151
|
Ettema M, Brurok B, Baumgart JK. Test-Retest Reliability of Physiological Variables During Submaximal Seated Upper-Body Poling in Able-Bodied Participants. Front Physiol 2021; 12:749356. [PMID: 34916954 PMCID: PMC8669804 DOI: 10.3389/fphys.2021.749356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose: To investigate the test–retest reliability of physiological variables across four different test days and four different submaximal exercise intensities during seated upper-body poling (UBP). Methods: Thirteen abled-bodied, upper-body trained men (age 29±3years; body mass 84±12kg; height 183±5cm) performed four submaximal 4-min stages of seated UBP on four separate test days. The four submaximal stages were set at individual power outputs corresponding to a rating of perceived exertion of 9, 11, 13, and 15. The absolute reliability for pairwise test-day comparisons of the physiological variables was investigated with the smallest detectable change percentage (%SDC) and the relative reliability with the interclass correlation coefficient (ICC). Results: Absolute and relative reliability across test-day comparisons and submaximal stages were moderate to excellent for all variables investigated (V̇O2 – %SDC range: 5–13%, ICC range: 0.93–0.99; HR – %SDC range: 6–9%, ICC range: 0.91–0.97) other than blood lactate, for which absolute reliability was poor and relative reliability highly variable (%SDC range: 26–69%, ICC range: 0.44–0.92). Furthermore, absolute and relative reliability were consistent across the low-to-moderate exercise intensity spectrum and across test days. Conclusion: Absolute and relative test–retest reliability were acceptable for all investigated physiological variables but blood lactate. The consistent test–retest reliability across the exercise intensity spectrum and across test days indicates that a familiarization period to the specific exercise modality may not be necessary. For generalizability, these findings need to be confirmed in athletes with a disability by future large-scale studies.
Collapse
Affiliation(s)
- Marlou Ettema
- Centre for Elite Sports Research, Department of Neuromedicine and Movement science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Berit Brurok
- Department of Physical Medicine and Rehabilitation, St. Olav's University Hospital, Trondheim, Norway
| | - Julia Kathrin Baumgart
- Centre for Elite Sports Research, Department of Neuromedicine and Movement science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
152
|
Baumgart JK, Ettema G, Griggs KE, Goosey-Tolfrey VL, Leicht CA. A Reappraisal of Ventilatory Thresholds in Wheelchair Athletes With a Spinal Cord Injury: Do They Really Exist? Front Physiol 2021; 12:719341. [PMID: 34899368 PMCID: PMC8664409 DOI: 10.3389/fphys.2021.719341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
The ventilatory threshold (VT) separates low- from moderate-intensity exercise, the respiratory compensation point (RCP) moderate- from high-intensity exercise. Both concepts assume breakpoints in respiratory data. However, the objective determination of the VT and RCP using breakpoint models during upper-body modality exercise in wheelchair athletes with spinal cord injury (SCI) has received little attention. Therefore, the aim of this study was to compare the fit of breakpoint models (i.e., two linear regression lines) with continuous no-breakpoint models (i.e., exponential curve/second-order polynomial) to respiratory data obtained during a graded wheelchair exercise test to exhaustion. These fits were compared employing adjusted R2, and blocked bootstrapping was used to derive estimates of a median and 95% confidence intervals (CI). V̇O2-V̇CO2 and V̇E/V̇O2-time data were assessed for the determination of the VT, and V̇CO2-V̇E and V̇E/V̇CO2-time data for the determination of the RCP. Data of 9 wheelchair athletes with tetraplegia and 8 with paraplegia were evaluated. On an overall group-level, there was an overlap in the adjusted R2 median ± 95% CI between the breakpoint and the no-breakpoint models for determining the VT (V̇O2-V̇CO2: 0.991 ± 0.003 vs. 0.990 ± 0.003; V̇E/V̇O2-time: 0.792 ± 0.101 vs. 0.782 ± 0.104, respectively) and RCP (V̇E-V̇CO2: 0.984 ± 0.004 vs. 0.984 ± 0.004; V̇E/V̇CO2-time: 0.729 ± 0.064 vs. 0.691 ± 0.063, respectively), indicating similar model fit. We offer two lines of reasoning: (1) breakpoints in these respiratory data exist but are too subtle to result in a significant difference in adjusted R2 between the investigated breakpoint and no-breakpoint models; (2) breakpoints do not exist, as has been argued previously.
Collapse
Affiliation(s)
- Julia Kathrin Baumgart
- Department of Neuromedicine and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gertjan Ettema
- Department of Neuromedicine and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Katy E Griggs
- The Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom.,Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Victoria Louise Goosey-Tolfrey
- The Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Christof Andreas Leicht
- The Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
153
|
Bei Y, Wang L, Ding R, Che L, Fan Z, Gao W, Liang Q, Lin S, Liu S, Lu X, Shen Y, Wu G, Yang J, Zhang G, Zhao W, Guo L, Xiao J. Animal exercise studies in cardiovascular research: Current knowledge and optimal design-A position paper of the Committee on Cardiac Rehabilitation, Chinese Medical Doctors' Association. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:660-674. [PMID: 34454088 PMCID: PMC8724626 DOI: 10.1016/j.jshs.2021.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/09/2021] [Accepted: 07/11/2021] [Indexed: 05/02/2023]
Abstract
Growing evidence has demonstrated exercise as an effective way to promote cardiovascular health and protect against cardiovascular diseases However, the underlying mechanisms of the beneficial effects of exercise have yet to be elucidated. Animal exercise studies are widely used to investigate the key mechanisms of exercise-induced cardiovascular protection. However, standardized procedures and well-established evaluation indicators for animal exercise models are needed to guide researchers in carrying out effective, high-quality animal studies using exercise to prevent and treat cardiovascular diseases. In our review, we present the commonly used animal exercise models in cardiovascular research and propose a set of standard procedures for exercise training, emphasizing the appropriate measurements and analysis in these chronic exercise models. We also provide recommendations for optimal design of animal exercise studies in cardiovascular research, including the choice of exercise models, control of exercise protocols, exercise at different stages of disease, and other considerations, such as age, sex, and genetic background. We hope that this position paper will promote basic research on exercise-induced cardiovascular protection and pave the way for successful translation of exercise studies from bench to bedside in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Lei Wang
- Department of Rehabilitation Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rongjing Ding
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Lin Che
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhiqing Fan
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing 163000, China
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qi Liang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Shenghui Lin
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuqin Shen
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Guifu Wu
- Department of Cardiology, Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-Sen University, Shenzhen 518033, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian Yang
- Department of Rehabilitation Medicine, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Guolin Zhang
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wei Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Lan Guo
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Junjie Xiao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
154
|
Mackey J, Horner K. What is known about the FTP 20 test related to cycling? A scoping review. J Sports Sci 2021; 39:2735-2745. [PMID: 34304689 DOI: 10.1080/02640414.2021.1955515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
Functional Threshold Power (FTP) in cycling is increasingly used in exercise prescription, particularly with the rise in use of home trainers and virtual exercise platforms. FTP testing does not require biological sampling and is considered a more practical test than others. This scoping review investigated what is known about the 20-minute FTP (FTP20) test. A three-step search strategy was used to identify studies in relevant databases (PubMed, CINAHL, SportDiscus, Google Scholar, Web of Science) and grey literature. Data were extracted and common themes identified which allowed for descriptive analysis and thematic summary. Fifteen studies were included. The primary focus fitted broadly into four themes: reliability, association with other physiological markers, other power-related concepts and performance prediction. The FTP20 test was reported as a reliable test. Studies investigating the relationship of FTP20 with other physiological markers and power-related concepts reported large limits of agreement suggesting parameters cannot be used interchangeably. Some findings indicate that FTP20 may be useful in performance prediction. The majority of studies involved trained male cyclists. Overall, existing literature on the FTP20 test is limited. Further investigation is needed to provide physiological justification for FTP20 and inform use in exercise prescription in a range of populations.
Collapse
Affiliation(s)
- Jon Mackey
- School of Public Health, Physiotherapy and Sport Science and Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Katy Horner
- School of Public Health, Physiotherapy and Sport Science and Institute for Sport and Health, University College Dublin, Dublin, Ireland
| |
Collapse
|
155
|
Moore K. A Coaching Perspective on Modern Training Metrics and Return from Injury and Illness. Phys Med Rehabil Clin N Am 2021; 33:173-186. [PMID: 34798998 DOI: 10.1016/j.pmr.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Guiding cyclists in their return from illness and injury can be managed in many ways. Understanding how cyclists use power-derived training metrics can give care providers a common language to aid in this return. A general understanding of these metrics may be used to monitor cyclists for signs of nonfunctional overreaching or overtraining. Understanding aspects of training and detraining, particularly hematological, is helpful in communicating fitness expectations. Three populations of cyclists are discussed in terms of their expected knowledge of these metrics, typical training volume and intensity, and relationship with a coach or coaches.
Collapse
Affiliation(s)
- Kolie Moore
- 132 S Main Street, White River Junction, VT 05001, USA.
| |
Collapse
|
156
|
Robin M, Nordez A, Dorel S. Analysis of elite road-cycling sprints in relation to maximal power-velocity-endurance profile: a longitudinal one-case study. Scand J Med Sci Sports 2021; 32:598-611. [PMID: 34800055 DOI: 10.1111/sms.14103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022]
Abstract
The aims of the present study were to characterize the mechanical output of final road sprints of an elite sprinter during international competitions in relation to his power-velocity-endurance characteristics and to investigate the relationship between this sprint performance and the power produced during preceding phases of the race. The sprinter performed a set of short and long sprints (5 to 15-s) on a cycle ergometer to determine his maximal power-velocity-endurance profile. Based on eleven races, the distribution of power throughout each race, peak and mean power (Ppeak and Pmean ) and associated pedaling rates (vPpeak and vPmean ) during the final sprint were analyzed. The power-velocity-endurance profile of the sprinter indicated that his theoeretical mean maximal power and corresponding optimal pedaling rate ranged from 20.0 W.kg-1 (124 rpm) for a 1-s sprint to 15.0 W.kg-1 (109 rpm) for 20 s. Race data showed that final road sprints were mainly performed on the ascending limb of the power-velocity relationship (vPpeak , 104 ± 8 and vPmean , 101 ± 8 rpm). Additionally, Ppeak and Pmean were lower than the theoretical maximal power determined from the power-velocity-endurance profile (9.9 ± 7.0% and 10.6 ± 9.8%, respectively), which highlighted a significant state of fatigue induced by the race. Finally, sprint power exhibited a high variability between races and was strongly related to the level of power produced during the last minute before the sprint. These findings show the importance of considering both the power-velocity-endurance qualities and the power demand of the last lead-up phase before the sprint in order to optimize final sprint performance.
Collapse
Affiliation(s)
- Maxime Robin
- Université de Nantes, Movement - Interactions - Performance, MIP, Nantes, EA, 4334, F-44000, France.,TotalEnergies Pro Cycling Team, Essarts-en-Bocage, France
| | - Antoine Nordez
- Université de Nantes, Movement - Interactions - Performance, MIP, Nantes, EA, 4334, F-44000, France.,Faculty of Health and Environmental Sciences, Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand.,Institut Universitaire de France (IUF)
| | - Sylvain Dorel
- Université de Nantes, Movement - Interactions - Performance, MIP, Nantes, EA, 4334, F-44000, France
| |
Collapse
|
157
|
Boden BP, Ahmed AE, Fine KM, Craven MJ, Deuster PA. Baseline Aerobic Fitness in High School and College Football Players: Critical for Prescribing Safe Exercise Regimens. Sports Health 2021; 14:490-499. [PMID: 34806472 DOI: 10.1177/19417381211058458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nontraumatic fatalities occur on a regular basis in high school (HS) and college football athletes, primarily in obese linemen performing high-intensity exercise. One contributing factor to these deaths may be a mismatch between baseline aerobic (cardiorespiratory) fitness and exercise regimens. HYPOTHESIS There is a wide range of aerobic fitness in HS and college football players. Body mass index (BMI) is a safe and simple method for estimating baseline aerobic fitness. STUDY DESIGN Retrospective cohort study. LEVEL OF EVIDENCE Level 3. METHODS A retrospective review was performed on 79 HS football athletes who had VO2Peak (mL·kg-1·min-1) measured during the offseason. Multivariate regression analysis was used to determine if BMI (obese, overweight, and normal; kg/m2), position played (linemen vs other), year in school (freshmen vs other), and/or race (African American vs White) were risk factors for poor aerobic fitness. A separate cohort of 135 (48 HS; 87 college) football athletes performed a 6-minute run test to determine speed (miles/min), extrapolate VO2Max, and calculate reference values for suggested upper threshold safe starting speeds (85% of maximum) for aerobic training based on BMI. The relationship between BMI and VO2Peak was assessed. The exercise regimens (speeds) of 2 collegiate football fatalities from the public domain were used to predict their VO2Max values. RESULTS Mean VO2Peak (mL·kg-1·min-1) was 38.5 ± 8.6 (range 19.1-60.6); when grouped by BMI, low scores (<40) were found in 87.5% of obese (32.4 ± 7.7), 47.8% of overweight (40.8 ± 7.6), and 45.2% of normal (41.4 ± 7.8) athletes. VO2Peak was significantly lower in linemen (32.8 ± 6.4; P = 0.007) compared with nonlineman (41.8 ± 7.9), and in obese players (by BMI; 32.4; P = 0.019) compared with nonobese players (41.4 ± 7.6), but did not differ by age, year in school, or race. Means for speed (min/mile) and extrapolated VO2Max (mL·kg-1·min-1) for the 6-minute run test by BMI groups were both significantly different (P = 0.001) for normal (7.0 ± 0.6; 51.1 ± 2.6), overweight (7.6 ± 0.8; 46.5 ± 3.2), and obese (8.9 ± 1.5; 36.8 ± 5.9) athletes. There was a significant negative correlation (r = -0.551; P = 0.001; R2 = 0.304) between VO2Peak and BMI. Safe starting speed recommendations for running 1 mile range from 7.3 to 12.1 min/mile for BMIs 20 to 40 kg/m2 for HS and college athletes. For the 2 fatalities (mean, BMI of 36.5 kg/m2) repetitive sprint speeds were 49 and 89% higher than our safe starting speeds for their BMI. CONCLUSION A large spectrum of baseline aerobic fitness was noted in HS and college football players. Obese players and linemen had statistically lower baseline aerobic fitness, a major risk factor for possible heat illness. BMI is an acceptable surrogate for VO2Peak and can be employed to develop safe training regimens without the need for a maximum fitness test, which can place the athlete at risk for a medical event. CLINICAL RELEVANCE Knowledge of BMI provides an estimate of baseline aerobic fitness and a foundation for prescribing safe, individualized exercise regimens.
Collapse
Affiliation(s)
- Barry P Boden
- The Orthopaedic Center, a Division of CAO, Rockville, Maryland
| | - Anwar E Ahmed
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Kenneth M Fine
- The Orthopaedic Center, a Division of CAO, Rockville, Maryland
| | | | - Patricia A Deuster
- Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
158
|
Nixon RJ, Kranen SH, Vanhatalo A, Jones AM. Steady-state
V
˙
O
2
above MLSS: evidence that critical speed better represents maximal metabolic steady state in well-trained runners. Eur J Appl Physiol 2021; 121:3133-3144. [PMID: 34351531 PMCID: PMC8505327 DOI: 10.1007/s00421-021-04780-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022]
Abstract
The metabolic boundary separating the heavy-intensity and severe-intensity exercise domains is of scientific and practical interest but there is controversy concerning whether the maximal lactate steady state (MLSS) or critical power (synonymous with critical speed, CS) better represents this boundary. We measured the running speeds at MLSS and CS and investigated their ability to discriminate speeds at whichV ˙ O 2 was stable over time from speeds at which a steady-stateV ˙ O 2 could not be established. Ten well-trained male distance runners completed 9-12 constant-speed treadmill tests, including 3-5 runs of up to 30-min duration for the assessment of MLSS and at least 4 runs performed to the limit of tolerance for assessment of CS. The running speeds at CS and MLSS were significantly different (16.4 ± 1.3 vs. 15.2 ± 0.9 km/h, respectively; P < 0.001). Blood lactate concentration was higher and increased with time at a speed 0.5 km/h higher than MLSS compared to MLSS (P < 0.01); however, pulmonaryV ˙ O 2 did not change significantly between 10 and 30 min at either MLSS or MLSS + 0.5 km/h. In contrast,V ˙ O 2 increased significantly over time and reachedV ˙ O 2 max at end-exercise at a speed ~ 0.4 km/h above CS (P < 0.05) but remained stable at a speed ~ 0.5 km/h below CS. The stability ofV ˙ O 2 at a speed exceeding MLSS suggests that MLSS underestimates the maximal metabolic steady state. These results indicate that CS more closely represents the maximal metabolic steady state when the latter is appropriately defined according to the ability to stabilise pulmonaryV ˙ O 2 .
Collapse
Affiliation(s)
- Rebekah J Nixon
- Sport and Health Sciences, University of Exeter, St. Luke's Campus, Heavitree Road, Exeter, EX12LU, UK
| | - Sascha H Kranen
- Sport and Health Sciences, University of Exeter, St. Luke's Campus, Heavitree Road, Exeter, EX12LU, UK
| | - Anni Vanhatalo
- Sport and Health Sciences, University of Exeter, St. Luke's Campus, Heavitree Road, Exeter, EX12LU, UK
| | - Andrew M Jones
- Sport and Health Sciences, University of Exeter, St. Luke's Campus, Heavitree Road, Exeter, EX12LU, UK.
| |
Collapse
|
159
|
Buehler PW, Swindle D, Pak DI, Ferguson SK, Majka SM, Karoor V, Moldovan R, Sintas C, Black J, Gentinetta T, Buzzi RM, Vallelian F, Wassmer A, Edler M, Bain J, Schu D, Hassell K, Nuss R, Schaer DJ, Irwin DC. Hemopexin dosing improves cardiopulmonary dysfunction in murine sickle cell disease. Free Radic Biol Med 2021; 175:95-107. [PMID: 34478834 PMCID: PMC9231663 DOI: 10.1016/j.freeradbiomed.2021.08.238] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 01/13/2023]
Abstract
Hemopexin (Hpx) is a crucial defense protein against heme liberated from degraded hemoglobin during hemolysis. High heme stress creates an imbalance in Hpx bioavailability, favoring heme accumulation and downstream pathophysiological responses leading to cardiopulmonary disease progression in sickle cell disease (SCD) patients. Here, we evaluated a model of murine SCD, which was designed to accelerate red blood cell sickling, pulmonary hypertension, right ventricular dysfunction, and exercise intolerance by exposure of the mice to moderate hypobaric hypoxia. The sequence of pathophysiology in this model tracks with circulatory heme accumulation, lipid oxidation, extensive remodeling of the pulmonary vasculature, and fibrosis. We hypothesized that Hpx replacement for an extended period would improve exercise tolerance measured by critical speed as a clinically meaningful therapeutic endpoint. Further, we sought to define the effects of Hpx on upstream cardiopulmonary function, histopathology, and tissue oxidation. Our data shows that tri-weekly administrations of Hpx for three months dose-dependently reduced heme exposure and pulmonary hypertension while improving cardiac pressure-volume relationships and exercise tolerance. Furthermore, Hpx administration dose-dependently attenuated pulmonary fibrosis and oxidative modifications in the lung and myocardium of the right ventricle. Observations in our SCD murine model are consistent with pulmonary vascular and right ventricular pathology at autopsy in SCD patients having suffered from severe pulmonary hypertension, right ventricular dysfunction, and sudden cardiac death. This study provides a translational evaluation supported by a rigorous outcome analysis demonstrating therapeutic proof-of-concept for Hpx replacement in SCD.
Collapse
Affiliation(s)
- Paul W Buehler
- University of Maryland, Department of Pathology and the Center for Blood Oxygen Transport, Department of Pediatrics, School of Medicine, Baltimore, MD, USA.
| | - Delaney Swindle
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - David I Pak
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Scott K Ferguson
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Kinesiology and Exercise Sciences, College of Natural and Health Sciences, University of Hawaii at Hilo, Hilo, HI, USA
| | - Susan M Majka
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Hospital, Denver, CO, USA
| | - Vijaya Karoor
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Radu Moldovan
- Advanced Light Microscopy Core, CU Anschutz Medical Campus, Aurora,, CO, USA
| | - Chantal Sintas
- Department of Pathology and Laboratory Medicine at Children's Hospital Colorado, USA
| | - Jennifer Black
- Department of Pathology, Pediatrics, University of Colorado School of Medicine, USA
| | | | - Raphael M Buzzi
- Division of Internal Medicine, University and University Hospital of Zurich, Zurich, Switzerland
| | - Florence Vallelian
- Division of Internal Medicine, University and University Hospital of Zurich, Zurich, Switzerland
| | | | - Monika Edler
- CSL Behring AG, Research and Development, Bern, Switzerland
| | - Joseph Bain
- CSL Behring AG, Innovations GmbH, Marburg, Germany
| | - Daniel Schu
- CSL Behring AG, Innovations GmbH, Marburg, Germany
| | - Kathryn Hassell
- Division of Hematology Colorado Sickle Cell Treatment and Research Center, School of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora,, CO, USA
| | - Rachelle Nuss
- Division of Hematology Colorado Sickle Cell Treatment and Research Center, School of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora,, CO, USA
| | - Dominik J Schaer
- Division of Internal Medicine, University and University Hospital of Zurich, Zurich, Switzerland
| | - David C Irwin
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
160
|
Keir DA, Iannetta D, Mattioni Maturana F, Kowalchuk JM, Murias JM. Identification of Non-Invasive Exercise Thresholds: Methods, Strategies, and an Online App. Sports Med 2021; 52:237-255. [PMID: 34694596 DOI: 10.1007/s40279-021-01581-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
During incremental exercise, two thresholds may be identified from standard gas exchange and ventilatory measurements. The first signifies the onset of blood lactate accumulation (the lactate threshold, LT) and the second the onset of metabolic acidosis (the respiratory compensation point, RCP). The ability to explain why these thresholds occur and how they are identified, non-invasively, from pulmonary gas exchange and ventilatory variables is fundamental to the field of exercise physiology and requisite to the understanding of core concepts including exercise intensity, assessment, prescription, and performance. This review is intended as a unique and comprehensive theoretical and practical resource for instructors, clinicians, researchers, lab technicians, and students at both undergraduate and graduate levels to facilitate the teaching, comprehension, and proper non-invasive identification of exercise thresholds. Specific objectives are to: (1) explain the underlying physiology that produces the LT and RCP; (2) introduce the classic non-invasive measurements by which these thresholds are identified by connecting variable profiles to underlying physiological behaviour; (3) discuss common issues that can obscure threshold detection and strategies to identify and mitigate these challenges; and (4) introduce an online resource to facilitate learning and standard practices. Specific examples of exercise gas exchange and ventilatory data are provided throughout to illustrate these concepts and a novel online application tool designed specifically to identify the estimated LT (θLT) and RCP is introduced. This application is a unique platform for learners to practice skills on real exercise data and for anyone to analyze incremental exercise data for the purpose of identifying θLT and RCP.
Collapse
Affiliation(s)
- Daniel A Keir
- School of Kinesiology, The University of Western Ontario, AHB 3G18, 1151 Richmond Street, London, ON, N6A 3K7, Canada. .,Toronto General Research Institute, Toronto General Hospital, Toronto, ON, Canada.
| | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | | | - John M Kowalchuk
- School of Kinesiology, The University of Western Ontario, AHB 3G18, 1151 Richmond Street, London, ON, N6A 3K7, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
161
|
Chartogne M, Leclercq A, Beaune B, Boyas S, Forestier C, Martin T, Thomas-Ollivier V, Landry S, Bourgeois H, Cojocarasu O, Pialoux V, Zanna O, Messonnier LA, Rahmani A, Morel B. Building a biopsychosocial model of cancer-related fatigue: the BIOCARE FActory cohort study protocol. BMC Cancer 2021; 21:1140. [PMID: 34688272 PMCID: PMC8542307 DOI: 10.1186/s12885-021-08831-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background Cancer-related fatigue (CRF) is the most common side effect of cancer and cancer treatment. CRF prevalence is up to 50% in breast cancer patients and can continue several years after cancer remission. This persistent subjective sense of exhaustion is multifactorial. Numerous parameters have been evidenced to be related to CRF across biological, physical, psychological, social and/or behavioral dimensions. Although CRF has been studied for many years, the majority of previous studies focused on only one dimension, i.e., physical function. Moreover, few studies investigated CRF longitudinally with repeated measures. These are the two main obstacles that limit the understanding of CRF mechanisms. The purpose of this study is to create a biopsychosocial model of CRF with simultaneous and longitudinal anthropometric, clinical, biological, physical, psychological and sociological parameters. Methods BIOCARE FActory is a multicentric prospective study that will consist of an 18-month follow-up of 200 women diagnosed with breast cancer. Four visits will be scheduled at diagnosis, after treatments, and 12 and 18 months after diagnosis. The same procedure will be followed for each visit. Each session will be composed of anthropometric data collection, a semi-structured interview, cognitive tests, postural control tests, neuromuscular fatigability tests and a cardiorespiratory fitness test. Clinical and biological data will be collected during medical follow-ups. Participants will also complete questionnaires to assess psychological aspects and quality of life and wear an actigraphy device. Using a structural equation modeling analysis (SEM), collected data will build a biopsychosocial model of CRF, including the physiological, biological, psychological, behavioral and social dimensions of CRF. Discussion This study aims to highlight the dynamics of CRF and its correlates from diagnosis to post treatment. SEM analysis could examine some relations between potential mechanisms and CRF. Thus, the biopsychosocial model will contribute to a better understanding of CRF and its underlying mechanisms from diagnosis to the aftermaths of cancer and its treatments. Trial registration This study is registered at ClinicalTrials.gov (NCT04391543), May 2020.
Collapse
Affiliation(s)
- M Chartogne
- Le Mans Université, Movement - Interactions - Performance, MIP, 4334, F-72000, Le Mans, EA, France.
| | - A Leclercq
- Le Mans Université, Movement - Interactions - Performance, MIP, 4334, F-72000, Le Mans, EA, France
| | - B Beaune
- Le Mans Université, Movement - Interactions - Performance, MIP, 4334, F-72000, Le Mans, EA, France
| | - S Boyas
- Le Mans Université, Movement - Interactions - Performance, MIP, 4334, F-72000, Le Mans, EA, France
| | - C Forestier
- Le Mans Université, Movement - Interactions - Performance, MIP, 4334, F-72000, Le Mans, EA, France
| | - T Martin
- Le Mans Université, Movement - Interactions - Performance, MIP, 4334, F-72000, Le Mans, EA, France
| | - V Thomas-Ollivier
- Nantes Université, Movement - Interactions - Performance, MIP, 4334, Nantes, EA, France
| | - S Landry
- Elsan-Clinique Victor Hugo, Centre Jean Bernard, Le Mans, France
| | - H Bourgeois
- Elsan-Clinique Victor Hugo, Centre Jean Bernard, Le Mans, France
| | - O Cojocarasu
- Centre Hospitalier Le Mans (CHM), Le Mans, France
| | - V Pialoux
- Univ Lyon, University Claude Bernard Lyon 1, Inter-University Laboratory of Human Movement Biology, Team Atherosclerosis Thrombosis & Physical Activity, EA7424, Lyon, France
| | - O Zanna
- Le Mans Université, VIPS2, EA4636, Le Mans, France
| | - L A Messonnier
- Laboratoire Interuniversitaire de Biologie de la Motricité, Univ. Savoie Mont Blanc, 7424, F-73000, Chambéry, EA, France
| | - A Rahmani
- Le Mans Université, Movement - Interactions - Performance, MIP, 4334, F-72000, Le Mans, EA, France
| | - B Morel
- Le Mans Université, Movement - Interactions - Performance, MIP, 4334, F-72000, Le Mans, EA, France.,Laboratoire Interuniversitaire de Biologie de la Motricité, Univ. Savoie Mont Blanc, 7424, F-73000, Chambéry, EA, France
| |
Collapse
|
162
|
Gorostiaga EM, Sánchez-Medina L, Garcia-Tabar I. Over 55 years of critical power: Fact or artifact? Scand J Med Sci Sports 2021; 32:116-124. [PMID: 34618981 DOI: 10.1111/sms.14074] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022]
Abstract
This report aims to generate an evidence-based debate of the Critical Power (CP), or its analogous Critical Speed (CS), concept. Race times of top Spanish runners were utilized to calculate CS based on three (1500-m to 5000-m; CS1.5-5km ) and four (1500-m to 10000-m; CS1.5-10km ) distance performances. Male running world records from 1000 to 5000-m (CS1-5km ), 1000 to 10,000-m (CS1-10km ), 1000-m to half marathon (CS1km-half marathon ), and 1000-m to marathon (CS1km-marathon ) distance races were also utilized for CS calculations. CS1.5-5km (19.62 km h-1 ) and CS1.5-10km (18.68 km h-1 ) were different (p < 0.01), but both approached the average race speed of the longest distance chosen in the model, and were remarkably homogeneous among subjects (97% ±1% and 98% ±1%, respectively). Similar results were obtained using the world records. CS values progressively declined, until reaching a CS1km-marathon value of 20.77 km h-1 (10% lower than CS1-5km ). Each CS value approached the average speed of the longest distance chosen in the model (96.4%-99.8%). A power function better fitted the speed-time relationship compared with the standardized hyperbolic function. However, the horizontal asymptote of a power function is zero. This better approaches the classical definition of CP: the power output that can be maintained almost indefinitely without exhaustion. Beyond any sophisticated mathematical calculation, CS corresponds to 95%-99% of the average speed of the longest distance chosen as an exercise trial. CP could be considered a mathematical artifact rather than an important endurance performance marker. In such a case, the consideration of CP as a physiological "gold-standard" should be reevaluated.
Collapse
Affiliation(s)
- Esteban M Gorostiaga
- Studies, Research and Sports Medicine Centre (CEIMD), Government of Navarre, Pamplona, Spain
| | - Luis Sánchez-Medina
- Studies, Research and Sports Medicine Centre (CEIMD), Government of Navarre, Pamplona, Spain
| | - Ibai Garcia-Tabar
- Society, Sports and Physical Exercise Research Group (GIKAFIT), Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biobara, GIKAFIT, Vitoria-Gasteiz, Basque Country, Spain
| |
Collapse
|
163
|
Follador L, de Borba EF, da Silva SG. Relationship of critical speed derived from a 10-minute submaximal treadmill test to 5-km and 10-km running performances. Appl Physiol Nutr Metab 2021; 47:159-164. [PMID: 34610270 DOI: 10.1139/apnm-2021-0374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been shown that the critical speed (CS) predicted from a perceptually self-regulated 10-min submaximal treadmill test (T10) is reliable and closely matches the CS estimated from conventional methods. To assess the relationship between the T10 and 5-km and 10-km running performances, 36 recreational runners (mean SD: age: 32.2 ± 6.2 years, height: 173.2 ± 7.3 cm, weight: 70.9 ± 8.8 kg, V̇O2max: 53.3 ± 6.1 mL.kg-1.min-1) performed a ramp incremental test and two T10 tests (the first as a familiarization trial). Results showed that the T10 CS (3.9 ± 0.44 m.s-1) was significantly correlated with runners' last 6 months best performances in 5-km (20.3 ± 2.7 min; r = -0.90) and 10-km (42.7 ± 5.7 min; r = -0.91), the V̇O2max (r = 0.75), the speed associated with the gas exchange threshold (vGET: 3.38 ± 0.36 m.s-1; r = 0.76), the speed associated with the second ventilatory threshold (vVT2: 4.15 ± 0.49 m.s-1; r = 0.84), and the speed associated with the V̇O2max (vV̇O2max: 4.78 ± 0.54 m.s-1; r = 0.87). Moreover, 79% and 83% of the variance in 5-km and 10-km performances could be explained solely by the CS predicted from the T10. Results evidenced the strong relationship and practical performance relevance of the T10 CS test. Novelty: • Critical speed derived from a 10-min submaximal treadmill test (T10) is significantly correlated with 5-km and 10-km running performances • The T10 critical speed test may represent a useful tool for assessing running performance capabilities.
Collapse
Affiliation(s)
- Lucio Follador
- Universidade Federal do Parana, 28122, Curitiba, Brazil;
| | | | | |
Collapse
|
164
|
Abstract
The design of the energy metabolism system in striated muscle remains a major area of investigation. Here, we review our current understanding and emerging hypotheses regarding the metabolic support of muscle contraction. Maintenance of ATP free energy, so called energy homeostasis, via mitochondrial oxidative phosphorylation is critical to sustained contractile activity, and this major design criterion is the focus of this review. Cell volume invested in mitochondria reduces the space available for generating contractile force, and this spatial balance between mitochondria acontractile elements to meet the varying sustained power demands across muscle types is another important design criterion. This is accomplished with remarkably similar mass-specific mitochondrial protein composition across muscle types, implying that it is the organization of mitochondria within the muscle cell that is critical to supporting sustained muscle function. Beyond the production of ATP, ubiquitous distribution of ATPases throughout the muscle requires rapid distribution of potential energy across these large cells. Distribution of potential energy has long been thought to occur primarily through facilitated metabolite diffusion, but recent analysis has questioned the importance of this process under normal physiological conditions. Recent structural and functional studies have supported the hypothesis that the mitochondrial reticulum provides a rapid energy distribution system via the conduction of the mitochondrial membrane potential to maintain metabolic homeostasis during contractile activity. We extensively review this aspect of the energy metabolism design contrasting it with metabolite diffusion models and how mitochondrial structure can play a role in the delivery of energy in the striated muscle.
Collapse
Affiliation(s)
- Brian Glancy
- Muscle Energetics Laboratory, National Heart, Lung, and Blood Insititute and National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Insititute, Bethesda, Maryland
| | - Robert S Balaban
- Muscle Energetics Laboratory, National Heart, Lung, and Blood Insititute and National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Insititute, Bethesda, Maryland
| |
Collapse
|
165
|
Pinto-Bernal MJ, Cifuentes CA, Perdomo O, Rincón-Roncancio M, Múnera M. A Data-Driven Approach to Physical Fatigue Management Using Wearable Sensors to Classify Four Diagnostic Fatigue States. SENSORS (BASEL, SWITZERLAND) 2021; 21:6401. [PMID: 34640722 PMCID: PMC8513020 DOI: 10.3390/s21196401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023]
Abstract
Physical exercise contributes to the success of rehabilitation programs and rehabilitation processes assisted through social robots. However, the amount and intensity of exercise needed to obtain positive results are unknown. Several considerations must be kept in mind for its implementation in rehabilitation, as monitoring of patients' intensity, which is essential to avoid extreme fatigue conditions, may cause physical and physiological complications. The use of machine learning models has been implemented in fatigue management, but is limited in practice due to the lack of understanding of how an individual's performance deteriorates with fatigue; this can vary based on physical exercise, environment, and the individual's characteristics. As a first step, this paper lays the foundation for a data analytic approach to managing fatigue in walking tasks. The proposed framework establishes the criteria for a feature and machine learning algorithm selection for fatigue management, classifying four fatigue diagnoses states. Based on the proposed framework and the classifier implemented, the random forest model presented the best performance with an average accuracy of ≥98% and F-score of ≥93%. This model was comprised of ≤16 features. In addition, the prediction performance was analyzed by limiting the sensors used from four IMUs to two or even one IMU with an overall performance of ≥88%.
Collapse
Affiliation(s)
- Maria J. Pinto-Bernal
- Department of Biomedical Engineering, Colombian School of Engineering Julio Garavito, Bogotá 111166, Colombia; (M.J.P.-B.); (M.M.)
| | - Carlos A. Cifuentes
- Department of Biomedical Engineering, Colombian School of Engineering Julio Garavito, Bogotá 111166, Colombia; (M.J.P.-B.); (M.M.)
| | - Oscar Perdomo
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111711, Colombia;
| | | | - Marcela Múnera
- Department of Biomedical Engineering, Colombian School of Engineering Julio Garavito, Bogotá 111166, Colombia; (M.J.P.-B.); (M.M.)
| |
Collapse
|
166
|
Pethick J, Winter SL, Burnley M. Physiological complexity: influence of ageing, disease and neuromuscular fatigue on muscle force and torque fluctuations. Exp Physiol 2021; 106:2046-2059. [PMID: 34472160 DOI: 10.1113/ep089711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Physiological complexity in muscle force and torque fluctuations, specifically the quantification of complexity, how neuromuscular complexityis altered by perturbations and the potential mechanism underlying changes in neuromuscular complexity. What advances does it highlight? The necessity to calculate both magnitude- and complexity-based measures for the thorough evaluation of force/torque fluctuations. Also the need for further research on neuromuscular complexity, particularly how it relates to the performance of functional activities (e.g. manual dexterity, balance, locomotion). ABSTRACT Physiological time series produce inherently complex fluctuations. In the last 30 years, methods have been developed to characterise these fluctuations, and have revealed that they contain information about the function of the system producing them. Two broad classes of metrics are used: (1) those which quantify the regularity of the signal (e.g. entropy metrics); and (2) those which quantify the fractal properties of the signal (e.g. detrended fluctuation analysis). Using these techniques, it has been demonstrated that ageing results in a loss of complexity in the time series of a multitude of signals, including heart rate, respiration, gait and, crucially, muscle force or torque output. This suggests that as the body ages, physiological systems become less adaptable (i.e. the systems' ability to respond rapidly to a changing external environment is diminished). More recently, it has been shown that neuromuscular fatigue causes a substantial loss of muscle torque complexity, a process that can be observed in a few minutes, rather than the decades it requires for the same system to degrade with ageing. The loss of torque complexity with neuromuscular fatigue appears to occur exclusively above the critical torque (at least for tasks lasting up to 30 min). The loss of torque complexity can be exacerbated with previous exercise of the same limb, and reduced by the administration of caffeine, suggesting both peripheral and central mechanisms contribute to this loss. The mechanisms underpinning the loss of complexity are not known but may be related to altered motor unit behaviour as the muscle fatigues.
Collapse
Affiliation(s)
- Jamie Pethick
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Samantha L Winter
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Mark Burnley
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, UK
| |
Collapse
|
167
|
Li CC, Chou YJ, Shun SC. The Relationship Between Muscle Strength and Body Composition Measures and Cancer-Related Fatigue: A Systematic Review and Meta-Analysis. Oncol Nurs Forum 2021; 48:558-576. [PMID: 34411084 DOI: 10.1188/21.onf.558-576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PROBLEM IDENTIFICATION Cancer-related fatigue (CRF) substantially affects daily living and quality of life, but objective CRF measures remain limited. This review aimed to identify the correlation between muscle strength and body composition measures and CRF, as well as potential objective indicators for assessing CRF. LITERATURE SEARCH PubMed®, MEDLINE®, CINAHL®/PsycINFO®, and Embase® were searched for studies published from January 2000 to January 2021. DATA EVALUATION Study selection and quality assessment were conducted using the Critical Appraisals Skills Programme checklist and the Strengthening the Reporting of Observational Studies in Epidemiology statement. Comprehensive Meta-Analysis software was used to perform meta-analysis. SYNTHESIS 25 studies were selected, and 19 measures were analyzed. CRF negatively correlated with hand grip strength, knee extensor strength, and the sit-to-stand test. No significant correlation was found between body composition measures and CRF. IMPLICATIONS FOR NURSING The evidence suggests that muscle strength measures may be potential indicators for CRF assessment. Combining objective and subjective CRF assessments could assist clinicians in evaluating the effectiveness of CRF interventions more accurately.
Collapse
|
168
|
Determining Validity of Critical Power Estimated Using a Three-Minute All-Out Test in Hot Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179193. [PMID: 34501781 PMCID: PMC8431074 DOI: 10.3390/ijerph18179193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the effects of heat on the validity of end-test power (EP) derived from a 3-min all-out test (3MT), which is considered as an alternative method for determining the conventional critical power. Twelve male cyclists were required to perform incremental exercise tests (IET) and 3MTs in both high temperature (HT; 35 °C) and thermoneutral temperature (NT; 22 °C) environments. Maximal oxygen uptake (VO2max), and first and second ventilatory thresholds (VT1 and VT2, respectively) against the power output (wVO2max, wVT1, and wVT2) were measured during IETs. EP was recorded during the 3MTs. A significant correlation was observed between wVT2 and EP under NT (r = 0.674, p < 0.05) and under HT (r = 0.672, p < 0.05). However, wVO2max, wVT1, wVT2, and EP were significantly higher in NT than in HT (p < 0.05). In conclusion, although the physiological stress induced by HT might impair exercise performance, the EP derived from 3MT can validly estimate wVT2 under HT conditions.
Collapse
|
169
|
Optimization of the Critical Speed Concept for Tactical Professionals: A Brief Review. Sports (Basel) 2021; 9:sports9080106. [PMID: 34437367 PMCID: PMC8402554 DOI: 10.3390/sports9080106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Tactical professionals often depend on their physical ability and fitness to perform and complete occupational tasks to successfully provide public services or survive on the battlefield. Critical speed (CS), or maximal aerobic steady-state, is a purported measure that predicts performance, prescribes exercise, and detects training adaptions with application to tactical professionals. The CS concept has the versatility to adapt to training with load carriage as an integrated bioenergetic system approach for assessment. The aims of this review are to: (1) provide an overview of tactical populations and the CS concept; (2) describe the different methods and equipment used in CS testing; (3) review the literature on CS associated with tactical occupational tasks; and (4) demonstrate the use of CS-derived exercise prescriptions for tactical populations.
Collapse
|
170
|
Næss S, Sollie O, Gløersen ØN, Losnegard T. Exercise Intensity and Pacing Pattern During a Cross-Country Olympic Mountain Bike Race. Front Physiol 2021; 12:702415. [PMID: 34349670 PMCID: PMC8326908 DOI: 10.3389/fphys.2021.702415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
Objective: To examine the power profiles and pacing patterns in relation to critical power (CP) and maximal aerobic power (MAP) output during a cross-country Olympic (XCO) mountain bike race. Methods: Five male and two female national competitive XCO cyclists completed a UCI Cat. 1 XCO race. The races were 19 km and 23 km and contained five (female) and six (male) laps, respectively. Power output (PO) during the race was measured with the cyclists’ personal power meters. On two laboratory tests using their own bikes and power meters, CP and work capacity above CP (W') were calculated using three time trials of 12, 7, and 3 min, while MAP was established based on a 3-step submaximal test and the maximal oxygen uptake from the 7-min time trial. Results: Mean PO over the race duration (96 ± 7 min) corresponded to 76 ± 9% of CP and 63 ± 4% of MAP. 40 ± 8% of race time was spent with PO > CP, and the mean duration and magnitude of the bouts >CP was ~8 s and ~120% of CP. From the first to last lap, time >CP and accumulated W' per lap decreased with 9 ± 6% and 45 ± 17%, respectively. For single >CP bouts, mean magnitude and mean W' expended decreased by 25 ± 8% and 38 ± 15% from the first to the last lap, respectively. Number and duration of bouts did not change significantly between laps. Conclusion: The highly variable pacing pattern in XCO implies the need for rapid changes in metabolic power output, as a result of numerous separate short-lived >CP actions which decrease in magnitude in later laps, but with little lap-to-lap variation in number and duration.
Collapse
Affiliation(s)
- Steffan Næss
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Ove Sollie
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | | | - Thomas Losnegard
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| |
Collapse
|
171
|
Figueiredo DH, Figueiredo DH, Manoel FDA, Machado FA. Peak Running Velocity or Critical Speed Under Field Conditions: Which Best Predicts 5-km Running Performance in Recreational Runners? Front Physiol 2021; 12:680790. [PMID: 34295260 PMCID: PMC8291129 DOI: 10.3389/fphys.2021.680790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/26/2021] [Indexed: 12/05/2022] Open
Abstract
This study aimed to examine which variable, between the peak running velocity determined on the track field (Vpeak_TF) and critical speed (CS), is the best predictor of the 5-km running performance in recreational runners. Twenty-five males performed three tests to determine the Vpeak_TF, CS, and 5-km running performance on the track field, with a minimal interval of 48 h between each test. The Vpeak_TF protocol started with a velocity of 8 km⋅h–1, followed by an increase of 1 km⋅h–1 every 3 min until volitional exhaustion, which was controlled by sound signals, with cones at every 25 m indicating when the participants were required to pass the cone’s position to maintain the required velocity. The participants performed three time trials (TTs) (1: 2,600 m; 2: 1,800 m; and 3: 1,000 m) on the same day, with a 30-min rest period to determine the CS through the combinations of three (CS1,2,3) and two TTs (CS1,2, CS1,3, and CS2,3). The 5-km running performance time was recorded to determine the test duration, and the mean velocity (MV) was calculated. There was a significant difference observed between the Vpeak_TF and the MV 5-km running performance. However, no differences were found between the CS values and the MV 5-km running performance. A correlation was observed between the Vpeak_TF (R = −0.90), CS1,2,3 (R = −0.95), CS1,3 (R = −0.95), and the 5-km running performance time. Linear regression indicated that the Vpeak_TF (R2 = 0.82), CS1,2,3 (R2 = 0.90), and CS1,3 (R2 = 0.90) significantly predicted the 5-km running performance time. The CS results showed a higher predictive power for the 5-km running performance, slightly better than the Vpeak_TF. Also, CS1,2,3 and the CS1,3 presented the highest predictive power for the 5-km running performance of recreational runners.
Collapse
Affiliation(s)
- Diogo Hilgemberg Figueiredo
- Associate Post-graduate Program in Physical Education, Department of Physical Education, State University of Maringá, Maringá, Brazil
| | - Diego Hilgemberg Figueiredo
- Associate Post-graduate Program in Physical Education, Department of Physical Education, State University of Maringá, Maringá, Brazil
| | | | - Fabiana Andrade Machado
- Associate Post-graduate Program in Physical Education, Department of Physical Education, State University of Maringá, Maringá, Brazil.,Department of Physical Education, State University of Maringá, Maringá, Brazil.,Post-graduate Program of Physiological Sciences, Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| |
Collapse
|
172
|
Johnson MA, Sharpe GR, Needham RS, Williams NC. Effects of Prior Voluntary Hyperventilation on the 3-min All-Out Cycling Test in Men. Med Sci Sports Exerc 2021; 53:1482-1494. [PMID: 33481485 DOI: 10.1249/mss.0000000000002608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The ergogenic effects of respiratory alkalosis induced by prior voluntary hyperventilation (VH) are controversial. This study examined the effects of prior VH on derived parameters from the 3-min all-out cycling test (3MT). METHODS Eleven men ( = 46 ± 8 mL·kg-1·min-1) performed a 3MT preceded by 15 min of rest (CONT) or VH ( = 38 ± 5 L·min-1) with PETCO2 reduced to 21 ± 1 mm Hg (HYP). End-test power (EP; synonymous with critical power) was calculated as the mean power output over the last 30 s of the 3MT, and the work done above EP (WEP; synonymous with W') was calculated as the power-time integral above EP. RESULTS At the start of the 3MT, capillary blood PCO2 and [H+] were lower in HYP (25.2 ± 3.0 mm Hg, 27.1 ± 2.6 nmol·L-1) than CONT (43.2 ± 2.0 mm Hg, 40.0 ± 1.5 nmol·L-1) (P < 0.001). At the end of the 3MT, blood PCO2 was still lower in HYP (35.7 ± 5.4 mm Hg) than CONT (40.6 ± 5.0 mm Hg) (P < 0.001). WEP was 10% higher in HYP (19.4 ± 7.0 kJ) than CONT (17.6 ± 6.4 kJ) (P = 0.006), whereas EP was 5% lower in HYP (246 ± 69 W) than CONT (260 ± 74 W) (P = 0.007). The ΔWEP (J·kg-1) between CONT and HYP correlated positively with the PCO2 immediately before the 3MT in HYP (r = 0.77, P = 0.006). CONCLUSION These findings suggest that acid-base changes elicited by prior VH increase WEP but decrease EP during the all-out 3MT.
Collapse
Affiliation(s)
- Michael A Johnson
- Exercise and Health Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UNITED KINGDOM
| | | | | | | |
Collapse
|
173
|
Colburn TD, Weber RE, Schulze KM, Sue Hageman K, Horn AG, Behnke BJ, Poole DC, Musch TI. Sexual dimorphism in vascular ATP-sensitive K + channel function supporting interstitial PO2 via convective and/or diffusive O 2 transport. J Physiol 2021; 599:3279-3293. [PMID: 34101850 PMCID: PMC8451062 DOI: 10.1113/jp281120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/14/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Inhibition of pancreatic ATP-sensitive K+ (KATP ) channels is the intended effect of oral sulphonylureas to increase insulin release in diabetes. However, pertinent to off-target effects of sulphonylurea medication, sex differences in cardiac KATP channel function exist, whereas potential sex differences in vascular KATP channel function remain unknown. In the present study, we assessed vascular KATP channel function (topical glibenclamide superfused onto fast-twitch oxidative skeletal muscle) supporting blood flow and interstitial O2 delivery-utilization matching ( P O 2 is) during twitch contractions in male, female during pro-oestrus and ovariectomized female (F+OVX) rats. Glibenclamide decreased blood flow (convective O2 transport) and interstitial P O 2 in male and female, but not F+OVX, rats. Compared to males, females also demonstrated impaired diffusive O2 transport and a faster fall in interstitial P O 2 . Our demonstration, in rats, that sex differences in vascular KATP channel function exist support the tentative hypothesis that oral sulphonylureas may exacerbate exercise intolerance and morbidity, especially in premenopausal females. ABSTRACT Vascular ATP-sensitive K+ (KATP ) channels support skeletal muscle blood flow ( Q ̇ m ), interstitial O2 delivery ( Q ̇ O 2 )-utilization ( V ̇ O 2 ) matching (i.e. interstitial-myocyte O2 flux driving pressure; P O 2 is) and exercise tolerance. Potential sex differences in skeletal muscle vascular KATP channel function remain largely unexplored. We hypothesized that local skeletal muscle KATP channel inhibition via glibenclamide superfusion (5 mg kg-1 GLI; sulphonylurea diabetes medication) in anaesthetized female Sprague-Dawley rats, compared to males, would demonstrate greater reductions in contracting (1 Hz, 7 V, 180 s) fast-twitch oxidative mixed gastrocnemius (97% type IIA+IID/X+IIB) Q ̇ m (15 μm microspheres) and P O 2 is (phosphorescence quenching), resulting from more compromised convective ( Q ̇ O 2 ) and diffusive ( D O 2 ) O2 conductances. Furthermore, these GLI-induced reductions in ovary-intact females measured during pro-oestrus would be diminished following ovariectomy (F+OVX). GLI similarly impaired mixed gastrocnemius V ̇ O 2 in both males (↓28%) and females (↓33%, both P < 0.032) via reduced Q ̇ m (male: ↓31%, female: ↓35%, both P < 0.020), Q ̇ O 2 (male: 5.6 ± 0.5 vs. 4.0 ± 0.5, female: 6.4 ± 1.1 vs. 4.2 ± 0.6 mL O2 min-1 100 g tissue-1 , P < 0.022) and the resulting P O 2 is, with females also demonstrating a reduced D O 2 (0.40 ± 0.07 vs. 0.30 ± 0.04 mL O2 min-1 100 g tissue-1 , P < 0.042) and a greater GLI-induced speeding of P O 2 is fall (mean response time: Sex × Drug interaction, P = 0.026). Conversely, GLI did not impair the mixed gastrocnemius of F+OVX rats. Therefore, in patients taking sulphonylureas, these results support the potential for impaired vascular KATP channel function to compromise muscle Q ̇ m and therefore exercise tolerance. Such an effect, if present, would likely contribute to adverse cardiovascular events in premenopausal females more than males.
Collapse
Affiliation(s)
- Trenton D. Colburn
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ramona E. Weber
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kiana M. Schulze
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - K. Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Andrew G. Horn
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brad J. Behnke
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - David C. Poole
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy I. Musch
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
174
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
175
|
Nascimento EMF, do Nascimento Salvador PC, Antunes D, Possamai LT, Ventura T, Guglielmo LGA, Denadai BS, de Lucas RD. Heart rate variability kinetics during different intensity domains of cycling exercise in healthy subjects. Eur J Sport Sci 2021; 22:1231-1239. [PMID: 34077297 DOI: 10.1080/17461391.2021.1938689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to verify the heart rate variability (HRV) and heart rate (HR) kinetics during the fundamental phase in different intensity domains of cycling exercise. Fourteen males performed five exercise sessions: (1) maximal incremental cycling test; (2) two rest-to-exercise transitions for each intensity domain, that is, heavy (Δ30) and severe (Δ60) domains. HRV markers (SD1 and SD2) and HR kinetics in the fundamental phase were analyzed by first-order exponential fitting. There were no significant differences in amplitude values between SD1Δ30 (8.98 ± 3.52 ms) and SD1Δ60 (9.44 ± 3.24 ms) and SD2Δ30 (24.93 ± 9.16 ms) and SD2Δ60 (25.98 ± 7.29 ms). Significant difference was observed between HRΔ30 (52 ± 7 bpm) and HRΔ60 (63 ± 8 bpm). The time constant (τ) values were significantly different between SD1Δ30 (17.61 ± 6.26 s) and SD1Δ60 (13.86 ± 5.90 s), but not between SD2Δ30 (20.06 ± 3.73 s) and SD2Δ60 (19.47 ± 6.03 s) or HRΔ30 (56.75 ± 18.22 s) and HRΔ60 (58.49 ± 15.61 s). However, the τ values for HRΔ30 were higher and significantly different in relation to SD1Δ30 and SD2Δ30, as well as for HRΔ60 in relation to SD1Δ60 and SD2Δ60. The kinetics of the autonomic variable (SD1 marker) was accelerated by the increased intensity. Moreover, significant differences were found for the τ values, with faster HRV markers than HR, in both intensities of Δ30 and Δ60, which suggests that these variables indicate distinct and specific cardiac autonomic response times during different intensity domains in cycling.HIGHLIGHTS The application of HRV to optimize exercise prescription at different effort intensities is extremely important to obtain assertive and effective results.Analysis of the kinetic responses of HRV is a useful tool for the evaluation of exercise performance and health status.A faster kinetics was found for HRV markers in comparison to HR, for both intensities analysed, which suggests that these variables indicate distinct and specific cardiac autonomic response times during different intensity domains in cycling.
Collapse
Affiliation(s)
| | | | - Diego Antunes
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Thiago Ventura
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Benedito Sérgio Denadai
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Brazil.,Human Performance Laboratory, São Paulo State University, Rio Claro, Brazil
| | - Ricardo Dantas de Lucas
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
176
|
The ramp and all-out exercise test to determine critical power: validity and robustness to manipulations in body position. Eur J Appl Physiol 2021; 121:2721-2730. [PMID: 34143306 PMCID: PMC8416884 DOI: 10.1007/s00421-021-04739-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
Purpose The purpose of the present study was to determine whether a contiguous ramp and all-out exercise test could accurately determine critical power (CP) in a single laboratory visit during both upright and supine cycle exercise. Methods Healthy males completed maximal ramp-incremental exercise on a cycle ergometer in the upright (n = 15) and supine positions (n = 8), with task failure immediately followed by a 3-min all-out phase for determination of end-test power (EP). On separate days, participants undertook four constant-power tests in either the upright or supine positions with the limit of tolerance ranging from ~ 2 to 15 min for determination of CP. Results During upright exercise, EP was highly correlated with (R2 = 0.93, P < 0.001) and not different from CP (CP = 221 ± 40 W vs. EP = 226 ± 46 W, P = 0.085, 95% limits of agreement − 30, 19 W). During supine exercise, EP was also highly correlated with (R2 = 0.94, P < 0.001) and not different from CP (CP = 140 ± 42 W vs. EP = 136 ± 40 W, P = 0.293, 95% limits of agreement − 16, 24 W). Conclusion The present data suggest that EP derived from a contiguous ramp all-out exercise test is not different from the gold-standard method of CP determination during both upright and supine cycle exercise when assessed at the group level. However, the wide limits of agreement observed within the present study suggest that EP and CP should not be used interchangeably.
Collapse
|
177
|
Influence of muscular contraction on vascular conductance during exercise above versus below critical power. Respir Physiol Neurobiol 2021; 293:103718. [PMID: 34126260 DOI: 10.1016/j.resp.2021.103718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
We tested the hypothesis that limb vascular conductance (LVC) would increase during the immediate recovery phase of dynamic exercise above, but not below, critical power (CP) indicating a threshold for muscular contraction-induced impedance of limb blood flow (LBF). CP (115 ± 26 W) was determined in 7 men and 7 women who subsequently performed ∼5 min of near-supine cycling exercise both below and above CP. LVC demonstrated a greater increase during immediate recovery and remained significantly higher following exercise above, compared to below, CP (all p < 0.001). Power output was associated with the immediate increases in LVC following exercise above, but not below, CP (p < 0.001; r = 0.85). Additionally, variance in percent LBF impedance was significantly lower above (CV: 10.7 %), compared to below (CV: 53.2 %), CP (p < 0.01). CP appears to represent a threshold above which the characteristics of LBF impedance by muscular contraction become intensity-dependent. These data suggest a critical level of LBF impedance relative to contraction intensity exists and, once attained, may promote the progressive metabolic and neuromuscular responses known to occur above CP.
Collapse
|
178
|
Valenzuela PL, Alejo LB, Montalvo-Pérez A, Gil-Cabrera J, Talavera E, Lucia A, Barranco-Gil D. Relationship Between Critical Power and Different Lactate Threshold Markers in Recreational Cyclists. Front Physiol 2021; 12:676484. [PMID: 34177619 PMCID: PMC8220144 DOI: 10.3389/fphys.2021.676484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose: To analyze the relationship between critical power (CP) and different lactate threshold (LT2) markers in cyclists. Methods: Seventeen male recreational cyclists [33 ± 5 years, peak power output (PO) = 4.5 ± 0.7 W/kg] were included in the study. The PO associated with four different fixed (onset of blood lactate accumulation) and individualized (Dmaxexp, Dmaxpol, and LTΔ1) LT2 markers was determined during a maximal incremental cycling test, and CP was calculated from three trials of 1-, 5-, and 20-min duration. The relationship and agreement between each LT2 marker and CP were then analyzed. Results: Strong correlations (r = 0.81–0.98 for all markers) and trivial-to-small non-significant differences (Hedges’ g = 0.01–0.17, bias = 1–9 W, and p > 0.05) were found between all LT2 markers and CP with the exception of Dmaxexp, which showed the strongest correlation but was slightly higher than the CP (Hedges’ g = 0.43, bias = 20 W, and p < 0.001). Wide limits of agreement (LoA) were, however, found for all LT2 markers compared with CP (from ±22 W for Dmaxexp to ±52 W for Dmaxpol), and unclear to most likely practically meaningful differences (PO differences between markers >1%, albeit <5%) were found between markers attending to magnitude-based inferences. Conclusion: LT2 markers show a strong association and overall trivial-to-small differences with CP. Nevertheless, given the wide LoA and the likelihood of potentially meaningful differences between these endurance-related markers, caution should be employed when using them interchangeably.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Physical Activity and Health Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Lidia B Alejo
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Physical Activity and Health Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | | | - Jaime Gil-Cabrera
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Eduardo Talavera
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Physical Activity and Health Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | | |
Collapse
|
179
|
Meyler S, Bottoms L, Muniz-Pumares D. Biological and methodological factors affecting V ̇ O 2 max response variability to endurance training and the influence of exercise intensity prescription. Exp Physiol 2021; 106:1410-1424. [PMID: 34036650 DOI: 10.1113/ep089565] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the topic of this review? Biological and methodological factors associated with the variable changes in cardiorespiratory fitness in response to endurance training. What advances does it highlight? Several biological and methodological factors exist that each contribute, to a given extent, to response variability. Notably, prescribing exercise intensity relative to physiological thresholds reportedly increases cardiorespiratory fitness response rates compared to when prescribed relative to maximum physiological values. As threshold-based approaches elicit more homogeneous acute physiological responses among individuals, when repeated over time, these uniform responses may manifest as more homogeneous chronic adaptations thereby reducing response variability. ABSTRACT Changes in cardiorespiratory fitness (CRF) in response to endurance training (ET) exhibit large variations, possibly due to a multitude of biological and methodological factors. It is acknowledged that ∼20% of individuals may not achieve meaningful increases in CRF in response to ET. Genetics, the most potent biological contributor, has been shown to explain ∼50% of response variability, whilst age, sex and baseline CRF appear to explain a smaller proportion. Methodological factors represent the characteristics of the ET itself, including the type, volume and intensity of exercise, as well as the method used to prescribe and control exercise intensity. Notably, methodological factors are modifiable and, upon manipulation, alter response rates to ET, eliciting increases in CRF regardless of an individual's biological predisposition. Particularly, prescribing exercise intensity relative to a physiological threshold (e.g., ventilatory threshold) is shown to increase CRF response rates compared to when intensity is anchored relative to a maximum physiological value (e.g., maximum heart rate). It is, however, uncertain whether the increased response rates are primarily attributable to reduced response variability, greater mean changes in CRF or both. Future research is warranted to elucidate whether more homogeneous chronic adaptations manifest over time among individuals, as a result of exposure to more homogeneous exercise stimuli elicited by threshold-based practices.
Collapse
Affiliation(s)
- Samuel Meyler
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Lindsay Bottoms
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | | |
Collapse
|
180
|
Vassallo C, Kilduff LP, Cummins C, Murphy A, Gray A, Waldron M. A new energetics model for the assessment of the power-duration relationship during over-ground running. Eur J Sport Sci 2021; 22:1211-1221. [PMID: 33993836 DOI: 10.1080/17461391.2021.1931463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We evaluated the reliability of an over-ground running three-minute all-out test (3MT) and compared this to traditional multiple-visit testing to determine the critical speed (CS) and distance > CS (D´). Using a novel energetics model during the 3MT, critical power (CP) and work > CP (W´) were also evaluated for reliability and compared to the multiple-visit tests. Over-ground running speed was measured using Global Positioning Systems during fixed-speed trials on a 400 m track to exhaustion, at four intensities corresponding to: (i) maximal oxygen uptake (V˙O2max) (Vmax), (ii) 110% V˙O2max(110%Vmax), (iii) Δ70% (i.e. 70% of the difference between gas exchange threshold and Vmax) and (iv) Δ85%. The participants subsequently performed the 3MT across two days to determine its reliability. There were no differences between the multiple-visit testing and the 3MT for CS (P = 0.328) and D´ (P = 0.919); however, CP (P = 0.02) and W´ (P < 0.001) were higher in the 3MT. The reliability of the 3MT was stable (P > 0.05) between trials for all variables, with coefficient of variation ranging from 2.0-8.1%. The current over-ground energetics model can reliably estimate CP and W´ based on GPS speed data during the 3MT, which supports its use for most athletic training and monitoring purposes. The reliability of the over-ground running 3MT for power- and speed-related indices was sufficient to detect typical training adaptations; however, it may overestimate CP (∼ 25 W) and W´ (∼ 7 kJ) compared to multiple-visit tests.
Collapse
Affiliation(s)
| | - Liam P Kilduff
- A-STEM, College of Engineering, Swansea University, Swansea, UK.,Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - Cloe Cummins
- School of Science and Technology, University of New England, Australia.,Carnegie Applied Rugby Research (CARR) centre, Institute for Sport Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom.,National Rugby League, Australia
| | - Aron Murphy
- School of Science and Technology, University of New England, Australia
| | - Adrian Gray
- School of Science and Technology, University of New England, Australia
| | - Mark Waldron
- A-STEM, College of Engineering, Swansea University, Swansea, UK.,School of Science and Technology, University of New England, Australia.,Welsh Institute of Performance Science, Swansea University, Swansea, UK
| |
Collapse
|
181
|
Dicks ND, Mahoney SJ, Kramer M, Lyman KJ, Christensen BK, Pettitt RW, Hackney KJ. Increased velocity at VO 2max and load carriage performance in army ROTC cadets: prescription using the critical velocity concept. ERGONOMICS 2021; 64:733-743. [PMID: 33258417 DOI: 10.1080/00140139.2020.1858186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to evaluate the effects of using the critical velocity (CV) concept to prescribe two separate high-intensity interval training (HIT) exercise programs aimed at enhancing CV and load carriage performance. 20 young adult participants (male = 15, female = 5) underwent a 4-week training period where they exercised 2 d wk-1. Participants were randomly assigned into two groups: (1) HIT or (2) Load Carriage-HIT (LCHIT). Pre- and post-training assessments included running 3-minute All-Out Test (3MT) to determine critical velocity (CV) and distance prime (D') and two load carriage tasks (400 and 3200 m). There were significant increases in CV (p = 0.005) and velocity at V˙ O2max (vV˙ O2max) (p = 0.037) among the sample but not between training groups. Improvements were observed in 3200 m load carriage performance time (p < 0.001) with a 9.8 and 5.4% decrease in the LCHIT and HIT groups, respectively. Practitioner summary: Critical velocity has shown efficacy as a marker for performance in tactical populations. With the addition of load carriage, there is a reduction in the individual's CV. The CV-concept-prescribed exercises (HIT and LCHIT) 2 days per week for 4 weeks showed improvements in CV, vV˙ O2max and load carriage performance. The use of the CV concept provides a method to prescribe HIT to increase running and load carriage performances in tactical populations.
Collapse
Affiliation(s)
- Nathan D Dicks
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND, USA
- Department of Nutrition, Dietetics and Exercise Science, Concordia College, Moorhead, MN, USA
| | - Sean J Mahoney
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND, USA
| | - Mark Kramer
- Physical Activity, Sport and Recreation Research Focus Area, North West University, Potchefstroom, South Africa
| | - Katie J Lyman
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND, USA
| | - Bryan K Christensen
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND, USA
| | - Robert W Pettitt
- Office of Research & Sponsored Projects, Rocky Mountain University of Health Professions, Provo, UT, USA
| | - Kyle J Hackney
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
182
|
Ramirez-Campillo R, Andrade DC, García-Pinillos F, Negra Y, Boullosa D, Moran J. Effects of jump training on physical fitness and athletic performance in endurance runners: A meta-analysis. J Sports Sci 2021; 39:2030-2050. [PMID: 33956587 DOI: 10.1080/02640414.2021.1916261] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This systematic review and meta-analysis aimed to assess the effects of jump training (JT) on measures of physical fitness and athletic performances in endurance runners. Controlled studies which involved healthy endurance runners, of any age and sex, were considered. A random-effects model was used to calculate effect sizes (ES; Hedge's g). Means and standard deviations of outcomes were converted to ES with alongside 95% confidence intervals (95%CI). Twenty-one moderate-to-high quality studies were included in the meta-analysis, and these included 511 participants. The main analyses revealed a significant moderate improvement in time-trial performance (i.e. distances between 2.0 and 5.0 km; ES = 0.88), without enhancements in maximal oxygen consumption (VO2max), velocity at VO2max, velocity at submaximal lactate levels, heart rate at submaximal velocities, stride rate at submaximal velocities, stiffness, total body mass or maximal strength performance. However, significant small-to-moderate improvements were noted for jump performance, rate of force development, sprint performance, reactive strength, and running economy (ES = 0.36-0.73; p < 0.001 to 0.031; I2 = 0.0% to 49.3%). JT is effective in improving physical fitness and athletic performance in endurance runners. Improvements in time-trial performance after JT may be mediated through improvements in force generating capabilities and running economy.
Collapse
Affiliation(s)
- Rodrigo Ramirez-Campillo
- Human Performance Laboratory. Department of Physical Activity Sciences. Universidad de Los Lagos. Osorno, Chile.,Centro de Investigación en Fisiología del Ejercicio. Facultad de Ciencias. Universidad Mayor. Santiago, Chile
| | - David C Andrade
- Centro de Investigación en Fisiología del Ejercicio. Facultad de Ciencias. Universidad Mayor. Santiago, Chile.,Centro de Medicina y Fisiología de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Felipe García-Pinillos
- Department of Physical Education and Sports, University of Granada, Granada, Spain.,Department of Physical Education, Sports and Recreation, Universidad de La Frontera, Temuco, Chile
| | - Yassine Negra
- Research Unit (UR17JS01) «Sport Performance, Health & Society», Higher Institute of Sport and Physical Education of Ksar Saîd, University of "La Manouba", Tunisia
| | - Daniel Boullosa
- INISA, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| |
Collapse
|
183
|
Zuccarelli L, Sartorio A, DE Micheli R, Tringali G, Grassi B. Obese Patients Decrease Work Rate in Order to Keep a Constant Target Heart Rate. Med Sci Sports Exerc 2021; 53:986-993. [PMID: 33148969 DOI: 10.1249/mss.0000000000002551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE "Slow components" of heart rate (HR) kinetics, occurring also during moderate-intensity constant work rate exercise, represent a problem for exercise prescription at fixed HR values. This problem, described in young healthy subjects, could be more pronounced in obese patients. METHODS Sixteen male obese patients (age, 22 ± 7 yr; body mass, 127 ± 19 kg; body mass index, 41.6 ± 3.9 kg·m-2) were tested before (PRE) and after (POST) a 3-wk multidisciplinary body mass reduction program, entailing moderate-intensity exercise. They performed on a cycle ergometer an incremental exercise to voluntary exhaustion (to determine peak pulmonary oxygen uptake (V˙O2peak) and gas exchange threshold (GET)) and constant work rate exercises: moderate-intensity (MODERATE; 80% of GET determined in PRE), heavy-intensity (HEAVY; 120% of GET determined in PRE), and "HRCLAMPED" exercise, in which work rate was continuously adjusted to maintain a constant HR corresponding to that at 120% of GET. Breath-by-breath V˙O2 and HR were determined. RESULTS V˙O2peak and GET (expressed as a percent of V˙O2peak) were not significantly different in PRE versus POST. In POST versus PRE, the HR slow component disappeared (MODERATE) or was reduced (HEAVY). In PRE, work rate had to decrease by ~20% over a 15-min task in order to keep HR constant; this decrease was significantly smaller (~5%) in POST. CONCLUSIONS In obese patients, a 3-wk multidisciplinary body mass reduction intervention i) increased exercise tolerance by eliminating (during MODERATE) or by reducing (during HEAVY) the slow component of HR kinetics, and ii) facilitated exercise prescription by allowing to translate a fixed submaximal HR value into a work rate slightly above GET.
Collapse
Affiliation(s)
| | | | - Roberta DE Micheli
- Experimental Laboratory for Auxo-endocrinological Research, Istituto Auxologico Italiano, IRCCS, Milan and Piancavallo (VB), ITALY
| | - Gabriella Tringali
- Experimental Laboratory for Auxo-endocrinological Research, Istituto Auxologico Italiano, IRCCS, Milan and Piancavallo (VB), ITALY
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, ITALY
| |
Collapse
|
184
|
Affiliation(s)
- Harry B Rossiter
- Rehabilitation Clinical Trials Center, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA; and Faculty of Biological Sciences, University of Leeds, Leeds, UNITED KINGDOM
| |
Collapse
|
185
|
Smyth B, Muniz-Pumares D. Calculation of Critical Speed from Raw Training Data in Recreational Marathon Runners. Med Sci Sports Exerc 2021; 52:2637-2645. [PMID: 32472926 PMCID: PMC7664951 DOI: 10.1249/mss.0000000000002412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Critical speed (CS) represents the highest intensity at which a physiological steady state may be reached. The aim of this study was to evaluate whether estimations of CS obtained from raw training data can predict performance and pacing in marathons. METHODS We investigated running activities logged into an online fitness platform by >25,000 recreational athletes before big-city marathons. Each activity contained time, distance, and elevation every 100 m. We computed grade-adjusted pacing and the fastest pace recorded for a set of target distances (400, 800, 1000, 1500, 3000, and 5000 m). CS was determined as the slope of the distance-time relationship using all combinations of, at least, three target distances. RESULTS The relationship between distance and time was linear, irrespective of the target distances used (pooled mean ± SD: R = 0.9999 ± 0.0001). The estimated values of CS from all models were not different (3.74 ± 0.08 m·s), and all models correlated with marathon performance (R = 0.672 ± 0.036, error = 8.01% ± 0.51%). CS from the model including 400, 800, and 5000 m best predicted performance (R = 0.695, error = 7.67%) and was used in further analysis. Runners completed the marathon at 84.8% ± 13.6% CS, with faster runners competing at speeds closer to CS (93.0% CS for 150 min marathon times vs 78.9% CS for 360 min marathon times). Runners who completed the first half of the marathon at >94% of their CS, and particularly faster than CS, were more likely to slowdown by more than 25% in the second half of race. CONCLUSION This study suggests that estimations of CS from raw training data can successfully predict marathon performance and provide useful pacing information.
Collapse
Affiliation(s)
- Barry Smyth
- Insight Centre for Data Analytics, School of Computer Science, University College Dublin, Dublin, IRELAND
| | - Daniel Muniz-Pumares
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UNITED KINGDOM
| |
Collapse
|
186
|
Pethick J, Winter SL, Burnley M. Physiological Evidence That the Critical Torque Is a Phase Transition, Not a Threshold. Med Sci Sports Exerc 2021; 52:2390-2401. [PMID: 32366801 PMCID: PMC7556242 DOI: 10.1249/mss.0000000000002389] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction Distinct physiological responses to exercise occur in the heavy- and severe-intensity domains, which are separated by the critical power or critical torque (CT). However, how the transition between these intensity domains actually occurs is not known. We tested the hypothesis that CT is a sudden threshold, with no gradual transition from heavy- to severe-intensity behavior within the confidence limits associated with the CT. Methods Twelve healthy participants performed four exhaustive severe-intensity trials for the determination of CT, and four 30-min trials in close proximity to CT (one or two SE above or below each participant’s CT estimate; CT − 2, CT − 1, CT + 1, CT + 2). Muscle O2 uptake, rectified electromyogram, and torque variability and complexity were monitored throughout each trial, and maximal voluntary contractions (MVC) with femoral nerve stimulation were performed before and after each trial to determine central and peripheral fatigue responses. Results The rates of change in fatigue-related variables, muscle O2 uptake, electromyogram amplitude, and torque complexity were significantly faster in the severe trials compared with CT − 2. For example, the fall in MVC torque was −1.5 ± 0.8 N·m·min−1 in CT − 2 versus –7.9 ± 2.5 N·m·min−1 in the lowest severe-intensity trial (P < 0.05). Individual analyses showed a low frequency of severe responses even in the circa-CT trials ostensibly above the CT, but also the rare appearance of severe-intensity responses in all circa-CT trials. Conclusions These data demonstrate that the transition between heavy- and severe-intensity exercise occurs gradually rather than suddenly.
Collapse
Affiliation(s)
- Jamie Pethick
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Kent, UNITED KINGDOM
| | | | | |
Collapse
|
187
|
Pettitt RW, Fretti SK, Kantor MA, Gubler C. Using wearable technology to monitor exercise intensity and predict V ˙ O 2 m a x . Mhealth 2021; 7:19. [PMID: 33898588 PMCID: PMC8063012 DOI: 10.21037/mhealth.2020.01.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/07/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Robert W. Pettitt
- Office of Research & Sponsored Projects, Rocky Mountain University of Health Professions, Provo, Utah, USA
| | - Sarah K. Fretti
- Office of Research & Sponsored Projects, Rocky Mountain University of Health Professions, Provo, Utah, USA
| | - Michael A. Kantor
- Office of Research & Sponsored Projects, Rocky Mountain University of Health Professions, Provo, Utah, USA
| | - Coral Gubler
- Department of Physical Therapy, Rocky Mountain University of Health Professions, Provo, Utah, USA
| |
Collapse
|
188
|
The Relationship Between Neuromuscular Function and the W' in Elite Cyclists. Int J Sports Physiol Perform 2021; 16:1656-1662. [PMID: 33873151 DOI: 10.1123/ijspp.2020-0861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To assess the association between the W' and measures of neuromuscular function relating to the capacity of skeletal muscle to produce force in a group of elite cyclists. METHODS Twenty-two athletes specializing in a range of disciplines and competing internationally volunteered to participate. Athletes completed assessments of maximum voluntary torque (MVT), voluntary activation, and isometric maximum voluntary contraction to measure rate of torque development (RTD). This was followed by assessment of peak power output (PPO) and 3-, 5-, and 12-minute time trials to determine critical power. Pearson correlation was used to examine associations with critical power and W'. Goodness of fit was calculated, and significant relationships were included in a linear stepwise regression model. RESULTS Significant positive relationships were evident between W' and MVT (r = .82), PPO (r = .70), and RTD at 200 milliseconds (r = .59) but not with RTD at 50 milliseconds and voluntary activation. Correlations were also observed between critical power and RTD at 200 milliseconds and MVT (r = .54 and r = .51, respectively) but not with PPO, voluntary activation, or RTD at 50 milliseconds. The regression analysis found that 87% of the variability in W' (F1,18 = 68.75; P < .001) was explained by 2 variables: MVT (81%) and PPO (6%). CONCLUSIONS It is likely that muscle size and strength, as opposed to neural factors, contribute meaningfully to W'. These data can be used to establish training methods to enhance W' to improve cycling performance in well-trained athletes.
Collapse
|
189
|
McGrath E, Mahony N, Fleming N, Raleigh C, Donne B. Do Critical and Functional Threshold Powers Equate in Highly-Trained Athletes? INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2021; 14:45-59. [PMID: 34055164 PMCID: PMC8136559 DOI: 10.70252/isyh9512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The purpose of this investigation was to determine whether Critical Power (CP) and Functional Threshold Power (FTP) can be used interchangeably for a highly-trained group of cyclists and triathletes. CP was ascertained using multiple fixed load trials and FTP determined from a single cycling trial. Three different models for the determination of CP were initially addressed, one hyperbolic (Hmodel) and two linear (Jmodel and Imodel). The Jmodel was identified as most appropriate for a comparison with FTP. The Jmodel and FTP were not found to be interchangeable as ANOVA detected significant differences (282 ± 53 vs. 266 ± 55 W, p < 0.001) between these indices and the associated Bland-Altman 95% limits of agreement exceeded those set a priori. As the Jmodel was found to be consistently higher than FTP, a correction factor was posited to anticipate CP from FTP in this homogenous group of athletes using the mean bias (16 W). An alternate method for assessing CP trial intensities using Dmax as a proxy for ventilatory threshold is also proposed. The concept of both CP and FTP representing a maximal metabolic steady-state requires further investigation as the mechanical power at CP was significantly greater than at FTP.
Collapse
Affiliation(s)
- Eanna McGrath
- Human Performance Laboratory, Departments of Anatomy and Physiology, School of Medicine, Trinity College Dublin, IRL
| | - Nick Mahony
- Human Performance Laboratory, Departments of Anatomy and Physiology, School of Medicine, Trinity College Dublin, IRL
| | - Neil Fleming
- Human Performance Laboratory, Departments of Anatomy and Physiology, School of Medicine, Trinity College Dublin, IRL
| | - Conor Raleigh
- Human Performance Laboratory, Departments of Anatomy and Physiology, School of Medicine, Trinity College Dublin, IRL
| | - Bernard Donne
- Human Performance Laboratory, Departments of Anatomy and Physiology, School of Medicine, Trinity College Dublin, IRL
| |
Collapse
|
190
|
Jacobs RA, Lundby C. Contextualizing the biological relevance of standardized high-resolution respirometry to assess mitochondrial function in permeabilized human skeletal muscle. Acta Physiol (Oxf) 2021; 231:e13625. [PMID: 33570804 PMCID: PMC8047922 DOI: 10.1111/apha.13625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Aim This study sought to provide a statistically robust reference for measures of mitochondrial function from standardized high‐resolution respirometry with permeabilized human skeletal muscle (ex vivo), compare analogous values obtained via indirect calorimetry, arterial‐venous O2 differences and 31P magnetic resonance spectroscopy (in vivo) and attempt to resolve differences across complementary methodologies as necessary. Methods Data derived from 831 study participants across research published throughout March 2009 to November 2019 were amassed to examine the biological relevance of ex vivo assessments under standard conditions, ie physiological temperatures of 37°C and respiratory chamber oxygen concentrations of ~250 to 500 μmol/L. Results Standard ex vivo‐derived measures are lower (Z ≥ 3.01, P ≤ .0258) en masse than corresponding in vivo‐derived values. Correcting respiratory values to account for mitochondrial temperatures 10°C higher than skeletal muscle temperatures at maximal exercise (~50°C): (i) transforms data to resemble (Z ≤ 0.8, P > .9999) analogous yet context‐specific in vivo measures, eg data collected during maximal 1‐leg knee extension exercise; and (ii) supports the position that maximal skeletal muscle respiratory rates exceed (Z ≥ 13.2, P < .0001) those achieved during maximal whole‐body exercise, e.g. maximal cycling efforts. Conclusion This study outlines and demonstrates necessary considerations when actualizing the biological relevance of human skeletal muscle respiratory control, metabolic flexibility and bioenergetics from standard ex vivo‐derived assessments using permeabilized human muscle. These findings detail how cross‐procedural comparisons of human skeletal muscle mitochondrial function may be collectively scrutinized in their relationship to human health and lifespan.
Collapse
Affiliation(s)
- Robert A. Jacobs
- Department of Human Physiology & Nutrition University of Colorado Colorado Springs (UCCS) Colorado Springs CO USA
| | - Carsten Lundby
- Innland University of Applied Sciences Lillehammer Norway
| |
Collapse
|
191
|
Feldmann A, Erlacher D. Critical oxygenation: Can muscle oxygenation inform us about critical power? Med Hypotheses 2021; 150:110575. [PMID: 33857860 DOI: 10.1016/j.mehy.2021.110575] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 03/14/2021] [Indexed: 11/19/2022]
Abstract
The power-duration relationship is well documented for athletic performance and is formulated out mathematically in the critical power (CP) model. The CP model, when applied properly, has great predictive power, e.g. pedaling at a specific power output on an ergometer the model precisely calculates the time over which an athlete can sustain this power. However, CP presents physiological inconsistencies and process-oriented problems. The rapid development of near-infrared spectroscopy (NIRS) to measure muscle oxygenation (SmO2) dynamics provides a physiological exploration of the CP model on a conceptual and empirical level. Conceptually, the CP model provides two components: first CP is defined as the highest metabolic rate that can be achieved through oxidative means. And second, work capacity above CP named W'. SmO2 presents a steady-state in oxygen supply and demand and thereby represents CP specifically at a local level of analysis. Empirically, exploratory data quickly illustrates the relationship between performance and SmO2, as shown during 3-min all-out cycling tests to assess CP. During these tests, performance and SmO2 essentially mirror each other, and both CP and W' generate solid correlation with what would be deemed their SmO2 counterparts: first, the steady-state of SmO2 correlates with CP. And second, the tissue oxygen reserve represented in SmO2, when calculated as an integral corresponds to W'. While the empirical data presented is preliminary, the proposition of a concurring physiological model to the current CP model is a plausible inference. Here we propose that SmO2 steady-state representing CP as critical oxygenation or CO. And the tissue oxygen reserve above CO would then be identified as O'. This new CO model could fill in the physiological gap between the highly predictive CP model and at times its inability to track human physiology consistently. For simplicity's sake, this would include acute changes in physiology as a result of changing climate or elevation with travel, which can affect performance. These types of acute fluctuations, but not limited to, would be manageable when applying a CO model in conjunction with the CP model. Further, modeling is needed to investigate the true potential of NIRS to model CP, with a focus on repeatability, recovery, and systemic vs local workloads.
Collapse
Affiliation(s)
- Andri Feldmann
- Institute of Sport Science, University of Bern, Bern Bremgartenstrasse 145, 3012 Bern, Switzerland.
| | - Daniel Erlacher
- Institute of Sport Science, University of Bern, Bern Bremgartenstrasse 145, 3012 Bern, Switzerland
| |
Collapse
|
192
|
Fullerton MM, Passfield L, MacInnis MJ, Iannetta D, Murias JM. Prior exercise impairs subsequent performance in an intensity- and duration-dependent manner. Appl Physiol Nutr Metab 2021; 46:976-985. [PMID: 33641346 DOI: 10.1139/apnm-2020-0689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Prior constant-load exercise performed for 30-min at or above maximal lactate steady state (MLSSp) significantly impairs subsequent time-to-task failure (TTF) compared with TTF performed without prior exercise. We tested the hypothesis that TTF would decrease in relation to the intensity and the duration of prior exercise compared with a baseline TTF trial. Eleven individuals (6 males, 5 females, aged 28 ± 8 yrs) completed the following tests on a cycle ergometer (randomly assigned after MLSSp was determined): (i) a ramp-incremental test; (ii) a baseline TTF trial performed at 80% of peak power (TTFb); (iii) five 30-min constant-PO rides at 5% below lactate threshold (LT-5%), halfway between LT and MLSSp (Delta50), 5% below MLSSp (MLSS-5%), MLSSp, and 5% above MLSSp (MLSS+5%); and (iv) 15- and 45-min rides at MLSSp (MLSS15 and MLSS45, respectively). Each condition was immediately followed by a TTF trial at 80% of peak power. Compared with TTFb (330 ± 52 s), there was 8.0 ± 24.1, 23.6 ± 20.2, 41.0 ± 14.8, 52.2 ± 18.9, and 75.4 ± 7.4% reduction in TTF following LT-5%, Delta50, MLSS-5%, MLSSp, and MLSS+5%, respectively. Following MLSS15 and MLSS45 there were 29.0 ± 20.1 and 69.4 ± 19.6% reductions in TTF, respectively (P < 0.05). It is concluded that TTF is reduced following prior exercise of varying duration at MLSSp and at submaximal intensities below MLSS. Novelty: Prior constant-PO exercise, performed at intensities below MLSSp, reduces subsequent TTF performance. Subsequent TTF performance is reduced in a linear fashion following an increase in the duration of constant-PO exercise at MLSSp.
Collapse
Affiliation(s)
| | - Louis Passfield
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
| | | | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
193
|
Gifford JR, Collins J. Critical Speed throughout Aging: Insight into the World Masters Championships. Med Sci Sports Exerc 2021; 53:524-533. [PMID: 33560767 DOI: 10.1249/mss.0000000000002501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE This study aimed to determine how the speed-distance relationship, described by critical speed (CS) and distance prime (D'), is altered with aging. METHODS Official race data from the past eight World Masters Athletics Indoor Track and Field World Championships were used for this study. CS and D' were calculated for female and male athletes (35-90 yr of age) who registered times for the 800-, 1500-, and 3000-m runs during a single championship to determine the relationship between age and CS and D'. Twenty-six athletes completed sufficient races in multiple championships to retrospectively assess the change in CS and D' over time. RESULTS Cross-sectional data indicated that CS continuously decreases after age 35 yr in a curvilinear manner with advancing age (R2 = 0.73, P < 0.001, n = 187), with even greater decreases in CS occurring after ~70 yr of age. D' also changed in a curvilinear manner with age (R2 = 0.45, P < 0.001, n = 103), such that decreases were observed between 35 and 70 yr, followed by an increase in D' thereafter. Retrospective, longitudinal data, with an average follow-up of 6.38 ± 1.73 yr, support these findings, indicating that the annual decrease in CS grows with advancing age (e.g., ~1% vs ~3% annual decrease in CS at age 55 vs 80 yr, respectively) and that D' shifts from an annual decrease (e.g., ~2.5% annual decrease at 55 yr) to an annual increase (e.g., ~2.5% annual increase at 80 yr) around 70 yr of age. Importantly, the relationship between CS and race pace was unaffected by age, supporting the relevance of CS throughout aging. CONCLUSION Even among world-class athletes, CS decreases and D' changes with aging. These adaptations may contribute to the diminished exercise ability associated with aging.
Collapse
Affiliation(s)
| | - Jessica Collins
- Department of Exercise Sciences, Brigham Young University, Provo, UT
| |
Collapse
|
194
|
Power Profiling in U23 Professional Cyclists During a Competitive Season. Int J Sports Physiol Perform 2021; 16:881-889. [PMID: 33607626 DOI: 10.1123/ijspp.2020-0200] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE The aim of this study was to investigate changes in the power profile of U23 professional cyclists during a competitive season based on maximal mean power output (MMP) and derived critical power (CP) and work capacity above CP (W') obtained during training and racing. METHODS A total of 13 highly trained U23 professional cyclists (age = 21.1 [1.2] y, maximum oxygen consumption = 73.8 [1.9] mL·kg-1·min-1) participated in this study. The cycling season was split into pre-season and in-season. In-season was divided into early-, mid-, and late-season periods. During pre-season, a CP test was completed to derive CPtest and W'test. In addition, 2-, 5-, and 12-minute MMP during in-season were used to derive CPfield and W'field. RESULTS There were no significant differences in absolute 2-, 5-, and 12-minute MMP, CPfield, and W'field between in-season periods. Due to changes in body mass, relative 12-minute MMP was higher in late-season compared with early-season (P = .025), whereas relative CPfield was higher in mid- and late-season (P = .031 and P = .038, respectively) compared with early-season. There was a strong correlation (r = .77-.83) between CPtest and CPfield in early- and mid-season but not late-season. Bland-Altman plots and standard error of estimates showed good agreement between CPtest and in-season CPfield but not between W'test and W'field. CONCLUSION These findings reveal that the power profile remains unchanged throughout the in-season, except for relative 12-minute MMP and CPfield in late-season. One pre-season and one in-season CP test are recommended to evaluate in-season CPfield and W'field.
Collapse
|
195
|
Hunter B, Greenhalgh A, Karsten B, Burnley M, Muniz-Pumares D. A non-linear analysis of running in the heavy and severe intensity domains. Eur J Appl Physiol 2021; 121:1297-1313. [PMID: 33580289 DOI: 10.1007/s00421-021-04615-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/15/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE Altered movement complexity, indicative of system dysfunction, has been demonstrated with increased running velocity and neuromuscular fatigue. The critical velocity (CV) denotes a metabolic and neuromuscular fatigue threshold. It remains unclear whether changes to complexity during running are coupled with the exercise intensity domain in which it is performed. The purpose of this study was to examine whether movement variability and complexity differ exclusively above the CV intensity during running. METHODS Ten endurance-trained participants ran at 95%, 100%, 105% and 115% CV for 20 min or to task failure, whichever occurred first. Movement at the hip, knee, and ankle were sampled throughout using 3D motion analysis. Complexity of kinematics in the first and last 30 s were quantified using sample entropy (SampEn) and detrended fluctuation analysis (DFA-α). Variability was determined using standard deviation (SD). RESULTS SampEn decreased during all trials in knee flexion/extension and it increased in hip internal/external rotation, whilst DFA-α increased in knee internal/external rotation. SD of ankle plantar/dorsiflexion and inversion/eversion, knee internal/external rotation, and hip flexion/extension and abduction/adduction increased during trials. Hip flexion/extension SampEn values were lowest below CV. DFA-α was lower at higher velocities compared to velocities below CV in ankle plantar/dorsiflexion, hip flexion/extension, hip adduction/abduction, hip internal/external rotation. In hip flexion/extension SD was highest at 115% CV. CONCLUSIONS Changes to kinematic complexity over time are consistent between heavy and severe intensity domains. The findings suggest running above CV results in increased movement complexity and variability, particularly at the hip, during treadmill running.
Collapse
Affiliation(s)
- Ben Hunter
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.
| | - Andrew Greenhalgh
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Bettina Karsten
- European University of Applied Sciences (EUFH), Berlin, Germany
| | - Mark Burnley
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, Chatham, UK
| | | |
Collapse
|
196
|
Iannetta D, Inglis EC, Pogliaghi S, Murias JM, Keir DA. A "Step-Ramp-Step" Protocol to Identify the Maximal Metabolic Steady State. Med Sci Sports Exerc 2021; 52:2011-2019. [PMID: 32205678 DOI: 10.1249/mss.0000000000002343] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxygen uptake (V[Combining Dot Above]O2) at the respiratory compensation point (RCP) closely identifies with the maximal metabolic steady state. However, the power output (PO) at RCP cannot be determined from contemporary ramp-incremental exercise protocols. PURPOSE This study aimed to test the efficacy of a "step-ramp-step" (SRS) cycling protocol for estimating the PO at RCP and the validity of RCP as a maximal metabolic steady-state surrogate. METHODS Ten heathy volunteers (5 women; age: 30 ± 7 yr; V[Combining Dot Above]O2max: 54 ± 6 mL·kg·min) performed in the following series: a moderate step transition to 100 W (MOD), ramp (30 W·min), and after 30 min of recovery, step transition to ~50% POpeak (HVY). Ventilatory and gas exchange data from the ramp were used to identify the V[Combining Dot Above]O2 at lactate threshold (LT) and RCP. The PO at LT was determined by the linear regression of the V[Combining Dot Above]O2 versus PO relationship after adjusting ramp data by the difference between the ramp PO at the steady-state V[Combining Dot Above]O2 from MOD and 100 W. Linear regression between the V[Combining Dot Above]O2-PO values associated with LT and HVY provided, by extrapolation, the PO at RCP. Participants then performed 30-min constant-power tests at the SRS-estimated RCP and 5% above this PO. RESULTS All participants completed 30 min of constant-power exercise at the SRS-estimated RCP achieving steady-state V[Combining Dot Above]O2 of 3176 ± 595 mL·min that was not different (P = 0.80) from the ramp-identified RCP (3095 ± 570 mL·min) and highly consistent within participants (bias = -26 mL·min, r = 0.97, coefficient of variation = 2.3% ± 2.8%). At 5% above the SRS-estimated RCP, four participants could not complete 30 min and all, but two exhibited non-steady-state responses in blood lactate and V[Combining Dot Above]O2. CONCLUSIONS In healthy individuals cycling at their preferred cadence, the SRS protocol and the RCP are capable of accurately predicting the PO associated with maximal metabolic steady state.
Collapse
Affiliation(s)
- Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, CANADA
| | | | - Silvia Pogliaghi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, ITALY
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, CANADA
| | - Daniel A Keir
- University Health Network, Department of Medicine, Toronto, Ontario, CANADA
| |
Collapse
|
197
|
Moss AC, Dinyer TK, Abel MG, Bergstrom HC. Methodological Considerations for the Determination of the Critical Load for the Deadlift. J Strength Cond Res 2021; 35:S31-S37. [PMID: 32796415 DOI: 10.1519/jsc.0000000000003795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Moss, AC, Dinyer, TK, Abel, MG, and Bergstrom, HC. Methodological considerations for the determination of the critical load for the deadlift. J Strength Cond Res 35(2S): S31-S37, 2021-This study determined whether performance method during conventional deadlifting affects critical load (CL) estimates derived from the linear work limit (Wlim) vs. repetitions relationship. Eleven subjects completed 1-repetition maximum (1RM) deadlift testing followed by separate visits, to determine the number of repetitions to failure at 50, 60, 70, and 80% 1RM for both reset (RS) and touch-and-go (TG) methods. The CL was the slope of the line of total work completed (load [kg] × repetitions) vs. total repetitions for 4 intensities (50-80% 1RM). The number of repetitions to failure were determined at CLRS and CLTG. The kg values and repetitions to failure at CLRS and CLTG, and total repetitions at each intensity (50-80%) for each method (RS and TG) were compared. There were no significant mean differences (±SD) in kg values (-0.4 ± 7.9 kg, range = -8.8 to 17 kg, p = 0.856), %1RM (-1.2 ± 5.6%, p = 0.510), or total repetitions completed (2.8 ± 15.7 reps, range = -15 to 37 reps, p = 0.565) for CLRS and CLTG. These findings indicated that performance method did not affect mean estimation of CL or number of repetitions completed at submaximal loads. Thus, the estimates of CL from the modeling of total work vs. repetitions were relatively robust to variations in deadlifting methodologies. However, individual variability (range of scores) in kg values and repetition to failure at CLRS and CLTG indicated that deadlifting methods may differ in anatomical region of fatigue. The CL is an individually derived threshold that may be used to examine and describe performance capabilities.
Collapse
Affiliation(s)
- Alexander C Moss
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky
| | | | | | | |
Collapse
|
198
|
Brownstein CG, Millet GY, Thomas K. Neuromuscular responses to fatiguing locomotor exercise. Acta Physiol (Oxf) 2021; 231:e13533. [PMID: 32627930 DOI: 10.1111/apha.13533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022]
Abstract
Over the last two decades, an abundance of research has explored the impact of fatiguing locomotor exercise on the neuromuscular system. Neurostimulation techniques have been implemented prior to and following locomotor exercise tasks of a wide variety of intensities, durations, and modes. These techniques have allowed for the assessment of alterations occurring within the central nervous system and the muscle, while techniques such as transcranial magnetic stimulation and spinal electrical stimulation have permitted further segmentalization of locomotor exercise-induced changes along the motor pathway. To this end, the present review provides a comprehensive synopsis of the literature pertaining to neuromuscular responses to locomotor exercise. Sections of the review were divided to discuss neuromuscular responses to maximal, severe, heavy and moderate intensity, high-intensity intermittent exercise, and differences in neuromuscular responses between exercise modalities. During maximal and severe intensity exercise, alterations in neuromuscular function reside primarily within the muscle. Although post-exercise reductions in voluntary activation following maximal and severe intensity exercise are generally modest, several studies have observed alterations occurring at the cortical and/or spinal level. During prolonged heavy and moderate intensity exercise, impairments in contractile function are attenuated with respect to severe intensity exercise, but are still widely observed. While reductions in voluntary activation are greater during heavy and moderate intensity exercise, the specific alterations occurring within the central nervous system remain unclear. Further work utilizing stimulation techniques during exercise and integrating new and emerging techniques such as high-density electromyography is warranted to provide further insight into neuromuscular responses to locomotor exercise.
Collapse
Affiliation(s)
- Callum G. Brownstein
- Inter‐University Laboratory of Human Movement Biology Université LyonUJM‐Saint‐Etienne Saint‐Etienne France
| | - Guillaume Y. Millet
- Inter‐University Laboratory of Human Movement Biology Université LyonUJM‐Saint‐Etienne Saint‐Etienne France
- Institut Universitaire de France (IUF) France
| | - Kevin Thomas
- Faculty of Health and Life Sciences Northumbria University Newcastle upon Tyne United Kingdom
| |
Collapse
|
199
|
Poole DC, Behnke BJ, Musch TI. The role of vascular function on exercise capacity in health and disease. J Physiol 2021; 599:889-910. [PMID: 31977068 PMCID: PMC7874303 DOI: 10.1113/jp278931] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( V ̇ O 2 max ), critical power (CP) and speed of the V ̇ O 2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O2 transport pathway from lungs to skeletal muscle mitochondria. Fast V ̇ O 2 kinetics demands that the cardiovascular system distributes exercise-induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates V ̇ O 2 . Chronic disease and ageing create an O2 delivery (i.e. blood flow × arterial [O2 ], Q ̇ O 2 ) dependency that slows V ̇ O 2 kinetics, decreasing CP and V ̇ O 2 max , increasing the O2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical Abstract), this brief review examines the training-induced plasticity of key elements in the O2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle Q ̇ O 2 and thus defend microvascular O2 partial pressures and capillary blood-myocyte O2 diffusion across a ∼100-fold range of muscle V ̇ O 2 values. Recent discoveries, especially in the muscle microcirculation and Q ̇ O 2 -to- V ̇ O 2 heterogeneity, are integrated with the O2 transport pathway to appreciate how local and systemic vascular control helps defend V ̇ O 2 kinetics and determine CP and V ̇ O 2 max in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brad J Behnke
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy I Musch
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
200
|
Similar performance fatigability and neuromuscular responses following sustained bilateral tasks above and below critical force. Eur J Appl Physiol 2021; 121:1111-1124. [PMID: 33484333 DOI: 10.1007/s00421-020-04588-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The present study examined the magnitude of performance fatigability as well as the associated limb- and intensity-specific neuromuscular patterns of responses during sustained, bilateral, isometric, leg extensions above and below critical force (CF). METHODS Twelve women completed three sustained leg extensions (1 below and 2 above CF) anchored to forces corresponding to RPE = 1, 5, and 8 (10-point scale). During each sustained leg extension, electromyographic (EMG) and mechanomyographic (MMG) amplitude (AMP) and mean power frequency (MPF) were assessed from each vastus lateralis in 5% of time-to-exhaustion (TTE) segments. Before and after each sustained leg extension, the subjects completed maximal voluntary isometric contractions (MVIC), and the percent decline was defined as performance fatigability. Polynomial regression was used to define the individual and composite neuromuscular and force values versus time relationships. Repeated-measures ANOVAs assessed differences in performance fatigability and TTE. RESULTS The grand mean for performance fatigability was 10.1 ± 7.6%. For TTE, the repeated-measures ANOVA indicated that there was a significant (p < 0.05) effect for Intensity, such that RPE = 1 > 5 > 8. There were similar neuromuscular patterns of response between limbs as well as above and below CF. EMG MPF, however, exhibited decreases only above CF. CONCLUSIONS Performance fatigability was unvarying above and below CF as well as between limbs. In addition, there were similar fatigue-induced motor unit activation strategies above and below CF, but peripheral fatigue likely contributed to a greater extent above CF.
Collapse
|