151
|
Mason DA, Shulga N, Undavai S, Ferrando-May E, Rexach MF, Goldfarb DS. Increased nuclear envelope permeability and Pep4p-dependent degradation of nucleoporins during hydrogen peroxide-induced cell death. FEMS Yeast Res 2005; 5:1237-51. [PMID: 16183335 DOI: 10.1016/j.femsyr.2005.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 07/15/2005] [Accepted: 07/25/2005] [Indexed: 10/25/2022] Open
Abstract
The death of yeast treated with hydrogen peroxide (H(2)O(2)) shares a number of morphological and biochemical features with mammalian apoptosis. In this study, we report that the permeability of yeast nuclear envelopes (NE) increased during H(2)O(2)-induced cell death. Similar phenomena have been observed during apoptosis in mammalian tissue culture cells. Increased NE permeability in yeast was temporally correlated with an increase in the production of reactive-oxygen species (ROS). Later, after ROS levels began to decline and viability was lost, specific nuclear pore complex (NPC) proteins (nucleoporins) were degraded. Although caspases are responsible for the degradation of mammalian nucleoporins during apoptosis, the deletion of the metacaspase gene YCA1 had no effect on the stability of yeast nucleoporins. Instead, Pep4p, a vacuolar cathepsin D homolog, was responsible for the proteolysis of nucleoporins. Coincident with nucleoporin degradation, a Pep4p-EGFP reporter migrated out of the vacuole in H(2)O(2)-treated cells. We conclude that increases in ROS and NPC permeability occur relatively early during H(2)O(2)-induced cell death. Later, Pep4p migrates out of vacuoles and degrades nucleoporins after the cells are effectively dead.
Collapse
Affiliation(s)
- D Adam Mason
- Department of Biology, University of Rochester, NY 14627, USA
| | | | | | | | | | | |
Collapse
|
152
|
Low CP, Liew LP, Pervaiz S, Yang H. Apoptosis and lipoapoptosis in the fission yeast Schizosaccharomyces pombe. FEMS Yeast Res 2005; 5:1199-206. [PMID: 16137929 DOI: 10.1016/j.femsyr.2005.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/05/2005] [Accepted: 07/20/2005] [Indexed: 11/29/2022] Open
Abstract
Yeasts being simple eukaryotes are established genetic systems that are often employed to solve important biological questions. Recently, it has become evident that certain cell death programs exist in these unicellular organisms. For example, it has been shown recently that strains of the fission yeast Schizosaccharomyces pombe deficient in triacylglycerol synthesis undergo cell death with prominent apoptotic markers. This minireview is intended to discuss key developments that have rendered fission yeast useful both as a tool and as a model for apoptosis and lipoapoptosis research. It is attempted to delineate a putative signaling pathway leading to the execution of lipoapoptosis in the fission yeast. Although in its infancy, apoptosis research in the fission yeast promises exciting breakthroughs in the near future.
Collapse
Affiliation(s)
- Choon Pei Low
- Department of Biochemistry, National University of Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
153
|
Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. ACTA ACUST UNITED AC 2005; 168:257-69. [PMID: 15657396 PMCID: PMC2171581 DOI: 10.1083/jcb.200408145] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although programmed cell death (PCD) is extensively studied in multicellular organisms, in recent years it has been shown that a unicellular organism, yeast Saccharomyces cerevisiae, also possesses death program(s). In particular, we have found that a high doses of yeast pheromone is a natural stimulus inducing PCD. Here, we show that the death cascades triggered by pheromone and by a drug amiodarone are very similar. We focused on the role of mitochondria during the pheromone/amiodarone-induced PCD. For the first time, a functional chain of the mitochondria-related events required for a particular case of yeast PCD has been revealed: an enhancement of mitochondrial respiration and of its energy coupling, a strong increase of mitochondrial membrane potential, both events triggered by the rise of cytoplasmic [Ca2+], a burst in generation of reactive oxygen species in center o of the respiratory chain complex III, mitochondrial thread-grain transition, and cytochrome c release from mitochondria. A novel mitochondrial protein required for thread-grain transition is identified.
Collapse
|
154
|
Abstract
Yeasts as eukaryotic microorganisms with simple, well known and tractable genetics, have long been powerful model systems for studying complex biological phenomena such as the cell cycle or vesicle fusion. Until recently, yeast has been assumed as a cellular 'clean room' to study the interactions and the mechanisms of action of mammalian apoptotic regulators. However, the finding of an endogenous programmed cell death (PCD) process in yeast with an apoptotic phenotype has turned yeast into an 'unclean' but even more powerful model for apoptosis research. Yeast cells appear to possess an endogenous apoptotic machinery including its own regulators and pathway(s). Such machinery may not exactly recapitulate that of mammalian systems but it represents a simple and valuable model which will assist in the future understanding of the complex connections between apoptotic and non-apoptotic mammalian PCD pathways. Following this line of thought and in order to validate and make the most of this promising cell death model, researchers must undoubtedly address the following issues: what are the crucial yeast PCD regulators? How do they play together? What are the cell death pathways shared by yeast and mammalian PCD? Solving these questions is currently the most pressing challenge for yeast cell death researchers.
Collapse
Affiliation(s)
- P Ludovico
- Life and Health Research Institute, Health Sciences School, Minho University, Campus de Gualtar, Braga, Portugal.
| | | | | |
Collapse
|
155
|
Klassen R, Meinhardt F. Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin. Cell Microbiol 2005; 7:393-401. [PMID: 15679842 DOI: 10.1111/j.1462-5822.2004.00469.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces lactis zymocin, such toxin was recently shown to bind to the target cell's chitin and probably acts by facilitating the import of a toxin subunit. However, as distinct from zymocin, which arrests cells in G1, it provokes S-phase arrest and concomitant DNA damage checkpoint activation. Here, we report that such novel toxin type causes cell death in a two-step process. Within 4 h in toxin, viability of cells is immediately reduced to approximately 30%. Elevated mutation rates at the CAN1 locus prove DNA damaging mediated by the toxin. Cells arrested artificially in G1 or G2/M are very rapidly affected, while cells arrested in S loose their viability at a slower rate. S-phase arrest is, thus, a response of target cells to cope with DNA damage induced by the toxin. A second decline in viability requiring metabolically active target cells emerges upon toxin exposure over 10 h. During this phase, toxin treated cells develop abnormal nuclear morphology and react positive to terminal deoxynucleotidyl transferase-mediated nick end-labelling (TUNEL), indicative of DNA fragmentation. Furthermore, as judged from staining with fluorescein conjugated annexinV, cells expose phosphatidylserine at the outer membrane face and the formation of reactive oxygen species (ROS) is increased. ROS formation and concomitant cell death was heavily suppressed in a rho- derivative of the tester strain, while immediate reduction of viability was indistinguishable from the wild type. As a strain lacking the cellular target because of defects in the major chitinsynthase (Chs3) did not display such characteristic changes, the chitin binding and DNA-damaging P. acaciae toxin constitutes an apoptosis inducing protein. Both, DNA-damaging and apoptosis induction are unique features of this novel toxin type.
Collapse
Affiliation(s)
- Roland Klassen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, D-48149 Münster, Germany
| | | |
Collapse
|
156
|
Bettiga M, Calzari L, Orlandi I, Alberghina L, Vai M. Involvement of the yeast metacaspase Yca1 in ubp10Delta-programmed cell death. FEMS Yeast Res 2005; 5:141-7. [PMID: 15489197 DOI: 10.1016/j.femsyr.2004.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 07/14/2004] [Accepted: 07/16/2004] [Indexed: 11/23/2022] Open
Abstract
UBP10 encodes a deubiquitinating enzyme of Saccharomyces cerevisiae. Its inactivation results in a complex phenotype characterized by a subpopulation of cells that exhibits the typical cellular markers of apoptosis. Here, we show that additional deletion of YCA1, coding for the yeast metacaspase, suppressed the ubp10 disruptant phenotype. Moreover, YCA1 overexpression, without any external stimulus, had a detrimental effect on growth and viability of ubp10 cells accompanied by an increase of apoptotic cells. This response was completely abrogated by ascorbic acid addition. We also observed that cells lacking UBP10 had an endogenous caspase activity, revealed by incubation in vivo with FITC-labeled VAD-fmk. All these results argue in favour of an involvement of the yeast metacaspase in the active cell death triggered by loss of UBP10 function.
Collapse
Affiliation(s)
- Maurizio Bettiga
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | |
Collapse
|
157
|
Watanabe N, Lam E. Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 2005; 280:14691-9. [PMID: 15691845 DOI: 10.1074/jbc.m413527200] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Metacaspases in plants, fungi, and protozoa constitute new members of a conserved superfamily of caspase-related proteases. A yeast caspase-1 protein (Yca1p), which is the single metacaspase in Saccharomyces cerevisiae, was shown to mediate apoptosis triggered by oxidative stress or aging in yeast. To examine whether plant metacaspase genes are functionally related to YCA1, we carried out analyses of AtMCP1b and AtMCP2b, representing the two subtypes of the Arabidopsis metacaspase family, utilizing yeast strains with wild-type and the disrupted YCA1 gene (yca1Delta). Inducible expression of AtMCP1b and AtMCP2b significantly promoted yeast apoptosis-like cell death of both the wild-type and yca1Delta strains, relative to the vector controls, during oxidative stress and early aging process. Mutational analysis of the two AtMCPs revealed that their cell-death-inducing activities depend on their catalytic center cysteine residues as well as caspase-like processing. In addition, the phenotype induced by the expression of two AtMCPs was effectively prevented when the cells were pretreated with a broad-spectrum caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl-ketone. These results suggest that the two subtypes of Arabidopsis metacaspases are functionally related to Yca1p with caspase-like characteristics. However, we found that bacterial and yeast extracts containing AtMCP1b, AtMCP2b, or Yca1p exhibit arginine/lysine-specific endopeptidase activities but cannot cleave caspase-specific substrates. Together, the results strongly implicate that expression of metacaspases could result in the activation of downstream protease(s) with caspase-like activities that are required to mediate cell death activation via oxidative stress in yeast. Metacaspases from higher plants may serve similar functions.
Collapse
Affiliation(s)
- Naohide Watanabe
- Biotechnology Center for Agriculture and the Environment, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901-8520, USA
| | | |
Collapse
|
158
|
Abstract
Apoptosis is a highly regulated cellular suicide program crucial for metazoan development. However, dysfunction of apoptosis also leads to several diseases. Yeast undergoes apoptosis after application of acetic acid, sugar- or salt-stress, plant antifungal peptides, or hydrogen peroxide. Oxygen radicals seem to be key elements of apoptotic execution, conserved during evolution. Furthermore, several yeast orthologues of central metazoan apoptotic regulators have been identified, such as a caspase and a caspase-regulating serine protease. In addition, physiological occurrence of cell death has been detected during aging and mating in yeast. The finding of apoptosis in yeast, other fungi and parasites is not only of great medical relevance but will also help to understand some of the still unknown molecular mechanisms at the core of apoptotic execution.
Collapse
Affiliation(s)
- Frank Madeo
- IMB, Karl-Franzens University, Universitätsplatz 2, A-8010 Graz, Austria; Department of Physiological Chemistry, University of Tübingen, Hoppe-Seyler-Str. 4, D-72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
159
|
Reiter J, Herker E, Madeo F, Schmitt MJ. Viral killer toxins induce caspase-mediated apoptosis in yeast. ACTA ACUST UNITED AC 2005; 168:353-8. [PMID: 15668299 PMCID: PMC2171720 DOI: 10.1083/jcb.200408071] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In yeast, apoptotic cell death can be triggered by various factors such as H2O2, cell aging, or acetic acid. Yeast caspase (Yca1p) and cellular reactive oxygen species (ROS) are key regulators of this process. Here, we show that moderate doses of three virally encoded killer toxins (K1, K28, and zygocin) induce an apoptotic yeast cell response, although all three toxins differ significantly in their primary killing mechanisms. In contrast, high toxin concentrations prevent the occurrence of an apoptotic cell response and rather cause necrotic, toxin-specific cell killing. Studies with Δyca1 and Δgsh1 deletion mutants indicate that ROS accumulation as well as the presence of yeast caspase 1 is needed for apoptosis in toxin-treated yeast cells. We conclude that in the natural environment of toxin-secreting killer yeasts, where toxin concentration is usually low, induction of apoptosis might play an important role in efficient toxin-mediated cell killing.
Collapse
Affiliation(s)
- Jochen Reiter
- Applied Molecular Biology, University of the Saarland, D-66041 Saarbrücken, Germany
| | | | | | | |
Collapse
|
160
|
Abdel-Sater F, El Bakkoury M, Urrestarazu A, Vissers S, André B. Amino acid signaling in yeast: casein kinase I and the Ssy5 endoprotease are key determinants of endoproteolytic activation of the membrane-bound Stp1 transcription factor. Mol Cell Biol 2004; 24:9771-85. [PMID: 15509782 PMCID: PMC525479 DOI: 10.1128/mcb.24.22.9771-9785.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae cells possess a plasma membrane sensor able to detect the presence of extracellular amino acids and then to activate a signaling pathway leading to transcriptional induction of multiple genes, e.g., AGP1, encoding an amino acid permease. This sensing function requires the permease-like Ssy1 and associated Ptr3 and Ssy5 proteins, all essential to activation, by endoproteolytic processing, of the membrane-bound Stp1 transcription factor. The SCF(Grr1) ubiquitin-ligase complex is also essential to AGP1 induction, but its exact role in the amino acid signaling pathway remains unclear. Here we show that Stp1 undergoes casein kinase I-dependent phosphorylation. In the yck mutant lacking this kinase, Stp1 is not cleaved and AGP1 is not induced in response to amino acids. Furthermore, we provide evidence that Ssy5 is the endoprotease responsible for Stp1 processing. Ssy5 is significantly similar to serine proteases, its self-processing is a prerequisite for Stp1 cleavage, and its overexpression causes inducer-independent Stp1 cleavage and high-level AGP1 transcription. We further show that Stp1 processing also requires the SCF(Grr1) complex but is insensitive to proteasome inhibition. However, Stp1 processing does not require SCF(Grr1), Ssy1, or Ptr3 when Ssy5 is overproduced. Finally, we describe the properties of a particular ptr3 mutant that suggest that Ptr3 acts with Ssy1 in amino acid detection and signal initiation. We propose that Ssy1 and Ptr3 form the core components of the amino acid sensor. Upon detection of external amino acids, Ssy1-Ptr3 likely allows-in a manner dependent on SCF(Grr1)-the Ssy5 endoprotease to gain access to and to cleave Stp1, this requiring prior phosphorylation of Stp1 by casein kinase I.
Collapse
Affiliation(s)
- Fadi Abdel-Sater
- Laboratoire de Physiologie Moléculaire de la Cellule, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | | | | | |
Collapse
|
161
|
Davenport RJ. Culture clash.A growing body of research suggests that yeast have programmed death pathways, yet many researchers are skeptical. Recent studies provide some of the first experimental evidence for why a single-celled organism would commit suicide. SCIENCE OF AGING KNOWLEDGE ENVIRONMENT : SAGE KE 2004; 2004:ns9. [PMID: 15548769 DOI: 10.1126/sageke.2004.46.ns9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Some dying yeast display signs of apoptosis, a cell-suicide process. The idea has sparked controversy partly because single-celled organisms wouldn't seem to benefit from this inclination. Work over the past year has bolstered the notion that yeast kill themselves and provided experimental evidence for how the capacity might aid yeast populations.
Collapse
|
162
|
Wissing S, Ludovico P, Herker E, Büttner S, Engelhardt SM, Decker T, Link A, Proksch A, Rodrigues F, Corte-Real M, Fröhlich KU, Manns J, Candé C, Sigrist SJ, Kroemer G, Madeo F. An AIF orthologue regulates apoptosis in yeast. J Cell Biol 2004; 166:969-74. [PMID: 15381687 PMCID: PMC2172025 DOI: 10.1083/jcb.200404138] [Citation(s) in RCA: 319] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 08/11/2004] [Indexed: 11/22/2022] Open
Abstract
Apoptosis-inducing factor (AIF), a key regulator of cell death, is essential for normal mammalian development and participates in pathological apoptosis. The proapoptotic nature of AIF and its mode of action are controversial. Here, we show that the yeast AIF homologue Ynr074cp controls yeast apoptosis. Similar to mammalian AIF, Ynr074cp is located in mitochondria and translocates to the nucleus of yeast cells in response to apoptotic stimuli. Purified Ynr074cp degrades yeast nuclei and plasmid DNA. YNR074C disruption rescues yeast cells from oxygen stress and delays age-induced apoptosis. Conversely, overexpression of Ynr074cp strongly stimulates apoptotic cell death induced by hydrogen peroxide and this effect is attenuated by disruption of cyclophilin A or the yeast caspase YCA1. We conclude that Ynr074cp is a cell death effector in yeast and rename it AIF-1 (Aif1p, gene AIF1).
Collapse
Affiliation(s)
- Silke Wissing
- Institute for Physiological Chemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, Tuebingen 72076, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Abstract
Genome stability is of primary importance for the survival and proper functioning of all organisms. Double-strand breaks (DSBs) arise spontaneously during growth, or can be created by external insults. In response to even a single DSB, organisms must trigger a series of events to promote repair of the DNA damage in order to survive and restore chromosomal integrity. In doing so, cells must regulate a fine balance between potentially competing DSB repair pathways. These are generally classified as either homologous recombination (HR) or non-homologous end joining (NHEJ). The yeast Saccharomyces cerevisiae is an ideal model organism for studying these repair processes. Indeed, much of what we know today on the mechanisms of repair in eukaryotes come from studies carried out in budding yeast. Many of the proteins involved in the various repair pathways have been isolated and the details of their mode of action are currently being unraveled at the molecular level. In this review, we focus on exciting new work eminating from yeast research that provides fresh insights into the DSB repair process. This recent work supplements and complements the wealth of classical genetic research that has been performed in yeast systems over the years. Given the conservation of the repair mechanisms and genes throughout evolution, these studies have profound implications for other eukaryotic organisms.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|