151
|
Xue L, Wang X, Xu J, Xu X, Liu X, Hu Z, Shen H, Chen Y. ISL1 common variant rs1017 is not associated with susceptibility to congenital heart disease in a Chinese population. Genet Test Mol Biomarkers 2012; 16:679-83. [PMID: 22480195 DOI: 10.1089/gtmb.2011.0249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND ISL1, as a member of the LIM homeodomain transcription factor family, is expressed in a distinct population of undifferentiated cardiac progenitors and plays a pivotal role in cardiogenesis. Lacking ISL1 expression results in growth arrest or displays profound defects in heart development, including atria, ventricle, and the inflow and outflow tracts, which constitute a major form of congenital heart disease (CHD). Recently, an important study by Stevens et al. found that genetic variation in ISL1 is associated with risk of CHD in white and black/African American populations; this observation led us to hypothesize that ISL1 common variants might influence susceptibility to sporadic CHD in our Chinese population. METHODS We conducted a case-control study of CHD in Chinese to test our hypothesis by genotyping ISL1 common variant rs1017 in 1003 CHD cases and 1012 non-CHD controls. RESULTS We found that rs1017 was not associated with the risk of CHD (p=0.213). When we performed stratified analyses according to subjects' age, sex, and CHD classifications, we found no overall heterogeneity of risk in different subgroups. CONCLUSIONS This is the first study which indicates that ISL1 common variant rs1017 may not play a role in sporadic CHD susceptibility in the Chinese population.
Collapse
Affiliation(s)
- Lei Xue
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Voronova A, Al Madhoun A, Fischer A, Shelton M, Karamboulas C, Skerjanc IS. Gli2 and MEF2C activate each other's expression and function synergistically during cardiomyogenesis in vitro. Nucleic Acids Res 2012; 40:3329-3347. [PMID: 22199256 PMCID: PMC3333882 DOI: 10.1093/nar/gkr1232] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/07/2011] [Accepted: 11/24/2011] [Indexed: 02/07/2023] Open
Abstract
The transcription factors Gli2 (glioma-associated factor 2), which is a transactivator of Sonic Hedgehog (Shh) signalling, and myocyte enhancer factor 2C (MEF2C) play important roles in the development of embryonic heart muscle and enhance cardiomyogenesis in stem cells. Although the physiological importance of Shh signalling and MEF2 factors in heart development is well known, the mechanistic understanding of their roles is unclear. Here, we demonstrate that Gli2 and MEF2C activated each other's expression while enhancing cardiomyogenesis in differentiating P19 EC cells. Furthermore, dominant-negative mutant proteins of either Gli2 or MEF2C repressed each other's expression, while impairing cardiomyogenesis in P19 EC cells. In addition, chromatin immunoprecipitation (ChIP) revealed association of Gli2 to the Mef2c gene, and of MEF2C to the Gli2 gene in differentiating P19 cells. Finally, co-immunoprecipitation studies showed that Gli2 and MEF2C proteins formed a complex, capable of synergizing on cardiomyogenesis-related promoters containing both Gli- and MEF2-binding elements. We propose a model whereby Gli2 and MEF2C bind each other's regulatory elements, activate each other's expression and form a protein complex that synergistically activates transcription, enhancing cardiac muscle development. This model links Shh signalling to MEF2C function during cardiomyogenesis and offers mechanistic insight into their in vivo functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Ilona Sylvia Skerjanc
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
153
|
Pane LS, Zhang Z, Ferrentino R, Huynh T, Cutillo L, Baldini A. Tbx1 is a negative modulator of Mef2c. Hum Mol Genet 2012; 21:2485-96. [PMID: 22367967 PMCID: PMC3349424 DOI: 10.1093/hmg/dds063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The developmental role of the T-box transcription factor Tbx1 is exquisitely dosage-sensitive. In this study, we performed a microarray-based transcriptome analysis of E9.5 embryo tissues across a previously generated Tbx1 mouse allelic series. This analysis identified several genes whose expression was affected by Tbx1 dosage. Interestingly, we found that the expression of the gene encoding the cardiogenic transcription factor Mef2c was negatively correlated to Tbx1 dosage. In vivo data revealed Mef2c up-regulation in the second heart field (SHF) of Tbx1 null mutant embryos compared with wild-type littermates at E9.5. Conversely, Mef2c expression was decreased in the SHF and in somites of Tbx1 gain-of-function mutants. These results are consistent with the described role of Tbx1 in suppressing cardiac progenitor cell differentiation and indicate also a negative effect of Tbx1 on Mef2c during skeletal muscle differentiation. We show that Tbx1 occupies conserved regulatory regions of the Mef2c locus, suggesting a direct effect on Mef2c transcription. However, we also show that Tbx1 interferes with the Gata4→ Mef2c regulatory pathway. Overall, our study uncovered a target of Tbx1 with critical developmental roles, so highlighting the power of the dosage gradient approach that we used.
Collapse
Affiliation(s)
- Luna Simona Pane
- Institute of Genetics and Biophysics, National Research Council, 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
154
|
Huang ZP, Young Seok H, Zhou B, Chen J, Chen JF, Tao Y, Pu WT, Wang DZ. CIP, a cardiac Isl1-interacting protein, represses cardiomyocyte hypertrophy. Circ Res 2012; 110:818-30. [PMID: 22343712 DOI: 10.1161/circresaha.111.259663] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Mammalian heart has minimal regenerative capacity. In response to mechanical or pathological stress, the heart undergoes cardiac remodeling. Pressure and volume overload in the heart cause increased size (hypertrophic growth) of cardiomyocytes. Whereas the regulatory pathways that activate cardiac hypertrophy have been well-established, the molecular events that inhibit or repress cardiac hypertrophy are less known. OBJECTIVE To identify and investigate novel regulators that modulate cardiac hypertrophy. METHODS AND RESULTS Here, we report the identification, characterization, and functional examination of a novel cardiac Isl1-interacting protein (CIP). CIP was identified from a bioinformatic search for novel cardiac-expressed genes in mouse embryonic hearts. CIP encodes a nuclear protein without recognizable motifs. Northern blotting, in situ hybridization, and reporter gene tracing demonstrated that CIP is highly expressed in cardiomyocytes of developing and adult hearts. Yeast two-hybrid screening identified Isl1, a LIM/homeodomain transcription factor essential for the specification of cardiac progenitor cells in the second heart field, as a cofactor of CIP. CIP directly interacted with Isl1, and we mapped the domains of these two proteins, which mediate their interaction. We show that CIP represses the transcriptional activity of Isl1 in the activation of the myocyte enhancer factor 2C. The expression of CIP was dramatically reduced in hypertrophic cardiomyocytes. Most importantly, overexpression of CIP repressed agonist-induced cardiomyocyte hypertrophy. CONCLUSIONS Our studies therefore identify CIP as a novel regulator of cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhan-Peng Huang
- Department of Cardiology, Children's Hospital Boston, Harvard Medical School, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Golzio C, Havis E, Daubas P, Nuel G, Babarit C, Munnich A, Vekemans M, Zaffran S, Lyonnet S, Etchevers HC. ISL1 directly regulates FGF10 transcription during human cardiac outflow formation. PLoS One 2012; 7:e30677. [PMID: 22303449 PMCID: PMC3267757 DOI: 10.1371/journal.pone.0030677] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/20/2011] [Indexed: 11/23/2022] Open
Abstract
The LIM homeodomain gene Islet-1 (ISL1) encodes a transcription factor that has been associated with the multipotency of human cardiac progenitors, and in mice enables the correct deployment of second heart field (SHF) cells to become the myocardium of atria, right ventricle and outflow tract. Other markers have been identified that characterize subdomains of the SHF, such as the fibroblast growth factor Fgf10 in its anterior region. While functional evidence of its essential contribution has been demonstrated in many vertebrate species, SHF expression of Isl1 has been shown in only some models. We examined the relationship between human ISL1 and FGF10 within the embryonic time window during which the linear heart tube remodels into four chambers. ISL1 transcription demarcated an anatomical region supporting the conserved existence of a SHF in humans, and transcription factors of the GATA family were co-expressed therein. In conjunction, we identified a novel enhancer containing a highly conserved ISL1 consensus binding site within the FGF10 first intron. ChIP and EMSA demonstrated its direct occupation by ISL1. Transcription mediated by ISL1 from this FGF10 intronic element was enhanced by the presence of GATA4 and TBX20 cardiac transcription factors. Finally, transgenic mice confirmed that endogenous factors bound the human FGF10 intronic enhancer to drive reporter expression in the developing cardiac outflow tract. These findings highlight the interest of examining developmental regulatory networks directly in human tissues, when possible, to assess candidate non-coding regions that may be responsible for congenital malformations.
Collapse
Affiliation(s)
- Christelle Golzio
- Center for Human Disease Modeling, Department of Cell Biology, Duke Medical Center, Durham, North Carolina, United States of America
| | | | | | - Gregory Nuel
- CNRS 8145, Mathématiques appliquées, Université Paris Descartes, Paris, France
| | - Candice Babarit
- INSERM U781, Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Arnold Munnich
- INSERM U781, Université Paris Descartes, Faculté de Médecine, Paris, France
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, Paris, France
| | - Michel Vekemans
- INSERM U781, Université Paris Descartes, Faculté de Médecine, Paris, France
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, Paris, France
| | - Stéphane Zaffran
- INSERM, U910, Marseille, France; Aix-Marseille Univ, Faculté de Médecine, UMR 910, Marseille, France
| | - Stanislas Lyonnet
- INSERM U781, Université Paris Descartes, Faculté de Médecine, Paris, France
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, Paris, France
| | - Heather C. Etchevers
- INSERM, U910, Marseille, France; Aix-Marseille Univ, Faculté de Médecine, UMR 910, Marseille, France
- * E-mail:
| |
Collapse
|
156
|
Zheng Q, Zhao Y. The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein-protein interaction. Biol Cell 2012; 99:489-502. [PMID: 17696879 DOI: 10.1042/bc20060126] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The LIM domain is a cysteine- and histidine-rich motif that has been proposed to direct protein-protein interactions. A diverse group of proteins containing LIM domains have been identified, which display various functions including gene regulation and cell fate determination, tumour formation and cytoskeleton organization. LIM domain proteins are distributed in both the nucleus and the cytoplasm, and they exert their functions through interactions with various protein partners.
Collapse
Affiliation(s)
- Quanhui Zheng
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
157
|
Li A, Ponten F, dos Remedios CG. The interactome of LIM domain proteins: The contributions of LIM domain proteins to heart failure and heart development. Proteomics 2012; 12:203-25. [DOI: 10.1002/pmic.201100492] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 12/22/2022]
|
158
|
Abstract
Transcription factors regulate formation and function of the heart, and perturbation of transcription factor expression and regulation disrupts normal heart structure and function. Multiple mechanisms regulate the level and locus-specific activity of transcription factors, including transcription, translation, subcellular localization, posttranslational modifications, and context-dependent interactions with other transcription factors, chromatin remodeling enzymes, and epigenetic regulators. The zinc finger transcription factor GATA4 is among the best-studied cardiac transcriptional factors. This review focuses on molecular mechanisms that regulate GATA4 transcriptional activity in the cardiovascular system, providing a framework to investigate and understand the molecular regulation of cardiac gene transcription by other transcription factors.
Collapse
|
159
|
Taubenschmid J, Weitzer G. Mechanisms of cardiogenesis in cardiovascular progenitor cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:195-267. [PMID: 22251563 PMCID: PMC7615846 DOI: 10.1016/b978-0-12-394304-0.00012-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-renewing cells of the vertebrate heart have become a major subject of interest in the past decade. However, many researchers had a hard time to argue against the orthodox textbook view that defines the heart as a postmitotic organ. Once the scientific community agreed on the existence of self-renewing cells in the vertebrate heart, their origin was again put on trial when transdifferentiation, dedifferentiation, and reprogramming could no longer be excluded as potential sources of self-renewal in the adult organ. Additionally, the presence of self-renewing pluripotent cells in the peripheral blood challenges the concept of tissue-specific stem and progenitor cells. Leaving these unsolved problems aside, it seems very desirable to learn about the basic biology of this unique cell type. Thus, we shall here paint a picture of cardiovascular progenitor cells including the current knowledge about their origin, basic nature, and the molecular mechanisms guiding proliferation and differentiation into somatic cells of the heart.
Collapse
Affiliation(s)
- Jasmin Taubenschmid
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
160
|
From ontogenesis to regeneration: learning how to instruct adult cardiac progenitor cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:109-37. [PMID: 22917228 DOI: 10.1016/b978-0-12-398459-3.00005-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the first observations over two centuries ago by Lazzaro Spallanzani on the extraordinary regenerative capacity of urodeles, many attempts have been made to understand the reasons why such ability has been largely lost in metazoa and whether or how it can be restored, even partially. In this context, important clues can be derived from the systematic analysis of the relevant distinctions among species and of the pathways involved in embryonic development, which might be induced and/or recapitulated in adult tissues. This chapter provides an overview on regeneration and its mechanisms, starting with the lesson learned from lower vertebrates, and will then focus on recent advancements and novel insights concerning regeneration in the adult mammalian heart, including the discovery of resident cardiac progenitor cells (CPCs). Subsequently, it explores all the important pathways involved in regulating differentiation during development and embryogenesis, and that might potentially provide important clues on how to activate and/or modulate regenerative processes in the adult myocardium, including the potential activation of endogenous CPCs. Furthermore the importance of the stem cell niche is discussed, and how it is possible to create in vitro a microenvironment and culture system to provide adult CPCs with the ideal conditions promoting their regenerative ability. Finally, the state of clinical translation of cardiac cell therapy is presented. Overall, this chapter provides a new perspective on how to approach cardiac regeneration, taking advantage of important lessons from development and optimizing biotechnological tools to obtain the ideal conditions for cell-based cardiac regenerative therapy.
Collapse
|
161
|
Abstract
The formation of the heart involves diversification of lineages which differentiate into distinct cardiac cell types or contribute to different regions such as the four cardiac chambers. The heart is the first organ to form in the embryo. However, in parallel with the growth of the organism, before or after birth, the heart has to adapt its size to maintain pumping efficiency. The adult heart has only a mild regeneration potential; thus, strategies to repair the heart after injury are based on the mobilisation of resident cardiac stem cells or the transplantation of external sources of stem cells. We discuss current knowledge on these aspects and raise questions for future research.
Collapse
|
162
|
Abstract
Congenital heart disease is a major cause of morbidity and mortality throughout life. Mutations in numerous transcription factors have been identified in patients and families with some of the most common forms of cardiac malformations and arrhythmias. This review discusses transcription factor pathways known to be important for normal heart development and how abnormalities in these pathways have been linked to morphological and functional forms of congenital heart defects. A comprehensive, current list of known transcription factor mutations associated with congenital heart disease is provided, but the review focuses primarily on three key transcription factors, Nkx2-5, GATA4, and Tbx5, and their known biochemical and genetic partners. By understanding the interaction partners, transcriptional targets, and upstream activators of these core cardiac transcription factors, additional information about normal heart formation and further insight into genes and pathways affected in congenital heart disease should result.
Collapse
Affiliation(s)
- David J McCulley
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | | |
Collapse
|
163
|
Abstract
Ten years ago, a population of cardiac progenitor cells was identified in pharyngeal mesoderm that gives rise to a major part of the amniote heart. These multipotent progenitor cells, termed the second heart field (SHF), contribute progressively to the poles of the elongating heart tube during looping morphogenesis, giving rise to myocardium, smooth muscle, and endothelial cells. Research into the mechanisms of SHF development has contributed significantly to our understanding of the properties of cardiac progenitor cells and the origins of congenital heart defects. Here recent data concerning the regulation, clinically relevant subpopulations, evolution and lineage relationships of the SHF are reviewed. Proliferation and differentiation of SHF cells are controlled by multiple intercellular signaling pathways and a transcriptional regulatory network that is beginning to be elucidated. Perturbation of SHF development results in common forms of congenital heart defects and particular progenitor cell subpopulations are highly relevant clinically, including cells giving rise to myocardium at the base of the pulmonary trunk and the interatrial septum. A SHF has recently been identified in amphibian, fish, and agnathan embryos, highlighting the important contribution of these cells to the evolution of the vertebrate heart. Finally, SHF-derived parts of the heart share a lineage relationship with craniofacial skeletal muscles revealing that these progenitor cells belong to a broad cardiocraniofacial field of pharyngeal mesoderm. Investigation of the mechanisms underlying the dynamic process of SHF deployment is likely to yield further insights into cardiac development and pathology.
Collapse
Affiliation(s)
- Robert G Kelly
- Developmental Biology Institute of Marseilles-Luminy, Aix-Marseille Université, CNRS UMR 7288, Marseilles, France
| |
Collapse
|
164
|
Zhang J, Liu J, Huang Y, Chang JYF, Liu L, McKeehan WL, Martin JF, Wang F. FRS2α-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity. Circ Res 2011; 110:e29-39. [PMID: 22207710 DOI: 10.1161/circresaha.111.255950] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Although the fibroblast growth factor (FGF) signaling axis plays important roles in heart development, the molecular mechanism by which the FGF regulates cardiogenesis is not fully understood. OBJECTIVE To investigate the mechanism by which FGF signaling regulates cardiac progenitor cell differentiation. METHODS AND RESULTS Using mice with tissue-specific ablation of FGF receptors and FGF receptor substrate 2α (Frs2α) in heart progenitor cells, we demonstrate that disruption of FGF signaling leads to premature differentiation of cardiac progenitor cells in mice. Using embryoid body cultures of mouse embryonic stem cells, we reveal that FGF signaling promotes mesoderm differentiation in embryonic stem cells but inhibits cardiomyocyte differentiation of the mesoderm cells at later stages. Furthermore, we also report that inhibiting FRS2α-mediated signals increases autophagy and that activating autophagy promotes myocardial differentiation and vice versa. CONCLUSIONS The results indicate that the FGF/FRS2α-mediated signals prevent premature differentiation of heart progenitor cells through suppressing autophagy. The findings provide the first evidence that autophagy plays a role in heart progenitor differentiation.
Collapse
Affiliation(s)
- Jue Zhang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030-3303, USA
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Diman NYSG, Remacle S, Bertrand N, Picard JJ, Zaffran S, Rezsohazy R. A retinoic acid responsive Hoxa3 transgene expressed in embryonic pharyngeal endoderm, cardiac neural crest and a subdomain of the second heart field. PLoS One 2011; 6:e27624. [PMID: 22110697 PMCID: PMC3217993 DOI: 10.1371/journal.pone.0027624] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/20/2011] [Indexed: 11/19/2022] Open
Abstract
A transgenic mouse line harbouring a β-galacdosidase reporter gene controlled by the proximal 2 kb promoter of Hoxa3 was previously generated to investigate the regulatory cues governing Hoxa3 expression in the mouse. Examination of transgenic embryos from embryonic day (E) 8.0 to E15.5 revealed regionally restricted reporter activity in the developing heart. Indeed, transgene expression specifically delineated cells from three distinct lineages: a subpopulation of the second heart field contributing to outflow tract myocardium, the cardiac neural crest cells and the pharyngeal endoderm. Manipulation of the Retinoic Acid (RA) signaling pathway showed that RA is required for correct expression of the transgene. Therefore, this transgenic line may serve as a cardiosensor line of particular interest for further analysis of outflow tract development.
Collapse
Affiliation(s)
- Nata Y. S.-G. Diman
- Molecular and Cellular Animal Embryology group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Sophie Remacle
- Molecular and Cellular Animal Embryology group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nicolas Bertrand
- UMR910, Aix-Marseille University, Marseille, France
- Medical Genetics and Functional Genomics, Inserm UMR_S910, Marseille, France
| | - Jacques J. Picard
- Faculty of Medicine, Université catholique de Louvain, Brussels, Belgium
| | - Stéphane Zaffran
- UMR910, Aix-Marseille University, Marseille, France
- Medical Genetics and Functional Genomics, Inserm UMR_S910, Marseille, France
- * E-mail: (SZ); (RR)
| | - René Rezsohazy
- Molecular and Cellular Animal Embryology group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail: (SZ); (RR)
| |
Collapse
|
166
|
Schachterle W, Rojas A, Xu SM, Black BL. ETS-dependent regulation of a distal Gata4 cardiac enhancer. Dev Biol 2011; 361:439-49. [PMID: 22056786 DOI: 10.1016/j.ydbio.2011.10.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/30/2011] [Accepted: 10/08/2011] [Indexed: 01/10/2023]
Abstract
The developing heart contains an inner tube of specialized endothelium known as endocardium, which performs multiple essential functions. In spite of the essential role of the endocardium in heart development and function, the transcriptional pathways that regulate its development remain largely undefined. GATA4 is a zinc finger transcription factor that is expressed in multiple cardiovascular lineages and is required for endocardial cushion development and embryonic viability, but the transcriptional pathways upstream of Gata4 in the endocardium and its derivatives in the endocardial cushions are unknown. Here, we describe a distal enhancer from the mouse Gata4 gene that is briefly active in multiple cardiac lineages early in cardiac development but restricts to the endocardium where it remains active through cardiogenesis. The activity of this Gata4 cardiac enhancer in transgenic embryos and in cultured aortic endothelial cells is dependent on four ETS sites. To identify which ETS transcription factors might be involved in Gata4 regulation via the ETS sites in the enhancer, we determined the expression profile of 24 distinct ETS factors in embryonic mouse hearts. Among multiple ETS transcripts present, ETS1, FLI1, ETV1, ETV5, ERG, and ETV6 were the most abundant in the early embryonic heart. We found that ETS1, FLI1, and ERG were strongly expressed in the heart at embryonic day 8.5 and that ETS1 and ERG bound to the endogenous Gata4 enhancer in cultured endothelial cells. Thus, these studies define the ETS expression profile in the early embryonic heart and identify an ETS-dependent enhancer from the Gata4 locus.
Collapse
Affiliation(s)
- William Schachterle
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | | | | | | |
Collapse
|
167
|
Leri A, Kajstura J, Anversa P. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res 2011; 109:941-61. [PMID: 21960726 PMCID: PMC3299091 DOI: 10.1161/circresaha.111.243154] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/24/2011] [Indexed: 12/15/2022]
Abstract
For nearly a century, the human heart has been viewed as a terminally differentiated postmitotic organ in which the number of cardiomyocytes is established at birth, and these cells persist throughout the lifespan of the organ and organism. However, the discovery that cardiac stem cells live in the heart and differentiate into the various cardiac cell lineages has changed profoundly our understanding of myocardial biology. Cardiac stem cells regulate myocyte turnover and condition myocardial recovery after injury. This novel information imposes a reconsideration of the mechanisms involved in myocardial aging and the progression of cardiac hypertrophy to heart failure. Similarly, the processes implicated in the adaptation of the infarcted heart have to be dissected in terms of the critical role that cardiac stem cells and myocyte regeneration play in the restoration of myocardial mass and ventricular function. Several categories of cardiac progenitors have been described but, thus far, the c-kit-positive cell is the only class of resident cells with the biological and functional properties of tissue specific adult stem cells.
Collapse
Affiliation(s)
- Annarosa Leri
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
168
|
Kodo K, Yamagishi H. A decade of advances in the molecular embryology and genetics underlying congenital heart defects. Circ J 2011; 75:2296-304. [PMID: 21914956 DOI: 10.1253/circj.cj-11-0636] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Congenital heart defects (CHD) are the most common type of human birth defect and result in significant mortality worldwide. Despite numerous epidemiologic studies in the past decades, few genetic causes have been identified until recently. CHD result from abnormal morphogenesis of the systematic cardiovascular construction during development. Recent advances in molecular embryology, including the discovery of a new source of cardiac progenitor cells termed the second heart field (SHF), have revealed that the heart arises from multiple distinct embryonic origins. Cells derived from the SHF contribute to the development of the cardiac outflow tract, together with the other progenitor cell lineage called cardiac neural crest cells. Numerous cardiac transcription factors regulate these progenitor cells during heart development. Elucidation of the transcriptional network for these cardiac progenitor cells is essential for further understanding cardiac development and providing new insights into the morphogenesis of CHD. This review outlines the recent discoveries of the molecular embryology of the normal heart and the genetic basis of CHD.
Collapse
Affiliation(s)
- Kazuki Kodo
- Department of Pediatrics, Division of Pediatric Cardiology, Keio University School of Medicine, Japan
| | | |
Collapse
|
169
|
Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. Stem Cell Res 2011; 8:58-73. [PMID: 22099021 DOI: 10.1016/j.scr.2011.08.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 01/01/2023] Open
Abstract
Cells resembling bone marrow mesenchymal stem cells (MSC) have been isolated from many organs but their functional relationships have not been thoroughly examined. Here we compared the immunophenotype, gene expression, multipotency and immunosuppressive potential of MSC-like colony-forming cells from adult murine bone marrow (bmMSC), kidney (kCFU-F) and heart (cCFU-F), cultured under uniform conditions. All populations showed classic MSC morphology and in vitro mesodermal multipotency. Of the two solid organ-specific CFU-F, only kCFU-F displayed suppression of T-cell alloreactivity in vitro, albeit to a lesser extent than bmMSC. Quantitative immunophenotyping using 81 phycoerythrin-conjugated CD antibodies demonstrated that all populations contained high percentages of cells expressing diagnostic MSC surface markers (Sca1, CD90.2, CD29, CD44), as well as others noted previously on murine MSC (CD24, CD49e, CD51, CD80, CD81, CD105). Illumina microarray expression profiling and bioinformatic analysis indicated a correlation of gene expression of 0.88-0.92 between pairwise comparisons. All populations expressed approximately 66% of genes in the pluripotency network (Plurinet), presumably reflecting their stem-like character. Furthermore, all populations expressed genes involved in immunomodulation, homing and tissue repair, suggesting these as conserved functions for MSC-like cells in solid organs. Despite this molecular congruence, strong biases in gene and protein expression and pathway activity were seen, suggesting organ-specific functions. Hence, tissue-derived MSC may also retain unique properties potentially rendering them more appropriate as cellular therapeutic agents for their organ of origin.
Collapse
|
170
|
Laforest B, Nemer M. GATA5 interacts with GATA4 and GATA6 in outflow tract development. Dev Biol 2011; 358:368-78. [PMID: 21839733 DOI: 10.1016/j.ydbio.2011.07.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 12/12/2022]
Abstract
Members of the GATA family of transcription factors are critical regulators of heart development and mutations in 2 of them, GATA4 and GATA6 are associated with outflow tract and septal defects in human. The heart expresses 3 GATA factors, GATA4, 5 and 6 in a partially overlapping pattern. Here, we report that compound Gata4/Gata5 and Gata5/Gata6 mutants die embryonically or perinatally due to severe congenital heart defects. Almost all Gata4(+/-)Gata5(+/-) mutant embryos have double outlet right ventricles (DORV), large ventricular septal defects (VSD) as well as hypertrophied mitral and tricuspid valves. Only 25% of double compound Gata4/Gata5 heterozygotes survive to adulthood and these mice have aortic stenosis. Compound loss of a Gata5 and a Gata6 allele also leads to DORVs associated with subaortic VSDs. Expression of several transcription factors important for endocardial and myocardial cell differentiation, such as Tbx20, Mef2c, Hey1 and Hand2, was reduced in compound heterozygote embryos. These findings suggest the existence of important genetic interactions between Gata5 and the 2 other cardiac GATA factors in endocardial cushion formation and outflow tract morphogenesis. The data identify GATA5 as a potential genetic modifier of congenital heart disease and provide insight for elucidating the genetic basis of an important class of human birth defects.
Collapse
Affiliation(s)
- Brigitte Laforest
- Laboratoire de Développement et Différentiation Cardiaque, Programme de Biologie Moléculaire, Université de Montréal, Montréal QC, Canada H3C 3J7
| | | |
Collapse
|
171
|
Abstract
This review article addresses the controversy as to whether the adult heart possesses an intrinsic growth reserve. If myocyte renewal takes place in healthy and diseased organs, the reconstitution of the damaged tissue lost upon pathological insults might be achieved by enhancing a natural occurring process. Evidence in support of the old and new view of cardiac biology is critically discussed in an attempt to understand whether the heart is a static or dynamic organ. According to the traditional concept, the heart exerts its function until death of the organism with the same or lesser number of cells that are present at birth. This paradigm was challenged by documentation of the cell cycle activation and nuclear and cellular division in a subset of myocytes. These observations raised the important question of the origin of replicating myocytes. Several theories have been proposed and are presented in this review article. Newly formed myocytes may derive from a pre-existing pool of cells that has maintained the ability to divide. Alternatively, myocytes may be generated by activation and commitment of resident cardiac stem cells or by migration of progenitor cells from distant organs. In all cases, parenchymal cell turnover throughout lifespan results in a heterogeneous population consisting of young, adult, and senescent myocytes. With time, accumulation of old myocytes has detrimental effects on cardiac performance and may cause the development of an aging myopathy.
Collapse
Affiliation(s)
- T Hosoda
- Division of Cardiovascular Medicine, Department of Anesthesia and Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
172
|
Guo C, Sun Y, Zhou B, Adam RM, Li X, Pu WT, Morrow BE, Moon A, Li X. A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis. J Clin Invest 2011; 121:1585-95. [PMID: 21364285 DOI: 10.1172/jci44630] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/05/2011] [Indexed: 12/16/2022] Open
Abstract
Shared molecular programs govern the formation of heart and head during mammalian embryogenesis. Development of both structures is disrupted in human chromosomal microdeletion of 22q11.2 (del22q11), which causes DiGeorge syndrome (DGS) and velo-cardio-facial syndrome (VCFS). Here, we have identified a genetic pathway involving the Six1/Eya1 transcription complex that regulates cardiovascular and craniofacial development. We demonstrate that murine mutation of both Six1 and Eya1 recapitulated most features of human del22q11 syndromes, including craniofacial, cardiac outflow tract, and aortic arch malformations. The mutant phenotypes were attributable in part to a reduction of fibroblast growth factor 8 (Fgf8), which was shown to be a direct downstream effector of Six1 and Eya1. Furthermore, we showed that Six1 and Eya1 genetically interacted with Fgf8 and the critical del22q11 gene T-box transcription factor 1 (Tbx1) in mice. Together, these findings reveal a Tbx1-Six1/Eya1-Fgf8 genetic pathway that is crucial for mammalian cardiocraniofacial morphogenesis and provide insights into the pathogenesis of human del22q11 syndromes.
Collapse
Affiliation(s)
- Chaoshe Guo
- Department of Urology, Children's Hospital Boston, and Department of Surgery and Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Agarwal P, Verzi MP, Nguyen T, Hu J, Ehlers ML, McCulley DJ, Xu SM, Dodou E, Anderson JP, Wei ML, Black BL. The MADS box transcription factor MEF2C regulates melanocyte development and is a direct transcriptional target and partner of SOX10. Development 2011; 138:2555-65. [PMID: 21610032 PMCID: PMC3100711 DOI: 10.1242/dev.056804] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2011] [Indexed: 12/24/2022]
Abstract
Waardenburg syndromes are characterized by pigmentation and autosensory hearing defects, and mutations in genes encoding transcription factors that control neural crest specification and differentiation are often associated with Waardenburg and related disorders. For example, mutations in SOX10 result in a severe form of Waardenburg syndrome, Type IV, also known as Waardenburg-Hirschsprung disease, characterized by pigmentation and other neural crest defects, including defective innervation of the gut. SOX10 controls neural crest development through interactions with other transcription factors. The MADS box transcription factor MEF2C is an important regulator of brain, skeleton, lymphocyte and cardiovascular development and is required in the neural crest for craniofacial development. Here, we establish a novel role for MEF2C in melanocyte development. Inactivation of Mef2c in the neural crest of mice results in reduced expression of melanocyte genes during development and a significant loss of pigmentation at birth due to defective differentiation and reduced abundance of melanocytes. We identify a transcriptional enhancer of Mef2c that directs expression to the neural crest and its derivatives, including melanocytes, in transgenic mouse embryos. This novel Mef2c neural crest enhancer contains three functional SOX binding sites and a single essential MEF2 site. We demonstrate that Mef2c is a direct transcriptional target of SOX10 and MEF2 via this evolutionarily conserved enhancer. Furthermore, we show that SOX10 and MEF2C physically interact and function cooperatively to activate the Mef2c gene in a feed-forward transcriptional circuit, suggesting that MEF2C might serve as a potentiator of the transcriptional pathways affected in Waardenburg syndromes.
Collapse
Affiliation(s)
- Pooja Agarwal
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Michael P. Verzi
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Thuyen Nguyen
- Department of Dermatology, Veterans Affairs Medical Center, University of California, San Francisco, CA 94143-0316, USA
| | - Jianxin Hu
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Melissa L. Ehlers
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - David J. McCulley
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Shan-Mei Xu
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Evdokia Dodou
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Joshua P. Anderson
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Maria L. Wei
- Department of Dermatology, Veterans Affairs Medical Center, University of California, San Francisco, CA 94143-0316, USA
| | - Brian L. Black
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| |
Collapse
|
174
|
Parisot P, Mesbah K, Théveniau-Ruissy M, Kelly RG. Tbx1, subpulmonary myocardium and conotruncal congenital heart defects. ACTA ACUST UNITED AC 2011; 91:477-84. [PMID: 21591244 DOI: 10.1002/bdra.20803] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/25/2011] [Accepted: 02/09/2011] [Indexed: 12/22/2022]
Abstract
Conotruncal congenital heart defects, including defects in septation and alignment of the ventricular outlets, account for approximately a third of all congenital heart defects. Failure of the left ventricle to obtain an independent outlet results in incomplete separation of systemic and pulmonary circulation at birth. The embryonic outflow tract, a transient cylinder of myocardium connecting the embryonic ventricles to the aortic sac, plays a critical role in this process during normal development. The outflow tract (OFT) is derived from a population of cardiac progenitor cells called the second heart field that contributes to the arterial pole of the heart tube during cardiac looping. During septation, the OFT is remodeled to form the base of the ascending aorta and pulmonary trunk. Tbx1, the major candidate gene for DiGeorge syndrome, is a critical transcriptional regulator of second heart field development. DiGeorge syndrome patients are haploinsufficient for Tbx1 and present a spectrum of conotruncal anomalies including tetralogy of Fallot, pulmonary atresia, and common arterial trunk. In this review, we focus on the role of Tbx1 in the regulation of second heart field deployment and, in particular, in the development of a specific population of myocardial cells at the base of the pulmonary trunk. Recent data characterizing additional properties and regulators of development of this region of the heart, including the retinoic acid, hedgehog, and semaphorin signaling pathways, are discussed. These findings identify future subpulmonary myocardium as the clinically relevant component of the second heart field and provide new mechanistic insight into a spectrum of common conotruncal congenital heart defects.
Collapse
Affiliation(s)
- Pauline Parisot
- Developmental Biology Institute of Marseilles-Luminy, UMR 6216/CNRS, Université de la Méditerranée, Marseilles, France
| | | | | | | |
Collapse
|
175
|
DeLaughter DM, Saint-Jean L, Baldwin HS, Barnett JV. What chick and mouse models have taught us about the role of the endocardium in congenital heart disease. ACTA ACUST UNITED AC 2011; 91:511-25. [PMID: 21538818 DOI: 10.1002/bdra.20809] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/08/2011] [Accepted: 02/17/2011] [Indexed: 12/16/2022]
Abstract
Specific cell and tissue interactions drive the formation and function of the vertebrate cardiovascular system. Although much attention has been focused on the muscular components of the developing heart, the endocardium plays a key role in the formation of a functioning heart. Endocardial cells exhibit heterogeneity that allows them to participate in events such as the formation of the valves, septation of the outflow tract, and trabeculation. Here we review, the contributions of the endocardium to cardiovascular development and outline useful approaches developed in the chick and mouse that have revealed endocardial cell heterogeneity, the signaling molecules that direct endocardial cell behavior, and how these insights have contributed to our understanding of cardiovascular development and disease.
Collapse
Affiliation(s)
- Daniel M DeLaughter
- Departments of Cell & Developmental Biology, Vanderbilt University Medical Center, 2220 Pierce Ave., Nashville, TN 37232-6600, USA
| | | | | | | |
Collapse
|
176
|
Lazic S, Scott IC. Mef2cb regulates late myocardial cell addition from a second heart field-like population of progenitors in zebrafish. Dev Biol 2011; 354:123-33. [PMID: 21466801 DOI: 10.1016/j.ydbio.2011.03.028] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
Two populations of cells, termed the first and second heart field, drive heart growth during chick and mouse development. The zebrafish has become a powerful model for vertebrate heart development, partly due to the evolutionary conservation of developmental pathways in this process. Here we provide evidence that the zebrafish possesses a conserved homolog to the murine second heart field. We developed a photoconversion assay to observe and quantify the dynamic late addition of myocardial cells to the zebrafish arterial pole. We define an extra-cardiac region immediately posterior to the arterial pole, which we term the late ventricular region. The late ventricular region has cardiogenic properties, expressing myocardial markers such as vmhc and nkx2.5, but does not express a full complement of differentiated cardiomyocyte markers, lacking myl7 expression. We show that mef2cb, a zebrafish homolog of the mouse second heart field marker Mef2c, is expressed in the late ventricular region, and is necessary for late myocardial addition to the arterial pole. FGF signaling after heart cone formation is necessary for mef2cb expression, the establishment of the late ventricular region, and late myocardial addition to the arterial pole. Our study demonstrates that zebrafish heart growth shows more similarities to murine heart growth than previously thought. Further, as congenital heart disease is often associated with defects in second heart field development, the embryological and genetic advantages of the zebrafish model can be applied to study the vertebrate second heart field.
Collapse
Affiliation(s)
- Savo Lazic
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
177
|
Lozano-Velasco E, Chinchilla A, Martínez-Fernández S, Hernández-Torres F, Navarro F, Lyons GE, Franco D, Aránega AE. Pitx2c modulates cardiac-specific transcription factors networks in differentiating cardiomyocytes from murine embryonic stem cells. Cells Tissues Organs 2011; 194:349-62. [PMID: 21389672 DOI: 10.1159/000323533] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2010] [Indexed: 02/02/2023] Open
Abstract
AIM The knowledge of the molecular signals that control cell differentiation into cardiomyocytes is critical to apply cell-based therapies and repair an injured heart. The transcription factor Pitx2 has essential roles in the development of different organs including the heart. Although a direct role of Pitx2 in the developing myocardium has recently been reported, the molecular pathways driven by Pitx2 as well as its cardiac target genes remain largely unexplored. The aim of this study was to unravel the molecular mechanisms driven by Pitx2 during the process of cardiomyocyte differentiation in vitro in mouse embryonic stem cell-derived cardiomyocytes. METHODS AND RESULTS Pitx2c was overexpressed in the R1-embryonic stem cell line. mRNA levels and protein distribution of several specific cardiac genes were analyzed by real-time PCR and immunohistochemistry experiments in R1-embryonic stem cell-derived beating areas at different stages of in vitro differentiation. Our results show that overexpression of Pitx2c in embryonic stem cell-derived cardiomyocytes is able to dynamically upregulate several cardiac-enriched transcription factors such as Isl1, Mef2c and Gata4. Additionally, Pitx2c induces the expression of chamber-specific cardiac genes such as Tbx5, Nppa and Cx40. These data were validated in an in vivo model of Pitx2 loss of function. CONCLUSION Taken together, these results demonstrate that Pitx2 plays a major role reinforcing the transcriptional program of cardiac differentiation.
Collapse
|
178
|
Inositol 1,4,5-trisphosphate receptors are essential for the development of the second heart field. J Mol Cell Cardiol 2011; 51:58-66. [PMID: 21382375 DOI: 10.1016/j.yjmcc.2011.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/04/2011] [Accepted: 02/24/2011] [Indexed: 11/21/2022]
Abstract
Congenital heart defects (CHDs) occur in 0.5-1% of live births, yet the underlying genetic etiology remains mostly unknown. Recently, a new source of myocardial cells, namely the second heart field (SHF), was discovered in the splanchnic mesoderm. Abnormal development of the SHF leads to a spectrum of outflow tract defects, such as persistent truncus arteriosus and tetralogy of Fallot. Intracellular Ca(2+) signaling is known to be essential for many aspects of heart biology including heart development, but its role in the SHF is uncertain. Here, we analyzed mice deficient for genes encoding inositol 1,4,5-trisphosphate receptors (IP(3)Rs), which are intracellular Ca(2+) release channels on the endo/sarcoplasmic reticulum that mediate Ca(2+) mobilization. Mouse embryos that are double mutant for IP(3)R type 1 and type 3 (IP(3)R1(-/-)IP(3)R3(-/-)) show hypoplasia of the outflow tract and the right ventricle, reduced expression of specific molecular markers and enhanced apoptosis of mesodermal cells in the SHF. Gene expression analyses suggest that IP(3)R-mediated Ca(2+) signaling may involve, at least in part, the Mef2C-Smyd1 pathway, a transcriptional cascade essential for the SHF. These data reveal that IP(3)R type 1 and type 3 may play a redundant role in the development of the SHF.
Collapse
|
179
|
A single GATA factor plays discrete, lineage specific roles in ascidian heart development. Dev Biol 2011; 352:154-63. [PMID: 21238449 DOI: 10.1016/j.ydbio.2011.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/14/2010] [Accepted: 01/06/2011] [Indexed: 01/12/2023]
Abstract
GATA family transcription factors are core components of the vertebrate heart gene network. GATA factors also contribute to heart formation indirectly through regulation of endoderm morphogenesis. However, the precise impact of GATA factors on vertebrate cardiogenesis is masked by functional redundancy within multiple lineages. Early heart specification in the invertebrate chordate Ciona intestinalis is similar to that of vertebrates but only one GATA factor, Ci-GATAa, is expressed in the heart progenitor cells and adjacent endoderm. Here we delineate precise, tissue specific contributions of GATAa to heart formation. Targeted repression of GATAa activity in the heart progenitors perturbs their transcriptional identity. Targeted repression of endodermal GATAa function disrupts endoderm morphogenesis. Subsequently, the bilateral heart progenitors fail to fuse at the ventral midline. The resulting phenotype is strikingly similar to cardia bifida, as observed in vertebrate embryos when endoderm morphogenesis is disturbed. These findings indicate that GATAa recapitulates cell-autonomous and non-cell-autonomous roles performed by multiple, redundant GATA factors in vertebrate cardiogenesis.
Collapse
|
180
|
Tsuchihashi T, Maeda J, Shin CH, Ivey KN, Black BL, Olson EN, Yamagishi H, Srivastava D. Hand2 function in second heart field progenitors is essential for cardiogenesis. Dev Biol 2010; 351:62-9. [PMID: 21185281 DOI: 10.1016/j.ydbio.2010.12.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/06/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022]
Abstract
Cardiogenesis involves the contributions of multiple progenitor pools, including mesoderm-derived cardiac progenitors known as the first and second heart fields. Disruption of genetic pathways regulating individual subsets of cardiac progenitors likely underlies many forms of human cardiac malformations. Hand2 is a member of the basic helix loop helix (bHLH) family of transcription factors and is expressed in numerous cell lineages that contribute to the developing heart. However, the early embryonic lethality of Hand2-null mice has precluded lineage-specific study of its function in myocardial progenitors. Here, we generated and used a floxed allele of Hand2 to ablate its expression in specific cardiac cell populations at defined developmental points. We found that Hand2 expression within the mesoderm-derived second heart field progenitors was required for their survival and deletion in this domain recapitulated the complete Hand2-null phenotype. Loss of Hand2 at later stages of development and in restricted domains of the second heart field revealed a spectrum of cardiac anomalies resembling forms of human congenital heart disease. Molecular analyses of Hand2 mutant cells revealed several genes by which Hand2 may influence expansion of the cardiac progenitors. These findings demonstrate that Hand2 is essential for survival of second heart field progenitors and that the graded loss of Hand2 function in this cardiac progenitor pool can cause a spectrum of congenital heart malformation.
Collapse
Affiliation(s)
- Takatoshi Tsuchihashi
- Gladstone Institute of Cardiovascular Disease, University of California San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Torgersen JS, Takle H, Andersen Ø. Differential spatial expression of mef2 paralogs during cardiac development in Atlantic cod (Gadus morhua). Comp Biochem Physiol B Biochem Mol Biol 2010; 158:181-7. [PMID: 21109015 DOI: 10.1016/j.cbpb.2010.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 11/25/2022]
Abstract
The myogenic enhancer factor 2 (Mef2) transcription factors are known for their role in the control of cardiac development. Here we describe the spatial and temporal expression patterns of five Atlantic cod mef2 genes designated as mef2a, mef2cI, mef2cII, mef2dI and mef2dII during cardiogenesis. Whole mount in situ hybridization showed that mef2a and mef2dI were expressed in both cardiac ring and cone prior to looping morphogenesis, while mef2dII expression was only detectable in the cardiac ring. The mef2cI and mef2cII paralogs displayed different spatial expression patterns in the heart tube with a venous and arterial pole preference, respectively. After the cardiac loop formation mef2cI was expressed in cells of the ventricle and lateral arteries, while mef2cII appeared more abundant and was also present in the atrium. Larvae raised at constant 8 °C showed malformed morphology of the lateral arteries, and the transcription of both mef2c variants was highly elevated compared to those kept at 4 °C. Acute temperature stress also resulted in deviations in the expression of the mef2c paralogs, and the treated embryos displayed defects in the developing heart, including impaired fusion of the bilateral primordia and truncated heart tubes.
Collapse
|
182
|
Abstract
The past few years have witnessed remarkable advances in stem cell biology and human genetics, and we have arrived at an era in which patient-specific cell and tissue models are now practical. The recent identification of cardiovascular progenitor cells, as well as the identification of genetic variants underlying congenital heart disorders and adult disease, opens the door to the development of human models of human cardiovascular disease. We review the current understanding of the contribution of progenitor cells to cardiogenesis and outline how pluripotent stem cells can be applied to the modeling of cardiovascular disorders of genetic origin. A key challenge will be to implement these models in an efficient manner to develop a molecular understanding of how genes lead to disease and to screen for genes and drugs that modify the disease process.
Collapse
Affiliation(s)
- Kiran Musunuru
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
183
|
Nakano H, Williams E, Hoshijima M, Sasaki M, Minamisawa S, Chien KR, Nakano A. Cardiac origin of smooth muscle cells in the inflow tract. J Mol Cell Cardiol 2010; 50:337-45. [PMID: 20974149 DOI: 10.1016/j.yjmcc.2010.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/14/2010] [Accepted: 10/12/2010] [Indexed: 11/26/2022]
Abstract
Multipotent Isl1(+) heart progenitors give rise to three major cardiovascular cell types: cardiac, smooth muscle, and endothelial cells, and play a pivotal role in lineage diversification during cardiogenesis. A critical question is pinpointing when this cardiac-vascular lineage decision is made, and how this plasticity serves to coordinate cardiac chamber and vessel growth. The posterior domain of the Isl1-positive second heart field contributes to the SLN-positive atrial myocardium and myocardial sleeves in the cardiac inflow tract, where myocardial and vascular smooth muscle layers form anatomical and functional continuity. Herein, using a new atrial specific SLN-Cre knockin mouse line, we report that bipotent Isl1(+)/SLN(+) transient cell population contributes to cardiac as well as smooth muscle cells at the heart-vessel junction in cardiac inflow tract. The Isl1(+)/SLN(+) cells are capable of giving rise to cardiac and smooth muscle cells until late gestational stages. These data suggest that the cardiac and smooth muscle cells in the cardiac inflow tract share a common developmental origin. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
184
|
Kang X, Qi Y, Zuo Y, Wang Q, Zou Y, Schwartz RJ, Cheng J, Yeh ETH. SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. Mol Cell 2010; 38:191-201. [PMID: 20417598 DOI: 10.1016/j.molcel.2010.03.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 01/20/2010] [Accepted: 03/03/2010] [Indexed: 12/23/2022]
Abstract
SUMO-specific protease 2 (SENP2) has a broad de-SUMOylation activity in vitro. However, the biological function of SENP2 is largely unknown. Here, we show that deletion of SENP2 gene in mouse causes defects in the embryonic heart and reduces the expression of Gata4 and Gata6, which are essential for cardiac development. SENP2 regulates transcription of Gata4 and Gata6 mainly through alteration of occupancy of Pc2/CBX4, a polycomb repressive complex 1 (PRC1) subunit, on its promoters. We demonstrate that Pc2/CBX4 is a target of SENP2 in vivo and that SUMOylation is essential for Pc2/CBX4-mediated PRC1 recruitment to methylated histone 3 at K27 (H3K27me3). In SENP2 null embryos, SUMOylated Pc2/CBX4 accumulates and Pc2/CBX4 occupancy on the promoters of PcG target genes is markedly increased, leading to repression of Gata4 and Gata6 transcription. Our results reveal a critical role for de-SUMOylation in the regulation of PcG target gene expression.
Collapse
Affiliation(s)
- Xunlei Kang
- The Department of Biochemistry and Molecular & Cell Biology, The Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Antonella Cecchetto, Alessandra Rampazzo, Annalisa Angelini,. From molecular mechanisms of cardiac development to genetic substrate of congenital heart diseases. Future Cardiol 2010; 6:373-93. [DOI: 10.2217/fca.10.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease is one of the most important chapters in medicine because its incidence is increasing and nowadays it is close to 1.2%. Most congenital heart disorders are the result of defects during embryogenesis, which implies that they are due to alterations in genes involved in cardiac development. This review summarizes current knowledge regarding the molecular mechanisms involved in cardiac development in order to clarify the genetic basis of congenital heart disease.
Collapse
|
186
|
Watanabe Y, Buckingham M. The formation of the embryonic mouse heart: heart fields and myocardial cell lineages. Ann N Y Acad Sci 2010; 1188:15-24. [PMID: 20201881 DOI: 10.1111/j.1749-6632.2009.05078.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During cardiogenesis in the mouse, the second heart field (SHF) is the source of the myocardium of the outflow tract and it contributes to other regions of the heart with the exception of the primitive left ventricle. This contribution corresponds with that of the second myocardial cell lineage, identified by retrospective clonal analysis. Gene regulatory networks, signaling pathways, and heterogeneity within the SHF are discussed, together with the question of regulation of myocardial progenitor cells within the first heart field. The extension of the SHF into the mesodermal core of the arches also gives rise to endothelial cells of the pharyngeal arch arteries. Knowledge about the origin and genetic regulation of cells that contribute to the heart and associated vasculature is important for the diagnosis and treatment of congenital heart malformations.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Department of Developmental Biology, Pasteur Institute, Paris, France
| | | |
Collapse
|
187
|
Li P, Pashmforoush M, Sucov HM. Retinoic acid regulates differentiation of the secondary heart field and TGFbeta-mediated outflow tract septation. Dev Cell 2010; 18:480-5. [PMID: 20230754 DOI: 10.1016/j.devcel.2009.12.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 12/10/2009] [Accepted: 12/28/2009] [Indexed: 10/19/2022]
Abstract
In many experimental models and clinical examples, defects in the differentiation of the second heart field (SHF) and heart outflow tract septation defects are combined, although the mechanistic basis for this relationship has been unclear. We found that as the initial SHF population incorporates into the outflow tract, it is replenished from the surrounding progenitor territory. In retinoic acid (RA) receptor mutant mice, this latter process fails, and the outflow tract is shortened and misaligned as a result. As an additional consequence, the outflow tract is misspecified along its proximal-distal axis, which results in ectopic expression of TGFbeta2 and ectopic mesenchymal transformation of the endocardium. Reduction of TGFbeta2 gene dosage in the RA receptor-deficient background restores septation but does not rescue alignment defects, indicating that excess TGFbeta causes septation defects. This may be a common pathogenic pathway when second heart field and septation defects are coupled.
Collapse
Affiliation(s)
- Peng Li
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
188
|
Song L, Li Y, Wang K, Zhou CJ. Cardiac neural crest and outflow tract defects in Lrp6 mutant mice. Dev Dyn 2010; 239:200-10. [PMID: 19705442 DOI: 10.1002/dvdy.22079] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of a key Wnt coreceptor Lrp6 during heart development remains unclear. Here we show that ablation of Lrp6 in mice causes conotruncal anomalies including double-outlet right ventricle (DORV), outflow tract (OFT) cushion hypoplasia, and ventricular septal defect (VSD). Cardiac neural crest cells are specifically lost in the dorsal neural tube and caudal pharyngeal arches of the mutant embryos. We also demonstrate that Lrp6 is required for proliferation and survival of cardiac progenitors and for the expression of Isl1 in the secondary heart field. Other known cardiogenic regulators such as Msx1, Msx2, and Fgf8 are also significantly diminished in the mutant pharyngeal arches and/or OFT. Unexpectedly, the myocardium differentiation factors Mef2c and Myocardin are upregulated in the mutant OFT. Our results indicate that Lrp6 is essential for cardiac neural crest and OFT development upstream of multiple important cardiogenic genes in different cardiac lineage cells during early cardiogenesis.
Collapse
Affiliation(s)
- Lanying Song
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Sacramento, California, USA
| | | | | | | |
Collapse
|
189
|
Guzmán LV, Mayoral PV, Valencia JP, Pine SS, Gómez CS. Developmental pattern of the right atrioventricular septal valve leaflet and tendinous cords. Anat Rec (Hoboken) 2010; 293:55-61. [PMID: 19899118 DOI: 10.1002/ar.21023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
No consensus exists regarding the precise contribution of myocardium and the atrioventricular (AV) cushion mesenchyme to the development of leaflets, tendinous cords (TCs) and papillary muscles. Furthermore, the origin and fate of the myocardium embedded in the immature mesenchyme of the AV cushions at the beginning of AV valvulogenesis is controversial. Some authors have suggested that these cells result from a mesenchyme-to-myocardium transformation. In contrast, other researchers have concluded that they are derived from the myocardial ventricular wall and the interventricular septum (IVS). On the other hand, it has been assumed that the AV mural and septal leaflets have the same pattern of development. However the supporting structures of the two types of leaflets are anatomically different, which could reflect some differences in the pattern of development. We have therefore investigated the morphogenetic processes involved in sculpting and maturation of the right septal leaflet (RSL) and TCs in embryonic and post-hatching chicken hearts. The origin and fate of the myocardium embedded in the immature cushion mesenchyme at the beginning of RSL morphogenesis was also studied. For this purpose, scanning electron microscopic analysis, histological studies and immunohistochemical detection of Nkx2.5 and MEF2C were performed. Our findings indicate that the RSL and TCs present a distinct morphogenetic pattern from that of the mural leaflets. Our results also provide evidence that myocardial recruitment from the IVS, but not mesenchyme-to-myocardium transformation, participates in the development of the muscular region of the TCs adjacent to the IVS.
Collapse
Affiliation(s)
- Laura Villavicencio Guzmán
- Lab. de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil De México Federico Gómez, Col. Doctores, Del. Cuauhtémoc, C.P. 06720, México, D. F
| | | | | | | | | |
Collapse
|
190
|
Holler KL, Hendershot TJ, Troy SE, Vincentz JW, Firulli AB, Howard MJ. Targeted deletion of Hand2 in cardiac neural crest-derived cells influences cardiac gene expression and outflow tract development. Dev Biol 2010; 341:291-304. [PMID: 20144608 DOI: 10.1016/j.ydbio.2010.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 11/29/2022]
Abstract
The basic helix-loop-helix DNA binding protein Hand2 has critical functions in cardiac development both in neural crest-derived and mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest has allowed us to genetically dissect Hand2-dependent defects specifically in outflow tract and cardiac cushion independent of Hand2 functions in mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest results in misalignment of the aortic arch arteries and outflow tract, contributing to development of double outlet right ventricle (DORV) and ventricular septal defects (VSD). These neural crest-derived developmental anomalies are associated with altered expression of Hand2-target genes we have identified by gene profiling. A number of Hand2 direct target genes have been identified using ChIP and ChIP-on-chip analyses. We have identified and validated a number of genes related to cell migration, proliferation/cell cycle and intracellular signaling whose expression is affected by Hand2 deletion in the neural crest and which are associated with development of VSD and DORV. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting expression of target genes associated with a number of functional interactions in neural crest-derived cells required for proper patterning of the outflow tract, generation of the appropriate number of neural crest-derived cells for elongation of the conotruncus and cardiac cushion organization. Our genetic model has made it possible to investigate the molecular genetics of neural crest contributions to outflow tract morphogenesis and cell differentiation.
Collapse
Affiliation(s)
- Kristen L Holler
- Department of Neurosciences and Program in Neurosciences and Degenerative Disease, Health Sciences Campus, University of Toledo, 3000 Arlington Ave., Toledo, OH 43614-1007, USA
| | | | | | | | | | | |
Collapse
|
191
|
Rojas A, Schachterle W, Xu SM, Black BL. An endoderm-specific transcriptional enhancer from the mouse Gata4 gene requires GATA and homeodomain protein-binding sites for function in vivo. Dev Dyn 2010; 238:2588-98. [PMID: 19777593 DOI: 10.1002/dvdy.22091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Several transcription factors function in the specification and differentiation of the endoderm, including the zinc finger transcription factor GATA4. Despite its essential role in endoderm development, the transcriptional control of the Gata4 gene in the developing endoderm and its derivatives remains incompletely understood. Here, we identify a distal enhancer from the Gata4 gene, which directs expression exclusively to the visceral and definitive endoderm of transgenic mouse embryos. The activity of this enhancer is initially broad within the definitive endoderm but later restricts to developing endoderm-derived tissues, including pancreas, glandular stomach, and duodenum. The activity of this enhancer in vivo is dependent on evolutionarily-conserved HOX- and GATA-binding sites, which are bound by PDX-1 and GATA4, respectively. These studies establish Gata4 as a direct transcriptional target of homeodomain and GATA transcription factors in the endoderm and support a model in which GATA4 functions in the transcriptional network for pancreas formation.
Collapse
Affiliation(s)
- Anabel Rojas
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | | | | | | |
Collapse
|
192
|
|
193
|
|
194
|
Di Felice V, Ardizzone NM, De Luca A, Marcianò V, Marino Gammazza A, Macaluso F, Manente L, Cappello F, De Luca A, Zummo G. OPLA scaffold, collagen I, and horse serum induce an higher degree of myogenic differentiation of adult rat cardiac stem cells. J Cell Physiol 2009; 221:729-39. [PMID: 19725057 DOI: 10.1002/jcp.21912] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the last few years, a major goal of cardiac research has been to drive stem cell differentiation to replace damaged myocardium. Several research groups have attempted to differentiate potential cardiac stem cells (CSCs) using bi- or three-dimensional systems supplemented with growth factors or molecules acting as differentiating substances. We hypothesize that these systems failed to induce a complete differentiation because they lacked an architectural space. In the present study, we isolated a pool of small proliferating and fibroblast-like cells from adult rat myocardium. The phenotype of these cells was assessed and the characterized cells were cultured in a collagen I/OPLA scaffold with horse serum to obtain fine myocardial differentiation. C-Kit(POS)/Sca-1(POS) CSCs fully differentiated in vitro when an environment more similar to the CSC niche was created. These experiments demonstrated an important model for the study of the biology of CSCs and the biochemical pathways that lead to myocardial differentiation. The results pave the way for a new surgical approach.
Collapse
Affiliation(s)
- Valentina Di Felice
- Department of Experimental Medicine, Human Anatomy Section, University of Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Muñoz-Chápuli R, Pérez-Pomares JM. Cardiogenesis: an embryological perspective. J Cardiovasc Transl Res 2009; 3:37-48. [PMID: 20560033 DOI: 10.1007/s12265-009-9146-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/19/2009] [Indexed: 12/12/2022]
Abstract
Cardiogenesis, considered as the formation of new heart tissue from embryonic, postnatal, or adult cardiac progenitors, is a pivotal concept to understand the rationale of advanced therapies to repair the damaged heart. In this review, we focus on the cellular and molecular regulation of cardiogenesis in the developing embryo, and we dissect the complex interactions that control the diversification and maturation of a variety of cardiac cell lineages. Our aim is to show how the sophisticated anatomical structure of the adult four-chambered heart strongly depends on the fine regulation of the differentiation of cardiac progenitor cells. These events are shown to be progressive and dynamic as well as plastic, so that the patterned differentiation of distinct heart domains is highly dependent on signals provided by nonmyocardial heart components and extracardiac tissues. Finally, we present the core of our knowledge on cardiac embryogenesis in a biomedical context to provide a critical analysis on the logic of cell therapies designed to treat the failing heart.
Collapse
Affiliation(s)
- Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Málaga, 29071 Málaga, Spain
| | | |
Collapse
|
196
|
Domian IJ, Chiravuri M, van der Meer P, Feinberg AW, Shi X, Shao Y, Wu SM, Parker KK, Chien KR. Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 2009; 326:426-9. [PMID: 19833966 DOI: 10.1126/science.1177350] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mammalian heart is formed from distinct sets of first and second heart field (FHF and SHF, respectively) progenitors. Although multipotent progenitors have previously been shown to give rise to cardiomyocytes, smooth muscle, and endothelial cells, the mechanism governing the generation of large numbers of differentiated progeny remains poorly understood. We have employed a two-colored fluorescent reporter system to isolate FHF and SHF progenitors from developing mouse embryos and embryonic stem cells. Genome-wide profiling of coding and noncoding transcripts revealed distinct molecular signatures of these progenitor populations. We further identify a committed ventricular progenitor cell in the Islet 1 lineage that is capable of limited in vitro expansion, differentiation, and assembly into functional ventricular muscle tissue, representing a combination of tissue engineering and stem cell biology.
Collapse
Affiliation(s)
- Ibrahim J Domian
- Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza, CPZN 3200, 185 Cambridge Street, Boston, MA 02114-2790, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Kappen C, Salbaum JM. Identification of regulatory elements in the Isl1 gene locus. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:935-46. [PMID: 19598113 DOI: 10.1387/ijdb.082819ck] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Isl1 is a LIM/homeodomain transcription factor with critical roles for the development of the heart, the nervous system and the pancreas. Both deficiency and mis-expression of Isl1 cause profound developmental defects, demonstrating the importance of proper regulation of Isl1 gene expression during development. In order to understand the mechanisms that control Isl1 expression during embryogenesis and in tissue differentiation, we initiated a screen for gene regulatory elements in the Isl1 locus using a novel dual reporter gene vector that allows screens of large genomic regions through reporter gene assays in vitro and in vivo. We identified regions from the Isl1 gene locus that confer transcriptional activity in pancreatic cell lines in vitro. Using transgenic mice, we furthermore discovered an enhancer with in vivo specificity for the developing heart, as well as visceral and posterior mesoderm. Our findings further suggest that Foxo1 as well as Gata4 contribute to the activity of this enhancer in the developing embryo. We conclude that Isl1 gene expression is controlled in modular fashion by several elements with distinct functionality. Embryonic Isl1 expression in several tissues of mesodermal origin is driven by a specific enhancer that is located 3-6kb downstream of the gene.
Collapse
Affiliation(s)
- Claudia Kappen
- Pennington Biomedical Research Center, Baton Rouge, LA 71010, USA.
| | | |
Collapse
|
198
|
Corbin M, de Reyniès A, Rickman DS, Berrebi D, Boccon-Gibod L, Cohen-Gogo S, Fabre M, Jaubert F, Faussillon M, Yilmaz F, Sarnacki S, Landman-Parker J, Patte C, Schleiermacher G, Antignac C, Jeanpierre C. WNT/β-catenin pathway activation in Wilms tumors: A unifying mechanism with multiple entries? Genes Chromosomes Cancer 2009; 48:816-27. [DOI: 10.1002/gcc.20686] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
199
|
Gessert S, Kühl M. Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis. Dev Biol 2009; 334:395-408. [PMID: 19660447 DOI: 10.1016/j.ydbio.2009.07.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 07/17/2009] [Accepted: 07/28/2009] [Indexed: 11/24/2022]
Abstract
Retrospective clonal analysis in mice suggested that the vertebrate heart develops from two sources of cells called first and second lineages, respectively. Cells of the first lineage enter the linear heart tube and initiate terminal differentiation earlier than cells of the second lineage. It is thought that both heart lineages arise from a common progenitor cell population prior to the cardiac crescent stage (E7.5 of mouse development). The timing of segregation of different lineages as well as the molecular mechanisms underlying this process is not yet known. Furthermore, gene expression data for those lineages are very limited. Here we provide the first comparative study of cardiac marker gene expression during Xenopus laevis embryogenesis complemented by single cell RT-PCR analysis. In addition we provide fate mapping data of cardiac progenitor cells at different stages of development. Our analysis indicates an early segregation of cardiac lineages and a fairly complex heterogeneity of gene expression in the cardiac progenitor cells. Furthermore, this study sets a reference for all further studies analyzing cardiac development in X. laevis.
Collapse
Affiliation(s)
- Susanne Gessert
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | |
Collapse
|
200
|
A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nat Cell Biol 2009; 11:951-7. [PMID: 19620969 PMCID: PMC2748816 DOI: 10.1038/ncb1906] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/20/2009] [Indexed: 01/05/2023]
Abstract
Regulation of multipotent cardiac progenitor cell (CPC) expansion and subsequent differentiation into cardiomyocytes, smooth muscle or endothelial cells is a fundamental aspect of basic cardiovascular biology and cardiac regenerative medicine. However, the mechanisms governing these decisions remain unclear. Here, we show that Wnt/beta-catenin signalling, which promotes expansion of CPCs, is negatively regulated by Notch1-mediated control of phosphorylated beta-catenin accumulation within CPCs, and that Notch1 activity in CPCs is required for their differentiation. Notch1 positively, and beta-catenin negatively, regulated expression of the cardiac transcription factors, Isl1, Myocd and Smyd1. Surprisingly, disruption of Isl1, normally expressed transiently in CPCs before their differentiation, resulted in expansion of CPCs in vivo and in an embryonic stem (ES) cell system. Furthermore, Isl1 was required for CPC differentiation into cardiomyocyte and smooth muscle cells, but not endothelial cells. These findings reveal a regulatory network controlling CPC expansion and cell fate that involves unanticipated functions of beta-catenin, Notch1 and Isl1 that may be leveraged for regenerative approaches involving CPCs.
Collapse
|