151
|
Colosimo C, Martínez-Martín P, Fabbrini G, Hauser RA, Merello M, Miyasaki J, Poewe W, Sampaio C, Rascol O, Stebbins GT, Schrag A, Goetz CG. Task force report on scales to assess dyskinesia in Parkinson's disease: Critique and recommendations. Mov Disord 2010; 25:1131-42. [DOI: 10.1002/mds.23072] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
152
|
Stefani A, Pierantozzi M, Koch G, Galati S, Stanzione P. Therapy for dyskinesias in Parkinson’s disease patients. FUTURE NEUROLOGY 2010. [DOI: 10.2217/fnl.10.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dyskinesia hampers the quality of life for most Parkinson’s disease patients following several years of therapy. However, the severity of L-Dopa-induced dyskinesia (LID) varies between patients, being quite tolerable in late-onset patients. Understanding the pathogenesis of LID has contributed to the development of a set of therapeutic strategies, including the choice, in early stages, of the least pulsatile regimen of dopamine-receptor activation. In cases where LIDs are already disabling, there is only a limited number of options: the optimization of ongoing DOPA-centered treatment, the utilization of glutamate antagonists and the exploration of the benefits of antipsychotic agents. More radical solutions are provided by deep brain stimulation in the subthalamic nucleus (or internal pallidus). This approach has proved efficacious in reducing LID, largely because it allows a reduction in dopaminergic daily doses. Stereotactic neurosurgery has fuelled several lines of investigation regarding the crosstalk between the basal ganglia and motor cortex. Here, we will present interesting evidence highlighting the potential for repetitive transcranial stimulation in reducing the occurrence of LID. The future may disclose important new avenues for the treatment of LIDs, given the current development of promising agents that might target different facets of dyskinesia, such as the impairment of striatal plasticity and non-Dopaminergic contributors such as adenosine, nitric oxide and the nucleotide cascade.
Collapse
Affiliation(s)
- Alessandro Stefani
- Movement Disorder Centre, Department of Neuroscience, Clinica Neurologica, Policlinico Tor Vergata, Viale Montpellier 1, 00133 Rome, Italy and IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00173 Rome, Italy
| | - Mariangela Pierantozzi
- Movement Disorder Centre, Department of Neuroscience, Clinica Neurologica, Policlinico Tor Vergata, Viale Montpellier 1, 00133 Rome, Italy and IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00173 Rome, Italy
| | - Giacomo Koch
- Movement Disorder Centre, Department of Neuroscience, Clinica Neurologica, Policlinico Tor Vergata, Viale Montpellier 1, 00133 Rome, Italy and IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00173 Rome, Italy
| | - Salvatore Galati
- Movement Disorder Centre, Department of Neuroscience, Clinica Neurologica, Policlinico Tor Vergata, Viale Montpellier 1, 00133 Rome, Italy and IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00173 Rome, Italy
| | - Paolo Stanzione
- Movement Disorder Centre, Department of Neuroscience, Clinica Neurologica, Policlinico Tor Vergata, Viale Montpellier 1, 00133 Rome, Italy and IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00173 Rome, Italy
| |
Collapse
|
153
|
Giuffrida A, McMahon LR. In vivo pharmacology of endocannabinoids and their metabolic inhibitors: therapeutic implications in Parkinson's disease and abuse liability. Prostaglandins Other Lipid Mediat 2009; 91:90-103. [PMID: 19523530 DOI: 10.1016/j.prostaglandins.2009.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/19/2009] [Accepted: 05/26/2009] [Indexed: 01/03/2023]
Abstract
This review focuses on the behavioral pharmacology of endogenous cannabinoids (endocannabinoids) and indirect-acting cannabinoid agonists that elevate endocannabinoid tone by inhibiting the activity of metabolic enzymes. Similarities and differences between prototype cannabinoid agonists, endocannabinoids and inhibitors of endocannabinoid metabolism are discussed in the context of endocannabinoid pharmacokinetics in vivo. The distribution and function of cannabinoid and non-CB(1)/CB(2) receptors are also covered, with emphasis on their role in disorders characterized by dopamine dysfunction, such as drug abuse and Parkinson's disease. Finally, evidence is presented to suggest that FAAH inhibitors lack the abuse liability associated with CB(1) agonists, although they may modify the addictive properties of other drugs, such as alcohol.
Collapse
Affiliation(s)
- Andrea Giuffrida
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | | |
Collapse
|
154
|
Ligresti A, Petrosino S, Di Marzo V. From endocannabinoid profiling to ‘endocannabinoid therapeutics’. Curr Opin Chem Biol 2009; 13:321-31. [DOI: 10.1016/j.cbpa.2009.04.615] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 04/17/2009] [Indexed: 12/31/2022]
|
155
|
Pérez-Rial S, García-Gutiérrez MS, Molina JA, Pérez-Nievas BG, Ledent C, Leiva C, Leza JC, Manzanares J. Increased vulnerability to 6-hydroxydopamine lesion and reduced development of dyskinesias in mice lacking CB1 cannabinoid receptors. Neurobiol Aging 2009; 32:631-45. [PMID: 19419794 DOI: 10.1016/j.neurobiolaging.2009.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 03/10/2009] [Accepted: 03/27/2009] [Indexed: 01/04/2023]
Abstract
Motor impairment, dopamine (DA) neuronal activity and proenkephalin (PENK) gene expression in the caudate-putamen (CPu) were measured in 6-OHDA-lesioned and treated (L-DOPA+benserazide) CB1 KO and WT mice. A lesion induced by 6-OHDA produced more severe motor deterioration in CB1 KO mice accompanied by more loss of DA neurons and increased PENK gene expression in the CPu. Oxidative/nitrosative and neuroinflammatory parameters were estimated in the CPu and cingulate cortex (Cg). CB1 KO mice exhibited higher MDA levels and iNOS protein expression in the CPu and Cg compared to WT mice. Treatment with L-DOPA+benserazide (12 weeks) resulted in less severe dyskinesias in CB1 KO than in WT mice. The results revealed that the lack of cannabinoid CB1 receptors increased the severity of motor impairment and DA lesion, and reduced L-DOPA-induced dyskinesias. These results suggest that activation of CB1 receptors offers neuroprotection against dopaminergic lesion and the development of L-DOPA-induced dyskinesias.
Collapse
Affiliation(s)
- Sandra Pérez-Rial
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Apartado de correos 18, 03550 San Juan de Alicante, Spain
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Iuvone T, Esposito G, De Filippis D, Scuderi C, Steardo L. Cannabidiol: a promising drug for neurodegenerative disorders? CNS Neurosci Ther 2009; 15:65-75. [PMID: 19228180 DOI: 10.1111/j.1755-5949.2008.00065.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases represent, nowadays, one of the main causes of death in the industrialized country. They are characterized by a loss of neurons in particular regions of the nervous system. It is believed that this nerve cell loss underlies the subsequent decline in cognitive and motor function that patients experience in these diseases. A range of mutant genes and environmental toxins have been implicated in the cause of neurodegenerative disorders but the mechanism remains largely unknown. At present, inflammation, a common denominator among the diverse list of neurodegenerative diseases, has been implicated as a critical mechanism that is responsible for the progressive nature of neurodegeneration. Since, at present, there are few therapies for the wide range of neurodegenerative diseases, scientists are still in search of new therapeutic approaches to the problem. An early contribution of neuroprotective and antiinflammatory strategies for these disorders seems particularly desirable because isolated treatments cannot be effective. In this contest, marijuana derivatives have attracted special interest, although these compounds have always raised several practical and ethical problems for their potential abuse. Nevertheless, among Cannabis compounds, cannabidiol (CBD), which lacks any unwanted psychotropic effect, may represent a very promising agent with the highest prospect for therapeutic use.
Collapse
Affiliation(s)
- Teresa Iuvone
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples, Italy.
| | | | | | | | | |
Collapse
|
157
|
Abstract
The endocannabinoid system (ECS) exerts important modulatory functions in the central nervous system (CNS), particularly the retrograde control of excitatory or inhibitory synapses, which enables this system to participate in the control of important neurobiological processes in healthy conditions. However, this physiological relevance acquires a maximal interest in neuropathological conditions affecting either the function or the structures of specific areas of the brain, conditions that have been associated with important changes in the activity of this modulatory system (e.g. losses of CB1 receptors (CB1R), up-regulation of CB2 receptors (CB2R), generation of endocannabinoids) that are susceptible to pharmacological adaptation. Among the group of brain disorders that have been associated with the endocannabinoid system, a special interest has been concentrated in various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and ischemia. These three disorders will be reviewed here from the perspective of the types of changes experienced by the cannabinoid signalling in humans and cellular or animal models, and from a possible usefulness of certain cannabinoid compounds to alleviate symptoms and/or to delay their progression.
Collapse
Affiliation(s)
- José Martínez Orgado
- Laboratorio de Apoyo a la Investigacion, Fundacion Hospital Alcorcon-CIBERNED, Madrid, Spain.
| | | | | |
Collapse
|
158
|
Stocchi F, Tagliati M, Olanow CW. Treatment of levodopa-induced motor complications. Mov Disord 2009; 23 Suppl 3:S599-612. [PMID: 18781681 DOI: 10.1002/mds.22052] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic levodopa treatment for Parkinson's disease patients is frequently associated with the development of motor complications such as end-of-dose wearing-off and dyskinesias. In this review, we provide an overview of the strategies available for dealing with these problems. Medical management includes manipulation of levodopa dosing to establish the optimum treatment schedule, improving levodopa absorption, catechol-O-methyl transferase-inhibition (COMT), Monoamine oxidase-B (MAO-B) inhibition, dopaminergic agonists, amantadine, and continuous dopaminergic infusions. Surgical procedures and particularly deep brain stimulation are also reviewed. It should be noted that none of these treatments has been shown to provide anti-parkinsonian efficacy that is greater than what can be achieved with levodopa. We highlight the importance of initiating therapy with a treatment strategy that reduces the risk that a Parkinson's disease patient will develop motor complications in the first place. Key Words: Advanced PD, dyskinesias, motor fluctuations, levodopa, dopamine agonists, COMT inhibitors, MAO-B inhibitors.
Collapse
|
159
|
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The prevalence is increasing with age and averages approximately 0.3% in the entire population. The clinical picture is dominated by the cardinal motor symptoms such as tremor at rest, bradykinesia, muscular rigidity, stooped posture and postural instability. Psychiatric comorbidity is common, comprising dementia, depression, anxiety and psychosis. Although many drugs have been developed and introduced into the market to provide symptomatic treatment, there is still no cure for PD and not even solid evidence for disease-modifying strategies. In addition, motor complications in advanced stages of the disease, side effects of the dopaminergic therapy, and non-motor symptoms remain huge challenges during long-term therapy. Thus, new therapeutic agents are desperately needed. Here, we describe current therapies and possible future developments that we hope will contribute to sustaining quality of life in patients suffering from Parkinson's disease for many years.
Collapse
Affiliation(s)
- Karl Strecker
- Department of Neurology, University of Leipzig, Movement Disorders group, Liebigstrasse 22 a, 04103 Leipzig, Germany.
| | | |
Collapse
|
160
|
Scuderi C, Filippis DD, Iuvone T, Blasio A, Steardo A, Esposito G. Cannabidiol in medicine: a review of its therapeutic potential in CNS disorders. Phytother Res 2008; 23:597-602. [DOI: 10.1002/ptr.2625] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
161
|
Wang T, Collet JP, Shapiro S, Ware MA. Adverse effects of medical cannabinoids: a systematic review. CMAJ 2008; 178:1669-78. [PMID: 18559804 DOI: 10.1503/cmaj.071178] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The therapeutic use of cannabis and cannabis-based medicines raises safety concerns for patients, clinicians, policy-makers, insurers, researchers and regulators. Although the efficacy of cannabinoids is being increasingly demonstrated in randomized controlled trials, most safety information comes from studies of recreational use. METHODS We performed a systematic review of safety studies of medical cannabinoids published over the past 40 years to create an evidence base for cannabis-related adverse events and to facilitate future cannabis research initiatives. We critically evaluated the quality of published studies with a view to identifying ways to improve future studies. RESULTS A total of 321 articles were eligible for evaluation. After excluding those that focused on recreational cannabis use, we included 31 studies (23 randomized controlled trials and 8 observational studies) of medical cannabis use in our analysis. In the 23 randomized controlled trials, the median duration of cannabinoid exposure was 2 weeks (range 8 hours to 12 months). A total of 4779 adverse events were reported among participants assigned to the intervention. Most (4615 [96.6%]) were not serious. Of the 164 serious adverse events, the most common was relapse of multiple sclerosis (21 events [12.8%]), vomiting (16 events [9.8%]) and urinary tract infection (15 events [9.1%]). The rate of nonserious adverse events was higher among participants assigned to medical cannabinoids than among controls (rate ratio [RR] 1.86, 95% confidence interval [CI] 1.57-2.21); the rates of serious adverse events did not differ significantly between these 2 groups (RR 1.04, 95% CI 0.78-1.39). Dizziness was the most commonly reported nonserious adverse event (714 events [15.5%]) among people exposed to cannabinoids. INTERPRETATION Short-term use of existing medical cannabinoids appeared to increase the risk of nonserious adverse events. The risks associated with long-term use were poorly characterized in published clinical trials and observational studies. High-quality trials of long-term exposure are required to further characterize safety issues related to the use of medical cannabinoids.
Collapse
Affiliation(s)
- Tongtong Wang
- Department of Epidemiology , McGill University, Montréal, Que
| | | | | | | |
Collapse
|
162
|
Abstract
Cannabis sativa L. preparations have been used in medicine for millenia. However, concern over the dangers of abuse led to the banning of the medicinal use of marijuana in most countries in the 1930s. Only recently, marijuana and individual natural and synthetic cannabinoid receptor agonists and antagonists, as well as chemically related compounds, whose mechanism of action is still obscure, have come back to being considered of therapeutic value. However, their use is highly restricted. Despite the mild addiction to cannabis and the possible enhancement of addiction to other substances of abuse, when combined with cannabis, the therapeutic value of cannabinoids is too high to be put aside. Numerous diseases, such as anorexia, emesis, pain, inflammation, multiple sclerosis, neurodegenerative disorders (Parkinson's disease, Huntington's disease, Tourette's syndrome, Alzheimer's disease), epilepsy, glaucoma, osteoporosis, schizophrenia, cardiovascular disorders, cancer, obesity, and metabolic syndrome-related disorders, to name just a few, are being treated or have the potential to be treated by cannabinoid agonists/antagonists/cannabinoid-related compounds. In view of the very low toxicity and the generally benign side effects of this group of compounds, neglecting or denying their clinical potential is unacceptable--instead, we need to work on the development of more selective cannabinoid receptor agonists/antagonists and related compounds, as well as on novel drugs of this family with better selectivity, distribution patterns, and pharmacokinetics, and--in cases where it is impossible to separate the desired clinical action and the psychoactivity--just to monitor these side effects carefully.
Collapse
Affiliation(s)
- Natalya M Kogan
- Medicinal Chemistry and Natural Products Dept, Pharmacy School, Ein-Kerem Medical Campus, the Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
163
|
Papa SM. The cannabinoid system in Parkinson's disease: multiple targets to motor effects. Exp Neurol 2008; 211:334-8. [PMID: 18433745 DOI: 10.1016/j.expneurol.2008.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/25/2008] [Accepted: 03/07/2008] [Indexed: 01/09/2023]
Affiliation(s)
- Stella M Papa
- Department of Neurology, Emory University School of Medicine, 6000 WMRC, 101 Woodruff Circle, Atlanta, Georgia, 30322, USA.
| |
Collapse
|
164
|
Pharmacological treatment of Parkinson's disease: life beyond dopamine D2/D3 receptors? J Neural Transm (Vienna) 2008; 115:431-41. [PMID: 18250954 DOI: 10.1007/s00702-007-0852-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
Parkinson's disease (PD) is a multisystemic disorder in which several neurotransmitters other than dopamine are affected. Drugs acting on non-dopaminergic systems are envisaged as promising agents to treat PD and levodopa-induced dyskinesias (LID). However, compounds targeting glutamate, adenosine, noradrenaline, 5-hydroxytryptamine, cannabinoid, and opioid transmitter systems have been assessed in human studies showing negative, inconsistent or unsatisfactory results. Most of these drugs had been tested previously in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned monkeys, as well as in the classic 6-hydroxydopamine-lesioned rat model. These failures raise several questions and concerns about the true reliability of animal studies, the adequacy of the working hypotheses and design of clinical trials, the validity of tools in current use to evaluate a particular effect, and the selectivity of the drugs used. More importantly, observed discrepancies between the results in models and patients, could challenge the validity of current ideas about the pathophysiology of parkinsonism and LID.
Collapse
|
165
|
Morgese MG, Cassano T, Cuomo V, Giuffrida A. Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson's disease: role of CB(1) and TRPV1 receptors. Exp Neurol 2007; 208:110-9. [PMID: 17900568 PMCID: PMC2128772 DOI: 10.1016/j.expneurol.2007.07.021] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 07/23/2007] [Accepted: 07/30/2007] [Indexed: 11/17/2022]
Abstract
Levodopa is the most commonly prescribed drug for Parkinson's disease (PD). Although levodopa improves PD symptoms in the initial stages of the disease, its long-term use is limited by the development of side effects, including abnormal involuntary movements (dyskinesias) and psychiatric complications. The endocannabinoid system is emerging as an important modulator of basal ganglia functions and its pharmacologic manipulation represents a promising therapy to alleviate levodopa-induced dyskinesias. Rats with 6-OHDA lesions that are chronically treated with levodopa develop increasingly severe axial, limb, locomotor and oro-facial abnormal involuntary movements (AIMs). Administration of the cannabinoid agonist WIN 55,212-2 attenuated levodopa-induced axial, limb and oral AIMs dose-dependently via a CB(1)-mediated mechanism, whereas it had no effect on locomotive AIMs. By contrast, systemic administration of URB597, a potent FAAH inhibitor, did not affect AIMs scoring despite its ability to increase anandamide concentration throughout the basal ganglia. Unlike WIN, anandamide can also bind and activate transient receptor potential vanilloid type-1 (TRPV1) receptors, which have been implicated in the modulation of dopamine transmission in the basal ganglia. Interestingly, URB597 significantly decreased all AIMs subtypes only if co-administered with the TRPV1 antagonist capsazepine. Our data indicate that pharmacological blockade of TRPV1 receptors unmasks the anti-dyskinetic effects of FAAH inhibitors and that CB(1) and TRPV1 receptors play opposite roles in levodopa-induced dyskinesias.
Collapse
MESH Headings
- Amidohydrolases/antagonists & inhibitors
- Animals
- Antiparkinson Agents/adverse effects
- Antiparkinson Agents/pharmacology
- Arachidonic Acids/metabolism
- Basal Ganglia/metabolism
- Benzamides/therapeutic use
- Benzoxazines/therapeutic use
- Cannabinoids/agonists
- Capsaicin/analogs & derivatives
- Capsaicin/therapeutic use
- Carbamates/therapeutic use
- Drug Therapy, Combination
- Dyskinesia, Drug-Induced/metabolism
- Dyskinesia, Drug-Induced/physiopathology
- Endocannabinoids
- Levodopa/adverse effects
- Levodopa/therapeutic use
- Male
- Morpholines/therapeutic use
- Naphthalenes/therapeutic use
- Oxidopamine
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/drug therapy
- Polyunsaturated Alkamides/metabolism
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- TRPV Cation Channels/antagonists & inhibitors
- TRPV Cation Channels/metabolism
Collapse
Affiliation(s)
- Maria Grazia Morgese
- Department of Biomedical Sciences, University of Foggia, Viale Luigi Pinto 1, 71100 Foggia, Italy
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Tommaso Cassano
- Department of Biomedical Sciences, University of Foggia, Viale Luigi Pinto 1, 71100 Foggia, Italy
| | - Vincenzo Cuomo
- Department of Human Physiology and Pharmacology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Andrea Giuffrida
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| |
Collapse
|
166
|
Abstract
Cannabis is one of the first plants used as medicine, and the notion that it has potentially valuable therapeutic properties is a matter of current debate. The isolation of its main constituent, Delta9-tetrahydrocannabinol (THC), and the discovery of the endocannabinoid system (cannabinoid receptors CB1 and CB2 and their endogenous ligands) made possible studies concerning the pharmacological activity of cannabinoids. This paper reviews some of the most-important findings in the field of THC pharmacology. Clinical trials, anecdotal reports, and experiments employing animal models strongly support the idea that THC and its derivatives exhibit a wide variety of therapeutic applications. However, the psychotropic effects observed in laboratory animals and the adverse reactions reported during human trials, as well as the risk of tolerance development and potential dependence, limit the application of THC in therapy. Nowadays, researchers focus on other therapeutic strategies by which the endocannabinoid system might be modulated to clinical advantage (inhibitor or activator of endocannabinoid biosynthesis, cellular uptake, or metabolism). However, emerging evidence highlights the beneficial effects of the whole cannabis extract over those observed with single components, indicating cannabis-based medicines as new perspective to revisit the pharmacology of this plant.
Collapse
Affiliation(s)
- Barbara Costa
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milano.
| |
Collapse
|
167
|
Moore ST, MacDougall HG, Ondo WG. Ambulatory monitoring of freezing of gait in Parkinson's disease. J Neurosci Methods 2007; 167:340-8. [PMID: 17928063 DOI: 10.1016/j.jneumeth.2007.08.023] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/27/2007] [Accepted: 08/28/2007] [Indexed: 10/27/2022]
Abstract
Freezing of gait (FOG) is common in advanced Parkinson's disease (PD), is resistant to treatment and negatively impacts quality of life. In this study an ambulatory FOG monitor was validated in 11 PD patients. The vertical linear acceleration of the left shank was acquired using an ankle-mounted sensor array that transmitted data wirelessly to a pocket PC at a rate of 100 Hz. Power analysis showed high-frequency components of leg movement during FOG in the 3-8 Hz band that were not apparent during volitional standing, and power in this 'freeze' band was higher (p=0.00003) during FOG preceded by walking (turning or obstacles) than FOG preceded by rest (gait initiation). A freeze index (FI) was defined as the power in the 'freeze' band divided by the power in the 'locomotor' band (0.5-3 Hz) and a threshold chosen such that FI values above this limit were designated as FOG. A global threshold detected 78% of FOG events and 20% of stand events were incorrectly labeled as FOG. Individual calibration of the freeze threshold improved accuracy and sensitivity of the device to 89% for detection of FOG with 10% false positives. Ambulatory monitoring may significantly improve clinical management of FOG.
Collapse
Affiliation(s)
- Steven T Moore
- Department of Neurology, Mount Sinai School of Medicine, Box 1135, 1 E 100th Street, New York, NY 10029, USA.
| | | | | |
Collapse
|
168
|
Sidló Z, Reggio PH, Rice ME. Inhibition of striatal dopamine release by CB1 receptor activation requires nonsynaptic communication involving GABA, H2O2, and KATP channels. Neurochem Int 2007; 52:80-8. [PMID: 17767979 PMCID: PMC2904528 DOI: 10.1016/j.neuint.2007.07.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 07/06/2007] [Accepted: 07/10/2007] [Indexed: 11/20/2022]
Abstract
The main psychoactive component of marijuana, Delta9-tetrahydrocannabinol (THC), acts in the CNS via type 1 cannabinoid receptors (CB1Rs). The behavioral consequences of THC or synthetic CB1R agonists include suppression of motor activity. One explanation for movement suppression might be inhibition of striatal dopamine (DA) release by CB1Rs, which are densely localized in motor striatum; however, data from previous studies are inconclusive. Here we examined the effect of CB1R activation on locally evoked DA release monitored with carbon-fiber microelectrodes and fast-scan cyclic voltammetry in striatal slices. Consistent with previous reports, DA release evoked by a single stimulus pulse was unaffected by WIN55,212-2, a cannabinoid receptor agonist. However, when DA release was evoked by a train of stimuli, WIN55,212-2 caused a significant decrease in evoked extracellular DA concentration ([DA]o), implicating the involvement of local striatal circuitry, with similar suppression seen in guinea pig, rat, and mouse striatum. Pulse-train evoked [DA]o was not altered by either AM251, an inverse CB1R agonist, or VCHSR1, a neutral antagonist, indicating the absence of DA release regulation by endogenous cannabinoids with the stimulation protocol used. However, both CB1R antagonists prevented and reversed suppression of evoked [DA]o by WIN55,212-2. The effect of WIN55,212-2 was also prevented by picrotoxin, a GABAA receptor antagonist, and by catalase, a metabolizing enzyme for hydrogen peroxide (H2O2). Furthermore, blockade of ATP-sensitive K+ (KATP) channels by tolbutamide or glybenclamide prevented the effect of WIN55,212-2 on DA release. Together, these data indicate that suppression of DA release by CB1R activation within striatum occurs via a novel nonsynaptic mechanism that involves GABA release inhibition, increased generation of the diffusible messenger H2O2, and activation of KATP channels to inhibit DA release. In addition, the findings suggest a possible physiological substrate for the motor effects of cannabinoid agonist administration.
Collapse
Affiliation(s)
- Zsuzsanna Sidló
- Departments of Neurosurgery and Physiology & Neuroscience, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Patricia H. Reggio
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, 435 New Science Building, PO Box 26170, Greensboro, NC 27402-6170, USA
| | - Margaret E. Rice
- Departments of Neurosurgery and Physiology & Neuroscience, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
169
|
Wright S. Cannabinoid-based medicines for neurological disorders--clinical evidence. Mol Neurobiol 2007; 36:129-36. [PMID: 17952657 DOI: 10.1007/s12035-007-0003-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 02/15/2007] [Indexed: 10/23/2022]
Abstract
Whereas the cannabis plant has a long history of medicinal use, it is only in recent years that a sufficient understanding of the pharmacology of the main plant constituents has allowed for a better understanding of the most rational therapeutic targets. The distribution of cannabinoid receptors, both within the nervous system and without, and the development of pharmacological tools to investigate their function has lead to a substantial increase in efforts to develop cannabinoids as therapeutic agents. Concomitant with these efforts, the understanding of the pharmacology of plant cannabinoids at receptor and other systems distinct from the cannabinoid receptors suggests that the therapeutic applications of plant-derived cannabinoids (and presumably their synthetic derivatives also) may be diverse. This review aims to discuss the clinical evidence investigating the use of medicines derived, directly or indirectly, from plant cannabinoids with special reference to neurological disorders. Published studies suggest that the oral administration of cannabinoids may not be the preferred route of administration and that plant extracts show greater evidence of efficacy than synthetic compounds. One of these, Sativex (GW Pharmaceuticals), was approved as a prescription medicine in Canada in 2005 and is currently under regulatory review in the EU.
Collapse
Affiliation(s)
- Stephen Wright
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wilts, UK.
| |
Collapse
|
170
|
Burns HD, Van Laere K, Sanabria-Bohórquez S, Hamill TG, Bormans G, Eng WS, Gibson R, Ryan C, Connolly B, Patel S, Krause S, Vanko A, Van Hecken A, Dupont P, De Lepeleire I, Rothenberg P, Stoch SA, Cote J, Hagmann WK, Jewell JP, Lin LS, Liu P, Goulet MT, Gottesdiener K, Wagner JA, de Hoon J, Mortelmans L, Fong TM, Hargreaves RJ. [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proc Natl Acad Sci U S A 2007; 104:9800-5. [PMID: 17535893 PMCID: PMC1877985 DOI: 10.1073/pnas.0703472104] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
[(18)F]MK-9470 is a selective, high-affinity, inverse agonist (human IC(50), 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in human brain imaging. Autoradiographic studies in rhesus monkey brain showed that [(18)F]MK-9470 binding is aligned with the reported distribution of CB1 receptors with high specific binding in the cerebral cortex, cerebellum, caudate/putamen, globus pallidus, substantia nigra, and hippocampus. Positron emission tomography (PET) imaging studies in rhesus monkeys showed high brain uptake and a distribution pattern generally consistent with that seen in the autoradiographic studies. Uptake was blocked by pretreatment with a potent CB1 inverse agonist, MK-0364. The ratio of total to nonspecific binding in putamen was 4-5:1, indicative of a strong specific signal that was confirmed to be reversible via displacement studies with MK-0364. Baseline PET imaging studies in human research subject demonstrated behavior of [(18)F]MK-9470 very similar to that seen in monkeys, with very good test-retest variability (7%). Proof of concept studies in healthy young male human subjects showed that MK-0364, given orally, produced a dose-related reduction in [(18)F]MK-9470 binding reflecting CB1R receptor occupancy by the drug. Thus, [(18)F]MK-9470 has the potential to be a valuable, noninvasive research tool for the in vivo study of CB1R biology and pharmacology in a variety of neuropsychiatric disorders in humans. In addition, it allows demonstration of target engagement and noninvasive dose-occupancy studies to aid in dose selection for clinical trials of CB1R inverse agonists.
Collapse
Affiliation(s)
- H Donald Burns
- Imaging Research, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Fox SH, Lang AE, Brotchie JM. Translation of nondopaminergic treatments for levodopa-induced dyskinesia from MPTP-lesioned nonhuman primates to phase IIa clinical studies: keys to success and roads to failure. Mov Disord 2007; 21:1578-94. [PMID: 16874752 DOI: 10.1002/mds.20936] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Studies in MPTP-lesioned nonhuman primates have demonstrated the potential of nondopaminergic drugs in reducing the problems of levodopa-induced dyskinesia (LID). Here we review the process of translating findings from the monkey to man. Agents targeting glutamate, adensosine, noradrenaline, 5-hydroxytryptamine, cannabinoid, and opioid transmitter systems have been assessed for antidyskinetic potential in human studies. Eleven nondopaminergic drugs with antidyskinetic efficacy in the MPTP primate have been advanced to proof-of-concept phase IIa trials in PD patients (amantadine, istradefylline, idazoxan, fipamezole, sarizotan, quetiapine, clozapine, nabilone, rimonabant, naloxone, and naltrexone). For all six nondopaminergic transmitter systems reviewed, the MPTP-lesioned primate correctly predicted phase II efficacy of at least one drug. Of the 11 specific molecules tested in both monkeys and humans, 8 showed clear antidyskinetic properties in both human and monkey. In the instances where the primate studies did not, or did not consistently, predict the outcome of the human studies, the discrepancy may reflect limitations in the validity of the model or limitations in the design of either the clinical or the preclinical studies. We find that the major determinant of success in predicting efficacy is to ensure that primate studies are conducted in a statistically rigorous way and incorporate designs and outcome measures with clinical applicability. On the other hand, phase IIa trials should strive to replicate the preclinical study, especially in terms of protocol, drug dose equivalence, and outcome measure, so as to test the same hypothesis. Failure to meet these criteria carries the risk of false negative conclusions in phase IIa trials.
Collapse
Affiliation(s)
- Susan H Fox
- Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
172
|
Chung V, Liu L, Bian Z, Zhao Z, Leuk Fong W, Kum WF, Gao J, Li M. Efficacy and safety of herbal medicines for idiopathic Parkinson's disease: a systematic review. Mov Disord 2007; 21:1709-15. [PMID: 16830309 DOI: 10.1002/mds.21008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The objective of this study is to assess the efficacy and safety of herbal medicines (HMs), as a monotherapy or adjunct therapy, compared to placebo or conventional approaches in the treatment of idiopathic Parkinson's disease (PD). We conducted a systematic review of randomized controlled trials from both conventional and alternative medicine sources. Outcome measures were overall improvement, quality of life, reduction of levodopa dose, and adverse events. Nine studies were included, each testing a different HM. Six of the trials had limited internal validity due to major flaws in design, including the lack of proper randomization; insufficient blinding; unclear inclusive criteria in terms of diagnostic criteria, baseline staging, and duration of disease; lack of proper sample size calculation; and insufficient data analysis. Imbalances in gender and ethnicity among the patients in the included trials were observed. No major adverse events emerged, and no specific pattern was detected from the trials describing such data. In addition to major methodological defects, heterogeneity in (1) HM tested, (2) control treatment, and (3) outcome measure hindered in-depth data analysis and synthesis. Current evidence is insufficient to evaluate the efficacy and safety of various HMs. Further studies with improved trial design and reporting, with assessment on cost-effectiveness, quality of life, and qualitative data are warranted.
Collapse
Affiliation(s)
- Vincent Chung
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Alsasua del Valle A. Implication of cannabinoids in neurological diseases. Cell Mol Neurobiol 2006; 26:579-91. [PMID: 16699878 PMCID: PMC11520754 DOI: 10.1007/s10571-006-9070-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
1. Preparations from Cannabis sativa (marijuana) have been used for many centuries both medicinally and recreationally. 2. Recent advances in the knowledge of its pharmacological and chemical properties in the organism, mainly due to Delta(9)-tetrahydrocannabinol, and the physiological roles played by the endocannabinoids have opened up new strategies in the treatment of neurological and psychiatric diseases. 3. Potential therapeutic uses of cannabinoid receptor agonists include the management of spasticity and tremor in multiple sclerosis/spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, cancer, and vasodilation that accompanies advanced cirrhosis. CB(1) receptor antagonists have therapeutic potential in Parkinson's disease. 4. Dr. Julius Axelrod also contributed in studies on the neuroprotective actions of cannabinoids.
Collapse
Affiliation(s)
- Angela Alsasua del Valle
- Dpto. Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Avda. Complutense s/n, Madrid, 28040, Spain.
| |
Collapse
|
174
|
Ben Amar M. Cannabinoids in medicine: A review of their therapeutic potential. JOURNAL OF ETHNOPHARMACOLOGY 2006; 105:1-25. [PMID: 16540272 DOI: 10.1016/j.jep.2006.02.001] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 01/30/2006] [Accepted: 02/02/2006] [Indexed: 05/07/2023]
Abstract
In order to assess the current knowledge on the therapeutic potential of cannabinoids, a meta-analysis was performed through Medline and PubMed up to July 1, 2005. The key words used were cannabis, marijuana, marihuana, hashish, hashich, haschich, cannabinoids, tetrahydrocannabinol, THC, dronabinol, nabilone, levonantradol, randomised, randomized, double-blind, simple blind, placebo-controlled, and human. The research also included the reports and reviews published in English, French and Spanish. For the final selection, only properly controlled clinical trials were retained, thus open-label studies were excluded. Seventy-two controlled studies evaluating the therapeutic effects of cannabinoids were identified. For each clinical trial, the country where the project was held, the number of patients assessed, the type of study and comparisons done, the products and the dosages used, their efficacy and their adverse effects are described. Cannabinoids present an interesting therapeutic potential as antiemetics, appetite stimulants in debilitating diseases (cancer and AIDS), analgesics, and in the treatment of multiple sclerosis, spinal cord injuries, Tourette's syndrome, epilepsy and glaucoma.
Collapse
Affiliation(s)
- Mohamed Ben Amar
- Substance Abuse Program, Faculties of Continuing Education and Graduate Studies, University of Montreal, C.P. 6128, succursale Centre-ville, Montreal, Que. H3C 3J7, Canada.
| |
Collapse
|
175
|
Köfalvi A, Rodrigues RJ, Ledent C, Mackie K, Vizi ES, Cunha RA, Sperlágh B. Involvement of cannabinoid receptors in the regulation of neurotransmitter release in the rodent striatum: a combined immunochemical and pharmacological analysis. J Neurosci 2006; 25:2874-84. [PMID: 15772347 PMCID: PMC6725145 DOI: 10.1523/jneurosci.4232-04.2005] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the profound effect of cannabinoids on motor function, and their therapeutic potential in Parkinson's and Huntington's diseases, the cellular and subcellular distributions of striatal CB1 receptors are not well defined. Here, we show that CB1 receptors are primarily located on GABAergic (vesicular GABA transporter-positive) and glutamatergic [vesicular glutamate transporter-1 (VGLUT-1)- and VGLUT-2-positive] striatal nerve terminals and are present in the presynaptic active zone, in the postsynaptic density, as well as in the extrasynaptic membrane. Both the nonselective agonist WIN552122 [(R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl] pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate salt] (EC50, 32 nM) and the CB1-selective agonist ACEA [N-(2-chloroethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide] inhibited [3H]GABA release from rat striatal slices. The effect of these agonists was prevented by the CB1-selective antagonists SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide] (1 microM) and AM251 [1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide trifluoroacetate salt] (1 microM), indicating that cannabinoids inhibit the release of GABA via activation of presynaptic CB1 receptors. Cannabinoids modulated glutamate release via both CB1 and non-CB1 mechanisms. Cannabinoid agonists and antagonists inhibited 25 mM K+-evoked [3H]glutamate release and sodium-dependent [3H]glutamate uptake. Partial involvement of CB1 receptors is suggested because low concentrations of SR141716A partly and AM251 fully prevented the effect of WIN552122 and CP55940 [5-(1,1-dimethylheptyl)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol]. However, the effect of CB1 agonists and antagonists persisted in CB1 knock-out mice, indicating the involvement of non-CB1,CB1-like receptors. In contrast, cannabinoids did not modulate [3H]dopamine release or [3H]dopamine and [3H]GABA uptake. Our results indicate distinct modulation of striatal GABAergic and glutamatergic transmission by cannabinoids and will facilitate the understanding of the role and importance of the cannabinoid system in normal and pathological motor function.
Collapse
MESH Headings
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Animals
- Benzoxazines
- Blotting, Western/methods
- Calcium/metabolism
- Corpus Striatum/cytology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/ultrastructure
- Dopamine/metabolism
- Dose-Response Relationship, Drug
- Drug Interactions
- Excitatory Amino Acid Antagonists/pharmacology
- Glutamic Acid/metabolism
- Immunohistochemistry/methods
- Male
- Mice
- Mice, Knockout
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Neurotransmitter Agents/metabolism
- Piperidines/pharmacology
- Potassium/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/physiology
- Rimonabant
- Synapses/drug effects
- Synapses/metabolism
- Synaptosomes/drug effects
- Synaptosomes/metabolism
- Tetrodotoxin/pharmacology
- Tritium/metabolism
- Tyrosine 3-Monooxygenase/metabolism
- Vesicular Glutamate Transport Protein 1/metabolism
- Vesicular Glutamate Transport Protein 2/metabolism
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Attila Köfalvi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1450, Hungary
| | | | | | | | | | | | | |
Collapse
|
176
|
Abstract
Although used for more than 4000 years for recreational and medicinal purposes, Cannabis and its best-known pharmacologically active constituents, the cannabinoids, became a protagonist in medical research only recently. This revival of interest is explained by the finding in the 1990s of the mechanism of action of the main psychotropic cannabinoid, Delta9-tetrahydrocannabinol (THC), which acts through specific membrane receptors, the cannabinoid receptors. The molecular characterization of these receptors allowed the development of synthetic molecules with cannabinoid and noncannabinoid structure and with higher selectivity, metabolic stability, and efficacy than THC, as well as the development of antagonists that have already found pharmaceutical application. The finding of endogenous agonists at these receptors, the endocannabinoids, opened new therapeutic possibilities through the modulation of the activity of cannabinoid receptors by targeting the biochemical mechanisms controlling endocannabinoid tissue levels.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Endocannabinoid Research Group, Institutes of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy.
| | | |
Collapse
|
177
|
Laser literature watch. Photomed Laser Surg 2005; 23:513-24. [PMID: 16262584 DOI: 10.1089/pho.2005.23.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
178
|
Grant I, Cahn BR. Cannabis and endocannabinoid modulators: Therapeutic promises and challenges. ACTA ACUST UNITED AC 2005; 5:185-199. [PMID: 18806886 DOI: 10.1016/j.cnr.2005.08.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The discovery that botanical cannabinoids such as delta-9 tetrahydrocannabinol exert some of their effect through binding specific cannabinoid receptor sites has led to the discovery of an endocannabinoid signaling system, which in turn has spurred research into the mechanisms of action and addiction potential of cannabis on the one hand, while opening the possibility of developing novel therapeutic agents on the other. This paper reviews current understanding of CB1, CB2, and other possible cannabinoid receptors, their arachidonic acid derived ligands (e.g. anandamide; 2 arachidonoyl glycerol), and their possible physiological roles. CB1 is heavily represented in the central nervous system, but is found in other tissues as well; CB2 tends to be localized to immune cells. Activation of the endocannabinoid system can result in enhanced or dampened activity in various neural circuits depending on their own state of activation. This suggests that one function of the endocannabinoid system may be to maintain steady state. The therapeutic action of botanical cannabis or of synthetic molecules that are agonists, antagonists, or which may otherwise modify endocannabinoid metabolism and activity indicates they may have promise as neuroprotectants, and may be of value in the treatment of certain types of pain, epilepsy, spasticity, eating disorders, inflammation, and possibly blood pressure control.
Collapse
Affiliation(s)
- Igor Grant
- Department of Psychiatry, University of California San Diego, Center for Medicinal Cannabis Research, 9500 Gilman Drive, La Jolla, CA 92093-0680, USA
| | | |
Collapse
|
179
|
Russo E, Guy GW. A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 2005; 66:234-46. [PMID: 16209908 DOI: 10.1016/j.mehy.2005.08.026] [Citation(s) in RCA: 387] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 08/18/2005] [Indexed: 01/18/2023]
Abstract
This study examines the current knowledge of physiological and clinical effects of tetrahydrocannabinol (THC) and cannabidiol (CBD) and presents a rationale for their combination in pharmaceutical preparations. Cannabinoid and vanilloid receptor effects as well as non-receptor mechanisms are explored, such as the capability of THC and CBD to act as anti-inflammatory substances independent of cyclo-oxygenase (COX) inhibition. CBD is demonstrated to antagonise some undesirable effects of THC including intoxication, sedation and tachycardia, while contributing analgesic, anti-emetic, and anti-carcinogenic properties in its own right. In modern clinical trials, this has permitted the administration of higher doses of THC, providing evidence for clinical efficacy and safety for cannabis based extracts in treatment of spasticity, central pain and lower urinary tract symptoms in multiple sclerosis, as well as sleep disturbances, peripheral neuropathic pain, brachial plexus avulsion symptoms, rheumatoid arthritis and intractable cancer pain. Prospects for future application of whole cannabis extracts in neuroprotection, drug dependency, and neoplastic disorders are further examined. The hypothesis that the combination of THC and CBD increases clinical efficacy while reducing adverse events is supported.
Collapse
Affiliation(s)
- Ethan Russo
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire SP4 0JQ, UK.
| | | |
Collapse
|
180
|
Liu X, Carroll CB, Wang SY, Zajicek J, Bain PG. Quantifying drug-induced dyskinesias in the arms using digitised spiral-drawing tasks. J Neurosci Methods 2005; 144:47-52. [PMID: 15848238 DOI: 10.1016/j.jneumeth.2004.10.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/12/2004] [Accepted: 10/12/2004] [Indexed: 11/29/2022]
Abstract
In this study, we quantify the severity of drug-induced dyskinesias in the arms of Parkinson's disease (PD) patients using digitised spiral-drawing tasks. Two spiral drawings, namely a circular and a square spiral, are designed to, respectively, represent the continuous and discrete arm motions, and the size of the spiral is decided so that both the distal and proximal arm joints are involved. Fifteen PD patients, average disease duration 14.4+/-7.4 years, were assessed 30 min after a levodopa challenge whilst performing circular and square spiral-drawing tasks. The velocity of drawing movements was computed and the amplitude of the involuntary dyskinetic movements was measured as the standard deviation of the drawing velocity (SD-DV). The mean amplitude of dyskinetic movements was compared between arms and tasks and was correlated with clinical measures including the Bain dyskinesia scale and the total unified Parkinson's disease rating scale (UPDRS) score. The results showed that there was no statistically significant difference in the amplitude of dyskinesias either between the arms or between the continuous (circular) and discrete (square) spiral drawings in this group of PD patients, but interestingly the interaction between arm and drawing pattern was significant. Significant correlations were found between the magnitude of dyskinesia measured from the spiral-drawing tasks and both the 'on' or 'off' UPDRS and also the Bain dyskinesia scale. We conclude that the drawing tasks may be used to provide an objective method of quantifying the severity of drug-induced dyskinesias in the arm in PD patients.
Collapse
Affiliation(s)
- Xuguang Liu
- Movement Disorders and Neurostimulation Group, Charing Cross Hospital, Division of Neurosciences and Psychological Medicine, Imperial College, London W6 8RF, UK.
| | | | | | | | | |
Collapse
|
181
|
Konitsiotis S. Novel pharmacological strategies for motor complications in Parkinson’s disease. Expert Opin Investig Drugs 2005; 14:377-92. [PMID: 15882115 DOI: 10.1517/13543784.14.4.377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In advanced Parkinson's disease, the combination of disease progression and levodopa therapy leads to the development of motor problems complicating the therapeutic response, known as motor response complications. The nonphysiological, pulsatile stimulation produced by most currently available dopaminergic therapies triggers a complicated series of responses resulting in the dysregulation of glutamate receptors and many other neurotransmitter systems on striatal neurons. Although a number of novel compounds that provide a more continuous dopaminergic stimulation are becoming available, no practical way to accomplish this in a truly physiological manner currently exists. Novel strategies for pharmacological intervention with the use of nondopaminergic treatments, with drugs targeting selected transmitter receptors expressed on striatal neurons appear more promising. These include NMDA or AMPA antagonists, or drugs acting on 5-hydroxytryptamine subtype 2A, alpha2-adrenergic, adenosine A2A and cannabinoid CB1 receptors. Future strategies may also target pre- and postsynaptic components that regulate firing pattern, like synaptic vesicle proteins, or nonsynaptic gap junction communication mechanisms, or drugs with actions at the signal transduction systems that modulate the phosphorylation state of NMDA receptors. These new therapeutic strategies, alone or in combination, hold the promise of providing effective control or reversal of motor response complications.
Collapse
Affiliation(s)
- Spiros Konitsiotis
- Department of Neurology, University of Ioannina Medical School, GR-45110, Ioannina, Greece.
| |
Collapse
|
182
|
Bibliography. PROGRESS IN PALLIATIVE CARE 2005. [DOI: 10.1179/096992605x42396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|