AND BEHAVIOR 2012; 12:108-24. [PMID: 23006318 DOI: 10.1111/j.1601-183x.2012.00858.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/08/2012] [Accepted: 09/17/2012] [Indexed: 02/01/2023]
Abstract
Patients with Huntington's disease (HD) and transgenic mouse models of HD show neuronal loss in the striatum as a major feature, which contributes to cognitive and motor manifestations. Reduced expression of the neurotrophin brain-derived neurotrophic factor (BDNF) in striatal afferents may play a role in neuronal loss. How progressive loss of BDNF expression in different cortical or subcortical afferents contributes to striatal atrophy and behavioral dysfunction in HD is not known, and may best be determined in animal models. We compared age-dependent alterations of BDNF mRNA expression in major striatal afferents from the cerebral cortex, thalamus and midbrain in the R6/2 transgenic mouse model of HD. Corresponding changes in striatal morphology were quantified using unbiased stereology. Changes in motor behavior were measured using an open field, grip strength monitor, limb clasping and a rotarod apparatus. BDNF expression in cortical limbic and midbrain striatal afferents is reduced by age 4 weeks, prior to onset of motor abnormalities. BDNF expression in motor cortex and thalamic afferents is reduced by 6 weeks, coinciding with early motor dysfunction and reduced striatum volume. BDNF loss in afferents progresses until death at 13-15 weeks, correlating with progressive striatal neuronal loss and motor abnormalities. Mutant huntingtin protein expression in R6/2 mice results in progressive loss of BDNF in both cortical and subcortical striatal afferents. BDNF loss in limbic and dopaminergic striatal inputs may contribute to cognitive/psychiatric dysfunction in HD. Subsequent BDNF loss in cortical motor and thalamic afferents may accelerate striatal degeneration, resulting in progressive involuntary movements.
Collapse
Affiliation(s)
- P Samadi
- Cone Laboratory, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Shirbin CA, Chua P, Churchyard A, Hannan AJ, Lowndes G, Stout JC. The relationship between cortisol and verbal memory in the early stages of Huntington's disease. J Neurol 2012. [PMID: 23180175 DOI: 10.1007/s00415-012-6732-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hypothalamic pituitary adrenal (HPA) axis hyperactivity has been linked to learning and memory difficulties in a range of neurodegenerative and neuropsychiatric conditions. In Huntington's disease (HD), both declines in learning and memory and HPA axis dysfunction are present early in the disease. However, the relationship between specific learning and memory deficits and HPA axis functioning in HD has not been examined. The aim of this study was to investigate cortisol levels in relation to verbal learning and memory in pre-diagnosed (pre-HD) participants and patients at the early stages of diagnosed HD (early-HD). Cortisol concentration was assayed in saliva samples from 57 participants (17 early-HD, 20 pre-HD, and 20 controls) at four time-points across a 24-h period. Verbal memory was assessed using the California Verbal Learning Test-Second Edition (CVLT-II). We focused statistical analyses on the late evening cortisol concentration, and examined cortisol levels and verbal memory function in relation to diagnostic group (control, pre-HD, early-HD), and in a separate set of analyses combining pre-HD and early-HD (and excluding controls) we also examined cortisol and verbal memory performance in relation to the severity of HD-related motor signs. Of these two classification approaches, HD motor sign severity was more strongly associated with high evening cortisol levels and both reduced information encoding and memory retrieval. Separately, there was also a trend of higher cortisol levels in pre-HD. The findings suggest hypercortisolism and the underlying pathological changes may begin many years before a clinical diagnosis is made, but the memory decline associated with HPA axis disturbance may only become detectable once motor signs become pronounced.
Collapse
Affiliation(s)
- Christopher A Shirbin
- School of Psychology and Psychiatry, Monash University, Clayton Campus, Wellington Road, Clayton, Victoria, 3800, Australia
| | | | | | | | | | | |
Collapse
|
186
|
Kovalenko M, Dragileva E, St. Claire J, Gillis T, Guide JR, New J, Dong H, Kucherlapati R, Kucherlapati MH, Ehrlich ME, Lee JM, Wheeler VC. Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice. PLoS One 2012; 7:e44273. [PMID: 22970194 PMCID: PMC3436885 DOI: 10.1371/journal.pone.0044273] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/31/2012] [Indexed: 11/19/2022] Open
Abstract
The CAG trinucleotide repeat mutation in the Huntington's disease gene (HTT) exhibits age-dependent tissue-specific expansion that correlates with disease onset in patients, implicating somatic expansion as a disease modifier and potential therapeutic target. Somatic HTT CAG expansion is critically dependent on proteins in the mismatch repair (MMR) pathway. To gain further insight into mechanisms of somatic expansion and the relationship of somatic expansion to the disease process in selectively vulnerable MSNs we have crossed HTT CAG knock-in mice (HdhQ111) with mice carrying a conditional (floxed) Msh2 allele and D9-Cre transgenic mice, in which Cre recombinase is expressed specifically in MSNs within the striatum. Deletion of Msh2 in MSNs eliminated Msh2 protein in those neurons. We demonstrate that MSN-specific deletion of Msh2 was sufficient to eliminate the vast majority of striatal HTT CAG expansions in HdhQ111 mice. Furthermore, MSN-specific deletion of Msh2 modified two mutant huntingtin phenotypes: the early nuclear localization of diffusely immunostaining mutant huntingtin was slowed; and the later development of intranuclear huntingtin inclusions was dramatically inhibited. Therefore, Msh2 acts within MSNs as a genetic enhancer both of somatic HTT CAG expansions and of HTT CAG-dependent phenotypes in mice. These data suggest that the selective vulnerability of MSNs may be at least in part contributed by the propensity for somatic expansion in these neurons, and imply that intervening in the expansion process is likely to have therapeutic benefit.
Collapse
Affiliation(s)
- Marina Kovalenko
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ella Dragileva
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jason St. Claire
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Tammy Gillis
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jolene R. Guide
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jaclyn New
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Hualing Dong
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Raju Kucherlapati
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Melanie H. Kucherlapati
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Michelle E. Ehrlich
- Farber Institute for Neurosciences, Thomas Jefferson University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jong-Min Lee
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Vanessa C. Wheeler
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
187
|
Parievsky A, Cepeda C, Levine MS. Evidence from the R6/2 Mouse Model of Huntington's Disease for Using Abnormal Brain Metabolism as a Biomarker for Evaluating Therapeutic Approaches for Treatment. FUTURE NEUROLOGY 2012; 7:527-530. [PMID: 25892970 DOI: 10.2217/fnl.12.51] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant genetic disorder characterized by a progression of motor abnormalities as well as cognitive and psychiatric symptoms [1]. Presently, there is no cure for HD and no treatment to reverse its course or prevent its onset. HD has been characterized primarily by significant degeneration of the striatum. In addition, imaging studies have shown alterations in extra-striatal regions including the cortex [2, 3], hippocampus, and hypothalamus [4]. Although previous functional magnetic resonance imaging (fMRI) studies in patients have yielded complex and heterogeneous findings, identifying functional alterations may serve as a useful tool for tracking the progression of HD and assessing the effects of therapeutic interventions. In a recent article Cepeda-Prado et el. use novel and groundbreaking fMRI methods to elucidate functional, structural, and metabolic alterations in the R6/2 mouse model of HD. Based on changes in relative cerebral brain volume (rCBV), neuronal activity, and glucose utilization, the authors suggest that R6/2 mice have impaired neurometabolic coupling. They propose the use of rCBV as a biomarker of HD progression, providing a basis for future research examining functional alterations in animal models.
Collapse
Affiliation(s)
- Anna Parievsky
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
188
|
Lambrecq V, Langbour N, Guehl D, Bioulac B, Burbaud P, Rotge JY. Evolution of brain gray matter loss in Huntington's disease: a meta-analysis. Eur J Neurol 2012; 20:315-21. [PMID: 22925174 DOI: 10.1111/j.1468-1331.2012.03854.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/12/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Huntington's disease is characterized by neuronal loss throughout the disease course. Voxel-based morphometry studies have reported reductions in gray matter concentration (GMC) in many brain regions in patients with Huntington. The description of the time course of gray matter loss may help to identify some evolution markers. Here, we conducted a meta-analysis of voxel-based morphometry studies of Huntington's disease to describe the evolution of brain gray matter loss. METHODS A systematic search led to the inclusion of 11 articles on Huntington's disease (297 patients and 205 controls). We extracted data from patients with preclinical Huntington, patients with clinical Huntington, and controls. Finally, anatomical likelihood estimation analyses were conducted to identify GMC changes between preclinical patients and controls, between clinical patients and controls, and between preclinical and clinical patients. RESULTS Preclinical patients exhibited gray matter loss in the left basal ganglia and the prefrontal cortex. Clinical patients had bilateral gray matter loss in the basal ganglia, the prefrontal cortex, and the insula. The left striatum was smaller in clinical patients than in preclinical patients. CONCLUSIONS Neurodegenerative processes associated with Huntington's disease, as assessed by GMC reduction, begin in the left hemisphere and extend to the contralateral hemisphere throughout the inexorable course of the disease. Changes in gray matter, especially the volumetric side ratio of the striatum, could represent a relevant biomarker for characterizing the different progression stages of the disease.
Collapse
Affiliation(s)
- V Lambrecq
- Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique UMR 5293, Université Victor Segalen Bordeaux 2, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
189
|
Tang C, Feigin A. Monitoring Huntington's disease progression through preclinical and early stages. Neurodegener Dis Manag 2012; 2:421-435. [PMID: 23243467 PMCID: PMC3519443 DOI: 10.2217/nmt.12.34] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder that typically begins in middle adulthood. The neurodegenerative process that underlies HD, however, likely begins many years before clinical diagnosis. Since genetic testing can identify individuals that will develop HD during this preclinical period, clinical trials aiming to slow disease progression will likely focus on this phase of the illness in an effort to delay disease onset. How to best measure the efficacy of potential disease-modifying therapies in preclinical HD remains a complex challenge. This article will review the clinical and imaging measures that have been assessed as potential markers of disease progression in preclinical and early symptomatic HD.
Collapse
Affiliation(s)
- Chris Tang
- Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Andrew Feigin
- Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| |
Collapse
|
190
|
R6/2 Huntington's disease mice develop early and progressive abnormal brain metabolism and seizures. J Neurosci 2012; 32:6456-67. [PMID: 22573668 DOI: 10.1523/jneurosci.0388-12.2012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hallmark feature of Huntington's disease pathology is the atrophy of brain regions including, but not limited to, the striatum. Though MRI studies have identified structural CNS changes in several Huntington's disease (HD) mouse models, the functional consequences of HD pathology during the progression of the disease have yet to be investigated using in vivo functional MRI (fMRI). To address this issue, we first established the structural and functional MRI phenotype of juvenile HD mouse model R6/2 at early and advanced stages of disease. Significantly higher fMRI signals [relative cerebral blood volumes (rCBVs)] and atrophy were observed in both age groups in specific brain regions. Next, fMRI results were correlated with electrophysiological analysis, which showed abnormal increases in neuronal activity in affected brain regions, thus identifying a mechanism accounting for the abnormal fMRI findings. [(14)C] 2-deoxyglucose maps to investigate patterns of glucose utilization were also generated. An interesting mismatch between increases in rCBV and decreases in glucose uptake was observed. Finally, we evaluated the sensitivity of this mouse line to audiogenic seizures early in the disease course. We found that R6/2 mice had an increased susceptibility to develop seizures. Together, these findings identified seizure activity in R6/2 mice and show that neuroimaging measures sensitive to oxygen metabolism can be used as in vivo biomarkers, preceding the onset of an overt behavioral phenotype. Since fMRI-rCBV can also be obtained in patients, we propose that it may serve as a translational tool to evaluate therapeutic responses in humans and HD mouse models.
Collapse
|
191
|
Gabery S, Sajjad MU, Hult S, Soylu R, Kirik D, Petersén Å. Characterization of a rat model of Huntington's disease based on targeted expression of mutant huntingtin in the forebrain using adeno-associated viral vectors. Eur J Neurosci 2012; 36:2789-800. [PMID: 22731249 DOI: 10.1111/j.1460-9568.2012.08193.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (htt) gene. Neuropathology is most severe in the striatum and cerebral cortex. As mutant htt is ubiquitously expressed, it has not been possible to establish clear structure-to-function relationships for the clinical aspects. In the present study, we have injected recombinant adeno-associated viral vectors of serotype 5 (rAAV5) expressing an 853-amino-acid fragment of htt with either 79 (mutant) or 18 (wild-type) glutamines (Q) in the dorsal striatum of neonatal rats to achieve expression of htt in the forebrain. Rats were followed for 6 months and compared with control rats. Neuropathological assessment showed long-term expression of the green fluorescent protein (GFP) transgene (used as a marker protein) and accumulation of htt inclusions in the cerebral cortex with the rAAV5-htt-79Q vectors. We estimated that around 10% of NeuN-positive cells in the cerebral cortex and 2% of DARPP-32 neurons in the striatum were targeted with the GFP-expressing vector. Formation of intracellular htt inclusions was not associated with neuronal loss, gliosis or microglia activation and did not lead to altered motor activity or changes in body weight. However, the same mutant htt vector caused orexin loss in the hypothalamus - another area known to be affected in HD. In conclusion, our results demonstrate that widespread forebrain expression of mutant htt can be achieved using rAAV5-vectors and suggest that this technique can be further explored to study region-specific effects of mutant htt or other disease-causing genes in the brain.
Collapse
Affiliation(s)
- Sanaz Gabery
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
192
|
Blockx I, Verhoye M, Van Audekerke J, Bergwerf I, Kane JX, Delgado Y Palacios R, Veraart J, Jeurissen B, Raber K, von Hörsten S, Ponsaerts P, Sijbers J, Leergaard TB, Van der Linden A. Identification and characterization of Huntington related pathology: an in vivo DKI imaging study. Neuroimage 2012; 63:653-62. [PMID: 22743196 DOI: 10.1016/j.neuroimage.2012.06.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 06/10/2012] [Accepted: 06/15/2012] [Indexed: 12/31/2022] Open
Abstract
An important focus of Huntington Disease (HD) research is the identification of symptom-independent biomarkers of HD neuropathology. There is an urgent need for reproducible, sensitive and specific outcome measures, which can be used to track disease onset as well as progression. Neuroimaging studies, in particular diffusion-based MRI methods, are powerful probes for characterizing the effects of disease and aging on tissue microstructure. We report novel diffusional kurtosis imaging (DKI) findings in aged transgenic HD rats. We demonstrate altered diffusion metrics in the (pre)frontal cerebral cortex, external capsule and striatum. Presence of increased diffusion complexity and restriction in the striatum is confirmed by an increased fiber dispersion in this region. Immunostaining of the same specimens reveals decreased number of microglia in the (pre)frontal cortex, and increased numbers of oligodendrocytes in the striatum. We conclude that DKI allows sensitive and specific characterization of altered tissue integrity in this HD rat model, indicating a promising potential for diagnostic imaging of gray and white matter pathology.
Collapse
Affiliation(s)
- Ines Blockx
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Kumar A, Kneynsberg A, Tucholski J, Perry G, van Groen T, Detloff PJ, Lesort M. Tissue transglutaminase overexpression does not modify the disease phenotype of the R6/2 mouse model of Huntington's disease. Exp Neurol 2012; 237:78-89. [PMID: 22698685 DOI: 10.1016/j.expneurol.2012.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/14/2012] [Accepted: 05/27/2012] [Indexed: 01/22/2023]
Abstract
Huntington's disease (HD) is a devastating autosomal-dominant neurodegenerative disorder initiated by an abnormally expanded polyglutamine in the huntingtin protein. Determining the contribution of specific factors to the pathogenesis of HD should provide rational targets for therapeutic intervention. One suggested contributor is the type 2 transglutaminase (TG2), a multifunctional calcium dependent enzyme. A role for TG2 in HD has been suggested because a polypeptide-bound glutamine is a rate-limiting factor for a TG2-catalyzed reaction, and TG2 can cross-link mutant huntingtin in vitro. Further, TG2 is up regulated in brain areas affected in HD. The objective of this study was to further examine the contribution of TG2 as a potential modifier of HD pathogenesis and its validity as a therapeutic target in HD. In particular our goal was to determine whether an increase in TG2 level, as documented in human HD brains, modulates the well-characterized phenotype of the R6/2 HD mouse model. To accomplish this objective a genetic cross was performed between R6/2 mice and an established transgenic mouse line that constitutively expresses human TG2 (hTG2) under control of the prion promoter. Constitutive expression of hTG2 did not affect the onset and progression of the behavioral and neuropathological HD phenotype of R6/2 mice. We found no alterations in body weight changes, rotarod performances, grip strength, overall activity, and no significant effect on the neuropathological features of R6/2 mice. Overall the results of this study suggest that an increase in hTG2 expression does not significantly modify the pathology of HD.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | | | | | | | | | | | |
Collapse
|
194
|
Novak MJU, Warren JD, Henley SMD, Draganski B, Frackowiak RS, Tabrizi SJ. Altered brain mechanisms of emotion processing in pre-manifest Huntington's disease. ACTA ACUST UNITED AC 2012; 135:1165-79. [PMID: 22505631 PMCID: PMC3326253 DOI: 10.1093/brain/aws024] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Huntington's disease is an inherited neurodegenerative disease that causes motor, cognitive and psychiatric impairment, including an early decline in ability to recognize emotional states in others. The pathophysiology underlying the earliest manifestations of the disease is not fully understood; the objective of our study was to clarify this. We used functional magnetic resonance imaging to investigate changes in brain mechanisms of emotion recognition in pre-manifest carriers of the abnormal Huntington's disease gene (subjects with pre-manifest Huntington's disease): 16 subjects with pre-manifest Huntington's disease and 14 control subjects underwent 1.5 tesla magnetic resonance scanning while viewing pictures of facial expressions from the Ekman and Friesen series. Disgust, anger and happiness were chosen as emotions of interest. Disgust is the emotion in which recognition deficits have most commonly been detected in Huntington's disease; anger is the emotion in which impaired recognition was detected in the largest behavioural study of emotion recognition in pre-manifest Huntington's disease to date; and happiness is a positive emotion to contrast with disgust and anger. Ekman facial expressions were also used to quantify emotion recognition accuracy outside the scanner and structural magnetic resonance imaging with voxel-based morphometry was used to assess the relationship between emotion recognition accuracy and regional grey matter volume. Emotion processing in pre-manifest Huntington's disease was associated with reduced neural activity for all three emotions in partially separable functional networks. Furthermore, the Huntington's disease-associated modulation of disgust and happiness processing was negatively correlated with genetic markers of pre-manifest disease progression in distributed, largely extrastriatal networks. The modulated disgust network included insulae, cingulate cortices, pre- and postcentral gyri, precunei, cunei, bilateral putamena, right pallidum, right thalamus, cerebellum, middle frontal, middle occipital, right superior and left inferior temporal gyri, and left superior parietal lobule. The modulated happiness network included postcentral gyri, left caudate, right cingulate cortex, right superior and inferior parietal lobules, and right superior frontal, middle temporal, middle occipital and precentral gyri. These effects were not driven merely by striatal dysfunction. We did not find equivalent associations between brain structure and emotion recognition, and the pre-manifest Huntington's disease cohort did not have a behavioural deficit in out-of-scanner emotion recognition relative to controls. In addition, we found increased neural activity in the pre-manifest subjects in response to all three emotions in frontal regions, predominantly in the middle frontal gyri. Overall, these findings suggest that pathophysiological effects of Huntington's disease may precede the development of overt clinical symptoms and detectable cerebral atrophy.
Collapse
Affiliation(s)
- Marianne J U Novak
- Wellcome Trust Centre for Neuroimaging, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | |
Collapse
|
195
|
Bayram-Weston Z, Jones L, Dunnett SB, Brooks SP. Light and electron microscopic characterization of the evolution of cellular pathology in HdhQ92 Huntington's disease knock-in mice. Brain Res Bull 2012; 88:171-81. [DOI: 10.1016/j.brainresbull.2011.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 01/01/2023]
|
196
|
Bayram-Weston Z, Jones L, Dunnett SB, Brooks SP. Light and electron microscopic characterization of the evolution of cellular pathology in the R6/1 Huntington's disease transgenic mice. Brain Res Bull 2012; 88:104-12. [DOI: 10.1016/j.brainresbull.2011.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/19/2011] [Accepted: 07/12/2011] [Indexed: 12/20/2022]
|
197
|
Dougherty SE, Reeves JL, Lucas EK, Gamble KL, Lesort M, Cowell RM. Disruption of Purkinje cell function prior to huntingtin accumulation and cell loss in an animal model of Huntington disease. Exp Neurol 2012; 236:171-8. [PMID: 22579526 DOI: 10.1016/j.expneurol.2012.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/17/2012] [Accepted: 04/23/2012] [Indexed: 01/17/2023]
Abstract
Huntington Disease (HD) is a devastating neurological disorder characterized by progressive deterioration of psychiatric, motor, and cognitive function. Purkinje cells (PCs), the output neurons of the cerebellar cortex, have been found to be vulnerable in multiple CAG repeat disorders, but little is known about the involvement of PC dysfunction in HD. To investigate possible PC abnormalities, we performed quantitative real time PCR, Western blot analysis, and immunohistochemistry experiments to explore the changes in PC markers in the R6/2 mouse model of severe HD. There were reductions in the transcript and protein levels of the calcium-binding proteins parvalbumin and calbindin, as well as the enzyme glutamic acid decarboxylase 67. Immunohistochemistry supported these results, with the most substantial changes occurring in the PC layer. To determine whether the reductions in PC marker expression were due to cell loss, we performed stereology on both presymptomatic and end-stage R6/2 mice. Stereological counts indicated a significant reduction in PC number by end-stage but no change in presymptomatic animals (4 weeks of age). To assess cellular function prior to cell loss and symptom onset, we measured spontaneous firing in PCs from 4-week old animals and found a striking deficit in PC firing as indicated by a 57% decrease in spike rate. Interestingly, huntingtin inclusions were not widely observed in PCs until 12 weeks of age, indicating that soluble huntingtin and/or abnormalities in other cell types may contribute to PC dysfunction. Considering the roles for PCs in motor control, these data suggest that early PC dysfunction potentially contributes to motor impairment in this model of HD.
Collapse
Affiliation(s)
- S E Dougherty
- Neuroscience Graduate Program, University of Alabama at Birmingham, USA
| | | | | | | | | | | |
Collapse
|
198
|
Aylward EH, Liu D, Nopoulos PC, Ross CA, Pierson RK, Mills JA, Long JD, Paulsen JS. Striatal volume contributes to the prediction of onset of Huntington disease in incident cases. Biol Psychiatry 2012; 71:822-8. [PMID: 21907324 PMCID: PMC3237730 DOI: 10.1016/j.biopsych.2011.07.030] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previous neuroimaging research indicates that brain atrophy in Huntington disease (HD) begins many years before movement abnormalities become severe enough to warrant diagnosis. Most clinical trials being planned for individuals in the prediagnostic stage of HD propose to use delay of disease onset as the primary outcome measure. Although formulas have been developed based on age and CAG repeat length, to predict when HD motor onset will occur, it would be useful to have additional measures that can improve the accuracy of prediction of disease onset. METHODS The current study examined magnetic resonance imaging (MRI) measures of striatum and white matter volume in 85 individuals prospectively followed from pre-HD stage through diagnosable motor onset (incident cases) and 85 individuals individually matched with incident cases on CAG repeat length, sex, and age, who were not diagnosed with HD during the course of the study. RESULTS Volumes of striatum and white matter were significantly smaller in individuals who would be diagnosed 1 to 4 years following the initial MRI scan, compared with those who would remain in the pre-HD stage. Putamen volume was the measure that best distinguished between the two groups. CONCLUSIONS Results suggest that MRI volumetric measures may be helpful in selecting individuals for future clinical trials in pre-HD where HD motor onset is the primary outcome measure. In planning for multisite clinical trials in pre-HD, investigators may also want to consider using more objective measures, such as MRI volumes, in addition to onset of diagnosable movement disorder, as major outcome measures.
Collapse
Affiliation(s)
- Elizabeth H. Aylward
- Seattle Children's Research Institute, Seattle, Washington, The University of Iowa Carver College of Medicine
| | - Dawei Liu
- Department of Biostatistics, Iowa City, Iowa
| | - Peggy C. Nopoulos
- Department of Psychiatry, Iowa City, Iowa,Department of Pediatrics, Iowa City, Iowa
| | - Christopher A. Ross
- Johns Hopkins University, Division of Neurobiology, Department of Psychiatry, Baltimore, Maryland
| | | | | | | | - Jane S. Paulsen
- Department of Psychiatry, Iowa City, Iowa,Department of Neurology, Iowa City, Iowa
| | | |
Collapse
|
199
|
Zanin M, Pettingill L, Harvey A, Emerich D, Thanos C, Shepherd R. The development of encapsulated cell technologies as therapies for neurological and sensory diseases. J Control Release 2012; 160:3-13. [DOI: 10.1016/j.jconrel.2012.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/10/2012] [Indexed: 12/31/2022]
|
200
|
Deficient Rab11 activity underlies glucose hypometabolism in primary neurons of Huntington's disease mice. Biochem Biophys Res Commun 2012; 421:727-30. [PMID: 22542623 DOI: 10.1016/j.bbrc.2012.04.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 12/25/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Positron emission tomography studies have revealed a decline in glucose metabolism in the brain of patients with HD by a mechanism that has not been established. We examined glucose utilization in embryonic primary cortical neurons of wild-type (WT) and HD knock-in mice, which have 140 CAG repeats inserted in the endogenous mouse huntingtin gene (HD(140Q/140Q)). Primary HD(140Q/140Q) cortical neurons took up significantly less glucose than did WT neurons. Expression of permanently inactive and permanently active forms of Rab11 correspondingly altered glucose uptake in WT neurons, suggesting that normal activity of Rab11 is needed for neuronal uptake of glucose. It is known that Rab11 activity is diminished in HD(140Q/140Q) neurons. Expression of dominant active Rab11 to enhance the activity of Rab11 normalized glucose uptake in HD(140Q/140Q) neurons. These results suggest that deficient activity of Rab11 is a novel mechanism for glucose hypometabolism in HD.
Collapse
|