151
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
152
|
Twohig D, Nielsen HM. α-synuclein in the pathophysiology of Alzheimer's disease. Mol Neurodegener 2019; 14:23. [PMID: 31186026 PMCID: PMC6558879 DOI: 10.1186/s13024-019-0320-x] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
The Alzheimer’s disease (AD) afflicted brain is neuropathologically defined by extracellular amyloid-β (Aβ) plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated tau protein. However, accumulating evidence suggests that the presynaptic protein α-synuclein (αSyn), mainly associated with synucleinopathies like Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), is involved in the pathophysiology of AD. Lewy-related pathology (LRP), primarily comprised of αSyn, is present in a majority of autopsied AD brains, and higher levels of αSyn in the cerebrospinal fluid (CSF) of patients with mild cognitive impairment (MCI) and AD have been linked to cognitive decline. Recent studies also suggest that the asymptomatic accumulation of Aβ plaques is associated with higher CSF αSyn levels in subjects at risk of sporadic AD and in individuals carrying autosomal dominant AD mutations. Experimental evidence has further linked αSyn mainly to tau hyperphosphorylation, but also to the pathological actions of Aβ and the APOEε4 allele, the latter being a major genetic risk factor for both AD and DLB. In this review, we provide a summary of the current evidence proposing an involvement of αSyn either as an active or passive player in the pathophysiological ensemble of AD, and furthermore describe in detail the current knowledge of αSyn structure and inferred function.
Collapse
Affiliation(s)
- Daniel Twohig
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius Väg 16B, 10691, Stockholm, Sweden
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius Väg 16B, 10691, Stockholm, Sweden.
| |
Collapse
|
153
|
Espay AJ, Marras C. Reply to ‘Neuropathological progression of clinical Parkinson disease subtypes’. Nat Rev Neurol 2019; 15:361-362. [DOI: 10.1038/s41582-019-0198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
154
|
Guttuso T, Andrzejewski KL, Lichter DG, Andersen JK. Targeting kinases in Parkinson's disease: A mechanism shared by LRRK2, neurotrophins, exenatide, urate, nilotinib and lithium. J Neurol Sci 2019; 402:121-130. [PMID: 31129265 DOI: 10.1016/j.jns.2019.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022]
Abstract
Several kinases have been implicated in the pathogenesis of Parkinson's disease (PD), most notably leucine-rich repeat kinase 2 (LRRK2), as LRRK2 mutations are the most common genetic cause of a late-onset parkinsonism that is clinically indistinguishable from sporadic PD. More recently, several other kinases have emerged as promising disease-modifying targets in PD based on both preclinical studies and clinical reports on exenatide, the urate precursor inosine, nilotinib and lithium use in PD patients. These kinases include protein kinase B (Akt), glycogen synthase kinases-3β and -3α (GSK-3β and GSK-3α), c-Abelson kinase (c-Abl) and cyclin-dependent kinase 5 (cdk5). Activities of each of these kinases are involved either directly or indirectly in phosphorylating tau or increasing α-synuclein levels, intracellular proteins whose toxic oligomeric forms are strongly implicated in the pathogenesis of PD. GSK-3β, GSK-3α and cdk5 are the principle kinases involved in phosphorylating tau at sites critical for the formation of tau oligomers. Exenatide analogues, urate, nilotinib and lithium have been shown to affect one or more of the above kinases, actions that can decrease the formation and increase the clearance of intraneuronal phosphorylated tau and α-synuclein. Here we review the current preclinical and clinical evidence supporting kinase-targeting agents as potential disease-modifying therapies for PD patients enriched with these therapeutic targets and incorporate LRRK2 physiology into this novel model.
Collapse
Affiliation(s)
- Thomas Guttuso
- Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.
| | - Kelly L Andrzejewski
- Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.
| | - David G Lichter
- Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.
| | - Julie K Andersen
- The Buck Institute for Research on Aging, Novato, CA, United States of America.
| |
Collapse
|
155
|
Robertson AD, Udow SJ, Espay AJ, Merola A, Camicioli R, Lang AE, Masellis M. Orthostatic hypotension and dementia incidence: links and implications. Neuropsychiatr Dis Treat 2019; 15:2181-2194. [PMID: 31447560 PMCID: PMC6683958 DOI: 10.2147/ndt.s182123] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Orthostatic hypotension (OH) is a common condition, particularly in patients with α-synucleinopathies such as Parkinson's disease, and has a significant impact on activities of daily living and quality of life. Recent data suggest an association with cognitive impairment. Herein, we review the evidence that OH increases the odds of incident mild cognitive impairment and dementia. Potential mechanisms underlying the putative relationship are discussed, including cerebral hypoperfusion, supine hypertension, white matter hyperintensities, and neurodegeneration. Finally, we highlight the challenges with respect to treatment and the negative impact on the quality of life and long-term prognosis presented by the coexistence of OH and dementia. Large population-based studies have reported that OH is associated with about a 20% increased risk of dementia in the general population, while smaller cohort studies suggest an even greater effect in patients with α-synucleinopathies (3- to 7-fold higher than controls). Ultimately, OH exposure is difficult to quantify, predominantly limited to pressure regulation during a one-time orthostatic challenge, and the causative association with dementia may turn out to be bidirectional, especially in α-synucleinopathies. Early diagnosis and treatment of OH may improve long-term prognosis.
Collapse
Affiliation(s)
- Andrew D Robertson
- Schlegel-UW Research Institute for Aging, University of Waterloo, Waterloo, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Sean J Udow
- Division of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Alberto J Espay
- Department of Neurology, James and Joan Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Aristide Merola
- Department of Neurology, James and Joan Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Richard Camicioli
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Cognitive and Movement Disorders Clinic, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|