151
|
Hosseini V, Dani C, Geranmayeh MH, Mohammadzadeh F, Nazari Soltan Ahmad S, Darabi M. Wnt lipidation: Roles in trafficking, modulation, and function. J Cell Physiol 2018; 234:8040-8054. [PMID: 30341908 DOI: 10.1002/jcp.27570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
The Wnt signaling pathway consists of various downstream target proteins that have substantial roles in mammalian cell proliferation, differentiation, and development. Its aberrant activity can lead to uncontrolled proliferation and tumorigenesis. The posttranslational connection of fatty acyl chains to Wnt proteins provides the unique capacity for regulation of Wnt activity. In spite of the past belief that Wnt molecules are subject to dual acylation, it has been shown that these proteins have only one acylation site and undergo monounsaturated fatty acylation. The Wnt monounsaturated fatty acyl chain is more than just a hydrophobic coating and appears to be critical for Wnt signaling, transport, and receptor activation. Here, we provide an overview of recent findings in Wnt monounsaturated fatty acylation and the mechanism by which this lipid moiety regulates Wnt activity from the site of production to its receptor interactions.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hossein Geranmayeh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Mohammadzadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| |
Collapse
|
152
|
Assembly of protein complexes restricts diffusion of Wnt3a proteins. Commun Biol 2018; 1:165. [PMID: 30320232 PMCID: PMC6179999 DOI: 10.1038/s42003-018-0172-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Members of the Wnt protein family play roles in many aspects of embryogenesis and homeostasis. Despite their biological significance, characteristics of Wnt proteins still remain unclear, mainly due to their insolubility after the removal of serum. Here we examine Wnt proteins in serum-containing media by using analytical ultracentrifugation with a fluorescence detection system. This analysis reveals that Wnt3a assembles into high-molecular-weight complexes that become dissociable by interaction with the extracellular domain of the Frizzled8 receptor or secreted Wnt-binding protein sFRP2. Cross-linking and single-particle analyses of Wnt3a fractionated by gel filtration chromatography show the homo-trimer to be the smallest form of the assembled Wnt3a complexes. Fluorescence correlation spectroscopy and immunohistochemistry reveal that the assembly of Wnt3a complexes restricted their diffusion and signaling range in Xenopus laevis embryos. Thus, we propose that the Wnt diffusion range can be controlled by a balance between the assembly of Wnt complexes and their dissociation. Ritsuko Takada et al. show that Wnt3a assembles into high molecular weight complexes that restrict the diffusion of Wnt within Xenopus embryos. These results suggest that Wnt diffusion in cells is controlled by a balance between higher order complex assembly and dissociation by Wnt-binding proteins.
Collapse
|
153
|
Hogvall M, Budd GE, Janssen R. Gene expression analysis of potential morphogen signalling modifying factors in Panarthropoda. EvoDevo 2018; 9:20. [PMID: 30288252 PMCID: PMC6162966 DOI: 10.1186/s13227-018-0109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/04/2018] [Indexed: 11/28/2022] Open
Abstract
Background Morphogen signalling represents a key mechanism of developmental processes during animal development. Previously, several evolutionary conserved morphogen signalling pathways have been identified, and their players such as the morphogen receptors, morphogen modulating factors (MMFs) and the morphogens themselves have been studied. MMFs are factors that regulate morphogen distribution and activity. The interactions of MMFs with different morphogen signalling pathways such as Wnt signalling, Hedgehog (Hh) signalling and Decapentaplegic (Dpp) signalling are complex because some of the MMFs have been shown to interact with more than one signalling pathway, and depending on genetic context, to have different, biphasic or even opposing function. This complicates the interpretation of expression data and functional data of MMFs and may be one reason why data on MMFs in other arthropods than Drosophila are scarce or totally lacking. Results As a first step to a better understanding of the potential roles of MMFs in arthropod development, we investigate here the embryonic expression patterns of division abnormally delayed (dally), dally-like protein (dlp), shifted (shf) and secreted frizzled-related protein 125 (sFRP125) and sFRP34 in the beetle Tribolium castaneum, the spider Parasteatoda tepidariorum, the millipede Glomeris marginata and the onychophoran Euperipatoides kanangrensis. This pioneer study represents the first comprehensive comparative data set of these genes in panarthropods. Conclusions Expression profiles reveal a high degree of diversity, suggesting that MMFs may represent highly evolvable nodes in otherwise conserved gene regulatory networks. Conserved aspects of MMF expression, however, appear to concern function in segmentation and limb development, two of the key topics of evolutionary developmental research. Electronic supplementary material The online version of this article (10.1186/s13227-018-0109-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mattias Hogvall
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
154
|
Xiao L, Fei Y, Hurley MM. FGF2 crosstalk with Wnt signaling in mediating the anabolic action of PTH on bone formation. Bone Rep 2018; 9:136-144. [PMID: 30258857 PMCID: PMC6152810 DOI: 10.1016/j.bonr.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/30/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
The mechanisms of the anabolic effect of parathyroid hormone (PTH) in bone are not fully defined. The bone anabolic effects of PTH require fibroblast growth factor 2 (FGF2) as well as Wnt signaling and FGF2 modulates Wnt signaling in osteoblasts. In vivo PTH administration differentially modulated Wnt signaling in bones of wild type (WT) and in mice that Fgf2 was knocked out (Fgf2KO). PTH increased Wnt10b mRNA and protein in WT but not in KO mice. Wnt antagonist SOST mRNA and protein was significantly higher in KO group. However, PTH decreased Sost mRNA significantly in WT as well as in Fgf2KO mice, but to a lesser extent in Fgf2KO. Dickhopf 2 (DKK2) is critical for osteoblast mineralization. PTH increased Dkk2 mRNA in WT mice but the response was impaired in Fgf2KO mice. PTH significantly increased Lrp5 mRNA and phosphorylation of Lrp6 in WT but the increase was markedly attenuated in Fgf2KO mice. PTH increased β-catenin expression and Wnt/β-catenin transcriptional activity significantly in WT but not in Fgf2KO mice. These data suggest that the impaired bone anabolic response to PTH in Fgf2KO mice is partially mediated by attenuated Wnt signaling. In vivo PTH administration differentially modulated Wnt signaling in bones of WT and Fgf2KO mice. PTH treatment increased WNT10b and DKK2 expression in WT mice but the increase was blunted in Fgf2KO mice PTH increased Lrp5 mRNA and phosphorylation of Lrp6 in WT but the increase was markedly attenuated in Fgf2KO mice. PTH treatment increased β-catenin protein level and Wnt/β-catenin transcriptional activity in WT but not in Fgf2KO mice The impaired bone anabolic response to PTH in Fgf2KO mice is partially mediated by attenuated Wnt signaling.
Collapse
Affiliation(s)
| | | | - Marja M. Hurley
- Corresponding author at: Department of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA.
| |
Collapse
|
155
|
Dickkopf-1 (Dkk1) protein expression in breast cancer with special reference to bone metastases. Clin Exp Metastasis 2018; 35:763-775. [PMID: 30238177 DOI: 10.1007/s10585-018-9937-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Dysregulation of the Wnt inhibitor dickkopf-1 protein (Dkk1) has been reported in a variety of cancers. In addition, it has been linked to the progression of malignant bone disease by impairing osteoblast activity. This study investigated serum- and tissue levels of Dkk1 in breast cancer patients with- or without bone metastases. Serum Dkk1 levels were measured by ELISA in 89 breast cancer patients and 86 healthy women. Tissue levels of Dkk1 and β-catenin, a major downstream component of Wnt transduction pathway, were tested with immunohistochemical staining in 143 different tissues, including adjacent non-tumoral breast tissues, primary breast tumours, lymph nodes metastases, and bone metastases. Serum levels of Dkk1 were significantly increased in breast cancer patients without metastases compared with healthy controls and even more increased in patients with bone metastases. Tissue expression of Dkk1 was positive in 70% of tested primary breast cancer tissues and demonstrated significant correlation with histological type and PR status. Less frequent expression of Dkk1 was found in lymph nodes metastases and bone metastases compared with adjacent non-tumoral breast tissues and primary breast tumours. Tissue expression of β-catenin was positive in the vast majority of all tested tissue types indicating activated Wnt/β-catenin signalling. Our results suggested that Wnt/β-catenin signalling in breast tumours and their secondary lymph nodes- and bone metastases is dysregulated and this could be related to aberrant Dkk1 expression levels. Hence, Dkk1 protein might provide insights into the continued development of novel comprehensive and therapeutic strategies for breast cancer and its bone metastases.
Collapse
|
156
|
Pashirzad M, Shafiee M, Khazaei M, Fiuji H, Ryzhikov M, Soleimanpour S, Hesari A, Avan A, Hassanian SM. Therapeutic potency of Wnt signaling antagonists in the pathogenesis of prostate cancer, current status and perspectives. J Cell Physiol 2018; 234:1237-1247. [PMID: 30191954 DOI: 10.1002/jcp.27137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 07/09/2018] [Indexed: 12/15/2022]
Abstract
Prostate cancer is a major cause of cancer-related death in males. Wnt/β-catenin signaling plays a critical role in the pathogenesis of this disease by regulating angiogenesis, drug resistance, cell proliferation, and apoptosis. Suppression of Wnt canonical or noncanonical signaling pathways via Wnt biological or pharmacological antagonists is a potentially novel therapeutic approach for patients with prostate cancer. This review summarizes the role of Wnt signaling inhibitors in the pathogenesis of prostate cancer for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Mehran Pashirzad
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Shafiee
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Department of Biochemistry, Payam-e-Noor University, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Molecular Microbiology and Immunology, St. Louis University, School of Medicine, Saint Louis, Missouri
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - AmirReza Hesari
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
157
|
Heterogeneous cancer-associated fibroblast population potentiates neuroendocrine differentiation and castrate resistance in a CD105-dependent manner. Oncogene 2018; 38:716-730. [PMID: 30177832 PMCID: PMC7182071 DOI: 10.1038/s41388-018-0461-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/27/2018] [Accepted: 07/24/2018] [Indexed: 11/20/2022]
Abstract
Heterogeneous prostatic carcinoma associated fibroblasts (CAF) contribute to tumor progression and resistance to androgen signaling deprivation therapy (ADT). CAF subjected to extended passaging, compared to low passage CAF, were found to lose tumor expansion potential and heterogeneity. Cell surface endoglin (CD105), known to be expressed on proliferative endothelia and mesenchymal stem cells, was diminished in high passage CAF. RNA-sequencing revealed SFRP1 to be distinctly expressed by tumor-inductive CAF, which was further demonstrated to occur in a CD105-dependent manner. Moreover, ADT resulted in further expansion of the CD105+ fibroblastic population and downstream SFRP1 in 3-dimensional cultures and patient derived xenograft tissues. In patients, CD105+ fibroblasts were found to circumscribe epithelia with neuroendocrine differentiation. CAF-derived SFRP1, driven by CD105 signaling, was necessary and sufficient to induce prostate cancer neuroendocrine differentiation in a paracrine manner. A partially humanized CD105 neutralizing antibody, TRC105, inhibited fibroblastic SFRP1 expression and epithelial neuroendocrine differentiation. In a novel synthetic lethality paradigm, we found that simultaneously targeting the epithelia and its microenvironment with ADT and TRC105, respectively, reduced castrate resistant tumor progression, in a model where either ADT or TRC105 alone had little effect.
Collapse
|
158
|
Epigenetic silencing of SFRP5 promotes the metastasis and invasion of chondrosarcoma by expression inhibition and Wnt signaling pathway activation. Chem Biol Interact 2018; 296:1-8. [PMID: 30125549 DOI: 10.1016/j.cbi.2018.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/17/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUD/AIMS Abnormal activation of the Wnt/β-catenin signaling, which may be antagonized by the members of secreted frizzled-related proteins family (SFRPs), is implicated in tumor occurrence and development. However, the function of SFRP5 relating to Wnt/β-catenin pathway in chondrosarcoma is not clear yet. This study was undertaken to investigate the potential role of SFRP5 promoter methylation in chondrosarcoma metastasis and invasion through activating canonical Wnt signaling pathway. METHODS AND RESULTS The results demonstrated that SFRP5 promoter was hypermethylated and SFRP5 expression was significantly reduced in chondrosarcoma cell lines at the mRNA and protein levels. The canonical Wnt/β-catenin signaling was observably activated with β-catenin stabilization by dephosphorylation and translocation into the nuclear. 5-Aza-2'-deoxycytidine (5-Aza-dC), the DNA methyltransferase inhibitor, significantly inhibited the proliferation of chondrosarcoma cells by cell cycle arrest through repressing the methylation of SFRP5 and promoting its expression. Both 5-Aza-dC treatment and SFRP5 overexpression could significantly inhibited the metastasis and invasion of chondrosarcoma cells by inactivating Wnt/β-catenin signaling pathway and promoting chondrosarcoma cells mesenchymal-epithelial transition (MET). 5-Aza-dC also inhibited the xenograft growth and lung metastasis of chondrosarcoma cells in vivo via suppressing SFRP5 promotor methylation, inactivating Wnt/β-catenin pathway and inducing epithelial markers expression. CONCLUSION All of our results revealed the epigenetic silencing of SFRP5 by promoter methylation plays pivotal roles in chondrosarcoma development and metastasis through SFRP5/Wnt/β-catenin signaling axis. Modulation of their levels may serve as potential targets and diagnostic tools for novel therapeutic strategies of chondrosarcoma.
Collapse
|
159
|
Hodges SL, Lugo JN. Wnt/β-catenin signaling as a potential target for novel epilepsy therapies. Epilepsy Res 2018; 146:9-16. [PMID: 30053675 DOI: 10.1016/j.eplepsyres.2018.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 01/01/2023]
Abstract
Epilepsy is one of the most common neurological disorders, and yet many afflicted individuals are resistant to all available therapeutic treatments. Existing pharmaceutical treatments function primarily to reduce hyperexcitability and prevent seizures, but fail to influence the underlying pathophysiology of the disorder. Recently, research efforts have focused on identifying alternative mechanistic targets for anti-epileptogenic therapies that can prevent the development of chronic epilepsy. The Wnt/β-catenin pathway, one possible target, has been demonstrated to be disrupted in both acute and chronic phases of epilepsy. Wnt/β-catenin signaling can regulate many seizure-induced changes in the brain, including neurogenesis and neuronal death, as well as can influence seizure susceptibility and potentially the development of chronic epilepsy. Several genome-wide studies and in vivo knockout animal models have provided evidence for an association between disrupted Wnt/β-catenin signaling and epilepsy. Furthermore, approved pharmaceutical drugs and other small molecule compounds that target components of the β-catenin destruction complex or antagonize endogenous inhibitors of the pathway have shown to be protective following seizures. However, additional studies are needed to determine the optimal time period in which modulation of the pathway may be most beneficial. Overall, disrupted molecular networks such as Wnt/β-catenin signaling, could be a promising anti-epileptogenic target for future epilepsy therapies.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA; Department of Biology, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
160
|
Uchuya-Castillo J, Aznar N, Frau C, Martinez P, Le Nevé C, Marisa L, Penalva LOF, Laurent-Puig P, Puisieux A, Scoazec JY, Samarut J, Ansieau S, Plateroti M. Increased expression of the thyroid hormone nuclear receptor TRα1 characterizes intestinal tumors with high Wnt activity. Oncotarget 2018; 9:30979-30996. [PMID: 30123421 PMCID: PMC6089551 DOI: 10.18632/oncotarget.25741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/12/2018] [Indexed: 01/10/2023] Open
Abstract
Our previous work demonstrated a key function of the thyroid hormone nuclear receptor TRα1, a T3-modulated transcription factor, in controlling intestinal development and homeostasis via the Wnt and Notch pathways. Importantly, increased expression of TRα1 in the intestinal epithelium in a mutated Apc genetic background (vil-TRα1/Apc+/1638N mice) accelerated tumorigenesis and contributed to a more aggressive tumor phenotype compared to that of the Apc mutants alone. Therefore, the aim of this study was to determine the relevance of this synergistic effect in human colorectal cancers and to gain insights into the mechanisms involved. We analyzed cohorts of patients by in silico and experimental approaches and observed increased TRα1 expression and a significant correlation between TRα1 levels and Wnt activity. TRα1 loss-of-function and gain-of-function in Caco2 cell lines not only confirmed that TRα1 levels control Wnt activity but also demonstrated the role of TRα1 in regulating cell proliferation and migration. Finally, upon investigation of the molecular mechanisms responsible for the Wnt-TRα1 association, we described the repression by TRα1 of several Wnt inhibitors, including Frzb, Sox17 and Wif1. In conclusion, our results underline an important functional interplay between the thyroid hormone nuclear receptor TRα1 and the canonical Wnt pathway in intestinal cancer initiation and progression. More importantly, we show for the first time that the expression of TRα1 is induced in human colorectal cancers.
Collapse
Affiliation(s)
- Joel Uchuya-Castillo
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Nicolas Aznar
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Carla Frau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Pierre Martinez
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Clementine Le Nevé
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Laetitia Marisa
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Paris 75000, France
| | - Luiz O F Penalva
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | | | - Alain Puisieux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | | | - Jacques Samarut
- Institute de Génomique Fonctionnelle de Lyon, ENS de Lyon, Lyon 69342, France
| | - Stephane Ansieau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Michelina Plateroti
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| |
Collapse
|
161
|
Miao N, Bian S, Lee T, Mubarak T, Huang S, Wen Z, Hussain G, Sun T. Opposite Roles of Wnt7a and Sfrp1 in Modulating Proper Development of Neural Progenitors in the Mouse Cerebral Cortex. Front Mol Neurosci 2018; 11:247. [PMID: 30065628 PMCID: PMC6056652 DOI: 10.3389/fnmol.2018.00247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022] Open
Abstract
The Wingless (Wnt)-mediated signals are involved in many important aspects of development of the mammalian cerebral cortex. How Wnts interact with their modulators in cortical development is still unclear. Here, we show that Wnt7a and secreted frizzled-related protein 1 (Sfrp1), a soluble modulator of Wnts, are co-expressed in mouse embryonic cortical neural progenitors (NPs). Knockout of Wnt7a in mice causes microcephaly due to reduced NP population and neurogenesis, and Sfrp1 has an opposing effect compared to Wnt7a. Similar to Dkk1, Sfrp1 decreases the Wnt1 and Wnt7a activity in vitro. Our results suggest that Wnt7a and Sfrp1 play opposite roles to ensure proper NP progeny in the developing cortex.
Collapse
Affiliation(s)
- Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Shan Bian
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Trevor Lee
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Taufif Mubarak
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Shiying Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Zhihong Wen
- Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ghulam Hussain
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
162
|
Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis. Gene 2018; 674:57-69. [PMID: 29944952 DOI: 10.1016/j.gene.2018.06.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 02/08/2023]
Abstract
Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in liver fibrosis. Therefore, improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for liver fibrosis. Greater knowledge of the role of the Wnt signaling pathway in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the Wnt signaling pathway, which significantly participates in liver fibrosis and HSC activation, and look ahead on new perspectives of Wnt signaling pathway research. Moreover, we will discuss the different interactions with Wnt signaling pathway-regulated liver fibrosis. The Wnt signaling pathway modulates several important aspects of function, including cell proliferation, activation and differentiation. Targeting the Wnt signaling pathway can be a promising direction in liver fibrosis treatment. We discuss new perspectives of Wnt signaling pathway activation in liver fibrosis. For example, antagonist to Wnt and Wnt ligands could inhibit liver fibrosis by regulating Wnt/β-catenin signaling pathway. These findings identify the Wnt signaling pathway as a potentially important for therapeutic targets in liver fibrosis. Future studies are needed in order to find safer and more effective Wnt-based drugs.
Collapse
|
163
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas. Neurosci Bull 2018; 34:573-588. [PMID: 29582250 PMCID: PMC5960455 DOI: 10.1007/s12264-018-0219-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
In gliomas, the canonical Wingless/Int (WNT)/β-catenin pathway is increased while peroxisome proliferator-activated receptor gamma (PPAR-γ) is downregulated. The two systems act in an opposite manner. This review focuses on the interplay between WNT/β-catenin signaling and PPAR-γ and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/β-catenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis, tumor growth, and angiogenesis. Activation of PPAR-γ agonists inhibits various signaling pathways such as the JAK/STAT, WNT/β-catenin, and PI3K/Akt pathways, which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin, and sulforaphane downregulate the WNT/β-catenin pathway through the upregulation of PPAR-γ and thus appear to provide an interesting therapeutic approach for gliomas. Temozolomide (TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France.
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France
- CHU Amiens Picardie, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
164
|
Zhang Y, Zhang M, Li L, Wei B, He A, Lu L, Li X, Zhang L, Xu Z, Sun M. Methylation-reprogrammed Wnt/β-catenin signalling mediated prenatal hypoxia-induced brain injury in foetal and offspring rats. J Cell Mol Med 2018; 22:3866-3874. [PMID: 29808608 PMCID: PMC6050486 DOI: 10.1111/jcmm.13660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
Prenatal hypoxia (PH) is a common pregnancy complication, harmful to brain development. This study investigated whether and how PH affected Wnt pathway in the brain. Pregnant rats were exposed to hypoxia (10.5% O2) or normoxia (21% O2; Control). Foetal brain weight and body weight were decreased in the PH group, the ratio of brain weight to body weight was increased significantly. Prenatal hypoxia increased mRNA expression of Wnt3a, Wnt7a, Wnt7b and Fzd4, but not Lrp6. Activated β‐catenin protein and Fosl1 expression were also significantly up‐regulated. Increased Hif1a expression was found in the PH group associated with the higher Wnt signalling. Among 5 members of the Sfrp family, Sfrp4 was down‐regulated. In the methylation‐regulating genes, higher mRNA expressions of Dnmt1 and Dnmt3b were found in the PH group. Sodium bisulphite and sequencing revealed hyper‐methylation in the promoter region of Sfrp4 gene in the foetal brain, accounting for its decreased expression and contributing to the activation of the Wnt‐Catenin signalling. The study of PC12 cells treated with 5‐aza further approved that decreased methylation could result in the higher Sfrp4 expression. In the offspring hippocampus, protein levels of Hif1a and mRNA expression of Sfrp4 were unchanged, whereas Wnt signal pathway was inhibited. The data demonstrated that PH activated the Wnt pathway in the foetal brain, related to the hyper‐methylation of Sfrp4 as well as Hif1a signalling. Activated Wnt signalling might play acute protective roles to the foetal brain in response to hypoxia, also would result in disadvantageous influence on the offspring in long‐term.
Collapse
Affiliation(s)
- Yingying Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Mengshu Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Lingjun Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Bin Wei
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Axin He
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Likui Lu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Lubo Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China.,Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China.,Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| |
Collapse
|
165
|
Wang CP, Yu TH, Wu CC, Hung WC, Hsu CC, Tsai IT, Tang WH, Chung FM, Houng JY, Lee YJ, Lu YC. Circulating secreted frizzled-related protein 5 and chronic kidney disease in patients with acute ST-segment elevation myocardial infarction. Cytokine 2018; 110:367-373. [PMID: 29807686 DOI: 10.1016/j.cyto.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 03/05/2018] [Accepted: 04/07/2018] [Indexed: 12/25/2022]
Abstract
Secreted frizzled-related protein-5 (Sfrp5) known as secreted antagonist binds to Wnt protein. It has been shown to be downregulated by histone acetylation and promoter methylation, and to function as a tumor suppressor gene by inducing apoptosis in renal cell cancer cells. However, its relationship with chronic kidney disease (CKD) has not been well studied. Our objective was to investigate the effect of plasma Sfrp5 levels in subjects with and without CKD. Plasma Sfrp5 levels were determined by enzyme-linked immunosorbent assays in 196 consecutive patients with acute ST-segment elevation myocardial infarction (STEMI). CKD was defined as an estimated glomerular filtration rate (eGFR) <60 ml/min per 1.73 m2. For the purpose of this study, stage 1 or 2 CKD patients (eGFR ≥ 60 ml/min per 1.73 m2) were classified as not having CKD. With increasing Sfrp5 tertiles, the patients had higher frequencies of hypertension, stage 4 or 5 CKD, and waist-to-hip ratio, incrementally lower eGFRs and serum hemoglobin levels, and higher levels of blood urine nitrogen (BUN), creatinine, and adiponectin. Multivariate logistic regression analysis showed that an increased plasma Sfrp5 level was independently associated with CKD for all subjects (adjusted odds ratio (OR), 1.08; 95% confidence interval (CI), 1.02-1.14; p = 0.011). Sfrp5 was also significantly positively related to BUN, creatinine, and adiponectin, and significantly negatively related to eGFR and hemoglobin. When the patients were stratified by age, plasma Sfrp5 level was independently related to CKD for patients >65 years old (adjusted OR, 1.10; 95% CI, 1.00-1.20; p = 0.045), however, the association was not significant for those <65 years old. In addition, Sfrp5 was significantly positively related to BUN, creatinine, and adiponectin, and significantly negatively related to eGFR and hemoglobin in patients >65 years old. Our results suggest that Sfrp5 may play a role in the pathogenesis of CKD in acute STEMI patients who are older than 65 years.
Collapse
Affiliation(s)
- Chao-Ping Wang
- Division of Cardiology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; School of Medicine for International Students, Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Teng-Hung Yu
- Division of Cardiology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Cheng-Ching Wu
- Division of Cardiology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Wei-Chin Hung
- Division of Cardiology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Chia-Chang Hsu
- Division of Gastroenterology and Hepatology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| | - I-Ting Tsai
- Department of Emergency, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Wei-Hua Tang
- Division of Cardiology, Department of Internal Medicine, National Yang-Ming University Hospital, Yilan 26058, Taiwan.
| | - Fu-Mei Chung
- Division of Cardiology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Jer-Yiing Houng
- Department of Nutrition, Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Yau-Jiunn Lee
- Lee's Endocrinologic Clinic, Pingtung 90000, Taiwan.
| | - Yung-Chuan Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; School of Medicine for International Students, Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan.
| |
Collapse
|
166
|
Toan NL, Van Hoan N, Cuong DV, Dung NV, Dung PT, Hang NT, Dieu DTH, Chung DT, Son HA, Phong PX, Lenon GB, Van De D, Van Tong H. Adipose tissue-derived cytokines and their correlations with clinical characteristics in Vietnamese patients with type 2 diabetes mellitus. Diabetol Metab Syndr 2018; 10:41. [PMID: 29785210 PMCID: PMC5952428 DOI: 10.1186/s13098-018-0343-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/05/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Adipokines are involved in the pathogenesis of metabolic disorders including obesity and type 2 diabetes mellitus (T2DM). This study investigates the levels of leptin, resistin, visfatin, secreted frizzled-related protein 5 (SFRP5), monocyte chemoattractant protein-1 (MCP-1) and retinol-binding protein 4 (RBP4) and their correlations with clinical parameters of overweight and T2DM. METHODS We recruited overweight 50 patients with T2DM, 88 non-overweight patients with T2DM, 29 overweight and 100 non-overweight individuals devoid of T2DM for this study. The levels of studied adipokines were measured by enzyme-linked immunosorbent assay and correlated with clinical parameters. RESULTS The levels of MCP-1 and SFRP5 were decreased while visfatin and RBP4 levels were increased in patients with T2DM compared to those in the control individuals (P < 0.01). Among patients with T2DM, leptin and resistin levels were higher while RBP4 levels were lower in patients with overweight T2DM compared to those in patients with non-overweight T2DM (P < 0.0001, 0.019 and 0.05, respectively). Leptin and MCP-1 levels were correlated with HOMA-IR, QUICKI and HOMA-β. Leptin/MCP-1 ratio was correlated with insulin levels, HOMA-IR and HOMA-β indexes. Resistin/RBP4, visfatin/MCP-1 and MCP-1/RBP4 ratios were strongly correlated with the levels of fasting glucose, HbA1c and HOMA-β. In addition, ROC curve analyses indicated a diagnostic potential of resistin/RBP4 and MCP-1/RBP4 indexes for T2DM (AUC = 0.81 and 0.83, respectively) and β-cell function (AUC = 0.76 and 0.74, respectively). CONCLUSIONS Adipokines (leptin, resistin, visfatin, SFRP5, MCP-1, and RBP4) are associated with overweight and T2DM and may serve as a potential prognostic marker and therapeutic intervention for overweight-related T2DM.
Collapse
Affiliation(s)
- Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Hanoi, Vietnam
| | - Nguyen Van Hoan
- Department of Pathophysiology, Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Hanoi, Vietnam
- Department of Endocrine, Vietnam Military Medical University, 103 Military Hospital, Hanoi, Vietnam
- Nghe An Endocrine Hospital, Nghe An, Vietnam
| | - Doan Viet Cuong
- Department of Endocrine, Vietnam Military Medical University, 103 Military Hospital, Hanoi, Vietnam
| | - Nguyen Viet Dung
- Department of Endocrine, Vietnam Military Medical University, 103 Military Hospital, Hanoi, Vietnam
| | - Phan The Dung
- Department of Pathophysiology, Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Hanoi, Vietnam
- Department of Endocrine, Vietnam Military Medical University, 103 Military Hospital, Hanoi, Vietnam
- Nghe An Endocrine Hospital, Nghe An, Vietnam
| | - Ngo Thu Hang
- Department of Pathophysiology, Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Hanoi, Vietnam
| | - Do Thi Huyen Dieu
- Department of Pathophysiology, Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Hanoi, Vietnam
- Binh Dinh Medical School, Qui Nhon, Binh Dinh Vietnam
| | - Dang Thanh Chung
- Department of Pathophysiology, Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Hanoi, Vietnam
| | - Ho Anh Son
- Department of Pathophysiology, Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Hanoi, Vietnam
| | | | - George Binh Lenon
- Discipline of Chinese Medicine, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Doan Van De
- Department of Endocrine, Vietnam Military Medical University, 103 Military Hospital, Hanoi, Vietnam
| | - Hoang Van Tong
- Department of Pathophysiology, Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Hanoi, Vietnam
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
167
|
Borowsky J, Dumenil T, Bettington M, Pearson SA, Bond C, Fennell L, Liu C, McKeone D, Rosty C, Brown I, Walker N, Leggett B, Whitehall V. The role of APC in WNT pathway activation in serrated neoplasia. Mod Pathol 2018; 31:495-504. [PMID: 29148535 DOI: 10.1038/modpathol.2017.150] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 02/07/2023]
Abstract
Conventional adenomas are initiated by APC gene mutation that activates the WNT signal. Serrated neoplasia is commonly initiated by BRAF or KRAS mutation. WNT pathway activation may also occur, however, to what extent this is owing to APC mutation is unknown. We examined aberrant nuclear β-catenin immunolocalization as a surrogate for WNT pathway activation and analyzed the entire APC gene coding sequence in serrated and conventional pathway polyps and cancers. WNT pathway activation was a common event in conventional pathway lesions with aberrant nuclear immunolocalization of β-catenin and truncating APC mutations in 90% and 89% of conventional adenomas and 82% and 70% of BRAF wild-type cancers, respectively. WNT pathway activation was seen to a lesser extent in serrated pathway lesions. It occurred at the transition to dysplasia in serrated polyps with a significant increase in nuclear β-catenin labeling from sessile serrated adenomas (10%) to sessile serrated adenomas with dysplasia (55%) and traditional serrated adenomas (9%) to traditional serrated adenomas with dysplasia (39%) (P=0.0001). However, unlike the conventional pathway, truncating APC mutations were rare in the serrated pathway lesions especially sessile serrated adenomas even when dysplastic (15%) and in the BRAF mutant cancers with microsatellite instability that arise from them (8%). In contrast, APC missense mutations that were rare in conventional pathway adenomas and cancers (3% in BRAF wild-type cancers) were more frequent in BRAF mutant cancers with microsatellite instability (32%). We conclude that increased WNT signaling is important in the transition to malignancy in the serrated pathway but that APC mutation is less common and the spectrum of mutations is different than in conventional colorectal carcinogenesis. Moderate impact APC mutations and non-APC-related causes of increased WNT signaling may have a more important role in serrated neoplasia than the truncating APC mutations common in conventional adenomas.
Collapse
Affiliation(s)
- Jennifer Borowsky
- Conjoint Gastroenterology Laboratory, Queensland Institute of Medical Research Berghofer, Brisbane, QLD, Australia.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Envoi Specialist Pathologists, Kelvin Grove, Brisbane, QLD, Australia
| | - Troy Dumenil
- Conjoint Gastroenterology Laboratory, Queensland Institute of Medical Research Berghofer, Brisbane, QLD, Australia
| | - Mark Bettington
- Envoi Specialist Pathologists, Kelvin Grove, Brisbane, QLD, Australia
| | - Sally-Ann Pearson
- Conjoint Gastroenterology Laboratory, Queensland Institute of Medical Research Berghofer, Brisbane, QLD, Australia
| | - Catherine Bond
- Conjoint Gastroenterology Laboratory, Queensland Institute of Medical Research Berghofer, Brisbane, QLD, Australia
| | - Lochlan Fennell
- Conjoint Gastroenterology Laboratory, Queensland Institute of Medical Research Berghofer, Brisbane, QLD, Australia
| | - Cheng Liu
- Conjoint Gastroenterology Laboratory, Queensland Institute of Medical Research Berghofer, Brisbane, QLD, Australia.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Diane McKeone
- Conjoint Gastroenterology Laboratory, Queensland Institute of Medical Research Berghofer, Brisbane, QLD, Australia
| | - Christophe Rosty
- Envoi Specialist Pathologists, Kelvin Grove, Brisbane, QLD, Australia
| | - Ian Brown
- Envoi Specialist Pathologists, Kelvin Grove, Brisbane, QLD, Australia.,Pathology Queensland, Queensland Health, Brisbane, QLD, Australia
| | - Neal Walker
- Envoi Specialist Pathologists, Kelvin Grove, Brisbane, QLD, Australia
| | - Barbara Leggett
- Conjoint Gastroenterology Laboratory, Queensland Institute of Medical Research Berghofer, Brisbane, QLD, Australia.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Vicki Whitehall
- Conjoint Gastroenterology Laboratory, Queensland Institute of Medical Research Berghofer, Brisbane, QLD, Australia.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Pathology Queensland, Queensland Health, Brisbane, QLD, Australia
| |
Collapse
|
168
|
Vincent KM, Postovit LM. Matricellular proteins in cancer: a focus on secreted Frizzled-related proteins. J Cell Commun Signal 2018; 12:103-112. [PMID: 28589318 PMCID: PMC5842174 DOI: 10.1007/s12079-017-0398-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/02/2017] [Indexed: 12/31/2022] Open
Abstract
Tumours are complex entities, wherein cancer cells interact with myriad soluble, insoluble and cell associated factors. These microenvironmental mediators regulate tumour growth, progression and metastasis, and are produced by cancer cells and by stromal components such as fibroblast, adipocytes and immune cells. Through their ability to bind to extracellular matrix proteins, cell surface receptors and growth factors, matricellular proteins enable a dynamic reciprocity between cancer cells and their microenvironment. Hence, matricellular proteins play a critical role in tumour progression by regulating where and when cancer cells are exposed to key growth factors and regulatory proteins. Recent studies suggest that, in addition to altering Wingless (Wnt) signalling, certain members of the Secreted Frizzled Related Protein (sFRP) family are matricellular in nature. In this review, we outline the importance of matricellular proteins in cancer, and discuss how sFRPs may function to both inhibit and promote cancer progression in a context-dependent manner. By considering the matricellular functionality of sFRPs, we may better understand their apparently paradoxical roles in cancers.
Collapse
Affiliation(s)
- Krista Marie Vincent
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 114th St and 87th Ave, Edmonton, AB T6G 2E1 Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7 Canada
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 114th St and 87th Ave, Edmonton, AB T6G 2E1 Canada
| |
Collapse
|
169
|
L'Episcopo F, Tirolo C, Serapide MF, Caniglia S, Testa N, Leggio L, Vivarelli S, Iraci N, Pluchino S, Marchetti B. Microglia Polarization, Gene-Environment Interactions and Wnt/β-Catenin Signaling: Emerging Roles of Glia-Neuron and Glia-Stem/Neuroprogenitor Crosstalk for Dopaminergic Neurorestoration in Aged Parkinsonian Brain. Front Aging Neurosci 2018; 10:12. [PMID: 29483868 PMCID: PMC5816064 DOI: 10.3389/fnagi.2018.00012] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/11/2018] [Indexed: 12/29/2022] Open
Abstract
Neuroinflammatory processes are recognized key contributory factors in Parkinson's disease (PD) physiopathology. While the causes responsible for the progressive loss of midbrain dopaminergic (mDA) neuronal cell bodies in the subtantia nigra pars compacta are poorly understood, aging, genetics, environmental toxicity, and particularly inflammation, represent prominent etiological factors in PD development. Especially, reactive astrocytes, microglial cells, and infiltrating monocyte-derived macrophages play dual beneficial/harmful effects, via a panel of pro- or anti-inflammatory cytokines, chemokines, neurotrophic and neurogenic transcription factors. Notably, with age, microglia may adopt a potent neurotoxic, pro-inflammatory “primed” (M1) phenotype when challenged with inflammatory or neurotoxic stimuli that hamper brain's own restorative potential and inhibit endogenous neurorepair mechanisms. In the last decade we have provided evidence for a major role of microglial crosstalk with astrocytes, mDA neurons and neural stem progenitor cells (NSCs) in the MPTP- (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-) mouse model of PD, and identified Wnt/β-catenin signaling, a pivotal morphogen for mDA neurodevelopment, neuroprotection, and neuroinflammatory modulation, as a critical actor in glia-neuron and glia-NSCs crosstalk. With age however, Wnt signaling and glia-NSC-neuron crosstalk become dysfunctional with harmful consequences for mDA neuron plasticity and repair. These findings are of importance given the deregulation of Wnt signaling in PD and the emerging link between most PD related genes, Wnt signaling and inflammation. Especially, in light of the expanding field of microRNAs and inflammatory PD-related genes as modulators of microglial-proinflammatory status, uncovering the complex molecular circuitry linking PD and neuroinflammation will permit the identification of new druggable targets for the cure of the disease. Here we summarize recent findings unveiling major microglial inflammatory and oxidative stress pathways converging in the regulation of Wnt/β-catenin signaling, and reciprocally, the ability of Wnt signaling pathways to modulate microglial activation in PD. Unraveling the key factors and conditons promoting the switch of the proinflammatory M1 microglia status into a neuroprotective and regenerative M2 phenotype will have important consequences for neuroimmune interactions and neuronal outcome under inflammatory and/or neurodegenerative conditions.
Collapse
Affiliation(s)
| | | | - Maria F Serapide
- Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | | | | | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | - Stefano Pluchino
- Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Bianca Marchetti
- Oasi ResearchInstitute-IRCCS, Troina, Italy.,Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| |
Collapse
|
170
|
Secreted frizzled related protein 4 (sFRP4) update: A brief review. Cell Signal 2018; 45:63-70. [PMID: 29360572 DOI: 10.1016/j.cellsig.2018.01.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/13/2017] [Accepted: 01/17/2018] [Indexed: 12/29/2022]
Abstract
Secreted frizzled-related proteins control a multitude of biological phenomena throughout development and adult life in humans. In parallel, aberrant gene expression and abnormal secreted protein levels accompany a wide range of pathologies in humans. In this review, we provide a brief introduction to sFRP4, an update of the pathways it's involved, its various physiological actions that are reported to contribute to diseases, outlining the importance of its wider research and specific modulation by pharmacologic interventions. First recognized as a novel molecule that co-purified with a disparate protein, its identity was based on its sequence homology to the frizzled receptors. Once multiple members of the family were cloned, their genetic loci, tissue and subcellular distributions were located. Nucleotide and amino acid sequences were characterized and homology to different organisms was found to be present that helped elucidate their actions. Following subsequent experimental studies, they were found to be secreted proteins with an affinity to bind to the Wnt ligands, participating in different developmental and adult homeostatic pathways by the virtue of their regulatory function to the Wnt signal transduction system. Secreted frizzled related protein 4 has garnered considerable attention in the recent years following breakthrough discoveries implicating them in the pathogenesis of various diseases. Studies investigating them can provide information not only regarding their association with a disease but can also help use them as potential biomarkers and therapeutic targets.
Collapse
|
171
|
Boggs K, Wang T, Orabi AI, Mukherjee A, Eisses JF, Sun T, Wen L, Javed TA, Esni F, Chen W, Husain SZ. Pancreatic gene expression during recovery after pancreatitis reveals unique transcriptome profiles. Sci Rep 2018; 8:1406. [PMID: 29362419 PMCID: PMC5780441 DOI: 10.1038/s41598-018-19392-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023] Open
Abstract
It is well known that pancreatic recovery after a single episode of injury such as an isolated bout of pancreatitis occurs rapidly. It is unclear, however, what changes are inflicted in such conditions to the molecular landscape of the pancreas. In the caerulein hyperstimulation model of pancreatitis, the murine pancreas has the ability to recover within one week based on histological appearance. In this study, we sought to characterize by RNA-sequencing (RNA-seq) the transcriptional profile of the recovering pancreas up to two weeks post-injury. We found that one week after injury there were 319 differentially expressed genes (DEGs) compared with baseline and that after two weeks there were 53 DEGs. Forty (12.5%) of the DEGs persisted from week one to week two, and another 13 DEGs newly emerged in the second week. Amongst the top up-regulated DEGs were several trypsinogen genes (trypsinogen 4, 5, 12, 15, and 16). To our knowledge, this is the first characterization of the transcriptome during pancreatic recovery by deep sequencing, and it reveals on a molecular basis that there is an ongoing recovery of the pancreas even after apparent histological resolution. The findings also raise the possibility of an emerging novel transcriptome upon pancreatic recovery.
Collapse
Affiliation(s)
- Kristy Boggs
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Ting Wang
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Abrahim I Orabi
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Amitava Mukherjee
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - John F Eisses
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Tao Sun
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Li Wen
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Tanveer A Javed
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Farzad Esni
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Wei Chen
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Sohail Z Husain
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
172
|
Khadka A, Martínez-Bartolomé M, Burr SD, Range RC. A novel gene's role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior-posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos. EvoDevo 2018; 9:1. [PMID: 29387332 PMCID: PMC5778778 DOI: 10.1186/s13227-017-0089-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/18/2017] [Indexed: 01/20/2023] Open
Abstract
The anterior neuroectoderm (ANE) in many deuterostome embryos (echinoderms, hemichordates, urochordates, cephalochordates, and vertebrates) is progressively restricted along the anterior-posterior axis to a domain around the anterior pole. In the sea urchin embryo, three integrated Wnt signaling branches (Wnt/β-catenin, Wnt/JNK, and Wnt/PKC) govern this progressive restriction process, which begins around the 32- to 60-cell stage and terminates by the early gastrula stage. We previously have established that several secreted Wnt modulators of the Dickkopf and secreted Frizzled-related protein families (Dkk1, Dkk3, and sFRP-1/5) are expressed within the ANE and play important roles in modulating the Wnt signaling network during this process. In this study, we use morpholino and dominant-negative interference approaches to characterize the function of a novel Frizzled-related protein, secreted Frizzled-related protein 1 (sFRP-1), during ANE restriction. sFRP-1 appears to be related to a secreted Wnt modulator, sFRP3/4, that is essential to block Wnt signaling and establish the ANE in vertebrates. Here, we show that the sea urchin sFRP3/4 orthologue is not expressed during ANE restriction in the sea urchin embryo. Instead, our results indicate that ubiquitously expressed maternal sFRP-1 and Fzl1/2/7 signaling act together as early as the 32- to 60-cell stage to antagonize the ANE restriction mechanism mediated by Wnt/β-catenin and Wnt/JNK signaling. Then, starting from the blastula stage, Fzl5/8 signaling activates zygotic sFRP-1 within the ANE territory, where it works with the secreted Wnt antagonist Dkk1 (also activated by Fzl5/8 signaling) to antagonize Wnt1/Wnt8-Fzl5/8-JNK signaling in a negative feedback mechanism that defines the outer ANE territory boundary. Together, these data indicate that maternal and zygotic sFRP-1 protects the ANE territory by antagonizing the Wnt1/Wnt8-Fzl5/8-JNK signaling pathway throughout ANE restriction, providing precise spatiotemporal control of the mechanism responsible for the establishment of the ANE territory around the anterior pole of the sea urchin embryo.
Collapse
Affiliation(s)
- Anita Khadka
- 1Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
| | | | - Stephanie D Burr
- 1Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA.,2School of Pharmacy, University of Mississippi, Oxford, MS USA
| | - Ryan C Range
- 1Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
| |
Collapse
|
173
|
Silencing of CEMIP suppresses Wnt/β-catenin/Snail signaling transduction and inhibits EMT program of colorectal cancer cells. Acta Histochem 2018; 120:56-63. [PMID: 29173982 DOI: 10.1016/j.acthis.2017.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
Cell migration inducing hyaluronan binding protein (CEMIP) is a hyaluronic acid binding protein, the abnormal elevation of which is suggested as a contributor in the carcinogenesis of colorectal cancer (CRC). Cancer cells lose their adhesive properties and acquire an enhanced mobility by undergoing epithelial-mesenchymal transition (EMT). This study is performed to investigate whether and how CEMIP orchestrates the EMT process of CRC cells. To avoid the unexpected off-target effects possibly caused by one single shRNA, two shRNAs targeting different mRNA regions of CEMIP gene were used to knock down the mRNA and protein expression of CEMIP. Our data showed that the proliferation, migration and invasion of two CRC cell lines, HCT116 and SW480 cells, were inhibited by CEMIP shRNA. We here defined EMT as the complete or partial loss of E-cadherin and zona occludens protein 1 (ZO-1) (epithelial markers) and the gain of Vimentin and N-cadherin (mesenchymal markers), and found that the EMT process was attenuated in CEMIP-silenced SW480 cells. Snail, a direct target of β-catenin/T cell factor complex, is known to activate the EMT program during cancer metastasis. CEMIP shRNA was further found to suppress the Wnt/β-catenin/Snail signaling transduction in CRC cells as manifested by the decreased nuclear β-catenin and Snail. Collectively, our work demonstrates that CEMIP contributes to metastatic phenotype of CRC cells in vitro.
Collapse
|
174
|
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 2018; 70:68-141. [PMID: 29247129 PMCID: PMC6040091 DOI: 10.1124/pr.117.013896] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue patterning. Little WNT signaling activity is present in the cardiovascular system of healthy adults, but reactivation of the pathway is observed in many pathologies of heart and blood vessels. The high prevalence of these pathologies and their significant contribution to human disease burden has raised interest in WNT signaling as a potential target for therapeutic intervention. In this review, we first will focus on the constituents of the pathway and their regulation and the different signaling routes. Subsequently, the role of WNT signaling in cardiovascular development is addressed, followed by a detailed discussion of its involvement in vascular and cardiac disease. After highlighting the crosstalk between WNT, transforming growth factor-β and angiotensin II signaling, and the emerging role of WNT signaling in the regulation of stem cells, we provide an overview of drugs targeting the pathway at different levels. From the combined studies we conclude that, despite the sometimes conflicting experimental data, a general picture is emerging that excessive stimulation of WNT signaling adversely affects cardiovascular pathology. The rapidly increasing collection of drugs interfering at different levels of WNT signaling will allow the evaluation of therapeutic interventions in the pathway in relevant animal models of cardiovascular diseases and eventually in patients in the near future, translating the outcomes of the many preclinical studies into a clinically relevant context.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Evangelos P Daskalopoulos
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Gentian Lluri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Arjun Deb
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| |
Collapse
|
175
|
Mii Y, Yamamoto T, Takada R, Mizumoto S, Matsuyama M, Yamada S, Takada S, Taira M. Roles of two types of heparan sulfate clusters in Wnt distribution and signaling in Xenopus. Nat Commun 2017; 8:1973. [PMID: 29215008 PMCID: PMC5719454 DOI: 10.1038/s41467-017-02076-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/03/2017] [Indexed: 12/21/2022] Open
Abstract
Wnt proteins direct embryonic patterning, but the regulatory basis of their distribution and signal reception remain unclear. Here, we show that endogenous Wnt8 protein is distributed in a graded manner in Xenopus embryo and accumulated on the cell surface in a punctate manner in association with “N-sulfo-rich heparan sulfate (HS),” not with “N-acetyl-rich HS”. These two types of HS are differentially clustered by attaching to different glypicans as core proteins. N-sulfo-rich HS is frequently internalized and associated with the signaling vesicle, known as the Frizzled/Wnt/LRP6 signalosome, in the presence of Wnt8. Conversely, N-acetyl-rich HS is rarely internalized and accumulates Frzb, a secreted Wnt antagonist. Upon interaction with Frzb, Wnt8 associates with N-acetyl-rich HS, suggesting that N-acetyl-rich HS supports Frzb-mediated antagonism by sequestering Wnt8 from N-sulfo-rich HS. Thus, these two types of HS clusters may constitute a cellular platform for the distribution and signaling of Wnt8. Wnt proteins mediate embryonic development but how protein localization and patterning is regulated is unclear. Here, the authors show that distinct structures with different heparan sulfate modifications (‘N-sulfo-rich’ and ‘N-acetyl-rich’) regulate cellular localization and signal transduction of Wnt8 in Xenopus.
Collapse
Affiliation(s)
- Yusuke Mii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,National Institute for Basic Biology and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.,Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| | - Takayoshi Yamamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ritsuko Takada
- National Institute for Basic Biology and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Shinji Takada
- National Institute for Basic Biology and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan. .,Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan.
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
176
|
Toledo EM, Gyllborg D, Arenas E. Translation of WNT developmental programs into stem cell replacement strategies for the treatment of Parkinson's disease. Br J Pharmacol 2017; 174:4716-4724. [PMID: 28547771 PMCID: PMC5727333 DOI: 10.1111/bph.13871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022] Open
Abstract
Wnt signalling is a highly conserved pathway across species that is critical for normal development and is deregulated in multiple disorders including cancer and neurodegenerative diseases. Wnt signalling is critically required for midbrain dopaminergic (mDA) neuron development and maintenance. Understanding the molecular processes controlled by Wnt signalling may thus hold the key to understand the physiopathology and to develop novel therapies aimed at preventing the loss of mDA neurons in Parkinson's disease (PD). Pharmacological tools to activate Wnt signalling have been used to translate in vivo developmental processes into protocols for the generation of bona fide mDA neurons from human pluripotent stem cells. Moreover, these protocols are currently being fine-tuned to generate mDA neurons for clinical trials in PD. At the same time, a vast amount of molecular details of Wnt signalling continues to emerge and remains to be implemented into new protocols. We hereby review novel pharmacological tools to activate Wnt signalling and how single-cell RNA-sequencing is contributing to unravel the complexity of this pathway in the developing human ventral midbrain, generating novel hypotheses and identifying new players and opportunities to further improve cell replacement therapy for PD. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Enrique M Toledo
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Daniel Gyllborg
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Ernest Arenas
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| |
Collapse
|
177
|
SFRP4 gene expression is increased in aggressive prostate cancer. Sci Rep 2017; 7:14276. [PMID: 29079735 PMCID: PMC5660209 DOI: 10.1038/s41598-017-14622-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/09/2017] [Indexed: 12/05/2022] Open
Abstract
Increased knowledge of the molecular differences between indolent and aggressive prostate cancer is needed for improved risk stratification and treatment selection. Secreted frizzled-related protein 4 (SFRP4) is a modulator of the cancer-associated Wnt pathway, and previously suggested as a potential marker for prostate cancer aggressiveness. In this study, we investigated and validated the association between SFRP4 gene expression and aggressiveness in nine independent cohorts (n = 2157). By differential expression and combined meta-analysis of all cohorts, we detected significantly higher SFRP4 expression in cancer compared with normal samples, and in high (3–5) compared with low (1–2) Grade Group samples. SFRP4 expression was a significant predictor of biochemical recurrence in six of seven cohorts and in the overall analysis, and was a significant predictor of metastatic event in one cohort. In our study cohort, where metabolic information was available, SFRP4 expression correlated significantly with the concentrations of citrate and spermine, two previously suggested biomarkers for aggressive prostate cancer. SFRP4 immunohistochemistry in an independent cohort (n = 33) was not associated with aggressiveness. To conclude, high SFRP4 gene expression is associated with high Grade Group and recurrent prostate cancer after surgery. Future studies investigating the mechanistic and clinical usefulness of SFRP4 in prostate cancer are warranted.
Collapse
|
178
|
Expression Levels and Localizations of DVL3 and sFRP3 in Glioblastoma. DISEASE MARKERS 2017; 2017:9253495. [PMID: 29200599 PMCID: PMC5671711 DOI: 10.1155/2017/9253495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022]
Abstract
The expression patterns of critical molecular components of Wnt signaling, sFRP3 and DVL3, were investigated in glioblastoma, the most aggressive form of primary brain tumors, with the aim to offer potential biomarkers. The protein expression levels and localizations in tumor tissue were revealed by immunohistochemistry and evaluated by the semiquantitative method and immunoreactivity score. Majority of glioblastomas had moderate expression levels for both DVL3 (52.4%) and sFRP3 (52.3%). Strong expression levels were observed in 23.1% and 36.0% of samples, respectively. DVL3 was localized in cytoplasm in 97% of glioblastomas, of which 44% coexpressed the protein in the nucleus. sFRP3 subcellular distribution showed that it was localized in the cytoplasm in 94% of cases. Colocalization in the cytoplasm and nucleus was observed in 50% of samples. Wilcox test indicated that the domination of the strong signal is in connection with simultaneous localization of DVL3 protein in the cytoplasm and the nucleus. Patients with strong expression of DVL3 will significantly more often have the protein in the nucleus (P = 6.33 × 10−5). No significant correlation between the two proteins was established, nor were their signal strengths correlated with epidemiological parameters. Our study contributes to better understanding of glioblastoma molecular profile.
Collapse
|
179
|
Monteagudo S, Lories RJ. Cushioning the cartilage: a canonical Wnt restricting matter. Nat Rev Rheumatol 2017; 13:670-681. [PMID: 29021569 DOI: 10.1038/nrrheum.2017.171] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wnt signalling pathways have key roles in joint development, homeostasis and disease, particularly in osteoarthritis. New data is starting to reveal the importance of tightly regulating canonical Wnt signalling pathway activation to maintain homeostasis and health in articular cartilage. In addition to the presence of different Wnt antagonists that limit pathway activation in articular cartilage, the reciprocal crosstalk between the canonical and non-canonical cascades and competitive antagonism between different Wnt ligands seem to be critical in restraining excessive Wnt pathway activation. Changes in transcriptional complex assembly upon Wnt pathway activation, epigenetic modulation of target gene transcription, in particular through histone modifications, and complex interactions between the Wnt signalling pathway and other signalling pathways, are also instrumental in adjusting Wnt signalling. In this Review, the cellular and molecular mechanisms involved in fine-tuning canonical Wnt signalling in the joint are updated, with a focus on the articular cartilage. The interventions for preventing or treating osteoarthritis are also discussed, which should aim to limit disease-associated excessive canonical Wnt activity to avoid joint damage.
Collapse
Affiliation(s)
- Silvia Monteagudo
- Laboratory for Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Rik J Lories
- Laboratory for Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
180
|
Stampella A, Monteagudo S, Lories R. Wnt signaling as target for the treatment of osteoarthritis. Best Pract Res Clin Rheumatol 2017; 31:721-729. [DOI: 10.1016/j.berh.2018.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/20/2018] [Indexed: 01/28/2023]
|
181
|
Chen H, Mruk DD, Lui WY, Wong CKC, Lee WM, Cheng CY. Cell polarity and planar cell polarity (PCP) in spermatogenesis. Semin Cell Dev Biol 2017; 81:71-77. [PMID: 28923514 DOI: 10.1016/j.semcdb.2017.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022]
Abstract
In adult mammalian testes, spermatids, most notably step 17-19 spermatids in stage IV-VIII tubules, are aligned with their heads pointing toward the basement membrane and their tails toward the tubule lumen. On the other hand, these polarized spermatids also align across the plane of seminiferous epithelium, mimicking planar cell polarity (PCP) found in other hair cells in cochlea (inner ear). This orderly alignment of developing spermatids during spermiogenesis is important to support spermatogenesis, such that the maximal number of developing spermatids can be packed and supported by a fixed population of differentiated Sertoli cells in the limited space of the seminiferous epithelium in adult testes. In this review, we provide emerging evidence to demonstrate spermatid PCP in the seminiferous epithelium to support spermatogenesis. We also review findings in the field regarding the biology of spermatid cellular polarity (e.g., head-tail polarity and apico-basal polarity) and its inter-relationship to spermatid PCP. Furthermore, we also provide a hypothetical concept on the importance of PCP proteins in endocytic vesicle-mediated protein trafficking events to support spermatogenesis through protein endocytosis and recycling.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Wing-Yee Lui
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
182
|
Ding M, Wang X. Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity. Oncol Lett 2017; 14:6327-6333. [PMID: 29391876 DOI: 10.3892/ol.2017.7030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/30/2017] [Indexed: 01/16/2023] Open
Abstract
The crosstalk of multiple cellular signaling pathways is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation and metastasis. The Hedgehog (Hh) and Wnt signaling pathways are both considered to be essential regulators of cell proliferation, differentiation and oncogenesis. Recent studies have indicated that the Hh and Wnt signaling pathways are closely associated and involved in regulating embryogenesis and cellular differentiation. Hh signaling acts upstream of the Wnt signaling pathway, and negative regulates Wnt activity via secreted frizzled-related protein 1 (SFRP1), and the Wnt/β-catenin pathway downregulates Hh activity through glioma-associated oncogene homolog 3 transcriptional regulation. This evidence suggests that the imbalance of Hh and Wnt regulation serves a crucial role in cancer-associated processes. The activation of SFRP1, which inhibits Wnt, has been demonstrated to be an important cross-point between the two signaling pathways. The present study reviews the complex interaction between the Hh and Wnt signaling pathways in embryogenesis and tumorigenicity, and the role of SFRP1 as an important mediator associated with the dysregulation of the Hh and Wnt signaling pathways.
Collapse
Affiliation(s)
- Mei Ding
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
183
|
|
184
|
Paciejewska MM, Maijenburg MW, Gilissen C, Kleijer M, Vermeul K, Weijer K, Veltman JA, von Lindern M, van der Schoot CE, Voermans C. Different Balance of Wnt Signaling in Adult and Fetal Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells Dev 2017; 25:934-47. [PMID: 27154244 DOI: 10.1089/scd.2015.0263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are applied as novel therapeutics for their regenerative and immune-suppressive capacities. Clinical applications, however, require extensive expansion of MSCs. Fetal bone marrow-derived MSCs (FBMSCs) proliferate faster than adult bone marrow-derived MSC (ABMSCs). To optimize expansion and function of MSC in general, we explored the differences between ABMSC and FBMSC. Gene expression profiling implicated differential expression of genes encoding proteins in the Wnt signaling pathway, including excreted inhibitors of Wnt signaling, particularly by ABMSC. Both MSC types had a similar basal level of canonical Wnt signaling. Abrogation of autocrine Wnt production by inhibitor of Wnt production-2 (IWP2) reduced canonical Wnt signaling and cell proliferation of FBMSCs, but hardly affected ABMSC. Addition of exogenous Wnt3a, however, induced expression of the target genes lymphocyte enhancer-binding factor (LEF) and T-cell factor (TCF) faster and at lower Wnt3a levels in ABMSC compared to FBMSC. Medium replacement experiments indicated that ABMSC produce an inhibitor of Wnt signaling that is effective on ABMSC itself but not on FBMSC, whereas FBMSC excrete (Wnt) factors that stimulate proliferation of ABMSC. In contrast, FBMSC were not able to support hematopoiesis, whereas ABMSC displayed hematopoietic support sensitive to IWP2, the inhibitor of Wnt factor excretion. In conclusion, ABMSC and FBMSC differ in their Wnt signature. While FBMSC produced factors, including Wnt signals, that enhanced MSC proliferation, ABMSC produced Wnt factors in a setting that enhanced hematopoietic support. Thus, further unraveling the molecular basis of this phenomenon may lead to improvement of clinical expansion protocols of ABMSCs.
Collapse
Affiliation(s)
- Maja M Paciejewska
- 1 Department of Hematopoiesis, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marijke W Maijenburg
- 1 Department of Hematopoiesis, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands .,2 Department of Experimental Immunohematology, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Christian Gilissen
- 3 Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Marion Kleijer
- 1 Department of Hematopoiesis, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Kim Vermeul
- 1 Department of Hematopoiesis, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Kees Weijer
- 4 Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joris A Veltman
- 3 Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Marieke von Lindern
- 1 Department of Hematopoiesis, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands .,5 Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - C Ellen van der Schoot
- 2 Department of Experimental Immunohematology, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands .,5 Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Carlijn Voermans
- 1 Department of Hematopoiesis, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands .,2 Department of Experimental Immunohematology, Sanquin Research, Amsterdam, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
185
|
Xu Q, Wang H, Li Y, Wang J, Lai Y, Gao L, Lei L, Yang G, Liao X, Fang X, Liu H, Li L. Plasma Sfrp5 levels correlate with determinants of the metabolic syndrome in Chinese adults. Diabetes Metab Res Rev 2017; 33. [PMID: 28303637 DOI: 10.1002/dmrr.2896] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/02/2016] [Accepted: 02/27/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND Secreted frizzled-related protein-5 (Sfrp5) is a novel adipokine, and it has been found to link insulin resistance with diabetes. Animal studies have revealed the role of Sfrp5 in regulating lipid and glucose metabolism. The objective of this study was to investigate the relationship between Sfrp5 and the metabolic syndrome (MetS) in a cross-sectional study. METHODS We conducted a series of cross-sectional studies of Chinese population including 194 control participants and 90 MetS patients. Circulating Sfrp5 concentrations were determined by ELISA. The relationships between circulating Sfrp5 levels and MetS components were assessed. RESULTS Circulating Sfrp5 was significantly lower in newly examined MetS patients than in control participants (49.1 ± 17.2 vs 61.6 ± 23.2 μg/L, P < .01). Circulating Sfrp5 correlated negatively with markers of adiposity (waist-to-hip ratio, body mass index, and free fatty acids, P < .001 or P < .05). Furthermore, Sfrp5 levels correlated with fasting insulin, 2 h-ins, fasting blood glucose, 2 h post-glucose load blood glucose, HbA1c , and homeostasis model assessment of insulin resistance. In addition, circulating Sfrp5 levels were closely associated with blood pressure, high-density lipoprotein cholesterol, triglycerides, and atherosclerotic index. Circulating concentrations of Sfrp5 decreased progressively with continued increases in the numbers of MetS components. The analysis of receiver operating characteristic curves revealed that the best cutoff value for circulating Sfrp5 to predict MetS was 46.8 μg/L (sensitivity 70.1 %, specificity 47.8 %, and AUC 0.66). CONCLUSIONS We conclude that Sfrp5 may be an adipokine that is associated with the pathogenesis of MetS in humans.
Collapse
Affiliation(s)
- Qiuyan Xu
- Key Laboratory of Diagnostic Medicine (Ministry of Education) and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hongyan Wang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yang Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jinzhi Wang
- Chongqing Key Lab of Child Infection and Immunity Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yerui Lai
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lin Gao
- Department of Endocrinology, the Affiliated Hospital, Zunyi Medical College, Chongqing, China
| | - Lu Lei
- Department of Endocrinology, the Affiliated Hospital, Zunyi Medical College, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xin Liao
- Department of Endocrinology, the Affiliated Hospital, Zunyi Medical College, Chongqing, China
| | - Xia Fang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hua Liu
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ling Li
- Key Laboratory of Diagnostic Medicine (Ministry of Education) and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
186
|
Carstensen-Kirberg M, Kannenberg JM, Huth C, Meisinger C, Koenig W, Heier M, Peters A, Rathmann W, Roden M, Herder C, Thorand B. Inverse associations between serum levels of secreted frizzled-related protein-5 (SFRP5) and multiple cardiometabolic risk factors: KORA F4 study. Cardiovasc Diabetol 2017; 16:109. [PMID: 28851362 PMCID: PMC5574239 DOI: 10.1186/s12933-017-0591-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/20/2017] [Indexed: 02/08/2023] Open
Abstract
Aims Secreted frizzled-related protein (Sfrp)5 has beneficial effects on insulin sensitivity, inflammation and cardiovascular risk in different mouse models, but its relevance for cardiometabolic diseases in humans is controversial. We aimed to characterise associations of circulating SFRP5 with cardiometabolic risk factors and prediabetes/type 2 diabetes in a large population-based cohort. Methods Cross-sectional associations between serum SFRP5 and cardiometabolic risk factors as well as prediabetes/type 2 diabetes were investigated in 1096 participants aged 62–81 years from the German KORA F4 study, of whom 666 had prediabetes or type 2 diabetes. Multivariable linear regression models were adjusted for potential confounders including age, sex, body mass index (BMI), lifestyle factors, lipids, hypertension, kidney function and myocardial infarction. Results Higher serum SFRP5 levels were associated with lower HbA1c, BMI, systolic blood pressure, estimated glomerular filtration rate and high-sensitivity C-reactive protein levels and with higher levels of high-density lipoprotein cholesterol and adiponectin in the fully adjusted model (all P < 0.009). In contrast, favourable associations between SFRP5 and glycaemia, insulin, insulin resistance and other cardiometabolic risk factors were attenuated after adjustment for BMI. Serum SFRP5 levels were lower in participants with prediabetes or type 2 diabetes [(median (25th; 75th percentile) 48.8 (35.5; 65.7) ng/ml] compared to participants with normal glucose tolerance [55.9 (42.6; 69.6) ng/ml] (P < 0.001). In the fully adjusted model, higher SFRP5 was associated with lower odds of prediabetes/type 2 diabetes [OR (95% CI) (0.72 (0.58; 0.89)) per doubling of SFRP5, P < 0.01]. Conclusions Higher serum SFRP5 was inversely associated with multiple risk factors for type 2 diabetes and cardiovascular diseases. However, BMI represents a strong confounder of some of these associations. Higher circulating SFRP5 was also associated with lower odds of prediabetes/type 2 diabetes, and this association was independent of BMI. Thus, SFRP5 emerges as novel biomarker that merits further research in the context of prevention of cardiometabolic diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12933-017-0591-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maren Carstensen-Kirberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Julia M Kannenberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Cornelia Huth
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christa Meisinger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Ludwig-Maximilians-Universität München, UNIKA-T Augsburg, Augsburg, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Margit Heier
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
187
|
Peterson YK, Nasarre P, Bonilla IV, Hilliard E, Samples J, Morinelli TA, Hill EG, Klauber-DeMore N. Frizzled-5: a high affinity receptor for secreted frizzled-related protein-2 activation of nuclear factor of activated T-cells c3 signaling to promote angiogenesis. Angiogenesis 2017; 20:615-628. [PMID: 28840375 DOI: 10.1007/s10456-017-9574-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/15/2017] [Indexed: 11/30/2022]
Abstract
Secreted frizzled-related protein 2 (SFRP2) is a pro-angiogenic factor expressed in the vasculature of a wide variety of human tumors, and modulates angiogenesis via the calcineurin-dependent nuclear factor of activated T-cells cytoplasmic 3 (NFATc3) pathway in endothelial cells. However, until now, SFRP2 receptor for this pathway was unknown. In the present study, we first used amino acid alignments and molecular modeling to demonstrate that SFRP2 interaction with frizzled-5 (FZD5) is typical of Wnt/FZD family members. To confirm this interaction, we performed co-immunofluorescence, co-immunoprecipitation, and ELISA binding assays, which demonstrated SFRP2/FZD5 binding. Functional knock-down studies further revealed that FZD5 is necessary for SFRP2-induced tube formation and intracellular calcium flux in endothelial cells. Using protein analysis on endothelial cell nuclear extracts, we also discovered that FZD5 is required for SFRP2-induced activation of NFATc3. Our novel findings reveal that FZD5 is a receptor for SFRP2 and mediates SFRP2-induced angiogenesis via calcineurin/NFATc3 pathway in endothelial cells.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Patrick Nasarre
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ingrid V Bonilla
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Eleanor Hilliard
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jennifer Samples
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas A Morinelli
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth G Hill
- Department of Public Health Science, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Nancy Klauber-DeMore
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
188
|
Bu Q, Li Z, Zhang J, Xu F, Liu J, Liu H. The crystal structure of full-length Sizzled from Xenopus laevis yields insights into Wnt-antagonistic function of secreted Frizzled-related proteins. J Biol Chem 2017; 292:16055-16069. [PMID: 28808056 DOI: 10.1074/jbc.m117.791756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/13/2017] [Indexed: 01/05/2023] Open
Abstract
The Wnt-signaling pathway is crucial to cell proliferation, differentiation, and migration. The secreted Frizzled-related proteins (sFRPs) represent the largest family of secreted Wnt inhibitors. However, their function in antagonizing Wnt signaling has remained somewhat controversial. Here, we report the crystal structure of Sizzled from Xenopus laevis, the first full-length structure of an sFRP. Tethered by an inter-domain disulfide bond and a linker, the N-terminal cysteine-rich domain (CRD) and the C-terminal netrin-like domain (NTR) of Sizzled are arranged in a tandem fashion, with the NTR domain occluding the groove of CRD for Wnt accessibility. A Dual-Luciferase assay demonstrated that removing the NTR domain and replacing the CRD groove residues His-116 and His-118 with aromatic residues may significantly enhance antagonistic function of Sizzled in inhibiting Wnt3A signaling. Sizzled is a monomer in solution, and Sizzled CRD exhibited different packing in the crystal, suggesting that sFRPs do not have a conserved CRD dimerization mode. Distinct from the canonical NTR domain, the Sizzled NTR adopts a novel α/β folding with two perpendicular helices facing the central mixed β-sheet. The subgroup of human sFRP1/2/5 and Sizzled should have a similar NTR domain that features a highly positively charged region, opposite the NTR-CRD interface, suggesting that the NTR domain in human sFRPs, at least sFRP1/2/5, is unlikely to bind to Wnt but is likely involved in biphasic Wnt signaling modulation. In summary, the Sizzled structure provides the first insights into how the CRD and the NTR domains relate to each other for modulating Wnt-antagonistic function of sFRPs.
Collapse
Affiliation(s)
- Qixin Bu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhiqiang Li
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Junying Zhang
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Fei Xu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jianmei Liu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Heli Liu
- From the State Key Laboratory of Natural and Biomimetic Drugs and .,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
189
|
Labrecque J, Laforest S, Michaud A, Biertho L, Tchernof A. Impact of Bariatric Surgery on White Adipose Tissue Inflammation. Can J Diabetes 2017; 41:407-417. [PMID: 28365202 DOI: 10.1016/j.jcjd.2016.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/23/2016] [Accepted: 12/05/2016] [Indexed: 12/14/2022]
|
190
|
Asslaber M, Schauer S, Gogg-Kamerer M, Bernhart E, Quehenberger F, Haybaeck J. Native Oligodendrocytes in Astrocytomas Might Inhibit Tumor Proliferation by WIF1 Expression. J Neuropathol Exp Neurol 2017; 76:16-26. [PMID: 28040794 DOI: 10.1093/jnen/nlw098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malignant astrocytoma remains incurable and rapidly fatal despite multimodal therapy. In particular, accelerated tumor cell heterogeneity often overcomes therapeutic effects of molecular protein targeting. This study aimed at identifying a gene with therapeutic potential that was consistently downregulated with astrocytoma progression. Analysis of the "Rembrandt" gene expression data revealed Wnt inhibitory factor 1 (WIF1) gene as the most promising candidate with tumor suppressor function. Consequently, 288 randomly selected tissue regions of astrocytoma specimens were investigated immunohistochemically with the aid of image analysis. This in situ approach identified tumor areas with numerous single cells strongly expressing Wif-1. In diffuse and anaplastic astrocytoma, the proliferation index was independent of the generally weak Wif-1 expression in tumor cells but was significantly correlated with the density of Wif-1-expressing single cells, subsequently characterized as native and non-neoplastic oligodendrocytes. Because these cells may contribute to inhibition of tumor cell proliferation by paracrine signaling, the endogenous protein Wif-1 may represent a promising therapeutic agent with expected minimal side effects. Moreover, we suggest that immunohistochemistry for Wif might be useful for discriminating between astrocytic tumors and reactive changes.
Collapse
Affiliation(s)
- Martin Asslaber
- Department of Neuropathology, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Department of Pathology, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Margit Gogg-Kamerer
- Department of Pathology, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Franz Quehenberger
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Johannes Haybaeck
- Department of Neuropathology, Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
191
|
Wnt5a is associated with right ventricular dysfunction and adverse outcome in dilated cardiomyopathy. Sci Rep 2017; 7:3490. [PMID: 28615692 PMCID: PMC5471231 DOI: 10.1038/s41598-017-03625-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/02/2017] [Indexed: 01/23/2023] Open
Abstract
The Wingless (Wnt) pathway has been implicated in the pathogenesis of dilated cardiomyopathy (DCM). To explore the role of Wnt modulators Wnt5a and sFRP3 in DCM patients we analyzed the expression of Wnt5a and sFRP3 in plasma and myocardium of DCM patients and evaluated their effects on NFAT luciferase activity in neonatal mouse cardiomyocytes. Elevated circulating Wnt5a (n = 102) was associated with increased pulmonary artery pressures, decreased right ventricular function and adverse outcome, with a stronger association in more severely affected patients. A higher Wnt5a/sFRP3 ratio (n = 25) was found in the right ventricle vs. the left ventricle and was correlated with NFAT activation as well as pulmonary artery pressures. Wnt5a induced NFAT activation and sFRP3 release in cardiomyocytes in vitro, while sFRP3 antagonized Wnt5a. Wnt5a is associated with right ventricular dysfunction and adverse outcome in DCM patients and may promote the progression of DCM through NFAT signaling.
Collapse
|
192
|
Chen Q, Ma JX. Canonical Wnt signaling in diabetic retinopathy. Vision Res 2017; 139:47-58. [PMID: 28545982 DOI: 10.1016/j.visres.2017.02.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 11/16/2022]
Abstract
Diabetic retinopathy (DR) is a common eye complication of diabetes, and the pathogenic mechanism of DR is still under investigation. The canonical Wnt signaling pathway is an evolutionarily conserved pathway that plays fundamental roles in embryogenesis and adult tissue homeostasis. Wnt signaling regulates expression of multiple genes that control retinal development and eye organogenesis, and dysregulated Wnt signaling plays pathophysiological roles in many ocular diseases, including DR. This review highlights recent progress in studies of Wnt signaling in DR. We discuss Wnt signaling regulation in the retina and dysregulation of Wnt signaling associated with ocular diseases with an emphasis on DR. We also discuss the therapeutic potential of modulating Wnt signaling in DR. Continued studies in this field will advance our current understanding on DR and contribute to the development of new treatments.
Collapse
Affiliation(s)
- Qian Chen
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Jian-Xing Ma
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
| |
Collapse
|
193
|
Abstract
OBJECTIVE In sepsis, the disease course of critically ill patients is often complicated by muscle failure leading to ICU-acquired weakness. The myokine transforming growth factor-β1 increases during inflammation and mediates muscle atrophy in vivo. We observed that the transforming growth factor-β1 inhibitor, secreted frizzled-related protein 2, was down-regulated in skeletal muscle of ICU-acquired weakness patients. We hypothesized that secreted frizzled-related protein 2 reduction enhances transforming growth factor-β1-mediated effects and investigated the interrelationship between transforming growth factor-β1 and secreted frizzled-related protein 2 in inflammation-induced atrophy. DESIGN Observational study and prospective animal trial. SETTING Two ICUs and research laboratory. PATIENTS/SUBJECTS Twenty-six critically ill patients with Sequential Organ Failure Assessment scores greater than or equal to 8 underwent a skeletal muscle biopsy from the vastus lateralis at median day 5 in ICU. Four patients undergoing elective orthopedic surgery served as controls. To search for signaling pathways enriched in muscle of ICU-acquired weakness patients, a gene set enrichment analysis of our recently published gene expression profiles was performed. Quantitative reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemistry were used to analyze secreted frizzled-related protein 2 expression and protein content. A mouse model of inflammation-induced skeletal muscle atrophy due to polymicrobial sepsis and cultured myocytes were used for mechanistic analyses. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Gene set enrichment analysis uncovered transforming growth factor-β1 signaling activation in vastus lateralis from ICU-acquired weakness patients. Muscular secreted frizzled-related protein 2 expression was reduced after 5 days in ICU. Likewise, muscular secreted frizzled-related protein 2 expression was decreased early and continuously in mice with inflammation-induced atrophy. In muscle, secreted frizzled-related protein 2 was predominantly contained in fast twitch/type II myofibers. Secreted frizzled-related protein 2 physically interacted and colocalized with transforming growth factor-β1 through its cysteine-rich domain. Finally, secreted frizzled-related protein 2 prevented transforming growth factor-β1-induced atrophy in C2C12 myotubes. CONCLUSIONS Muscular secreted frizzled-related protein 2 is down-regulated in ICU-acquired weakness patients and mice with inflammation-induced muscle atrophy. Decreased secreted frizzled-related protein 2 possibly establishes a positive feedback loop enhancing transforming growth factor-β1-mediated atrophic effects in inflammation-induced atrophy.
Collapse
|
194
|
Agostino M, Pohl SÖG, Dharmarajan A. Structure-based prediction of Wnt binding affinities for Frizzled-type cysteine-rich domains. J Biol Chem 2017; 292:11218-11229. [PMID: 28533339 DOI: 10.1074/jbc.m117.786269] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/09/2017] [Indexed: 11/06/2022] Open
Abstract
Wnt signaling pathways are of significant interest in development and oncogenesis. The first step in these pathways typically involves the binding of a Wnt protein to the cysteine-rich domain (CRD) of a Frizzled receptor. Wnt-Frizzled interactions can be antagonized by secreted Frizzled-related proteins (SFRPs), which also contain a Frizzled-like CRD. The large number of Wnts, Frizzleds, and SFRPs, as well as the hydrophobic nature of Wnt, poses challenges to laboratory-based investigations of interactions involving Wnt. Here, utilizing structural knowledge of a representative Wnt-Frizzled CRD interaction, as well as experimentally determined binding affinities for a selection of Wnt-Frizzled CRD interactions, we generated homology models of Wnt-Frizzled CRD interactions and developed a quantitative structure-activity relationship for predicting their binding affinities. The derived model incorporates a small selection of terms derived from scoring functions used in protein-protein docking, as well as an energetic term considering the contribution made by the lipid of Wnt to the Wnt-Frizzled binding affinity. Validation with an external test set suggests that the model can accurately predict binding affinity for 75% of cases and that the error associated with the predictions is comparable with the experimental error. The model was applied to predict the binding affinities of the full range of mouse and human Wnt-Frizzled and Wnt-SFRP interactions, indicating trends in Wnt binding affinity for Frizzled and SFRP CRDs. The comprehensive predictions made in this study provide the basis for laboratory-based studies of previously unexplored Wnt-Frizzled and Wnt-SFRP interactions, which, in turn, may reveal further Wnt signaling pathways.
Collapse
Affiliation(s)
- Mark Agostino
- From the Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences and Curtin Health Innovation Research Institute and .,Curtin Institute of Computation, Curtin University, Kent Street, Bentley, Western Australia 6102, Australia
| | - Sebastian Öther-Gee Pohl
- From the Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences and Curtin Health Innovation Research Institute and
| | - Arun Dharmarajan
- From the Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences and Curtin Health Innovation Research Institute and
| |
Collapse
|
195
|
Mend Your Fences: The Epithelial Barrier and its Relationship With Mucosal Immunity in Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2017; 4:33-46. [PMID: 28560287 PMCID: PMC5439240 DOI: 10.1016/j.jcmgh.2017.03.007] [Citation(s) in RCA: 445] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/20/2017] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium can be easily disrupted during gut inflammation as seen in inflammatory bowel disease (IBD), such as ulcerative colitis or Crohn's disease. For a long time, research into the pathophysiology of IBD has been focused on immune cell-mediated mechanisms. Recent evidence, however, suggests that the intestinal epithelium might play a major role in the development and perpetuation of IBD. It is now clear that IBD can be triggered by disturbances in epithelial barrier integrity via dysfunctions in intestinal epithelial cell-intrinsic molecular circuits that control the homeostasis, renewal, and repair of intestinal epithelial cells. The intestinal epithelium in the healthy individual represents a semi-permeable physical barrier shielding the interior of the body from invasions of pathogens on the one hand and allowing selective passage of nutrients on the other hand. However, the intestinal epithelium must be considered much more than a simple physical barrier. Instead, the epithelium is a highly dynamic tissue that responds to a plenitude of signals including the intestinal microbiota and signals from the immune system. This epithelial response to these signals regulates barrier function, the composition of the microbiota, and mucosal immune homeostasis within the lamina propria. The epithelium can thus be regarded as a translator between the microbiota and the immune system and aberrant signal transduction between the epithelium and adjacent immune cells might promote immune dysregulation in IBD. This review summarizes the important cellular and molecular barrier components of the intestinal epithelium and emphasizes the mechanisms leading to barrier dysfunction during intestinal inflammation.
Collapse
Key Words
- BMP, bone morphogenic protein
- CD, Crohn's disease
- Fz, frizzled
- HD, humans α-defensin
- IBD, inflammatory bowel disease
- IECs, intestinal epithelial cells
- IL, interleukin
- Immune-Epithelial Crosstalk
- Intestinal Epithelial Barrier
- Intestinal Inflammation
- JAMs, junctional adhesion molecules
- Lgr5, leucine rich repeat containing G-protein coupled receptor 5
- MARVEL, myelin and lymphocyte and related proteins for vesicle trafficking and membrane link
- MLCK, myosin light chain kinase
- NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOD-2, nucleotide-binding oligomerization domain-containing protein 2
- STAT, signal transducer and activator of transcription
- TAMP, tight junction–associated MARVEL protein
- TJ, tight junction
- TNF, tumor necrosis factor
- TSLP, thymic stromal lymphopoietin
- UC, ulcerative colitis
Collapse
|
196
|
Guo H, Lei M, Li Y, Liu Y, Tang Y, Xing Y, Deng F, Yang K. Paracrine Secreted Frizzled-Related Protein 4 Inhibits Melanocytes Differentiation in Hair Follicle. Stem Cells Int 2017; 2017:2857478. [PMID: 28337220 PMCID: PMC5350338 DOI: 10.1155/2017/2857478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/04/2017] [Accepted: 01/24/2017] [Indexed: 02/04/2023] Open
Abstract
Wnt signaling plays crucial role in regulating melanocyte stem cells/melanocyte differentiation in the hair follicle. However, how the Wnt signaling is balanced to be overactivated to control follicular melanocytes behavior remains unknown. Here, by using immunofluorescence staining, we showed that secreted frizzled-related protein 4 (sFRP4) is preferentially expressed in the skin epidermal cells rather than in melanocytes. By overexpression of sFRP4 in skin cells in vivo and in vitro, we found that sFRP4 attenuates activation of Wnt signaling, resulting in decrease of melanocytes differentiation in the regenerating hair follicle. Our findings unveiled a new regulator that involves modulating melanocytes differentiation through a paracrine mechanism in hair follicle, supplying a hope for potential therapeutic application to treat skin pigmentation disorders.
Collapse
Affiliation(s)
- Haiying Guo
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China
| | - Mingxing Lei
- “111” Project Laboratory of Biomechanics and Tissue Repair and Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuhong Li
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China
| | - Yingxin Liu
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China
| | - Yinhong Tang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China
| | - Yizhan Xing
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China
| | - Fang Deng
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China
| | - Ke Yang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China
- Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
197
|
Saad K, Theis S, Otto A, Luke G, Patel K. Detailed expression profile of the six Glypicans and their modifying enzyme, Notum during chick limb and feather development. Gene 2017; 610:71-79. [PMID: 28192166 DOI: 10.1016/j.gene.2017.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 11/29/2022]
Abstract
The development of vertebrate appendages, especially the limb and feather buds are orchestrated by numerous secreted signalling molecules including Sonic Hedgehog, Bone Morphogenetic Proteins, Fibroblast Growth Factors and Wnts. These proteins coordinate the growth and patterning of ectodermal and mesenchymal cells. The influence of signalling molecules is affected over large distances by their concentration (morphogen activity) but also at local levels by the presence of proteins that either attenuate or promote their activity. Glypicans are cell surface molecules that regulate the activity of the major secreted signalling molecules expressed in the limb and feather bud. Here we investigated the expression of all Glypicans during chick limb and feather development. In addition we profiled the expression of Notum, an enzyme that regulates Glypican activity. We show that five of the six Glypicans and Notum are expressed in a dynamic manner during the development of limbs and feathers. We also investigated the expression of key Glypicans and show that they are controlled by signalling molecules highlighting the presence of feedback loops. Lastly we show that Glypicans and Notum are expressed in a tissue specific manner in adult chicken tissues. Our results strongly suggest that the Glypicans and Notum have many as yet undiscovered roles to play during the development of vertebrate appendages.
Collapse
Affiliation(s)
- Kawakeb Saad
- School of Biological Sciences, University of Reading, Reading, UK
| | - Susanne Theis
- School of Biological Sciences, University of Reading, Reading, UK
| | - Anthony Otto
- School of Biological Sciences, University of Reading, Reading, UK
| | - Graham Luke
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
198
|
Li Q, Zuo LL, Lin YQ, Xu YO, Zhu JJ, Liao HH, Lin S, Xiong XR, Wang Y. Cloning and Expression of SFRP5 in Tibetan Chicken and its Relationship with IMF Deposition. Anim Biotechnol 2017; 27:231-7. [PMID: 27565866 DOI: 10.1080/10495398.2016.1178138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Secreted frizzled related protein 5 (SFRP5), an anti-inflammatory adipokine, is relevant to the adipocyte differentiation. In order to clarify its role in regulating intramuscular fat (IMF) deposition in Tibetan chicken, the full-length sequence of the Tibetan chicken SFRP5 gene was cloned. The relative expression of SFRP5 gene was detected using quantitative RT-PCR in various tissues of 154 days old Tibetan chicken, as well as in breast muscle, thigh muscle, and adipose tissue at different growth stages. The results showed that SFRP5 gene was expressed in all examined tissues but highly enriched in adipose tissue. Temporal expression profile showed that the expression of SFRP5 was gradually decreased in breast muscle, but was fluctuated in thigh muscle and adipose tissue with the growth of Tibetan chicken. Furthermore, correlation analysis demonstrated that the expression of SFRP5 in breast muscle, thigh muscle and adipose tissue was correlated with IMF content at different levels. The results indicated that Tibetan chicken SFRP5 is involved in IMF deposition.
Collapse
Affiliation(s)
- Qian Li
- a College of Life Science and Technology , Southwest University for Nationalities , Chengdu , China.,b Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation , Chengdu , China
| | - Lu-Lu Zuo
- a College of Life Science and Technology , Southwest University for Nationalities , Chengdu , China
| | - Ya-Qiu Lin
- a College of Life Science and Technology , Southwest University for Nationalities , Chengdu , China
| | - Ya-Ou Xu
- a College of Life Science and Technology , Southwest University for Nationalities , Chengdu , China
| | - Jiang-Jiang Zhu
- a College of Life Science and Technology , Southwest University for Nationalities , Chengdu , China.,b Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation , Chengdu , China
| | - Hong-Hai Liao
- a College of Life Science and Technology , Southwest University for Nationalities , Chengdu , China.,b Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation , Chengdu , China
| | - Sen Lin
- a College of Life Science and Technology , Southwest University for Nationalities , Chengdu , China.,b Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation , Chengdu , China
| | - Xian-Rong Xiong
- a College of Life Science and Technology , Southwest University for Nationalities , Chengdu , China
| | - Yong Wang
- a College of Life Science and Technology , Southwest University for Nationalities , Chengdu , China.,b Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation , Chengdu , China
| |
Collapse
|
199
|
Malcomson FC, Willis ND, McCallum I, Xie L, Ibero-Baraibar I, Leung WC, Kelly S, Bradburn DM, Belshaw NJ, Johnson IT, Mathers JC. Effects of supplementation with nondigestible carbohydrates on fecal calprotectin and on epigenetic regulation of SFRP1 expression in the large-bowel mucosa of healthy individuals. Am J Clin Nutr 2017; 105:400-410. [PMID: 28077379 PMCID: PMC5267298 DOI: 10.3945/ajcn.116.135657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hyperactive Wnt signaling is frequently observed in colorectal cancer. Higher intakes of dietary fiber [nondigestible carbohydrates (NDCs)] and the fermentation product butyrate are protective against colorectal cancer and may exert their preventative effects via modulation of the Wnt pathway. OBJECTIVES We investigated the effects of supplementing healthy individuals with 2 NDCs [resistant starch (RS) and polydextrose] on fecal calprotectin concentrations and Wnt pathway-related gene expression. In addition, we determined whether effects on secreted frizzled-related protein 1 (SFRP1) expression are mediated via the epigenetic mechanisms DNA methylation and microRNA expression. DESIGN In a randomized, double-blind, placebo-controlled trial (the Dietary Intervention, Stem cells and Colorectal Cancer (DISC) Study), 75 healthy participants were supplemented with RS and/or polydextrose or placebo for 50 d in a 2 × 2 factorial design. Pre- and postintervention stool samples and rectal mucosal biopsies were collected and used to quantify calprotectin and expression of 12 Wnt-related genes, respectively. The expression of 10 microRNAs predicted to target SFRP1 was also quantified by quantitative reverse transcriptase-polymerase chain reaction, and DNA methylation was quantified at 7 CpG sites within the SFRP1 promoter region by pyrosequencing. RESULTS NDC supplementation did not affect fecal calprotectin concentration. SFRP1 mRNA expression was reduced by both RS (P = 0.005) and polydextrose (P = 0.053). RS and polydextrose did not affect SFRP1 methylation or alter the expression of 10 microRNAs predicted to target SFRP1. There were no significant interactions between RS and polydextrose. CONCLUSIONS RS and polydextrose supplementation did not affect fecal calprotectin concentrations. Downregulation of SFRP1 with RS and polydextrose could result in increased Wnt pathway activity. However, effects on Wnt pathway activity and downstream functional effects in the healthy large-bowel mucosa remain to be investigated. The DISC Study was registered at clinicaltrials.gov as NCT01214681.
Collapse
Affiliation(s)
- Fiona C Malcomson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Naomi D Willis
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Iain McCallum
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Long Xie
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Idoia Ibero-Baraibar
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Wing C Leung
- Institute of Food Research, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Seamus Kelly
- Northumbria Healthcare National Health Service Foundation Trust, North Shields, United Kingdom; and
| | - D Michael Bradburn
- Northumbria Healthcare National Health Service Foundation Trust, Ashington, United Kingdom
| | - Nigel J Belshaw
- Institute of Food Research, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Ian T Johnson
- Institute of Food Research, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom;
| |
Collapse
|
200
|
The thyroid hormone nuclear receptors and the Wnt/β-catenin pathway: An intriguing liaison. Dev Biol 2017; 422:71-82. [DOI: 10.1016/j.ydbio.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/26/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
|