151
|
Skjørringe T, Møller LB, Moos T. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders. Front Pharmacol 2012; 3:169. [PMID: 23055972 PMCID: PMC3456798 DOI: 10.3389/fphar.2012.00169] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/29/2012] [Indexed: 01/01/2023] Open
Abstract
Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1) is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1, and ferroportin, all highly involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells that express various transporters.
Collapse
Affiliation(s)
- Tina Skjørringe
- Section of Neurobiology, Biomedicine Group, Institute of Medicine and Health Technology, Aalborg University Aalborg, Denmark ; Center for Applied Human Molecular Genetics, Department of Kennedy Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | |
Collapse
|
152
|
Morrison K, Witte K, Mayers JR, Schuh AL, Audhya A. Roles of acidic phospholipids and nucleotides in regulating membrane binding and activity of a calcium-independent phospholipase A2 isoform. J Biol Chem 2012; 287:38824-34. [PMID: 23007400 DOI: 10.1074/jbc.m112.391508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Phospholipase A(2) activity plays key roles in generating lipid second messengers and regulates membrane topology through the generation of asymmetric lysophospholipids. In particular, the Group VIA phospholipase A(2) (GVIA-iPLA(2)) subfamily of enzymes functions independently of calcium within the cytoplasm of cells and has been implicated in numerous cellular processes, including proliferation, apoptosis, and membrane transport steps. However, mechanisms underlying the spatial and temporal regulation of these enzymes have remained mostly unexplored. Here, we examine the subset of Caenorhabditis elegans lipases that harbor a consensus motif common to members of the GVIA-iPLA(2) subfamily. Based on sequence homology, we identify IPLA-1 as the closest C. elegans homolog of human GVIA-iPLA(2) enzymes and use a combination of liposome interaction studies to demonstrate a role for acidic phospholipids in regulating GVIA-iPLA(2) function. Our studies indicate that IPLA-1 binds directly to multiple acidic phospholipids, including phosphatidylserine, phosphatidylglycerol, cardiolipin, phosphatidic acid, and phosphorylated derivatives of phosphatidylinositol. Moreover, the presence of these acidic lipids dramatically elevates the specific activity of IPLA-1 in vitro. We also found that the addition of ATP and ADP promote oligomerization of IPLA-1, which probably underlies the stimulatory effect of nucleotides on its activity. We propose that membrane composition and the presence of nucleotides play key roles in recruiting and modulating GVIA-iPLA(2) activity in cells.
Collapse
Affiliation(s)
- Kylee Morrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
153
|
Yiu EM, Ryan MM. Genetic axonal neuropathies and neuronopathies of pre-natal and infantile onset. J Peripher Nerv Syst 2012; 17:285-300. [DOI: 10.1111/j.1529-8027.2012.00412.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
154
|
Cheon Y, Kim HW, Igarashi M, Modi HR, Chang L, Ma K, Greenstein D, Wohltmann M, Turk J, Rapoport SI, Taha AY. Disturbed brain phospholipid and docosahexaenoic acid metabolism in calcium-independent phospholipase A(2)-VIA (iPLA(2)β)-knockout mice. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:1278-86. [PMID: 22349267 PMCID: PMC3393806 DOI: 10.1016/j.bbalip.2012.02.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/25/2012] [Accepted: 02/03/2012] [Indexed: 10/14/2022]
Abstract
Calcium-independent phospholipase A(2) group VIA (iPLA(2)β) releases docosahexaenoic acid (DHA) from phospholipids in vitro. Mutations in the iPLA(2)β gene, PLA2G6, are associated with dystonia-parkinsonism and infantile neuroaxonal dystrophy. To understand the role of iPLA(2)β in brain, we applied our in vivo kinetic method using radiolabeled DHA in 4 to 5-month-old wild type (iPLA(2)β(+/+)) and knockout (iPLA(2)β(-/-)) mice, and measured brain DHA kinetics, lipid concentrations, and expression of PLA(2), cyclooxygenase (COX), and lipoxygenase (LOX) enzymes. Compared to iPLA(2)β(+/+) mice, iPLA(2)β(-/-) mice showed decreased rates of incorporation of unesterified DHA from plasma into brain phospholipids, reduced concentrations of several fatty acids (including DHA) esterified in ethanolamine- and serine-glycerophospholipids, and increased lysophospholipid fatty acid concentrations. DHA turnover in brain phospholipids did not differ between genotypes. In iPLA(2)β(-/-) mice, brain levels of iPLA(2)β mRNA, protein, and activity were decreased, as was the iPLA(2)γ (Group VIB PLA(2)) mRNA level, while levels of secretory sPLA(2)-V mRNA, protein, and activity and cytosolic cPLA(2)-IVA mRNA were increased. Levels of COX-1 protein were decreased in brain, while COX-2 protein and mRNA were increased. Levels of 5-, 12-, and 15-LOX proteins did not differ significantly between genotypes. Thus, a genetic iPLA(2)β deficiency in mice is associated with reduced DHA metabolism, profound changes in lipid-metabolizing enzyme expression (demonstrating lack of redundancy) and of phospholipid fatty acid content of brain (particularly of DHA), which may be relevant to neurologic abnormalities in humans with PLA2G6 mutations.
Collapse
Affiliation(s)
- Yewon Cheon
- National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Zhang P, Gao Z, Jiang Y, Wang J, Zhang F, Wang S, Yang Y, Xiong H, Zhang Y, Bao X, Xiao J, Wu X, Wu Y. Follow-up study of 25 Chinese children with PLA2G6-associated neurodegeneration. Eur J Neurol 2012; 20:322-30. [PMID: 22934738 DOI: 10.1111/j.1468-1331.2012.03856.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/12/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND To perform a follow-up of 25 Chinese children with gene-confirmed PLA2G6-associated neurodegeneration (PLAN). METHODS We recruited patients with infantile neuroaxonal dystrophy (INAD) according to the criteria proposed by Nardocci et al. Follow-up was conducted from 7 months to 8 years after the first visit. The PLA2G6 gene was sequenced, and copy number variation (CNV) was detected in patients with only one mutant allele and in mutation-negative patients. Patients with late-onset PLAN until 2012 were reviewed. RESULTS All patients with INAD exhibited rapid decline in motor and mental function, consistent with previous reports from other populations. Epileptic seizures occurred in 16.7%. One teenager with late-onset PLAN was diagnosed and followed up. The age of disease onset in published late-onset PLAN ranged between 18 months and 37 years. Initial presentations included gait instability (79.0%), mood/behavior changes (10.5%), dysarthria (5.26%) and cognitive deterioration (5.3%). Compared with INAD, cerebellar atrophy (42.1%) was less frequent in the late-onset cases, with cerebral atrophy more common (71.4%). Brain iron accumulation was seen in 52.6%. PLA2G6 mutations were identified by DNA sequencing in 92.3% of clinically diagnosed INAD cases and in the late-onset case. Twenty-seven different mutations were found, of which 13 were novel. No CNVs were detected. Maternal uniparental disomy was confirmed in one INAD case. CONCLUSIONS This is the largest report on PLAN in the Chinese population. We suggest that PLA2G6 should be screened in any patient exhibiting progressive gait disturbance, bradykinesia, dysarthria, tremors, mood/behavior changes or cognitive decline, especially when associated with cerebellar atrophy and/or iron accumulation and/or cerebral atrophy.
Collapse
Affiliation(s)
- P Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Campanella A, Privitera D, Guaraldo M, Rovelli E, Barzaghi C, Garavaglia B, Santambrogio P, Cozzi A, Levi S. Skin fibroblasts from pantothenate kinase-associated neurodegeneration patients show altered cellular oxidative status and have defective iron-handling properties. Hum Mol Genet 2012; 21:4049-59. [PMID: 22692681 DOI: 10.1093/hmg/dds229] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pantothenate kinase-associated neurodegeneration (PKAN) is a neurodegenerative disease belonging to the group of neurodegeneration with brain iron accumulation disorders. It is characterized by progressive impairments in movement, speech and cognition. The disease is inherited in a recessive manner due to mutations in the Pantothenate Kinase-2 (PANK2) gene that encodes a mitochondrial protein involved in Coenzyme A synthesis. To investigate the link between a PANK2 gene defect and iron accumulation, we analyzed primary skin fibroblasts from three PKAN patients and three unaffected subjects. The oxidative status of the cells and their ability to respond to iron were analyzed in both basal and iron supplementation conditions. In basal conditions, PKAN fibroblasts show an increase in carbonylated proteins and altered expression of antioxidant enzymes with respect to the controls. After iron supplementation, the PKAN fibroblasts had a defective response to the additional iron. Under these conditions, ferritins were up-regulated and Transferrin Receptor 1 (TfR1) was down-regulated to a minor extent in patients compared with the controls. Analysis of iron regulatory proteins (IRPs) reveals that, with respect to the controls, PKAN fibroblasts have a reduced amount of membrane-associated mRNA-bound IRP1, which responds imperfectly to iron. This accounts for the defective expression of ferritin and TfR1 in patients' cells. The inaccurate quantity of these proteins produced a higher bioactive labile iron pool and consequently increased iron-dependent reactive oxygen species formation. Our results suggest that Pank2 deficiency promotes an increased oxidative status that is further enhanced by the addition of iron, potentially causing damage in cells.
Collapse
|
157
|
Prohaska R, Sibon OC, Rudnicki DD, Danek A, Hayflick SJ, Verhaag EM, Jan J V, Margolis RL, Walker RH. Brain, blood, and iron: perspectives on the roles of erythrocytes and iron in neurodegeneration. Neurobiol Dis 2012; 46:607-24. [PMID: 22426390 PMCID: PMC3352961 DOI: 10.1016/j.nbd.2012.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/17/2012] [Accepted: 03/01/2012] [Indexed: 12/20/2022] Open
Abstract
The terms "neuroacanthocytosis" (NA) and "neurodegeneration with brain iron accumulation" (NBIA) both refer to groups of genetically heterogeneous disorders, classified together due to similarities of their phenotypic or pathological findings. Even collectively, the disorders that comprise these sets are exceedingly rare and challenging to study. The NBIA disorders are defined by their appearance on brain magnetic resonance imaging, with iron deposition in the basal ganglia. Clinical features vary, but most include a movement disorder. New causative genes are being rapidly identified; however, the mechanisms by which mutations cause iron accumulation and neurodegeneration are not well understood. NA syndromes are also characterized by a progressive movement disorder, accompanied by cognitive and psychiatric features, resulting from mutations in a number of genes whose roles are also basically unknown. An overlapping feature of the two groups, NBIA and NA, is the occurrence of acanthocytes, spiky red cells with a poorly-understood membrane dysfunction. In this review we summarise recent developments in this field, specifically insights into cellular mechanisms and from animal models. Cell membrane research may shed light upon the significance of the erythrocyte abnormality, and upon possible connections between the two sets of disorders. Shared pathophysiologic mechanisms may lead to progress in the understanding of other types of neurodegeneration.
Collapse
Affiliation(s)
- Rainer Prohaska
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Ody C.M. Sibon
- Section of Radiation & Stress Cell Biology, Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Dobrila D. Rudnicki
- Department of Psychiatry, Division of Neurobiology, Laboratory of Genetic Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Susan J. Hayflick
- Departments of Molecular & Medical Genetics, Pediatrics and Neurology, Oregon Health & Science University, Portland OR USA
| | - Esther M. Verhaag
- Section of Radiation & Stress Cell Biology, Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Vonk Jan J
- Section of Radiation & Stress Cell Biology, Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Russell L. Margolis
- Department of Psychiatry, Division of Neurobiology, Laboratory of Genetic Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruth H. Walker
- Departments of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA and Mount Sinai School of Medicine, New York, NY USA
| |
Collapse
|
158
|
Abstract
Neurodegeneration with brain iron accumulation (NBIA) includes a heterogeneous group of genetically defined disorders characterized by progressive extrapyramidal deterioration and iron accumulation in the basal ganglia. Current medical options for these disorders remain largely unsatisfactory and do not prevent the disease from progressing to a severe and disabling state. In select cases, surgical techniques, such as deep brain stimulation, may be effective in ameliorating some of the symptoms of the disease. The availability of chelating agents with specific properties that have been demonstrated to be effective in other disorders with regional iron accumulation as well as magnetic resonance imaging techniques that allow for quantitative assessment of iron have stimulated interest in the use of chelating agents in NBIA. This review aims to describe the role of surgical therapies in NBIA, discuss the use of chelating agents in NBIA, and presents new therapeutic approaches under consideration.
Collapse
|
159
|
Schneider SA, Bhatia KP. Syndromes of neurodegeneration with brain iron accumulation. Semin Pediatr Neurol 2012; 19:57-66. [PMID: 22704258 DOI: 10.1016/j.spen.2012.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In parallel to recent developments of genetic techniques, understanding of the syndromes of neurodegeneration with brain iron accumulation has grown considerably. The acknowledged clinical spectrum continues to broaden, with age-dependent presentations being recognized. Postmortem brain examination of genetically confirmed cases has demonstrated Lewy bodies and/or tangles in some forms, bridging the gap to more common neurodegenerative disorders, including Parkinson disease. In this review, the major forms of neurodegeneration with brain iron accumulation (NBIA) are summarized, concentrating on clinical findings and molecular insights. In addition to pantothenate kinase-associated neurodegeneration (PKAN) and phospholipase A2-associated neurodegeneration (PLAN), fatty acid hydroxylase-associated neurodegeneration (FAHN) NBIA, mitochondrial protein-associated neurodegeneration, Kufor-Rakeb disease, aceruloplasminemia, neuroferritinopathy, and SENDA syndrome (static encephalopathy of childhood with neurodegeneration in adulthood) are discussed.
Collapse
Affiliation(s)
- Susanne A Schneider
- Schilling Section of Clinical and Molecular Neurogenetics, Department of Neurology, University of Lübeck, Lübeck, Germany.
| | | |
Collapse
|
160
|
Keogh MJ, Chinnery PF. Current concepts and controversies in neurodegeneration with brain iron accumulation. Semin Pediatr Neurol 2012; 19:51-6. [PMID: 22704257 DOI: 10.1016/j.spen.2012.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) encompasses at least 7 genetically distinct disorders, and additional causative genes likely await identification. Recent advances have included the characterization of new genes associated with new subtypes of NBIA and also highlighted the phenotypic heterogeneity of this class of disorders. Herein, we summarize current concepts of NBIA pathogenesis and discuss important gaps in current knowledge, outlining key questions in the field.
Collapse
Affiliation(s)
- Michael J Keogh
- Mitochondrial Research Group, Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle Upon Tyne, UK
| | | |
Collapse
|
161
|
Carpenter S, Soares H, Brandão O, Souto Moura C, Castro L, Rodrigues E, Cunha AL, Bartosch C. A novel type of familial proximal axonal dystrophy: three cases and a review of the axonal dystrophies. Eur J Paediatr Neurol 2012; 16:292-300. [PMID: 21925911 DOI: 10.1016/j.ejpn.2011.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/24/2011] [Accepted: 08/28/2011] [Indexed: 01/09/2023]
Abstract
Three related infants of Roma ancestry, two of them siblings, showed hypotonia, predominantly axial, from birth, difficulty swallowing, myoclonic seizures, and respiratory difficulty. Dysmorphic features, principally micrognathia were present. EEGs showed focal epileptiform abnormalities. All three died in their 5th month from respiratory insufficiency complicated by pneumonia. Autopsy showed small brains without malformation. Microscopy revealed numerous axonal spheroids involving particularly the brain stem and spinal cord, with especial prominence in the middle cerebellar peduncle, the anterior part of the thalamic reticular nuclei, and the anterior horns and columns of the spinal cord. Spheroids that appeared to be on axons of lower motor neurons were especially large. No spheroids were seen in peripheral nerves; electron microscopy did not show spheroids in skin. By electron microscopy spheroids contained neurofilaments, sparse mitochondria, and electron dense granules. The material did not allow identification of microtubules. Closely packed vesicles excluded neurofilamanets from the center of many spheroids, especially in the middle cerebellar peduncle. Sprouting of axons from the surface of many spheroids was seen. This disease is distinct from the well described type of infantile neuroaxonal dystrophy (Seitelberger's disease) in view of the distribution of spheroids, presence of spheroids on proximal rather than distal parts of axons, sparing of the peripheral nerves, lack of staining for synuclein, presence of sprouting, and lack of membranous profiles in the spheroids. A review of reported types of axonal dystrophy has not shown identical cases.
Collapse
Affiliation(s)
- Stirling Carpenter
- Department of Anatomic Pathology, Hospital São Joâo, Alameda Professor Hernani Monteiro, Porto 4200, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Iron dysregulation in movement disorders. Neurobiol Dis 2012; 46:1-18. [DOI: 10.1016/j.nbd.2011.12.054] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/22/2011] [Accepted: 12/31/2011] [Indexed: 01/04/2023] Open
|
163
|
Strokin M, Seburn KL, Cox GA, Martens KA, Reiser G. Severe disturbance in the Ca2+ signaling in astrocytes from mouse models of human infantile neuroaxonal dystrophy with mutated Pla2g6. Hum Mol Genet 2012; 21:2807-14. [PMID: 22442204 DOI: 10.1093/hmg/dds108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Infantile neuroaxonal dystrophy (INAD; OMIM #no. 256600) is an inherited degenerative nervous system disorder characterized by nerve abnormalities in brain, spinal cord and peripheral nerves. About 85% of INAD patients carry mutations in the PLA2G6 gene that encodes for a Ca(2+)-independent phospholipase A(2) (VIA iPLA(2)), but how these mutations lead to disease is unknown. Besides regulating phospholipid homeostasis, VIA iPLA(2) is emerging with additional non-canonical functions, such as modulating store-regulated Ca(2+) entry into cells, and mitochondrial functions. In turn, defective Ca(2+) regulation could contribute to the development of INAD. Here, we studied possible changes in ATP-induced Ca(2+) signaling in astrocytes derived from two mutant strains of mice. The first strain carries a hypomorphic allele of the Pla2g6 that reduces transcript levels to 5-10% of that observed in wild-type mice. The second strain carries a point mutation in Pla2g6 that results in inactive VIA iPLA(2) protein with postulated gain in toxicity. Homozygous mice from both strains develop pathology analogous to that observed in INAD patients. The nucleotide ATP is the most important transmitter inducing Ca(2+) signals in astroglial networks. We demonstrate here a severe disturbance in Ca(2+) responses to ATP in astrocytes derived from both mutant mouse strains. The duration of the Ca(2+) responses in mutant astrocytes was significantly reduced when compared with values observed in control cells. We also show that the reduced Ca(2+) responses are probably due to a reduction in capacitative Ca(2+) entry (2.3-fold). Results suggest that altered Ca(2+) signaling could be a central mechanism in the development of INAD pathology.
Collapse
Affiliation(s)
- Mikhail Strokin
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
164
|
Spiegel R, Pines O, Ta-Shma A, Burak E, Shaag A, Halvardson J, Edvardson S, Mahajna M, Zenvirt S, Saada A, Shalev S, Feuk L, Elpeleg O. Infantile cerebellar-retinal degeneration associated with a mutation in mitochondrial aconitase, ACO2. Am J Hum Genet 2012; 90:518-23. [PMID: 22405087 DOI: 10.1016/j.ajhg.2012.01.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/16/2011] [Accepted: 01/09/2012] [Indexed: 01/11/2023] Open
Abstract
Degeneration of the cerebrum, cerebellum, and retina in infancy is part of the clinical spectrum of lysosomal storage disorders, mitochondrial respiratory chain defects, carbohydrate glycosylation defects, and infantile neuroaxonal dystrophy. We studied eight individuals from two unrelated families who presented at 2-6 months of age with truncal hypotonia and athetosis, seizure disorder, and ophthalmologic abnormalities. Their course was characterized by failure to acquire developmental milestones and culminated in profound psychomotor retardation and progressive visual loss, including optic nerve and retinal atrophy. Despite their debilitating state, the disease was compatible with survival of up to 18 years. Laboratory investigations were normal, but the oxidation of glutamate by muscle mitochondria was slightly reduced. Serial brain MRI displayed progressive, prominent cerebellar atrophy accompanied by thinning of the corpus callosum, dysmyelination, and frontal and temporal cortical atrophy. Homozygosity mapping followed by whole-exome sequencing disclosed a Ser112Arg mutation in ACO2, encoding mitochondrial aconitase, a component of the Krebs cycle. Specific aconitase activity in the individuals' lymphoblasts was severely reduced. Under restrictive conditions, the mutant human ACO2 failed to complement a yeast ACO1 deletion strain, whereas the wild-type human ACO2 succeeded, indicating that this mutation is pathogenic. Thus, a defect in mitochondrial aconitase is associated with an infantile neurodegenerative disorder affecting mainly the cerebellum and retina. In the absence of noninvasive biomarkers, determination of the ACO2 sequence or of aconitase activity in lymphoblasts are warranted in similarly affected individuals, based on clinical and neuroradiologic grounds.
Collapse
|
165
|
Lu CS, Lai SC, Wu RM, Weng YH, Huang CL, Chen RS, Chang HC, Wu-Chou YH, Yeh TH. PLA2G6 mutations in PARK14-linked young-onset parkinsonism and sporadic Parkinson's disease. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:183-91. [PMID: 22213678 DOI: 10.1002/ajmg.b.32012] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 11/30/2011] [Indexed: 11/09/2022]
Abstract
Mutations of PLA2G6 gene have been lately proposed to be the causative gene for PARK14 in patients with autosomal recessive young-onset parkinsonism (YOPD). The role of PLA2G6 mutations as a risk factor for Parkinson's disease is not clear. To study the PLA2G6 mutations in PARK14-linked patients and its association with the onset of sporadic Parkinson's disease (sPD), sequencing and gene dosage analyses were carried out in 25 patients (onset age ≦30 years) then the identified variants were assessed in 956 sporadic PD (sPD) patients and 802 age-matched healthy controls. Four genetic variants were identified; one patient had homozygous c.991G > T (p.Asp331Tyr) mutation, two had compound heterozygous c.991G > T/c.1077G > A (p.Met358IlefsX) mutation, one had single c.1976A > G (p.Asn659Ser) mutation, and one patient had an exon 1 hetero-deletion. The c.1077G > A mutation resulted in a 4-bp deletion in leukocyte mRNA by activating a cryptic splice site in exon 7. Only p.Asp331Tyr was identified in four sPD patients and four controls. The onset age for PLA2G6 mutation carriers was younger than that for sPD (29.86 ± 8.59 vs. 56.84 ± 11.33 years, P = 0.0002). The analysis of previously reported PARK14 patients revealed that those who carried a truncated mutation tended to have a complicated phenotype and atrophies of cortex and cerebellum. In conclusion, PLA2G6 mutation was the second common genetic cause after PRKN mutation in our YOPD patients and might be a risk factor for early-onset PD in Han Chinese. Additionally, mutation data should be interpreted carefully because even a synonymous mutation could cause abnormal mRNA splicing.
Collapse
Affiliation(s)
- Chin-Song Lu
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Basselin M, Ramadan E, Rapoport SI. Imaging brain signal transduction and metabolism via arachidonic and docosahexaenoic acid in animals and humans. Brain Res Bull 2012; 87:154-71. [PMID: 22178644 PMCID: PMC3274571 DOI: 10.1016/j.brainresbull.2011.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 02/05/2023]
Abstract
The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A(2) (PLA(2)) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M(1,3,5), serotonergic 5-HT(2A/2C), dopaminergic D(2)-like (D(2), D(3), D(4)) or glutamatergic N-methyl-d-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
167
|
Walker RH. Update on the Non-Huntington's Disease Choreas with Comments on the Current Nomenclature. Tremor Other Hyperkinet Mov (N Y) 2012; 2:tre-02-49-211-1. [PMID: 23440598 PMCID: PMC3570038 DOI: 10.7916/d89p30cs] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 08/08/2011] [Indexed: 12/23/2022] Open
Abstract
CHOREA CAN BE CAUSED BY A MULTITUDE OF ETIOLOGIES: neurodegenerative, pharmacological, structural, metabolic, and others. In absence of other apparent causes, exclusion of Huntington's disease is often a first step in the diagnostic process. There are a number of neurodegenerative disorders whose genetic etiology has been identified in the past decade. Molecular diagnosis has enabled genetic identification of disorder subtypes which were previously grouped together, such as the neurodegeneration with brain iron accumulation disorders and the neuroacanthocytosis syndromes, as well as identification of phenotypic outliers for recognized disorders. Correct molecular diagnosis is essential for genetic counseling and, hopefully, ultimately genetic therapies. In addition, there has recently been recognition of other disorders which can mimic neurodegenerative disorders, including paraneoplastic and prion disorders. This article focuses upon recent developments in the field but is not intended to provide an exhaustive review of all causes of chorea, which is available elsewhere. I also discuss the nomenclature of these disorders which has become somewhat unwieldy, but may ultimately be refined by association with the causative gene.
Collapse
Affiliation(s)
- Ruth H. Walker
- Departments of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States of America
- Mount Sinai School of Medicine, New York City, New York, United States of America
| |
Collapse
|
168
|
Grall A, Guaguère E, Planchais S, Grond S, Bourrat E, Hausser I, Hitte C, Le Gallo M, Derbois C, Kim GJ, Lagoutte L, Degorce-Rubiales F, Radner FPW, Thomas A, Küry S, Bensignor E, Fontaine J, Pin D, Zimmermann R, Zechner R, Lathrop M, Galibert F, André C, Fischer J. PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans. Nat Genet 2012; 44:140-7. [PMID: 22246504 DOI: 10.1038/ng.1056] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 12/05/2011] [Indexed: 01/04/2023]
Abstract
Ichthyoses comprise a heterogeneous group of genodermatoses characterized by abnormal desquamation over the whole body, for which the genetic causes of several human forms remain unknown. We used a spontaneous dog model in the golden retriever breed, which is affected by a lamellar ichthyosis resembling human autosomal recessive congenital ichthyoses (ARCI), to carry out a genome-wide association study. We identified a homozygous insertion-deletion (indel) mutation in PNPLA1 that leads to a premature stop codon in all affected golden retriever dogs. We subsequently found one missense and one nonsense mutation in the catalytic domain of human PNPLA1 in six individuals with ARCI from two families. Further experiments highlighted the importance of PNPLA1 in the formation of the epidermal lipid barrier. This study identifies a new gene involved in human ichthyoses and provides insights into the localization and function of this yet uncharacterized member of the PNPLA protein family.
Collapse
Affiliation(s)
- Anaïs Grall
- Centre National de la Recherche Scientifique, Institut de Génétique et Développement de Rennes, Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol Rev 2011; 91:1161-218. [PMID: 22013209 DOI: 10.1152/physrev.00022.2010] [Citation(s) in RCA: 422] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common motor disorder of mysterious etiology. It is due to the progressive degeneration of the dopaminergic neurons of the substantia nigra and is accompanied by the appearance of intraneuronal inclusions enriched in α-synuclein, the Lewy bodies. It is becoming increasingly clear that genetic factors contribute to its complex pathogenesis. Over the past decade, the genetic basis of rare PD forms with Mendelian inheritance, representing no more than 10% of the cases, has been investigated. More than 16 loci and 11 associated genes have been identified so far; genome-wide association studies have provided convincing evidence that polymorphic variants in these genes contribute to sporadic PD. The knowledge acquired of the functions of their protein products has revealed pathways of neurodegeneration that may be shared between inherited and sporadic PD. An impressive set of data in different model systems strongly suggest that mitochondrial dysfunction plays a central role in clinically similar, early-onset autosomal recessive PD forms caused by parkin and PINK1, and possibly DJ-1 gene mutations. In contrast, α-synuclein accumulation in Lewy bodies defines a spectrum of disorders ranging from typical late-onset PD to PD dementia and including sporadic and autosomal dominant PD forms due to mutations in SCNA and LRRK2. However, the pathological role of Lewy bodies remains uncertain, as they may or may not be present in PD forms with one and the same LRRK2 mutation. Impairment of autophagy-based protein/organelle degradation pathways is emerging as a possible unifying but still fragile pathogenic scenario in PD. Strengthening these discoveries and finding other convergence points by identifying new genes responsible for Mendelian forms of PD and exploring their functions and relationships are the main challenges of the next decade. It is also the way to follow to open new promising avenues of neuroprotective treatment for this devastating disorder.
Collapse
Affiliation(s)
- Olga Corti
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale U.975, Paris, France
| | | | | |
Collapse
|
170
|
Bechler ME, de Figueiredo P, Brown WJ. A PLA1-2 punch regulates the Golgi complex. Trends Cell Biol 2011; 22:116-24. [PMID: 22130221 DOI: 10.1016/j.tcb.2011.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 12/14/2022]
Abstract
The mammalian Golgi complex, trans Golgi network (TGN) and ER-Golgi intermediate compartment (ERGIC) are comprised of membrane cisternae, coated vesicles and membrane tubules, all of which contribute to membrane trafficking and maintenance of their unique architectures. Recently, a new cast of players was discovered to regulate the Golgi and ERGIC: four unrelated cytoplasmic phospholipase A (PLA) enzymes, cPLA(2)α (GIVA cPLA(2)), PAFAH Ib (GVIII PLA(2)), iPLA(2)-β (GVIA-2 iPLA(2)) and iPLA(1)γ. These ubiquitously expressed enzymes regulate membrane trafficking from specific Golgi subcompartments, although there is evidence for some functional redundancy between PAFAH Ib and cPLA(2)α. Three of these enzymes, PAFAH Ib, cPLA(2)α and iPLA(2)-β, exert effects on Golgi structure and function by inducing the formation of membrane tubules. We review our current understanding of how PLA enzymes regulate Golgi and ERGIC morphology and function.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
171
|
Zhao Z, Wang J, Zhao C, Bi W, Yue Z, Ma ZA. Genetic ablation of PLA2G6 in mice leads to cerebellar atrophy characterized by Purkinje cell loss and glial cell activation. PLoS One 2011; 6:e26991. [PMID: 22046428 PMCID: PMC3203935 DOI: 10.1371/journal.pone.0026991] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/07/2011] [Indexed: 12/15/2022] Open
Abstract
Infantile neuroaxonal dystrophy (INAD) is a progressive, autosomal recessive neurodegenerative disease characterized by axonal dystrophy, abnormal iron deposition and cerebellar atrophy. This disease was recently mapped to PLA2G6, which encodes group VI Ca(2+)-independent phospholipase A(2) (iPLA(2) or iPLA(2)β). Here we show that genetic ablation of PLA2G6 in mice (iPLA(2)β(-/-)) leads to the development of cerebellar atrophy by the age of 13 months. Atrophied cerebella exhibited significant loss of Purkinje cells, as well as reactive astrogliosis, the activation of microglial cells, and the pronounced up-regulation of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Moreover, glial cell activation and the elevation in TNF-α and IL-1β expression occurred before apparent cerebellar atrophy. Our findings indicate that the absence of PLA2G6 causes neuroinflammation and Purkinje cell loss and ultimately leads to cerebellar atrophy. Our study suggests that iPLA(2)β(-/-) mice are a valuable model for cerebellar atrophy in INAD and that early anti-inflammatory therapy may help slow the progression of cerebellar atrophy in this deadly neurodegenerative disease.
Collapse
Affiliation(s)
- Zhengshan Zhao
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Palliative Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jing Wang
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Chunying Zhao
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Palliative Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Weina Bi
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Palliative Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Zhenyu Yue
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Zhongmin Alex Ma
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Palliative Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| |
Collapse
|
172
|
Schneider SA, Hardy J, Bhatia KP. Syndromes of neurodegeneration with brain iron accumulation (NBIA): An update on clinical presentations, histological and genetic underpinnings, and treatment considerations. Mov Disord 2011; 27:42-53. [DOI: 10.1002/mds.23971] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/09/2011] [Accepted: 08/15/2011] [Indexed: 11/07/2022] Open
|
173
|
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111:6130-85. [PMID: 21910409 PMCID: PMC3196595 DOI: 10.1021/cr200085w] [Citation(s) in RCA: 856] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Jian Cao
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Yuan-Hao Hsu
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
174
|
Neuroaxonal dystrophy in calcium-independent phospholipase A2β deficiency results from insufficient remodeling and degeneration of mitochondrial and presynaptic membranes. J Neurosci 2011; 31:11411-20. [PMID: 21813701 DOI: 10.1523/jneurosci.0345-11.2011] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Infantile neuroaxonal dystrophy (INAD) is a fatal neurodegenerative disease characterized by the widespread presence of axonal swellings (spheroids) in the CNS and PNS and is caused by gene abnormality in PLA2G6 [calcium-independent phospholipase A(2)β (iPLA(2)β)], which is essential for remodeling of membrane phospholipids. To clarify the pathomechanism of INAD, we pathologically analyzed the spinal cords and sciatic nerves of iPLA(2)β knock-out (KO) mice, a model of INAD. At 15 weeks (preclinical stage), periodic acid-Schiff (PAS)-positive granules were frequently observed in proximal axons and the perinuclear space of large neurons, and these were strongly positive for a marker of the mitochondrial outer membrane and negative for a marker of the inner membrane. By 100 weeks (late clinical stage), PAS-positive granules and spheroids had increased significantly in the distal parts of axons, and ultrastructural examination revealed that these granules were, in fact, mitochondria with degenerative inner membranes. Collapse of mitochondria in axons was accompanied by focal disappearance of the cytoskeleton. Partial membrane loss at axon terminals was also evident, accompanied by degenerative membranes in the same areas. Imaging mass spectrometry showed a prominent increase of docosahexaenoic acid-containing phosphatidylcholine in the gray matter, suggesting insufficient membrane remodeling in the presence of iPLA(2)β deficiency. Prominent axonal degeneration in neuroaxonal dystrophy might be explained by the collapse of abnormal mitochondria after axonal transportation. Insufficient remodeling and degeneration of mitochondrial inner membranes and presynaptic membranes appear to be the cause of the neuroaxonal dystrophy in iPLA(2)β-KO mice.
Collapse
|
175
|
Kruer MC, Boddaert N, Schneider SA, Houlden H, Bhatia KP, Gregory A, Anderson JC, Rooney WD, Hogarth P, Hayflick SJ. Neuroimaging features of neurodegeneration with brain iron accumulation. AJNR Am J Neuroradiol 2011; 33:407-14. [PMID: 21920862 DOI: 10.3174/ajnr.a2677] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
NBIA characterizes a class of neurodegenerative diseases that feature a prominent extrapyramidal movement disorder, intellectual deterioration, and a characteristic deposition of iron in the basal ganglia. The diagnosis of NBIA is made on the basis of the combination of representative clinical features along with MR imaging evidence of iron accumulation. In many cases, confirmatory molecular genetic testing is now available as well. A number of new subtypes of NBIA have recently been described, with distinct neuroradiologic and clinical features. This article outlines the known subtypes of NBIA, delineates their clinical and radiographic features, and suggests an algorithm for evaluation.
Collapse
Affiliation(s)
- M C Kruer
- Department of Pediatrics, Sanford Children's Research Center, University of South Dakota Sanford College of Medicine, Sioux Falls, South Dakota 57104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Abstract
The condition originally called Hallervorden-Spatz syndrome is a collection of related disorders involving abnormal iron accumulation in the basal ganglia, usually manifesting with a movement disorder. To date, mutations in the following genes have been associated with neurodegeneration with brain iron accumulation (NBIA) phenotypes: PANK2, PLA2G6, FA2H, ATP13A2, C2orf37, CP, and FTL. This collection, now classified under the umbrella term NBIA, continues to evolve as new genes and associated phenotypes are recognized. As this body of information continues to grow, better approaches to diagnosis and treatment have become available. Continued investigations of the underlying pathogenesis of disease, with a focus on lipid, iron, and energy metabolism, will lead to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Allison Gregory
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Mailcode L103, Portland, OR 97239-3098, USA.
| | | |
Collapse
|
177
|
Fyfe JC, Al-Tamimi RA, Liu J, Schäffer AA, Agarwala R, Henthorn PS. A novel mitofusin 2 mutation causes canine fetal-onset neuroaxonal dystrophy. Neurogenetics 2011; 12:223-32. [PMID: 21643798 PMCID: PMC3165057 DOI: 10.1007/s10048-011-0285-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/09/2011] [Indexed: 12/21/2022]
Abstract
We recently reported autosomal recessive fetal-onset neuroaxonal dystrophy (FNAD) in a large family of dogs that is not caused by mutation in the PLA2G6 locus (Fyfe et al., J Comp Neurol 518:3771-3784, 2010). Here, we report a genome-wide linkage analysis using 333 microsatellite markers to map canine FNAD to the telomeric end of chromosome 2. The interval of zero recombination was refined by single-nucleotide polymorphism (SNP) haplotype analysis to ~200 kb, and the included genes were sequenced. We found a homozygous 3-nucleotide deletion in exon 14 of mitofusin 2 (MFN2), predicting loss of a glutamate residue at position 539 in the protein of affected dogs. RT-PCR demonstrated near normal expression of the mutant mRNA, but MFN2 expression was undetectable to very low on western blots of affected dog brainstem, cerebrum, kidney, and cultured fibroblasts and by immunohistochemistry on brainstem sections. MFN2 is a multifunctional, membrane-bound GTPase of mitochondria and endoplasmic reticulum most commonly associated with human Charcot-Marie-Tooth disease type 2A2. The canine disorder extends the range of MFN2-associated phenotypes and suggests MFN2 as a candidate gene for rare cases of human FNAD.
Collapse
Affiliation(s)
- John C Fyfe
- Laboratory of Comparative Medical Genetics, Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | | | |
Collapse
|
178
|
Schipper HM. Neurodegeneration with brain iron accumulation - clinical syndromes and neuroimaging. Biochim Biophys Acta Mol Basis Dis 2011; 1822:350-60. [PMID: 21782937 DOI: 10.1016/j.bbadis.2011.06.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 12/14/2022]
Abstract
Iron participates in a wide array of cellular functions and is essential for normal neural development and physiology. However, if inappropriately managed, the transition metal is capable of generating neurotoxic reactive oxygen species. A number of hereditary conditions perturb body iron homeostasis and some, collectively referred to as neurodegeneration with brain iron accumulation (NBIA), promote pathological deposition of the metal predominantly or exclusively within the central nervous system (CNS). In this article, we discuss seven NBIA disorders with emphasis on the clinical syndromes and neuroimaging. The latter primarily entails magnetic resonance scanning using iron-sensitive sequences. The conditions considered are Friedreich ataxia (FA), pantothenate kinase 2-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), FA2H-associated neurodegeneration (FAHN), Kufor-Rakeb disease (KRD), aceruloplasminemia, and neuroferritinopathy. An approach to differential diagnosis and the status of iron chelation therapy for several of these entities are presented. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.
Collapse
Affiliation(s)
- Hyman M Schipper
- Centre for Neurotranslational Research, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2.
| |
Collapse
|
179
|
Wenning GK, Litvan I, Tolosa E. Milestones in atypical and secondary Parkinsonisms. Mov Disord 2011; 26:1083-95. [DOI: 10.1002/mds.23713] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
180
|
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, affecting over 6 million people worldwide. It is anticipated that the number of affected individuals may increase significantly in the most populous nations by 2030. During the past 20 years, much progress has been made in identifying and assessing various potential clinical, biochemical, imaging and genetic biomarkers for PD. Despite the wealth of information, development of a validated biomarker for PD is still ongoing. It is hoped that reliable and well-validated biomarkers will provide critical clues to assist in the diagnosis and management of Parkinson's disease patients in the near future.
Collapse
Affiliation(s)
- Kumar M Prakash
- Singapore General Hospital, Singapore: Department of Neurology, Singapore General Hospital, Singapore
| | | |
Collapse
|
181
|
Kurian MA, McNeill A, Lin JP, Maher ER. Childhood disorders of neurodegeneration with brain iron accumulation (NBIA). Dev Med Child Neurol 2011; 53:394-404. [PMID: 21480873 DOI: 10.1111/j.1469-8749.2011.03955.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) comprises a heterogeneous group of progressive complex motor disorders characterized by the presence of high brain iron, particularly within the basal ganglia. A number of autosomal recessive NBIA syndromes can present in childhood, most commonly pantothenate kinase-associated neurodegeneration (PKAN; due to mutations in the PANK2 gene) and phospholipase A2 group 6-associated neurodegeneration (PLAN; associated with genetic defects in PLA2G6). Mutations in the genes that cause these two neuroaxonal dystrophies are thought to disrupt the normal cellular functions of phospholipid remodelling and fatty acid metabolism. A significant proportion of children with an NBIA phenotype have no genetic diagnosis and there are, no doubt, additional as yet undiscovered genes that account for a number of these cases. NBIA disorders can be diagnostically challenging as there is often phenotypic overlap between the different disease entities. This review aims to define the clinical, radiological, and genetic features of such disorders, providing the clinician with a stepwise approach to appropriate neurological and genetic investigation, as well as a clinical management strategy for these neurodegenerative syndromes.
Collapse
Affiliation(s)
- Manju A Kurian
- Neurosciences Unit, Institute of Child Health (University College London) and Great Ormond Street Hospital, London, UK.
| | | | | | | |
Collapse
|
182
|
Bernardi B, Pini A, Santucci M, Cenacchi C, Garavaglia B, Ucchino V, Garrone C, Guerra A, Faggioli R, Barzaghi C, Preda P, Franzoni E, Gobbi G, Parmeggiani A. MRI Findings in Patients with Clinical Onset Consistent with Infantile Neuroaxonal Dystrophy (INAD), Literature Review, Clinical and MRI Follow-up. Neuroradiol J 2011; 24:202-14. [DOI: 10.1177/197140091102400207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/03/2011] [Indexed: 11/17/2022] Open
Abstract
Infantile neuroaxonal dystrophy (INAD) is a rare autosomal recessive neurodegenerative disorder characterized by infantile onset and rapid progression of psychomotor regression and hypotonia evolving into spasticity. The neuroradiologic hallmark of the disease is represented by progressive cerebellar atrophy. Prior to the discovery of mutations in the PLA2G6 gene in family with INAD, the clinical diagnosis of the disease had been confirmed by the presence of spheroid bodies (SB) in a peripheral nerve biopsy. Various studies have found that some patients with mutations lacked SB and some without mutations had SB, indicating incomplete detection using either pathologic or molecular methods 7. This, together with the observation that the spectrum of clinical features associated with mutations in PLA2G6 is broader than previously described, has increased the usefulness of Magnetic Resonance (MR) in INAD diagnosis, particularly in the frequent occurrence of atypical cases, especially in the early stages of the disease. We retrospectively reviewed the MR studies of eight patients in whom clinical and imaging onset met the typical criteria for INAD. Their clinical and MR imaging (MRI) onset and follow-up were evaluated together with the neuroradiological findings reported in the literature in order to identify MRI features useful in differentiating INAD from other diseases with similar clinical onset and to discuss which of them are the most important, thus suggesting INAD diagnosis. Our contribution included the use of Proton Spectroscopy (1H-MR), diffusion weighted MR imaging (DWI) and diffusion tensor imaging (DTI) in the follow-up of seven of the eight patients. The literature reviewed included attempts to correlate clinical and MR data with the genotype in the group of patients carrying PLA2G6 mutations. From the limited and inhomogeneous cohort of patients included in our study, a correlation between the MR features, phenotype and genotype was not exhaustive.
Collapse
Affiliation(s)
- B. Bernardi
- Paediatric Neuroradiology Unit, Department of Neurosciences; Bologna, Italy
| | - A. Pini
- Child Neurology and Psychiatry Unit, Maggiore Hospital; Bologna, Italy
| | - M. Santucci
- Child Neurology and Psychiatry Unit, Department of Neurological Sciences, University of Bologna; Bologna, Italy
| | - C. Cenacchi
- Clinical Department of Radiological and Histopathological Sciences, University of Bologna; Bologna, Italy
| | - B. Garavaglia
- Movement Disorders and Energetic Metabolism Diseases, IRCCS Foundation Neurological Institute C. Besta; Milano, Italy
| | - V. Ucchino
- Paediatric Neuroradiology Unit, Department of Neurosciences; Bologna, Italy
| | - C. Garrone
- Child Neurology and Psychiatry Unit, S. Orsola Hospital; Bologna, Italy
| | - A. Guerra
- Paediatric Neurology, Policlinico Hospital; Modena, Italy
| | - R. Faggioli
- Paediatric Neurology, S. Anna Hospital; Ferrara, Italy
| | - C. Barzaghi
- Movement Disorders and Energetic Metabolism Diseases, IRCCS Foundation Neurological Institute C. Besta; Milano, Italy
| | - P. Preda
- Clinical Department of Radiological and Histopathological Sciences, University of Bologna; Bologna, Italy
| | - E. Franzoni
- Child Neurology and Psychiatry Unit, S. Orsola Hospital; Bologna, Italy
| | - G. Gobbi
- Child Neurology and Psychiatry Unit, Maggiore Hospital; Bologna, Italy
| | - A. Parmeggiani
- Child Neurology and Psychiatry Unit, Department of Neurological Sciences, University of Bologna; Bologna, Italy
| |
Collapse
|
183
|
Mouvements anormaux et maladies neurométaboliques. Rev Neurol (Paris) 2011; 167:123-34. [DOI: 10.1016/j.neurol.2010.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/13/2010] [Accepted: 07/07/2010] [Indexed: 12/22/2022]
|
184
|
Mcneill A, Chinnery PF. Neurodegeneration with brain iron accumulation. HANDBOOK OF CLINICAL NEUROLOGY 2011; 100:161-72. [DOI: 10.1016/b978-0-444-52014-2.00009-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
185
|
Elia AE, Albanese A. Emerging parkinsonian phenotypes. Rev Neurol (Paris) 2010; 166:834-40. [PMID: 20817231 DOI: 10.1016/j.neurol.2010.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 07/21/2010] [Indexed: 12/14/2022]
Abstract
There is no unique way to define Parkinson's disease (PD) clinically. "Classical parkinsonian features" can be found not only in sporadic idiopathic PD patients, but also in other parkinsonian disorders, such as genetic forms associated with mutations in PARK or in other genes. The present review will describe the parkinsonian phenotypes emerging from the new Mendelian genes which have been linked to PD (such as PARK9 and PARK14), the associated dystonia-parkinsonism disorders (such as the syndromes of neurodegeneration with brain iron accumulation) and the emerging data on heterozygous variants of genes which could influence the risk to develop PD and the PD phenotypes (like PD associated with glucose cerebrosidase mutations).
Collapse
Affiliation(s)
- A E Elia
- Fondazione, IRCCS Istituto Neurologico Carlo Besta, Università Cattolica del Sacro Cuore, Via G. Celoria 11, 20133 Milano, Italy
| | | |
Collapse
|
186
|
Ma MT, Yeo JF, Farooqui AA, Ong WY. Role of Calcium Independent Phospholipase A2 in Maintaining Mitochondrial Membrane Potential and Preventing Excessive Exocytosis in PC12 Cells. Neurochem Res 2010; 36:347-54. [DOI: 10.1007/s11064-010-0340-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
187
|
Kruer MC, Paisán-Ruiz C, Boddaert N, Yoon MY, Hama H, Gregory A, Malandrini A, Woltjer RL, Munnich A, Gobin S, Polster BJ, Palmeri S, Edvardson S, Hardy J, Houlden H, Hayflick SJ. Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol 2010; 68:611-8. [PMID: 20853438 DOI: 10.1002/ana.22122] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Neurodegeneration with brain iron accumulation (NBIA) represents a distinctive phenotype of neurodegenerative disease for which several causative genes have been identified. The spectrum of neurologic disease associated with mutations in NBIA genes is broad, with phenotypes that range from infantile neurodegeneration and death in childhood to adult-onset parkinsonism-dystonia. Here we report the discovery of a novel gene that leads to a distinct form of NBIA. METHODS Using autozygosity mapping and candidate gene sequencing, we identified mutations in the fatty acid hydroxylase gene FA2H, newly implicating abnormalities of ceramide metabolism in the pathogenesis of NBIA. RESULTS Neuroimaging demonstrated T2 hypointensity in the globus pallidus, confluent T2 white matter hyperintensities, and profound pontocerebellar atrophy in affected members of two families. Phenotypically, affected family members exhibited spastic quadriparesis, ataxia, and dystonia with onset in childhood and episodic neurological decline. Analogous to what has been reported previously for PLA2G6, the phenotypic spectrum of FA2H mutations is diverse based on our findings and those of prior investigators, because FA2H mutations have been identified in both a form of hereditary spastic paraplegia (SPG35) and a progressive familial leukodystrophy. INTERPRETATION These findings link white matter degeneration and NBIA for the first time and implicate new signaling pathways in the genesis of NBIA.
Collapse
Affiliation(s)
- Michael C Kruer
- Division of Developmental Pediatrics, Child Development and Rehabilitation Center, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Polster B, Crosier M, Lindsay S, Hayflick S. Expression of PLA2G6 in human fetal development: Implications for infantile neuroaxonal dystrophy. Brain Res Bull 2010; 83:374-9. [PMID: 20813170 PMCID: PMC2975838 DOI: 10.1016/j.brainresbull.2010.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/17/2010] [Accepted: 08/24/2010] [Indexed: 12/22/2022]
Abstract
Mutations in PLA2G6, which encodes calcium-independent phospholipase A(2) group VIA (iPLA2-VIA), underlie the autosomal recessive disorder infantile neuroaxonal dystrophy (INAD). INAD typically presents in the first year of life, and leads to optic atrophy and psychomotor regression. We have examined PLA2G6 expression in early human embryonic development by in situ hybridization. At Carnegie Stage (CS) 19 (approximately 7 post-conception weeks [PCW]), strong expression is evident in the ventricular zone (VZ) of midbrain and forebrain suggestive of expression in neural stem and progenitor cells. At CS23 (8PCW) expression is also detectable in the VZ of the hindbrain and the subventricular zone (SVZ) of the developing neocortex, ganglionic eminences and diencephalon. By 9PCW strong expression in the post-mitotic cells of the cortical plate can be seen in the developing neocortex. In the eye, expression is seen in the lens and retina at all stages examined. PLA2G6 expression is also evident in the alar plate of the spinal cord, dorsal root ganglia, the retina and lens in the eye and several non-neuronal tissues, including developing bones, lung, kidney and gut. These findings suggest a role for PLA2G6 in neuronal proliferation throughout the developing brain and in maturing neurons in the cortical plate and hindbrain. Although widespread PLA2G6 expression is detected in neuronal tissues, the pattern shows dynamic changes with time and indicates that INAD pathogenesis may begin prior to birth.
Collapse
Affiliation(s)
- Brenda Polster
- Molecular and Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States.
| | | | | | | |
Collapse
|
189
|
Fyfe JC, Al-Tamimi RA, Castellani RJ, Rosenstein D, Goldowitz D, Henthorn PS. Inherited neuroaxonal dystrophy in dogs causing lethal, fetal-onset motor system dysfunction and cerebellar hypoplasia. J Comp Neurol 2010; 518:3771-84. [PMID: 20653033 DOI: 10.1002/cne.22423] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neuroaxonal dystrophy in brainstem, spinal cord tracts, and spinal nerves accompanied by cerebellar hypoplasia was observed in a colony of laboratory dogs. Fetal akinesia was documented by ultrasonographic examination. At birth, affected puppies exhibited stereotypical positioning of limbs, scoliosis, arthrogryposis, pulmonary hypoplasia, and respiratory failure. Regional hypoplasia in the central nervous system was apparent grossly, most strikingly as underdeveloped cerebellum and spinal cord. Histopathologic abnormalities included swollen axons and spheroids in brainstem and spinal cord tracts; reduced cerebellar foliation, patchy loss of Purkinje cells, multifocal thinning of the external granular cell layer, and loss of neurons in the deep cerebellar nuclei; spheroids and loss of myelinated axons in spinal roots and peripheral nerves; increased myocyte apoptosis in skeletal muscle; and fibrofatty connective tissue proliferation around joints. Breeding studies demonstrated that the canine disorder is a fully penetrant, simple autosomal recessive trait. The disorder demonstrated a type and distribution of lesions homologous to that of human infantile neuroaxonal dystrophy (INAD), most commonly caused by mutations of phospholipase A2 group VI gene (PLA2G6), but alleles of informative markers flanking the canine PLA2G6 locus did not associate with the canine disorder. Thus, fetal-onset neuroaxonal dystrophy in dogs, a species with well-developed genome mapping resources, provides a unique opportunity for additional disease gene discovery and understanding of this pathology.
Collapse
Affiliation(s)
- John C Fyfe
- Laboratory of Comparative Medical Genetics, Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|
190
|
Engel LA, Jing Z, O'Brien DE, Sun M, Kotzbauer PT. Catalytic function of PLA2G6 is impaired by mutations associated with infantile neuroaxonal dystrophy but not dystonia-parkinsonism. PLoS One 2010; 5:e12897. [PMID: 20886109 PMCID: PMC2944820 DOI: 10.1371/journal.pone.0012897] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 08/31/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Mutations in the PLA2G6 gene have been identified in autosomal recessive neurodegenerative diseases classified as infantile neuroaxonal dystrophy (INAD), neurodegeneration with brain iron accumulation (NBIA), and dystonia-parkinsonism. These clinical syndromes display two significantly different disease phenotypes. NBIA and INAD are very similar, involving widespread neurodegeneration that begins within the first 1-2 years of life. In contrast, patients with dystonia-parkinsonism present with a parkinsonian movement disorder beginning at 15 to 30 years of age. The PLA2G6 gene encodes the PLA2G6 enzyme, also known as group VIA calcium-independent phospholipase A(2), which has previously been shown to hydrolyze the sn-2 acyl chain of phospholipids, generating free fatty acids and lysophospholipids. METHODOLOGY/PRINCIPAL FINDINGS We produced purified recombinant wildtype (WT) and mutant human PLA2G6 proteins and examined their catalytic function using in vitro assays with radiolabeled lipid substrates. We find that human PLA2G6 enzyme hydrolyzes both phospholipids and lysophospholipids, releasing free fatty acids. Mutations associated with different disease phenotypes have different effects on catalytic activity. Mutations associated with INAD/NBIA cause loss of enzyme activity, with mutant proteins exhibiting less than 20% of the specific activity of WT protein in both lysophospholipase and phospholipase assays. In contrast, mutations associated with dystonia-parkinsonism do not impair catalytic activity, and two mutations produce a significant increase in specific activity for phospholipid but not lysophospholipid substrates. CONCLUSIONS/SIGNIFICANCE These results indicate that different alterations in PLA2G6 function produce the different disease phenotypes of NBIA/INAD and dystonia-parkinsonism. INAD/NBIA is caused by loss of the ability of PLA2G6 to catalyze fatty acid release from phospholipids, which predicts accumulation of PLA2G6 phospholipid substrates and provides a mechanistic explanation for the accumulation of membranes in neuroaxonal spheroids previously observed in histopathological studies of INAD/NBIA. In contrast, dystonia-parkinsonism mutations do not appear to directly impair catalytic function, but may modify substrate preferences or regulatory mechanisms for PLA2G6.
Collapse
Affiliation(s)
- Laura A. Engel
- Departments of Neurology and Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zheng Jing
- Departments of Neurology and Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daniel E. O'Brien
- Departments of Neurology and Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mengyang Sun
- Departments of Neurology and Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul T. Kotzbauer
- Departments of Neurology and Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
191
|
Basselin M, Rosa AO, Ramadan E, Cheon Y, Chang L, Chen M, Greenstein D, Wohltmann M, Turk J, Rapoport SI. Imaging decreased brain docosahexaenoic acid metabolism and signaling in iPLA(2)β (VIA)-deficient mice. J Lipid Res 2010; 51:3166-73. [PMID: 20686114 DOI: 10.1194/jlr.m008334] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ca(2+)-independent phospholipase A(2)β (iPLA(2)β) selectively hydrolyzes docosahexaenoic acid (DHA, 22:6n-3) in vitro from phospholipid. Mutations in the PLA2G6 gene encoding this enzyme occur in patients with idiopathic neurodegeneration plus brain iron accumulation and dystonia-parkinsonism without iron accumulation, whereas mice lacking PLA2G6 show neurological dysfunction and neuropathology after 13 months. We hypothesized that brain DHA metabolism and signaling would be reduced in 4-month-old iPLA(2)β-deficient mice without overt neuropathology. Saline or the cholinergic muscarinic M(1,3,5) receptor agonist arecoline (30 mg/kg) was administered to unanesthetized iPLA(2)β(-/-), iPLA(2)β(+/-), and iPLA(2)β(+/+) mice, and [1-(14)C]DHA was infused intravenously. DHA incorporation coefficients k* and rates J(in), representing DHA metabolism, were determined using quantitative autoradiography in 81 brain regions. iPLA(2)β(-/-) or iPLA(2)β(+/-) compared with iPLA(2)β(+/+) mice showed widespread and significant baseline reductions in k* and J(in) for DHA. Arecoline increased both parameters in brain regions of iPLA(2)β(+/+) mice but quantitatively less so in iPLA(2)β(-/-) and iPLA(2)β(+/-) mice. Consistent with iPLA(2)β's reported ability to selectively hydrolyze DHA from phospholipid in vitro, iPLA(2)β deficiency reduces brain DHA metabolism and signaling in vivo at baseline and following M(1,3,5) receptor activation. Positron emission tomography might be used to image disturbed brain DHA metabolism in patients with PLA2G6 mutations.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Paisán-Ruiz C, Li A, Schneider SA, Holton JL, Johnson R, Kidd D, Chataway J, Bhatia KP, Lees AJ, Hardy J, Revesz T, Houlden H. Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiol Aging 2010; 33:814-23. [PMID: 20619503 PMCID: PMC3657696 DOI: 10.1016/j.neurobiolaging.2010.05.009] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 04/30/2010] [Accepted: 05/10/2010] [Indexed: 11/29/2022]
Abstract
The 2 major types of neurodegeneration with brain iron accumulation (NBIA) are the pantothenate kinase type 2 (PANK2)-associated neurodegeneration (PKAN) and NBIA2 or infantile neuroaxonal dystrophy (INAD) due to mutations in the phospholipase A2, group VI (PLA2G6) gene. We have recently demonstrated clinical heterogeneity in patients with mutations in the PLA2G6 gene by identifying a poorly defined subgroup of patients who present late with dystonia and parkinsonism. We report the clinical and genetic features of 7 cases with PLA2G6 mutations. Brain was available in 5 cases with an age of death ranging from 8 to 36 years and showed widespread alpha-synuclein-positive Lewy pathology, which was particularly severe in the neocortex, indicating that the Lewy pathology spread corresponded to Braak stage 6 and was that of the “diffuse neocortical type”. In 3 cases there was hyperphosphorylated tau accumulation in both cellular processes as threads and neuronal perikarya as pretangles and neurofibrillary tangles. Later onset cases tended to have less tau involvement but still severe alpha-synuclein pathology. The clinical and neuropathological features clearly represent a link between PLA2G6 and parkinsonian disorders.
Collapse
Affiliation(s)
- Coro Paisán-Ruiz
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Baulande S, Langlois C. [Proteins sharing PNPLA domain, a new family of enzymes regulating lipid metabolism]. Med Sci (Paris) 2010; 26:177-84. [PMID: 20188050 DOI: 10.1051/medsci/2010262177] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Genome sequencing technologies led to tremendous breakthrough in biology uncovering numerous genes unknown so far and thus opening the field of deep investigations to understand their associated biological functions. As a matter of fact, functional genomics have been progressively replacing sequence genomics with as a main objective to yield insight into cellular physiology. Recently, an emerging group of genes coding for proteins bearing a common domain termed patatin (PNPLA domain) have been discovered. Members of this new enzymatic family displaying lipase and transacylase properties appeared to have major roles in the regulation of lipid metabolism. The aim of this review is to make an overview on the latest discoveries concerning this new family of proteins and their relationship with lipid metabolism, physiology of mammals and their potential involvement in human pathology.
Collapse
Affiliation(s)
- Sylvain Baulande
- Recherche et Développement, Laboratoire PiLeJe, 37, quai de Grenelle, 75015 Paris, France.
| | | |
Collapse
|
194
|
Crompton D, Rehal PK, MacPherson L, Foster K, Lunt P, Hughes I, Brady AF, Pike MG, De Gressi S, Morgan NV, Hardy C, Smith M, MacDonald F, Maher ER, Kurian MA. Multiplex ligation-dependent probe amplification (MLPA) analysis is an effective tool for the detection of novel intragenic PLA2G6 mutations: implications for molecular diagnosis. Mol Genet Metab 2010; 100:207-12. [PMID: 20226704 DOI: 10.1016/j.ymgme.2010.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 11/20/2022]
Abstract
Phospholipase associated neurodegeneration (PLAN) comprises a heterogeneous group of autosomal recessive neurological disorders caused by mutations in the PLA2G6 gene. Direct gene sequencing detects approximately 85% mutations in infantile neuroaxonal dystrophy. We report the novel use of multiplex ligation-dependent probe amplification (MLPA) analysis to detect novel PLA2G6 duplications and deletions. The identification of such copy number variants (CNVs) expands the PLAN mutation spectrum and may account for up to 12.5% of PLA2G6 mutations. MLPA should thus be employed to detect CNVs of PLA2G6 in patients who show clinical features of PLAN but in whom both disease-causing mutations cannot be identified on routine sequencing.
Collapse
Affiliation(s)
- Danielle Crompton
- West Midlands Regional Genetic Service, Birmingham Women's Hospital, Metchley Park Lane, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Alpha-synuclein, lipids and Parkinson's disease. Prog Lipid Res 2010; 49:420-8. [PMID: 20580911 DOI: 10.1016/j.plipres.2010.05.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 04/30/2010] [Indexed: 12/15/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disease, after Alzheimer's disease, among the aging human population. The main symptoms of Parkinson's disease such as tremor and movement disabilities are the result of degeneration of dopaminergic neurons in substantia nigra pars compacta. The widely-accepted subcellular factor which underlies Parkinson's disease neuropathology is the presence of Lewy bodies with characteristic inclusions of aggregated alpha-synuclein. This small soluble protein has been implicated in a range of interactions with phospholipid membranes and free fatty acids. The precise biological function of this protein is, however, still under investigation. Here we review the evidence linking alpha-synuclein, lipid metabolism, fatty acid oxidation, mitochondrial damage and Parkinson's disease. We propose that association of alpha-synuclein with oxidized lipid metabolites can lead to mitochondrial dysfunction in turn leading to dopaminergic neuron death and thus to Parkinson's disease.
Collapse
|
196
|
Johnstone D, Milward EA. Molecular genetic approaches to understanding the roles and regulation of iron in brain health and disease. J Neurochem 2010; 113:1387-402. [PMID: 20345752 DOI: 10.1111/j.1471-4159.2010.06697.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron is essential in the brain, yet too much iron can be toxic. Tight regulation of iron in the brain may involve intrinsic mechanisms that control internal homeostasis independent of systemic iron status. Iron abnormalities occur in various neurological disorders, usually with symptoms or neuropathology associated with movement impairment or behavioral disturbances rather than cognitive impairment or dementia. Consistent with this, polymorphisms in the HFE gene, associated with the iron overload disorder hemochromatosis, show stronger associations with the movement disorder amyotrophic lateral sclerosis (motor neuron disease) than with cognitive impairment. Such associations may arise because certain brain regions involved in movement or executive control are particularly iron-rich, notably the basal ganglia, and may be highly reliant on iron. Various mechanisms, including iron redistribution causing functional iron deficiency, lysosomal and mitochondrial abnormalities or oxidative damage, could underlie iron-related neuropathogenesis. Clarifying how iron contributes causatively to neurodegeneration may improve treatment options in a range of neurodegenerative disorders. This review considers how modern molecular genetic approaches can be applied to resolve the complex molecular systems and pathways by which brain iron homeostasis is regulated and the molecular changes that occur with iron dyshomeostasis and neuropathogenesis.
Collapse
Affiliation(s)
- Daniel Johnstone
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| | | |
Collapse
|
197
|
Tonelli A, Romaniello R, Grasso R, Cavallini A, Righini A, Bresolin N, Borgatti R, Bassi MT. Novel splice-site mutations and a large intragenic deletion inPLA2G6associated with a severe and rapidly progressive form of infantile neuroaxonal dystrophy. Clin Genet 2010; 78:432-40. [DOI: 10.1111/j.1399-0004.2010.01417.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
198
|
Adibhatla RM, Hatcher JF. Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2010; 12:125-69. [PMID: 19624272 DOI: 10.1089/ars.2009.2668] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) are produced at low levels in mammalian cells by various metabolic processes, such as oxidative phosphorylation by the mitochondrial respiratory chain, NAD(P)H oxidases, and arachidonic acid oxidative metabolism. To maintain physiological redox balance, cells have endogenous antioxidant defenses regulated at the transcriptional level by Nrf2/ARE. Oxidative stress results when ROS production exceeds the cell's ability to detoxify ROS. Overproduction of ROS damages cellular components, including lipids, leading to decline in physiological function and cell death. Reaction of ROS with lipids produces oxidized phospholipids, which give rise to 4-hydroxynonenal, 4-oxo-2-nonenal, and acrolein. The brain is susceptible to oxidative damage due to its high lipid content and oxygen consumption. Neurodegenerative diseases (AD, ALS, bipolar disorder, epilepsy, Friedreich's ataxia, HD, MS, NBIA, NPC, PD, peroxisomal disorders, schizophrenia, Wallerian degeneration, Zellweger syndrome) and CNS traumas (stroke, TBI, SCI) are problems of vast clinical importance. Free iron can react with H(2)O(2) via the Fenton reaction, a primary cause of lipid peroxidation, and may be of particular importance for these CNS injuries and disorders. Cholesterol is an important regulator of lipid organization and the precursor for neurosteroid biosynthesis. Atherosclerosis, the major risk factor for ischemic stroke, involves accumulation of oxidized LDL in the arteries, leading to foam cell formation and plaque development. This review will discuss the role of lipid oxidation/peroxidation in various CNS injuries/disorders.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792-3232, USA.
| | | |
Collapse
|
199
|
Xiromerisiou G, Dardiotis E, Tsimourtou V, Kountra PM, Paterakis KN, Kapsalaki EZ, Fountas KN, Hadjigeorgiou GM. Genetic basis of Parkinson disease. Neurosurg Focus 2010; 28:E7. [DOI: 10.3171/2009.10.focus09220] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Over the past few years, considerable progress has been made in understanding the molecular mechanisms of Parkinson disease (PD). Mutations in certain genes are found to cause monogenic forms of the disorder, with autosomal dominant or autosomal recessive inheritance. These genes include alpha-synuclein, parkin, PINK1, DJ-1, LRRK2, and ATP13A2. The monogenic variants are important tools in identifying cellular pathways that shed light on the pathogenesis of this disease. Certain common genetic variants are also likely to modulate the risk of PD. International collaborative studies and meta-analyses have identified common variants as genetic susceptibility risk/protective factors for sporadic PD.
Collapse
Affiliation(s)
- Georgia Xiromerisiou
- 1Institute for Biomedical Technology (BIOMED), Centre for Research and Technology—Thessaly (CERETETH)
| | - Efthimios Dardiotis
- 1Institute for Biomedical Technology (BIOMED), Centre for Research and Technology—Thessaly (CERETETH)
- 2Department of Neurology, Laboratory of Neurogenetics
| | | | | | | | - Eftychia Z. Kapsalaki
- 4Department of Diagnostic Radiology, University of Thessaly, University Hospital of Larissa, Greece
| | | | - Georgios M. Hadjigeorgiou
- 1Institute for Biomedical Technology (BIOMED), Centre for Research and Technology—Thessaly (CERETETH)
- 2Department of Neurology, Laboratory of Neurogenetics
| |
Collapse
|
200
|
Sun GY, Shelat PB, Jensen MB, He Y, Sun AY, Simonyi A. Phospholipases A2 and inflammatory responses in the central nervous system. Neuromolecular Med 2009; 12:133-48. [PMID: 19855947 DOI: 10.1007/s12017-009-8092-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 09/25/2009] [Indexed: 12/21/2022]
Abstract
Phospholipases A2 (PLA2s) belong to a superfamily of enzymes responsible for hydrolyzing the sn-2 fatty acids of membrane phospholipids. These enzymes are known to play multiple roles for maintenance of membrane phospholipid homeostasis and for production of a variety of lipid mediators. Over 20 different types of PLA2s are present in the mammalian cells, and in snake and bee venom. Despite their common function in hydrolyzing fatty acids of phospholipids, they are diversely encoded by a number of genes and express proteins that are regulated by different mechanisms. Recent studies have focused on the group IV calcium-dependent cytosolic cPLA2, the group VI calcium-independent iPLA2, and the group II small molecule secretory sPLA2. In the central nervous system (CNS), these PLA2s are distributed among neurons and glial cells. Although the physiological role of these PLA2s in regulating neural cell function has not yet been clearly elucidated, there is increasing evidence for their involvement in receptor signaling and transcriptional pathways that link oxidative events to inflammatory responses that underline many neurodegenerative diseases. Recent studies also reveal an important role of cPLA2 in modulating neuronal excitatory functions, sPLA2 in the inflammatory responses, and iPLA2 with childhood neurologic disorders associated with brain iron accumulation. The goal for this review is to better understand the structure and function of these PLA2s and to highlight specific types of PLA2s and their cross-talk mechanisms in these inflammatory responses under physiological and pathological conditions in the CNS.
Collapse
Affiliation(s)
- Grace Y Sun
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA.
| | | | | | | | | | | |
Collapse
|