151
|
Spatiotemporal control of cardiac anisotropy using dynamic nanotopographic cues. Biomaterials 2016; 86:1-10. [PMID: 26874887 DOI: 10.1016/j.biomaterials.2016.01.062] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 11/21/2022]
Abstract
Coordinated extracellular matrix spatiotemporal reorganization helps regulate cellular differentiation, maturation, and function in vivo, and is therefore vital for the correct formation, maintenance, and healing of complex anatomic structures. In order to evaluate the potential for cultured cells to respond to dynamic changes in their in vitro microenvironment, as they do in vivo, the collective behavior of primary cardiac muscle cells cultured on nanofabricated substrates with controllable anisotropic topographies was studied. A thermally induced shape memory polymer (SMP) was employed to assess the effects of a 90° transition in substrate pattern orientation on the contractile direction and structural organization of cardiomyocyte sheets. Cardiomyocyte sheets cultured on SMPs exhibited anisotropic contractions before shape transition. 48 h after heat-induced shape transition, the direction of cardiomyocyte contraction reoriented significantly and exhibited a bimodal distribution, with peaks at ∼45 and -45° (P < 0.001). Immunocytochemical analysis highlighted the significant structural changes that the cells underwent in response to the shift in underlying topography. The presented results demonstrate that initial anisotropic nanotopographic cues do not permanently determine the organizational fate or contractile properties of cardiomyocytes in culture. Given the importance of surface cues in regulating primary and stem cell development, investigation of such tunable nanotopographies may have important implications for advancing cellular maturation and performance in vitro, as well as improving our understanding of cellular development in response to dynamic biophysical cues.
Collapse
|
152
|
Taking Aim at Moving Targets in Computational Cell Migration. Trends Cell Biol 2016; 26:88-110. [DOI: 10.1016/j.tcb.2015.09.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 01/07/2023]
|
153
|
Štorgel N, Krajnc M, Mrak P, Štrus J, Ziherl P. Quantitative Morphology of Epithelial Folds. Biophys J 2016; 110:269-77. [PMID: 26745429 PMCID: PMC4825108 DOI: 10.1016/j.bpj.2015.11.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/08/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
The shape of spatially modulated epithelial morphologies such as villi and crypts is usually associated with the epithelium-stroma area mismatch leading to buckling. We propose an alternative mechanical model based on intraepithelial stresses generated by differential tensions of apical, lateral, and basal sides of cells as well as on the elasticity of the basement membrane. We use it to theoretically study longitudinal folds in simple epithelia and we identify four types of corrugated morphologies: compact, invaginated, evaginated, and wavy. The obtained tissue contours and thickness profiles are compared to epithelial folds observed in invertebrates and vertebrates, and for most samples, the agreement is within the estimated experimental error. Our model establishes the groove-crest modulation of tissue thickness as a morphometric parameter that can, together with the curvature profile, be used to estimate the relative differential apicobasal tension in the epithelium.
Collapse
Affiliation(s)
- Nick Štorgel
- Jožef Stefan Institute, Ljubljana, Slovenia; Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | | | - Polona Mrak
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jasna Štrus
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Primož Ziherl
- Jožef Stefan Institute, Ljubljana, Slovenia; Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia; Erwin Schrödinger International Institute for Mathematical Physics, University of Vienna, Vienna, Austria
| |
Collapse
|
154
|
Soumya SS, Gupta A, Cugno A, Deseri L, Dayal K, Das D, Sen S, Inamdar MM. Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications. PLoS Comput Biol 2015; 11:e1004670. [PMID: 26691341 PMCID: PMC4686989 DOI: 10.1371/journal.pcbi.1004670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/23/2015] [Indexed: 11/26/2022] Open
Abstract
Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements. Epithelial and endothelial cells that line various cavities and the vasculature in our bodies, are tightly connected to each other and exist as sheets. Upon confinement in two-dimensional geometries, these cells exhibit rotational motion, which has also been observed in vivo and implicated in physiological processes. However, how this rotational motion is achieved remains unclear. We show that a simple rule wherein preferred direction of motion (i.e., polarization) of cells tends to align with the direction of their velocity is sufficient to induce such coherent movement in confined geometries. We also show that the number of cells within the confinement, the size of the tissue, cell motility and physical properties of the cell and cell-cell connections regulate this coherent motion, and the pattern of invasion when the confinement is relaxed.
Collapse
Affiliation(s)
- S S Soumya
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Animesh Gupta
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| | - Andrea Cugno
- DICAM-Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Luca Deseri
- DICAM-Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Kaushik Dayal
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Dibyendu Das
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Mandar M. Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail:
| |
Collapse
|
155
|
Physics of active jamming during collective cellular motion in a monolayer. Proc Natl Acad Sci U S A 2015; 112:15314-9. [PMID: 26627719 DOI: 10.1073/pnas.1510973112] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Although collective cell motion plays an important role, for example during wound healing, embryogenesis, or cancer progression, the fundamental rules governing this motion are still not well understood, in particular at high cell density. We study here the motion of human bronchial epithelial cells within a monolayer, over long times. We observe that, as the monolayer ages, the cells slow down monotonously, while the velocity correlation length first increases as the cells slow down but eventually decreases at the slowest motions. By comparing experiments, analytic model, and detailed particle-based simulations, we shed light on this biological amorphous solidification process, demonstrating that the observed dynamics can be explained as a consequence of the combined maturation and strengthening of cell-cell and cell-substrate adhesions. Surprisingly, the increase of cell surface density due to proliferation is only secondary in this process. This analysis is confirmed with two other cell types. The very general relations between the mean cell velocity and velocity correlation lengths, which apply for aggregates of self-propelled particles, as well as motile cells, can possibly be used to discriminate between various parameter changes in vivo, from noninvasive microscopy data.
Collapse
|
156
|
Sharma Y, Vargas DA, Pegoraro AF, Lepzelter D, Weitz DA, Zaman MH. Collective motion of mammalian cell cohorts in 3D. Integr Biol (Camb) 2015; 7:1526-33. [PMID: 26549557 DOI: 10.1039/c5ib00208g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Collective cell migration is ubiquitous in biology, from development to cancer; it occurs in complex systems comprised of heterogeneous cell types, signals and matrices, and requires large scale regulation in space and time. Understanding how cells achieve organized collective motility is crucial to addressing cellular and tissue function and disease progression. While current two-dimensional model systems recapitulate the dynamic properties of collective cell migration, quantitative three-dimensional equivalent model systems have proved elusive. To establish such a model system, we study cell collectives by tracking individuals within cell cohorts embedded in three dimensional collagen scaffolding. We develop a custom algorithm to quantify the temporal and spatial heterogeneity of motion in cell cohorts during motility events. In the absence of external driving agents, we show that these cohorts rotate in short bursts, <2 hours, and translate for up to 6 hours. We observe, track, and analyze three dimensional motion of cell cohorts composed of 3-31 cells, and pave a path toward understanding cell collectives in 3D as a complex emergent system.
Collapse
Affiliation(s)
- Yasha Sharma
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | |
Collapse
|
157
|
Starokozhko V, Abza GB, Maessen HC, Merema MT, Kuper F, Groothuis GMM. Viability, function and morphological integrity of precision-cut liver slices during prolonged incubation: Effects of culture medium. Toxicol In Vitro 2015; 30:288-99. [PMID: 26514934 DOI: 10.1016/j.tiv.2015.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/20/2015] [Accepted: 10/24/2015] [Indexed: 02/07/2023]
Abstract
Precision-cut liver slices (PCLS) are an ex vivo model for metabolism and toxicity studies. However, data on the maintenance of the morphological integrity of the various cell types in the slices during prolonged incubation are lacking. Therefore, our aims were to characterize morphological and functional changes in rat PCLS during five days of incubation in a rich medium, RegeneMed®, and a standard medium, Williams' Medium E. Although cells of all types in the slices remain viable, profound changes in morphology were observed, which were more prominent in RegeneMed®. Slices underwent notable fibrosis, bile duct proliferation and fat deposition. Slice thickness increased, resulting in necrotic areas, while slice diameter decreased, possibly indicating cell migration. An increased proliferation of parenchymal and non-parenchymal cells (NPCs) was observed. Glycogen, albumin and Cyp3a1 were maintained albeit to a different level in two media. In conclusion, both hepatocytes and NPCs remain viable and functional, enabling five-day toxicity studies. Tissue remodeling and formation of a new capsule-like cell lining around the slices are evident after 3–4 days. The differences in effects between media emphasize the importance of media selection and of the recognition of morphological changes in PCLS, when interpreting results from toxicological or pharmacological studies.
Collapse
Affiliation(s)
- Viktoriia Starokozhko
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Getahun B Abza
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Hedy C Maessen
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Marjolijn T Merema
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Frieke Kuper
- TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - Geny M M Groothuis
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
158
|
Zhang Z, Yu B, Gu Y, Zhou S, Qian T, Wang Y, Ding G, Ding F, Gu X. Fibroblast-derived tenascin-C promotes Schwann cell migration through β1-integrin dependent pathway during peripheral nerve regeneration. Glia 2015; 64:374-85. [DOI: 10.1002/glia.22934] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 09/28/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Zhanhu Zhang
- Model Animal Research Center, Nanjing University; Nanjing China
- Jiangsu Key Laboratory of Neuroregeneration; Co-Innovation Center of Neuroregeneration, Nantong University; Nantong China
| | - Bin Yu
- Jiangsu Key Laboratory of Neuroregeneration; Co-Innovation Center of Neuroregeneration, Nantong University; Nantong China
| | - Yun Gu
- Jiangsu Key Laboratory of Neuroregeneration; Co-Innovation Center of Neuroregeneration, Nantong University; Nantong China
| | - Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration; Co-Innovation Center of Neuroregeneration, Nantong University; Nantong China
| | - Tianmei Qian
- Jiangsu Key Laboratory of Neuroregeneration; Co-Innovation Center of Neuroregeneration, Nantong University; Nantong China
| | - Yongjun Wang
- Jiangsu Key Laboratory of Neuroregeneration; Co-Innovation Center of Neuroregeneration, Nantong University; Nantong China
| | - Guohui Ding
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration; Co-Innovation Center of Neuroregeneration, Nantong University; Nantong China
| | - Xiaosong Gu
- Model Animal Research Center, Nanjing University; Nanjing China
- Jiangsu Key Laboratory of Neuroregeneration; Co-Innovation Center of Neuroregeneration, Nantong University; Nantong China
| |
Collapse
|
159
|
Qin S, Clark RAF, Rafailovich MH. Establishing correlations in the en-mass migration of dermal fibroblasts on oriented fibrillar scaffolds. Acta Biomater 2015; 25:230-9. [PMID: 26117312 DOI: 10.1016/j.actbio.2015.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 06/14/2015] [Accepted: 06/23/2015] [Indexed: 01/11/2023]
Abstract
Wound healing proceeds via fibroblast migration along three dimensional fibrillar substrates with multiple angles between fibers. We have developed a technique for preparation of three dimensional fibrillar scaffolds with where the fiber diameters and the angles between adjacent fiber layers could be precisely controlled. Using the agarose droplet method we were able to make accurate determinations of the dependence of the migration speed, focal adhesion distribution, and nuclear deformation on the fiber diameter, fiber spacing, and angle between adjacent fiber layers. We found that on oriented single fiber layers, whose diameters exceeded 1 μm, large focal adhesion complexes formed in a linear arrangement along the fiber axis and cell motion was highly correlated. On multi layered scaffolds most of the focal adhesion sites reformed at the junction points and the migration speed was determined by the angle between adjacent fiber layers, which followed a parabolic function with a minimum at 30°. On these surfaces we observed a 25% increase in the number of focal adhesion points and a similar decrease in the degree of nuclear deformation, both phenomena associated with decreased mobility. These results underscore the importance of substrate morphology on the en-mass migration dynamics. STATEMENT OF SIGNIFICANCE En-mass fibroblast migration is an essential component of the wound healing process which can determine rate and scar formation. Yet, most publications on this topic have focused on single cell functions. Here we describe a new apparatus where we designed three dimensional fibrillar scaffolds with well controlled angles between junction points and highly oriented fiber geometries. We show that the motion of fibroblasts undergoing en-mass migration on these scaffolds can be controlled by the substrate topography. Significant differences in cell morphology and focal adhesions was found to exist between cells migrating on flat versus fibrillar scaffolds where the migration speed was found to be a function of the angle between fibers, the fiber diameter, and the distance between fibers.
Collapse
Affiliation(s)
- Sisi Qin
- Materials Sciences and Engineering Department, Stony Brook University, Stony Brook, NY, USA
| | - Richard A F Clark
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Miriam H Rafailovich
- Materials Sciences and Engineering Department, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
160
|
Szabó A, Mayor R. Cell traction in collective cell migration and morphogenesis: the chase and run mechanism. Cell Adh Migr 2015; 9:380-3. [PMID: 26267782 DOI: 10.1080/19336918.2015.1019997] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Directional collective cell migration plays an important role in development, physiology, and disease. An increasing number of studies revealed key aspects of how cells coordinate their movement through distances surpassing several cell diameters. While physical modeling and measurements of forces during collective cell movements helped to reveal key mechanisms, most of these studies focus on tightly connected epithelial cultures. Less is known about collective migration of mesenchymal cells. A typical example of such behavior is the migration of the neural crest cells, which migrate large distances as a group. A recent study revealed that this persistent migration is aided by the interaction between the neural crest and the neighboring placode cells, whereby neural crest chase the placodes via chemotaxis, but upon contact both populations undergo contact inhibition of locomotion and a rapid reorganization of cellular traction. The resulting asymmetric traction field of the placodes forces them to run away from the chasers. We argue that this chase and run interaction may not be specific only to the neural crest system, but could serve as the underlying mechanism for several morphogenetic processes involving collective cell migration.
Collapse
Affiliation(s)
- András Szabó
- a Department of Cell and Developmental Biology ; University College London ; London UK
| | - Roberto Mayor
- a Department of Cell and Developmental Biology ; University College London ; London UK
| |
Collapse
|
161
|
Invasion process of induced deep nodular endometriosis in an experimental baboon model: similarities with collective cell migration? Fertil Steril 2015; 104:491-7.e2. [DOI: 10.1016/j.fertnstert.2015.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 11/21/2022]
|
162
|
MA JIANGCHUN, CHENG PENG, HU YI, XUE YIXUE, LIU YUNHUI. Integrin α4 is involved in the regulation of glioma-induced motility of bone marrow mesenchymal stem cells. Oncol Rep 2015; 34:779-86. [DOI: 10.3892/or.2015.4012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/08/2015] [Indexed: 01/14/2023] Open
|
163
|
Rubinstein B, Pinto IM. Epithelia migration: a spatiotemporal interplay between contraction and adhesion. Cell Adh Migr 2015; 9:340-4. [PMID: 26176587 PMCID: PMC4955367 DOI: 10.1080/19336918.2015.1008329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 10/23/2022] Open
Abstract
Epithelial tissues represent 60% of the cells that form the human body and where more than 90% of all cancers derived. Epithelia transformation and migration involve altered cell contractile mechanics powered by an actomyosin-based cytoskeleton and influenced by cell-cell and cell-extracellular matrix interactions. A balance between contractile and adhesive forces regulates a large number of cellular and tissue properties crucial for epithelia migration and tumorigenesis. In this review, the forces driving normal epithelia transformation into highly motile and invasive cells and tissues will be discussed.
Collapse
|
164
|
Scianna M. An extended Cellular Potts Model analyzing a wound healing assay. Comput Biol Med 2015; 62:33-54. [DOI: 10.1016/j.compbiomed.2015.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/13/2015] [Accepted: 04/06/2015] [Indexed: 02/04/2023]
|
165
|
The regulatory roles of ROCK and MRCK kinases in the plasticity of cancer cell migration. Cancer Lett 2015; 361:185-96. [DOI: 10.1016/j.canlet.2015.03.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/29/2022]
|
166
|
Abstract
Swarming or collective motion of living entities is one of the most common and spectacular manifestations of living systems that have been extensively studied in recent years. A number of general principles have been established. The interactions at the level of cells are quite different from those among individual animals, therefore the study of collective motion of cells is likely to reveal some specific important features which we plan to overview in this paper. In addition to presenting the most appealing results from the quickly growing related literature we also deliver a critical discussion of the emerging picture and summarize our present understanding of collective motion at the cellular level. Collective motion of cells plays an essential role in a number of experimental and real-life situations. In most cases the coordinated motion is a helpful aspect of the given phenomenon and results in making a related process more efficient (e.g., embryogenesis or wound healing), while in the case of tumor cell invasion it appears to speed up the progression of the disease. In these mechanisms cells both have to be motile and adhere to one another, the adherence feature being the most specific to this sort of collective behavior. One of the central aims of this review is to present the related experimental observations and treat them in light of a few basic computational models so as to make an interpretation of the phenomena at a quantitative level as well.
Collapse
Affiliation(s)
- Előd Méhes
- Department of Biological Physics, Eötvös University, Budapest, Hungary.
| | | |
Collapse
|
167
|
Miron-Mendoza M, Graham E, Kivanany P, Quiring J, Petroll WM. The Role of Thrombin and Cell Contractility in Regulating Clustering and Collective Migration of Corneal Fibroblasts in Different ECM Environments. Invest Ophthalmol Vis Sci 2015; 56:2079-90. [PMID: 25736789 PMCID: PMC4373543 DOI: 10.1167/iovs.15-16388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/24/2015] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We previously reported that extracellular matrix composition (fibrin versus collagen) modulates the pattern of corneal fibroblast spreading and migration in 3-D culture. In this study, we investigate the role of thrombin and cell contractility in mediating these differences in cell behavior. METHODS To assess cell spreading, corneal fibroblasts were plated on top of fibrillar collagen and fibrin matrices. To assess 3-dimensional cell migration, compacted collagen matrices seeded with corneal fibroblasts were embedded inside acellular collagen or fibrin matrices. Constructs were cultured in serum-free media containing platelet-derived growth factor (PDGF), with or without thrombin, the Rho kinase inhibitor Y-27632, and/or the myosin II inhibitor blebbistatin. We used 3-dimensional and 4-dimensional imaging to assess cell mechanical behavior, connectivity and cytoskeletal organization. RESULTS Thrombin stimulated increased contractility of corneal fibroblasts. Thrombin also induced Rho kinase-dependent clustering of cells plated on top of compliant collagen matrices, but not on rigid substrates. In contrast, cells on fibrin matrices coalesced into clusters even when Rho kinase was inhibited. In nested matrices, cells always migrated independently through collagen, even in the presence of thrombin. In contrast, cells migrating into fibrin formed an interconnected network. Both Y-27632 and blebbistatin reduced the migration rate in fibrin, but cells continued to migrate collectively. CONCLUSIONS The results suggest that while thrombin-induced actomyosin contraction can induce clustering of fibroblasts plated on top of compliant collagen matrices, it does not induce collective cell migration inside 3-D collagen constructs. Furthermore, increased contractility is not required for clustering or collective migration of corneal fibroblasts interacting with fibin.
Collapse
Affiliation(s)
- Miguel Miron-Mendoza
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Eric Graham
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Pouriska Kivanany
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Jonathan Quiring
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - W Matthew Petroll
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
168
|
Barriga EH, Mayor R. Embryonic cell-cell adhesion: a key player in collective neural crest migration. Curr Top Dev Biol 2015; 112:301-23. [PMID: 25733144 DOI: 10.1016/bs.ctdb.2014.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell migration is essential for morphogenesis, adult tissue remodeling, wound healing, and cancer cell migration. Cells can migrate as individuals or groups. When cells migrate in groups, cell-cell interactions are crucial in order to promote the coordinated behavior, essential for collective migration. Interestingly, recent evidence has shown that cell-cell interactions are also important for establishing and maintaining the directionality of these migratory events. We focus on neural crest cells, as they possess extraordinary migratory capabilities that allow them to migrate and colonize tissues all over the embryo. Neural crest cells undergo an epithelial-to-mesenchymal transition at the same time than perform directional collective migration. Cell-cell adhesion has been shown to be an important source of planar cell polarity and cell coordination during collective movement. We also review molecular mechanisms underlying cadherin turnover, showing how the modulation and dynamics of cell-cell adhesions are crucial in order to maintain tissue integrity and collective migration in vivo. We conclude that cell-cell adhesion during embryo development cannot be considered as simple passive resistance to force, but rather participates in signaling events that determine important cell behaviors required for cell migration.
Collapse
Affiliation(s)
- Elias H Barriga
- Cell and Developmental Biology Department, University College London, London, United Kingdom
| | - Roberto Mayor
- Cell and Developmental Biology Department, University College London, London, United Kingdom.
| |
Collapse
|
169
|
Cellular memory of hypoxia elicits neuroblastoma metastasis and enables invasion by non-aggressive neighbouring cells. Oncogenesis 2015; 4:e138. [PMID: 25664931 PMCID: PMC4338426 DOI: 10.1038/oncsis.2014.52] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/03/2014] [Accepted: 11/18/2014] [Indexed: 12/20/2022] Open
Abstract
Therapies targeting cancer metastasis are challenging owing to the complexity of the metastatic process and the high number of effectors involved. Although tumour hypoxia has previously been associated with increased aggressiveness as well as resistance to radio- and chemotherapy, the understanding of a direct link between the level and duration of hypoxia and the individual steps involved in metastasis is still missing. Using live imaging in a chick embryo model, we have demonstrated that the exposure of neuroblastoma cells to 1% oxygen for 3 days was capable of (1) enabling cell migration towards blood vessels, (2) slowing down their velocity within blood vessels to facilitate extravasation and (3) promoting cell proliferation in primary and secondary sites. We have shown that cells do not have to be hypoxic anymore to exhibit these acquired capabilities as a long-term memory of prior hypoxic exposure is kept. Furthermore, non-hypoxic cells can be influenced by neighbouring hypoxic preconditioned cells and be entrained in the metastatic progression. The acquired aggressive phenotype relies on hypoxia-inducible factor (HIF)-dependent transcription of a number of genes involved in metastasis and can be impaired by HIF inhibition. Altogether, our results demonstrate the need to consider both temporal and spatial tumour heterogeneity because cells can 'remember' an earlier environment and share their acquired phenotype with their close neighbours. As a consequence, it is necessary to monitor the correct hypoxic markers to be able to predict the consequences of the cells' history on their behaviour and their potential response to therapies.
Collapse
|
170
|
Brown L, Wan H. Desmoglein 3: a help or a hindrance in cancer progression? Cancers (Basel) 2015; 7:266-86. [PMID: 25629808 PMCID: PMC4381258 DOI: 10.3390/cancers7010266] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 02/07/2023] Open
Abstract
Desmoglein 3 is one of seven desmosomal cadherins that mediate cell-cell adhesion in desmosomes. Desmosomes are the intercellular junctional complexes that anchor the intermediate filaments of adjacent cells and confer strong cell adhesion thus are essential in the maintenance of tissue architecture and structural integrity. Like adherens junctions, desmosomes function as tumour suppressors and are down regulated in the process of epithelial-mesenchymal transition and in tumour cell invasion and metastasis. However, recently several studies have shown that various desmosomal components, including desmoglein 3, are up-regulated in cancer with increased levels of expression correlating with the clinical stage of malignancy, implicating their potentiality to serve as a diagnostic and prognostic marker. Furthermore, in vitro studies have demonstrated that overexpression of desmoglein 3 in cancer cell lines activates several signal pathways that have an impact on cell morphology, adhesion and locomotion. These additional signalling roles of desmoglein 3 may not be associated to its adhesive function in desmosomes but rather function outside of the junctions, acting as a key regulator in the control of actin based cellular processes. This review will discuss recent advances which support the role of desmoglein 3 in cancer progression.
Collapse
Affiliation(s)
- Louise Brown
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Center for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Blizard Building, London E1 2AT, UK.
| | - Hong Wan
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Center for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Blizard Building, London E1 2AT, UK.
| |
Collapse
|
171
|
Venero Galanternik M, Kramer KL, Piotrowski T. Heparan Sulfate Proteoglycans Regulate Fgf Signaling and Cell Polarity during Collective Cell Migration. Cell Rep 2015; 10:414-428. [PMID: 25600875 PMCID: PMC4531098 DOI: 10.1016/j.celrep.2014.12.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/17/2014] [Accepted: 12/17/2014] [Indexed: 12/21/2022] Open
Abstract
Collective cell migration is a highly regulated morphogenetic movement during embryonic development and cancer invasion that involves the precise orchestration and integration of cell-autonomous mechanisms and environmental signals. Coordinated lateral line primordium migration is controlled by the regulation of chemokine receptors via compartmentalized Wnt/β-catenin and fibroblast growth factor (Fgf) signaling. Analysis of mutations in two exostosin glycosyltransferase genes (extl3 and ext2) revealed that loss of heparan sulfate (HS) chains results in a failure of collective cell migration due to enhanced Fgf ligand diffusion and loss of Fgf signal transduction. Consequently, Wnt/β-catenin signaling is activated ectopically, resulting in the subsequent loss of the chemokine receptor cxcr7b. Disruption of HS proteoglycan (HSPG) function induces extensive, random filopodia formation, demonstrating that HSPGs are involved in maintaining cell polarity in collectively migrating cells. The HSPGs themselves are regulated by the Wnt/β-catenin and Fgf pathways and thus are integral components of the regulatory network that coordinates collective cell migration with organ specification and morphogenesis.
Collapse
Affiliation(s)
- Marina Venero Galanternik
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Kenneth L Kramer
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
| | - Tatjana Piotrowski
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
172
|
Pelissier-Rota MA, Chartier NT, Jacquier-Sarlin MR. Dynamic Regulation of Adherens Junctions: Implication in Cell Differentiation and Tumor Development. INTERCELLULAR COMMUNICATION IN CANCER 2015:53-149. [DOI: 10.1007/978-94-017-7380-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
173
|
Prasad M, Wang X, He L, Cai D, Montell DJ. Border Cell Migration: A Model System for Live Imaging and Genetic Analysis of Collective Cell Movement. Methods Mol Biol 2015; 1328:89-97. [PMID: 26324431 DOI: 10.1007/978-1-4939-2851-4_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Border cell migration in the Drosophila ovary has emerged as a genetically tractable model for studying collective cell movement. Over many years border cell migration was exclusively studied in fixed samples due to the inability to culture stage 9 egg chambers in vitro. Although culturing late-stage egg chambers was long feasible, stage 9 egg chambers survived only briefly outside the female body. We identified culture conditions that support stage 9 egg chamber development and sustain complete migration of border cells ex vivo. This protocol enables one to compare the dynamics of egg chamber development in wild-type and mutant egg chambers using time-lapse microscopy and taking advantage of a multiposition microscope with a motorized imaging stage. In addition, this protocol has been successfully used in combination with fluorescence resonance energy transfer biosensors, photo-activatable proteins, and pharmacological agents and can be used with wide-field or confocal microscopes in either an upright or an inverted configuration.
Collapse
Affiliation(s)
- Mohit Prasad
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | | | | | | | | |
Collapse
|
174
|
Role of dermatopontin in re-epithelialization: implications on keratinocyte migration and proliferation. Sci Rep 2014; 4:7385. [PMID: 25486882 PMCID: PMC4260223 DOI: 10.1038/srep07385] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/19/2014] [Indexed: 01/04/2023] Open
Abstract
Re-epithelialization is a key event in wound healing and any impairment in that process is associated with various pathological conditions. Epidermal keratinocyte migration and proliferation during re-epithelialization is largely regulated by the cytokines and growth factors from the provisional matrix and dermis. Extracellular matrix consists of numerous growth factors which mediate cell migration via cell membrane receptors. Dermatopontin (DPT), a non-collagenous matrix protein highly expressed in dermis is known for its striking ability to promote cell adhesion. DPT also enhances the biological activity of transforming growth factor beta 1 which plays a central role in the process of wound healing. This study was designed to envisage the role of DPT in keratinocyte migration and proliferation along with its mRNA and protein expression pattern in epidermis. The results showed that DPT promotes keratinocyte migration in a dose dependant fashion but fail to induce proliferation. Further, PCR and immunodetection studies revealed that the mRNA and protein expression of DPT is considerably negligible in the epidermis in contrast to the dermis. To conclude, DPT has a profound role in wound healing specifically during re-epithelialization by promoting keratinocyte migration via paracrine action from the underlying dermis.
Collapse
|
175
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 740] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
176
|
Allena R, Maini PK. Reaction–Diffusion Finite Element Model of Lateral Line Primordium Migration to Explore Cell Leadership. Bull Math Biol 2014; 76:3028-50. [DOI: 10.1007/s11538-014-0043-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 11/05/2014] [Indexed: 02/04/2023]
|
177
|
Differentiated cell behavior: a multiscale approach using measure theory. J Math Biol 2014; 71:1049-79. [DOI: 10.1007/s00285-014-0846-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/26/2014] [Indexed: 12/19/2022]
|
178
|
Kasten A, Naser T, Brüllhoff K, Fiedler J, Müller P, Möller M, Rychly J, Groll J, Brenner RE. Guidance of mesenchymal stem cells on fibronectin structured hydrogel films. PLoS One 2014; 9:e109411. [PMID: 25329487 PMCID: PMC4198140 DOI: 10.1371/journal.pone.0109411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/29/2014] [Indexed: 12/21/2022] Open
Abstract
Designing of implant surfaces using a suitable ligand for cell adhesion to stimulate specific biological responses of stem cells will boost the application of regenerative implants. For example, materials that facilitate rapid and guided migration of stem cells would promote tissue regeneration. When seeded on fibronectin (FN) that was homogeneously immmobilized to NCO-sP(EO-stat-PO), which otherwise prevents protein binding and cell adhesion, human mesenchymal stem cells (MSC) revealed a faster migration, increased spreading and a more rapid organization of different cellular components for cell adhesion on fibronectin than on a glass surface. To further explore, how a structural organization of FN controls the behavior of MSC, adhesive lines of FN with varying width between 10 µm and 80 µm and spacings between 5 µm and 20 µm that did not allow cell adhesion were generated. In dependance on both line width and gaps, cells formed adjacent cell contacts, were individually organized in lines, or bridged the lines. With decreasing sizes of FN lines, speed and directionality of cell migration increased, which correlated with organization of the actin cytoskeleton, size and shape of the nuclei as well as of focal adhesions. Together, defined FN lines and gaps enabled a fine tuning of the structural organization of cellular components and migration. Microstructured adhesive substrates can mimic the extracellular matrix in vivo and stimulate cellular mechanisms which play a role in tissue regeneration.
Collapse
Affiliation(s)
- Annika Kasten
- Laboratory of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Tamara Naser
- Division for Biochemistry of Joint and Connective Tissue Diseases of the Orthopedic Department, University of Ulm, Ulm, Germany
| | - Kristina Brüllhoff
- DWI Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Jörg Fiedler
- Division for Biochemistry of Joint and Connective Tissue Diseases of the Orthopedic Department, University of Ulm, Ulm, Germany
| | - Petra Müller
- Laboratory of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Martin Möller
- DWI Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Joachim Rychly
- Laboratory of Cell Biology, Rostock University Medical Center, Rostock, Germany
- * E-mail:
| | - Jürgen Groll
- DWI Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
- Department and Chair of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Rolf E. Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases of the Orthopedic Department, University of Ulm, Ulm, Germany
| |
Collapse
|
179
|
Chinen LTD, Mello CAL, Abdallah EA, Ocea LM, Buim ME, Breve NM, Gasparini JL, Fanelli MF, Paterlini-Bréchot P. Isolation, detection, and immunomorphological characterization of circulating tumor cells (CTCs) from patients with different types of sarcoma using isolation by size of tumor cells: a window on sarcoma-cell invasion. Onco Targets Ther 2014; 7:1609-17. [PMID: 25258541 PMCID: PMC4172081 DOI: 10.2147/ott.s62349] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background Sarcomas are rare and heterogeneous neoplasms with poor prognosis that are thought to spread to distant organs mainly by hematogenous dissemination. However, circulating tumor cells (CTCs) have never been visualized in sarcomas. Objectives To investigate the feasibility of using isolation by size of tumor cells (ISET) for isolation, identification, and characterization of CTCs derived from patients with high-grade and metastatic sarcomas. Patients and methods We studied eleven patients with metastatic/recurrent or locally advanced soft-tissue sarcomas (STSs), six of whom had synovial sarcomas. Blood samples (8 mL) were collected from patients with advanced STS and treated by ISET, a marker- independent approach that isolates intact CTCs from blood, based on their larger size compared with leukocytes. CTCs were identified by cytomorphology and characterized by dual-color immunocytochemistry using antivimentin or anti-Pan CK, and anti-CD45. Results All patients with STS included in this study showed CTCs, with numbers ranging from two to 48 per 8 mL of blood. Conclusion This study shows the feasibility of isolating, identifying, and characterizing CTCs from patients with different types of sarcomas and the presence of circulating sarcoma cells in all the tested patients. Our results set the basis for further studies aimed at exploring the presence, number, and immunomolecular characteristics of CTCs in different types of sarcoma, and bring more light to the mechanisms of tumor invasion for these tumors.
Collapse
Affiliation(s)
| | - Celso A Lopes Mello
- Department of Clinical Oncology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Emne Ali Abdallah
- International Research Center, AC Camargo Cancer Center, São Paulo, Brazil
| | - Luciana Mm Ocea
- International Research Center, AC Camargo Cancer Center, São Paulo, Brazil
| | - Marcilei E Buim
- International Research Center, AC Camargo Cancer Center, São Paulo, Brazil
| | - Natália M Breve
- International Research Center, AC Camargo Cancer Center, São Paulo, Brazil
| | | | - Marcello F Fanelli
- Department of Clinical Oncology, AC Camargo Cancer Center, São Paulo, Brazil
| | | |
Collapse
|
180
|
Denes V, Lakk M, Makarovskiy A, Jakso P, Szappanos S, Graf L, Mandel L, Karadi I, Geck P. Metastasis blood test by flow cytometry:In vivocancer spheroids and the role of hypoxia. Int J Cancer 2014; 136:1528-36. [DOI: 10.1002/ijc.29155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 06/30/2014] [Accepted: 07/30/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Viktoria Denes
- Department of Integrative Physiology and Pathobiology; Tufts University; Boston MA 02111 USA
| | - Monika Lakk
- Department of Integrative Physiology and Pathobiology; Tufts University; Boston MA 02111 USA
| | | | - Pal Jakso
- Department of Pathology; School of Medicine, University of Pécs; Pécs 7624 Hungary
| | - Szabolcs Szappanos
- Department of Oncotherapy; School of Medicine, University of Pécs; Pécs 7624 Hungary
| | - Laszlo Graf
- Department of Internal Medicine III; Semmelweis University; Budapest 1125 Hungary
| | - Laszlo Mandel
- Department of Oncotherapy; School of Medicine, University of Pécs; Pécs 7624 Hungary
| | - Istvan Karadi
- Department of Internal Medicine III; Semmelweis University; Budapest 1125 Hungary
| | - Peter Geck
- Department of Integrative Physiology and Pathobiology; Tufts University; Boston MA 02111 USA
| |
Collapse
|
181
|
Shamloo A. Cell-cell interactions mediate cytoskeleton organization and collective endothelial cell chemotaxis. Cytoskeleton (Hoboken) 2014; 71:501-12. [DOI: 10.1002/cm.21185] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/28/2014] [Accepted: 07/21/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Amir Shamloo
- Center of Excellence in Energy Conversion (CEEC); Department of Mechanical Engineering, Sharif University of Technology; Tehran Iran
| |
Collapse
|
182
|
|
183
|
Wong MH, Xue A, Julovi SM, Pavlakis N, Samra JS, Hugh TJ, Gill AJ, Peters L, Baxter RC, Smith RC. Cotargeting of epidermal growth factor receptor and PI3K overcomes PI3K-Akt oncogenic dependence in pancreatic ductal adenocarcinoma. Clin Cancer Res 2014; 20:4047-4058. [PMID: 24895459 DOI: 10.1158/1078-0432.ccr-13-3377] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE PI3K-Akt is overexpressed in 50% to 70% of pancreatic ductal adenocarcinoma (PDAC). The hypothesis of this study is that PI3K and EGFR coinhibition may be effective in PDAC with upregulated PI3K-Akt signaling. EXPERIMENTAL DESIGN Multiple inhibitors were tested on five PDAC cell lines. EGFR inhibitor (EGFRi)-resistant cell lines were found to have significantly overexpressed AKT2 gene, total Akt, and pAkt. In vitro erlotinib-resistant (ER) cell models (BxPC-ER and PANC-ER) with highly constitutively active PI3K-Akt were developed. These and their respective parent cell lines were tested for sensitivity to erlotinib, IGFIR inhibitor NVP-AEW541 (AEW), and PI3K-alpha inhibitor NVP-BYL719 (BYL), alone or in combination, by RTK-phosphoarray, Western blotting, immunofluorescence, qRT-PCR, cell proliferation, cell cycle, clonogenic, apoptosis, and migration assays. Erlotinib plus BYL was tested in vivo. RESULTS Erlotinib acted synergistically with BYL in BxPC-ER (synergy index, SI = 1.71) and PANC-ER (SI = 1.44). Treatment of ER cell lines showing upregulated PI3K-Akt with erlotinib plus BYL caused significant G1 cell-cycle arrest (71%, P < 0.001; 58%, P = 0.003), inhibition of colony formation (69% and 72%, both P < 0.001), and necrosis and apoptosis (75% and 53%, both P < 0.001), more so compared with parent cell lines. In primary patient-derived tumor subrenal capsule (n = 90) and subcutaneous (n = 22) xenografts, erlotinib plus BYL significantly reduced tumor volume (P = 0.005). Strong pEGFR and pAkt immunostaining (2+/3+) was correlated with high and low responses, respectively, to both erlotinib and erlotinib plus BYL. CONCLUSION PDAC with increased expression of the PI3K-Akt pathway was susceptible to PI3K-EGFR coinhibition, suggesting oncogenic dependence. Erlotinib plus BYL should be considered for a clinical study in PDAC; further evaluation of pEGFR and pAkt expression as potential positive and negative predictive biomarkers is warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anthony J Gill
- Pathology, Royal North Shore Hospital, Sydney, Australia
| | | | - Robert C Baxter
- Hormones and Cancer Division, Kolling Institute of Medical Research, University of Sydney; Departments of
| | - Ross C Smith
- Cancer Surgery; Upper Gastrointestinal Surgery, and
| |
Collapse
|
184
|
Zhang X, Martinez D, Koledova Z, Qiao G, Streuli CH, Lu P. FGF ligands of the postnatal mammary stroma regulate distinct aspects of epithelial morphogenesis. Development 2014; 141:3352-62. [PMID: 25078648 DOI: 10.1242/dev.106732] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
FGF signaling is essential for mammary gland development, yet the mechanisms by which different members of the FGF family control stem cell function and epithelial morphogenesis in this tissue are not well understood. Here, we have examined the requirement of Fgfr2 in mouse mammary gland morphogenesis using a postnatal organ regeneration model. We found that tissue regeneration from basal stem cells is a multistep event, including luminal differentiation and subsequent epithelial branching morphogenesis. Basal cells lacking Fgfr2 did not generate an epithelial network owing to a failure in luminal differentiation. Moreover, Fgfr2 null epithelium was unable to undergo ductal branch initiation and elongation due to a deficiency in directional migration. We identified FGF10 and FGF2 as stromal ligands that control distinct aspects of mammary ductal branching. FGF10 regulates branch initiation, which depends on directional epithelial migration. By contrast, FGF2 controls ductal elongation, requiring cell proliferation and epithelial expansion. Together, our data highlight a pleiotropic role of Fgfr2 in stem cell differentiation and branch initiation, and reveal that different FGF ligands regulate distinct aspects of epithelial behavior.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Denisse Martinez
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Zuzana Koledova
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Guijuan Qiao
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Pengfei Lu
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
185
|
Rapanan JL, Cooper KE, Leyva KJ, Hull EE. Collective cell migration of primary zebrafish keratocytes. Exp Cell Res 2014; 326:155-65. [PMID: 24973510 DOI: 10.1016/j.yexcr.2014.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 06/14/2014] [Accepted: 06/17/2014] [Indexed: 01/16/2023]
Abstract
Fish keratocytes are an established model in single cell motility but little is known about their collective migration. Initially, sheets migrate from the scale at ~145 μm/h but over the course of 24h the rate of leading edge advance decreases to ~23 μm/h. During this period, leader cells retain their ability to migrate rapidly when released from the sheet and follower cell area increases. After the addition of RGD peptide, leader cell lamellae are lost, altering migratory forces within the sheet, resulting in rapid retraction. Leader and follower cell states interconvert within minutes with changes in cell-cell adhesions. Leader cells migrate as single cells when they detach from the leading edge and single cells appear to become leader cells if they rejoin the sheet. Follower cells rapidly establish leader cell morphology during closing of holes formed during sheet expansion and revert to follower cell morphology after hole-closure. Inhibition of Rho associated kinase releases leader cells and halts advancement of the leading edge suggesting an important role for the intercellular actomyosin cable at the leading edge. In addition, the presence of the stationary scale orients direction of sheet migration which is characterized by a more uniform advance of the leading edge than in some cell line systems. These data establish fish keratocyte explant cultures as a collective cell migration system and suggest that cell-cell interactions determine the role of keratocytes within the migrating sheet.
Collapse
Affiliation(s)
- Jose L Rapanan
- Biomedical Sciences Program, College of Health Sciences, Midwestern University, Glendale, AZ 85308, United States
| | - Kimbal E Cooper
- Biomedical Sciences Program, College of Health Sciences, Midwestern University, Glendale, AZ 85308, United States
| | - Kathryn J Leyva
- Department of Microbiology & Immunology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, United States
| | - Elizabeth E Hull
- Biomedical Sciences Program, College of Health Sciences, Midwestern University, Glendale, AZ 85308, United States
| |
Collapse
|
186
|
Abstract
The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle trafficking, and the cell cycle. The roles of Rho GTPases in single mesenchymal cell migration are well established and rely on Cdc42- and Rac-dependent cell protrusion of a leading edge, coupled to Rho-dependent contractility required to move the cell body forward. In cells migrating collectively, cell-cell junctions are maintained, and migrating leader cells are mechanically coupled to, and coordinate, migration with follower cells. Recent evidence suggests that Rho GTPases provide multifunctional input to collective cell polarization, cell-cell interaction, and migration. Here, we discuss the role of Rho GTPases in initiating and maintaining front-rear, apical-basal cell polarization, mechanotransduction, and cell-cell junction stability between leader and follower cells, and how these roles are integrated in collective migration. Thereby, spatiotemporal fine-tuning of Rho GTPases within the same cell and among cells in the cell group are crucial in controlling potentially conflicting, divergent cell adhesion and cytoskeletal functions to achieve supracellular coordination and mechanocoupling.
Collapse
Affiliation(s)
- Mirjam M Zegers
- Department of Cell Biology; Radboud University Medical Center; Nijmegen, the Netherlands
| | - Peter Friedl
- Department of Cell Biology; Radboud University Medical Center; Nijmegen, the Netherlands; David H. Koch Center for Applied Research of Genitourinary Cancers; Department of Genitourinary Medical Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; Cancer Genomics Centre Netherlands; Utrecht, the Netherlands
| |
Collapse
|
187
|
Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim Biophys Acta Gen Subj 2014; 1840:2386-95. [PMID: 24721714 DOI: 10.1016/j.bbagen.2014.03.020] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cancer invasion is a multi-step process which coordinates interactions between tumor cells with mechanotransduction towards the surrounding matrix, resulting in distinct cancer invasion strategies. Defined by context, mesenchymal tumors, including melanoma and fibrosarcoma, develop either single-cell or collective invasion modes, however, the mechanical and molecular programs underlying such plasticity of mesenchymal invasion programs remain unclear. METHODS To test how tissue anatomy determines invasion mode, spheroids of MV3 melanoma and HT1080 fibrosarcoma cells were embedded into 3D collagen matrices of varying density and stiffness and analyzed for migration type and efficacy with matrix metalloproteinase (MMP)-dependent collagen degradation enabled or pharmacologically inhibited. RESULTS With increasing collagen density and dependent on proteolytic collagen breakdown and track clearance, but independent of matrix stiffness, cells switched from single-cell to collective invasion modes. Conversion to collective invasion included gain of cell-to-cell junctions, supracellular polarization and joint guidance along migration tracks. CONCLUSIONS The density of the extracellulair matrix (ECM) determines the invasion mode of mesenchymal tumor cells. Whereas fibrillar, high porosity ECM enables single-cell dissemination, dense matrix induces cell-cell interaction, leader-follower cell behavior and collective migration as an obligate protease-dependent process. GENERAL SIGNIFICANCE These findings establish plasticity of cancer invasion programs in response to ECM porosity and confinement, thereby recapitulating invasion patterns of mesenchymal tumors in vivo. The conversion to collective invasion with increasing ECM confinement supports the concept of cell jamming as a guiding principle for melanoma and fibrosarcoma cells into dense tissue. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
|
188
|
Marcq P. Spatio-temporal dynamics of an active, polar, viscoelastic ring. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:29. [PMID: 24771233 DOI: 10.1140/epje/i2014-14029-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/31/2013] [Accepted: 02/14/2014] [Indexed: 06/03/2023]
Abstract
Constitutive equations for a one-dimensional, active, polar, viscoelastic liquid are derived by treating the strain field as a slow hydrodynamic variable. Taking into account the couplings between strain and polarity allowed by symmetry, the hydrodynamics of an active, polar, viscoelastic body include an evolution equation for the polarity field that generalizes the damped Kuramoto-Sivashinsky equation. Beyond thresholds of the active coupling coefficients between the polarity and the stress or the strain rate, bifurcations of the homogeneous state lead first to stationary waves, then to propagating waves of the strain, stress and polarity fields. I argue that these results are relevant to living matter, and may explain rotating actomyosin rings in cells and mechanical waves in epithelial cell monolayers.
Collapse
Affiliation(s)
- Philippe Marcq
- Physico-Chimie Curie, Institut Curie, Université Pierre et Marie Curie, 26 rue d'Ulm, F-75248, Paris Cedex 05, France,
| |
Collapse
|
189
|
Ekert JE, Johnson K, Strake B, Pardinas J, Jarantow S, Perkinson R, Colter DC. Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro--implication for drug development. PLoS One 2014; 9:e92248. [PMID: 24638075 PMCID: PMC3956916 DOI: 10.1371/journal.pone.0092248] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/20/2014] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures. Therefore, the goal of this study was to characterize the phenotypic and functional differences between lung tumor cells grown as 2D monolayer cultures, versus cells grown as 3D spheroids. Eight lung tumor cell lines, displaying varying levels of epidermal growth factor receptor (EGFR) and cMET protein expression, were used to develop a 3D spheroid cell culture model using low attachment U-bottom plates. The 3D spheroids were compared with cells grown in monolayer for 1) EGFR and cMET receptor expression, as determined by flow cytometry, 2) EGFR and cMET phosphorylation by MSD assay, and 3) cell proliferation in response to epidermal growth factor (EGF) and hepatocyte growth factor (HGF). In addition, drug responsiveness to EGFR and cMET inhibitors (Erlotinib, Crizotinib, Cetuximab [Erbitux] and Onartuzumab [MetMab]) was evaluated by measuring the extent of cell proliferation and migration. Data showed that EGFR and cMET expression is reduced at day four of untreated spheroid culture compared to monolayer. Basal phosphorylation of EGFR and cMET was higher in spheroids compared to monolayer cultures. Spheroids showed reduced EGFR and cMET phosphorylation when stimulated with ligand compared to 2D cultures. Spheroids showed an altered cell proliferation response to HGF, as well as to EGFR and cMET inhibitors, compared to monolayer cultures. Finally, spheroid cultures showed exceptional utility in a cell migration assay. Overall, the 3D spheroid culture changed the cellular response to drugs and growth factors and may more accurately mimic the natural tumor microenvironment.
Collapse
Affiliation(s)
- Jason E. Ekert
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
- * E-mail:
| | - Kjell Johnson
- Arbor Analytics, LLC, Ann Arbor, Michigan, United States of America
| | | | - Jose Pardinas
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
| | - Stephen Jarantow
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
| | - Robert Perkinson
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
| | - David C. Colter
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
| |
Collapse
|
190
|
Safferling K, Sütterlin T, Westphal K, Ernst C, Breuhahn K, James M, Jäger D, Halama N, Grabe N. Wound healing revised: a novel reepithelialization mechanism revealed by in vitro and in silico models. ACTA ACUST UNITED AC 2014; 203:691-709. [PMID: 24385489 PMCID: PMC3840932 DOI: 10.1083/jcb.201212020] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Experimental analysis and computational modeling of epidermal wound closure in 3D suggests an important role for surrounding tissue in determining epithelial cell movement and fate. Wound healing is a complex process in which a tissue’s individual cells have to be orchestrated in an efficient and robust way. We integrated multiplex protein analysis, immunohistochemical analysis, and whole-slide imaging into a novel medium-throughput platform for quantitatively capturing proliferation, differentiation, and migration in large numbers of organotypic skin cultures comprising epidermis and dermis. Using fluorescent time-lag staining, we were able to infer source and final destination of keratinocytes in the healing epidermis. This resulted in a novel extending shield reepithelialization mechanism, which we confirmed by computational multicellular modeling and perturbation of tongue extension. This work provides a consistent experimental and theoretical model for epidermal wound closure in 3D, negating the previously proposed concepts of epidermal tongue extension and highlighting the so far underestimated role of the surrounding tissue. Based on our findings, epidermal wound closure is a process in which cell behavior is orchestrated by a higher level of tissue control that 2D monolayer assays are not able to capture.
Collapse
Affiliation(s)
- Kai Safferling
- Hamamatsu Tissue Imaging and Analysis Center, BIOQUANT, and 2 Department of Medical Oncology, National Center for Tumor Diseases, University of Heidelberg, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Menko AS, Bleaken BM, Walker JL. Regional-specific alterations in cell-cell junctions, cytoskeletal networks and myosin-mediated mechanical cues coordinate collectivity of movement of epithelial cells in response to injury. Exp Cell Res 2014; 322:133-48. [PMID: 24397950 DOI: 10.1016/j.yexcr.2013.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/21/2013] [Accepted: 12/26/2013] [Indexed: 01/27/2023]
Abstract
This study investigates how epithelial cells moving together function to coordinate their collective movement to repair a wound. Using a lens ex vivo mock cataract surgery model we show that region-specific reorganization of cell-cell junctions, cytoskeletal networks and myosin function along apical and basal domains of an epithelium mediates the process of collective migration. An apical junctional complex composed of N-cadherin/ZO-1/myosin II linked to a cortical actin cytoskeleton network maintains integrity of the tissue during the healing process. These cells' basal domains often preceded their apical domains in the direction of movement, where an atypical N-cadherin/ZO-1 junction, linked to an actin stress fiber network rich in phosphomyosin, was prominent in cryptic lamellipodia. These junctions joined the protruding forward-moving lamellipodia to the back end of the cell moving directly in front of it. These were the only junctions detected in cryptic lamellipodia of lens epithelia migrating in response to wounding that could transmit the protrusive forces that drive collective movement. Both integrity of the epithelium and ability to effectively heal the wound was found to depend on myosin mechanical cues.
Collapse
Affiliation(s)
- A S Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States; Wills Vision Research Center at Jefferson, Philadelphia, PA 19107, United States
| | - B M Bleaken
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - J L Walker
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States; Wills Vision Research Center at Jefferson, Philadelphia, PA 19107, United States.
| |
Collapse
|
192
|
Jonkman JEN, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, Colarusso P. An introduction to the wound healing assay using live-cell microscopy. Cell Adh Migr 2014; 8:440-51. [PMID: 25482647 PMCID: PMC5154238 DOI: 10.4161/cam.36224] [Citation(s) in RCA: 439] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/17/2014] [Accepted: 08/25/2014] [Indexed: 12/13/2022] Open
Abstract
The wound healing assay is used in a range of disciplines to study the coordinated movement of a cell population. In this technical review, we describe the workflow of the wound healing assay as monitored by optical microscopy. Although the assay is straightforward, a lack of standardization in its application makes it difficult to compare results and reproduce experiments among researchers. We recommend general guidelines for consistency, including: (1) sample preparation including the creation of the gap, (2) microscope equipment requirements, (3) image acquisition, and (4) the use of image analysis to measure the gap size and its rate of closure over time. We also describe parameters that are specific to the particular research question, such as seeding density and matrix coatings. All of these parameters must be carefully controlled within a given set of experiments in order to achieve accurate and reproducible results.
Collapse
Affiliation(s)
- James E. N. Jonkman
- Advanced Optical Microscopy Facility;
University Health Network; Toronto, ON Canada
| | - Judith A. Cathcart
- Advanced Optical Microscopy Facility;
University Health Network; Toronto, ON Canada
| | - Feng Xu
- Advanced Optical Microscopy Facility;
University Health Network; Toronto, ON Canada
| | - Miria E. Bartolini
- Advanced Optical Microscopy Facility;
University Health Network; Toronto, ON Canada
| | - Jennifer E. Amon
- Live Cell Imaging Facility; Snyder Institute
for Chronic Diseases; University of Calgary; Calgary, AB
Canada
| | - Katarzyna M. Stevens
- Live Cell Imaging Facility; Snyder Institute
for Chronic Diseases; University of Calgary; Calgary, AB
Canada
| | - Pina Colarusso
- Live Cell Imaging Facility; Snyder Institute
for Chronic Diseases; University of Calgary; Calgary, AB
Canada
- Department of Physiology and Pharmacology;
University of Calgary; Calgary, AB Canada
| |
Collapse
|
193
|
Vedula SRK, Ravasio A, Anon E, Chen T, Peyret G, Ashraf M, Ladoux B. Microfabricated environments to study collective cell behaviors. Methods Cell Biol 2014; 120:235-52. [PMID: 24484669 DOI: 10.1016/b978-0-12-417136-7.00016-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Coordinated cell movements in epithelial layers are essential for proper tissue morphogenesis and homeostasis. Microfabrication techniques have proven to be very useful for studies of collective cell migration in vitro. In this chapter, we briefly review the use of microfabricated substrates in providing new insights into collective cell behaviors. We first describe the development of micropatterned substrates to study the influence of geometrical constraints on cell migration and coordinated movements. Then, we present an alternative method based on microfabricated pillar substrates to create well-defined gaps within cell sheets and study gap closure. We also provide a discussion that presents possible pitfalls and sheds light onto the important parameters that allow the study of long-term cell culture on substrates of well-defined geometries.
Collapse
Affiliation(s)
| | - Andrea Ravasio
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Ester Anon
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Diderot, and Unité Mixte de Recherche 7057 CNRS, Paris, France; Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Tianchi Chen
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Grégoire Peyret
- Institut Jacques Monod (IJM), CNRS UMR 7592 & Université Paris Diderot, Paris, France
| | - Mohammed Ashraf
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Institut Jacques Monod (IJM), CNRS UMR 7592 & Université Paris Diderot, Paris, France
| |
Collapse
|
194
|
Deka G, Okano K, Masuhara H, Li YK, Kao FJ. Metabolic variation of HeLa cells migrating on microfabricated cytophilic channels studied by the fluorescence lifetime of NADH. RSC Adv 2014. [DOI: 10.1039/c4ra06492e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This manuscript reports an in situ surface-modification of a substrate by laser ablation for monitoring the metabolic physiology of migrating cells through guided channels.
Collapse
Affiliation(s)
- Gitanjal Deka
- Institute of Biophotonics
- National Yang-Ming University
- Taipei, Taiwan
| | - Kazunori Okano
- Centre for Interdisciplinary Science
- National Chiao Tung University
- Tin-Ka Ping Photonics Centre
- Hsinchu 30010, Taiwan
| | - Hiroshi Masuhara
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao Tung University
- Tin-Ka Ping Photonics Centre
- Hsinchu 30010, Taiwan
| | - Yaw-Kuen Li
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao Tung University
- Tin-Ka Ping Photonics Centre
- Hsinchu 30010, Taiwan
| | - Fu-Jen Kao
- Institute of Biophotonics
- National Yang-Ming University
- Taipei, Taiwan
| |
Collapse
|
195
|
Rizqiawan A, Tobiume K, Okui G, Yamamoto K, Shigeishi H, Ono S, Shimasue H, Takechi M, Higashikawa K, Kamata N. Autocrine galectin-1 promotes collective cell migration of squamous cell carcinoma cells through up-regulation of distinct integrins. Biochem Biophys Res Commun 2013; 441:904-10. [PMID: 24211210 DOI: 10.1016/j.bbrc.2013.10.152] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 10/29/2013] [Indexed: 02/04/2023]
Abstract
We found that high galectin-1 (Gal-1) mRNA levels were associated with invasive squamous cell carcinoma (SCC) cells that expressed Snail, an epithelial-to-mesenchymal transition (EMT) regulator. Both Gal-1 overexpression and soluble Gal-1 treatment accelerated invasion and collective cell migration, along with activation of cdc42 and Rac. Soluble Gal-1 activated c-Jun N-terminal kinase to increase expression levels of integrins α2 and β5, which were essential for Gal-1 dependent collective cell migration and invasiveness. Soluble Gal-1 also increased the incidence of EMT in Snail-expressing SCC cells; these were a minor population with an EMT phenotype under growing conditions. Our findings indicate that soluble Gal-1 promotes invasiveness through enhancing collective cell migration and increasing the incidence of EMT.
Collapse
Affiliation(s)
- Andra Rizqiawan
- Department of Oral and Maxillofacial Surgery, Graduate School and Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Nobis M, Carragher NO, McGhee EJ, Morton JP, Sansom OJ, Anderson KI, Timpson P. Advanced intravital subcellular imaging reveals vital three-dimensional signalling events driving cancer cell behaviour and drug responses in live tissue. FEBS J 2013; 280:5177-97. [PMID: 23678945 DOI: 10.1111/febs.12348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/18/2022]
Abstract
The integration of signal transduction pathways plays a fundamental role in governing disease initiation, progression and outcome. It is therefore necessary to understand disease at the signalling level to enable effective treatment and to intervene in its progression. The recent extension of in vitro subcellular image-based analysis to live in vivo modelling of disease is providing a more complete picture of real-time, dynamic signalling processes or drug responses in live tissue. Intravital imaging offers alternative strategies for studying disease and embraces the biological complexities that govern disease progression. In the present review, we highlight how three-dimensional or live intravital imaging has uncovered novel insights into biological mechanisms or modes of drug action. Furthermore, we offer a prospective view of how imaging applications may be integrated further with the aim of understanding disease in a more physiological and functional manner within the framework of the drug discovery process.
Collapse
Affiliation(s)
- Max Nobis
- The Beatson Institute for Cancer Research, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
197
|
Allena R, Aubry D, Sharpe J. On the mechanical interplay between intra- and inter-synchronization during collective cell migration: a numerical investigation. Bull Math Biol 2013; 75:2575-99. [PMID: 24135793 DOI: 10.1007/s11538-013-9908-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
Collective cell migration is a fundamental process that takes place during several biological phenomena such as embryogenesis, immunity response, and tumorogenesis, but the mechanisms that regulate it are still unclear. Similarly to collective animal behavior, cells receive feedbacks in space and time, which control the direction of the migration and the synergy between the cells of the population, respectively. While in single cell migration intra-synchronization (i.e. the synchronization between the protrusion-contraction movement of the cell and the adhesion forces exerted by the cell to move forward) is a sufficient condition for an efficient migration, in collective cell migration the cells must communicate and coordinate their movement between each other in order to be as efficient as possible (i.e. inter-synchronization). Here, we propose a 2D mechanical model of a cell population, which is described as a continuum with embedded discrete cells with or without motility phenotype. The decomposition of the deformation gradient is employed to reproduce the cyclic active strains of each single cell (i.e. protrusion and contraction). We explore different modes of collective migration to investigate the mechanical interplay between intra- and inter-synchronization. The main objective of the paper is to evaluate the efficiency of the cell population in terms of covered distance and how the stress distribution inside the cohort and the single cells may in turn provide insights regarding such efficiency.
Collapse
Affiliation(s)
- R Allena
- EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), UPF, Barcelona, Spain,
| | | | | |
Collapse
|
198
|
Lara Rodriguez L, Schneider IC. Directed cell migration in multi-cue environments. Integr Biol (Camb) 2013; 5:1306-23. [DOI: 10.1039/c3ib40137e] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ian C. Schneider
- Department of Chemical and Biological Engineering, Iowa State University, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, USA
| |
Collapse
|
199
|
Viktorinová I, Dahmann C. Microtubule polarity predicts direction of egg chamber rotation in Drosophila. Curr Biol 2013; 23:1472-7. [PMID: 23831293 DOI: 10.1016/j.cub.2013.06.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/08/2013] [Accepted: 06/05/2013] [Indexed: 11/28/2022]
Abstract
Whole-tissue rotations have recently been recognized as a widespread morphogenetic process important for tissue elongation [1-4]. In Drosophila ovaries, elongation of the egg chamber involves a global rotation of the follicle epithelium along the anterior-posterior axis [5]. Individual egg chambers rotate either in a clockwise or counterclockwise direction; however, how the symmetry of egg chambers is broken to allow rotation remains unknown. Here we show that at the basal side of follicle cells, microtubules are preferentially aligned perpendicular to the anterior-posterior axis of the egg chamber. Microtubule depolymerization stalls egg chamber rotation and egg chamber elongation. The preferential alignment of microtubules and egg chamber rotation depend on the atypical cadherin Fat2 and the planar polarized Fat2 localization depends on intact microtubules. Moreover, by tracking microtubule plus-end growth in vivo using EB1::GFP, we find that microtubules are highly polarized in the plane of the follicle epithelium. Polarization of microtubules precedes the onset of egg chamber rotation and predicts the direction of rotation. Our data suggest a feedback amplification mechanism between Fat2 localization and microtubule polarity involved in breaking symmetry and directing egg chamber rotation.
Collapse
Affiliation(s)
- Ivana Viktorinová
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | | |
Collapse
|
200
|
N-cadherin regulates spatially polarized signals through distinct p120ctn and β-catenin-dependent signalling pathways. Nat Commun 2013; 4:1589. [PMID: 23481397 PMCID: PMC3602931 DOI: 10.1038/ncomms2560] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/29/2013] [Indexed: 12/18/2022] Open
Abstract
The spatial distribution of molecular signals within cells is crucial for cellular functions. Here, as a model to study the polarized spatial distribution of molecular activities, we used cells on micro-patterned strips of fibronectin with one end free and the other end contacting a neighboring cell. Phosphoinositide 3-kinase (PI3K) and the small GTPase Rac display greater activity at the free end, whereas myosin II light chain (MLC) and actin filaments are enriched near the intercellular junction. PI3K and Rac polarization depend specifically on the N-cadherin-p120ctn complex, whereas MLC and actin filament polarization depend on the N-cadherin-β-catenin complex. Integrins promote high PI3K/Rac activities at the free end, and the N-cadherin–p120ctn complex excludes integrin α5 at the junctions to suppress local PI3K and Rac activity. We hence conclude that N-cadherin couples with distinct effectors to polarize PI3K/Rac and MLC/actin filaments in migrating cells.
Collapse
|