151
|
Abstract
Mammalian gene expression can be regulated through various post-transcriptional events, including altered mRNA stability, translational control, and RNA-processing events such as 3'-end formation or polyadenylation (pA). It has become clear in recent years that pA is governed by several core sequence elements and often regulated by additional auxiliary sequence elements. These regulatory events are frequently not reproducible in in vitro assays. Therefore, in vivo methods to measure mRNA pA were developed to meet this need and are described here.
Collapse
|
152
|
Shen Y, Ji G, Haas BJ, Wu X, Zheng J, Reese GJ, Li QQ. Genome level analysis of rice mRNA 3'-end processing signals and alternative polyadenylation. Nucleic Acids Res 2008; 36:3150-61. [PMID: 18411206 PMCID: PMC2396415 DOI: 10.1093/nar/gkn158] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 03/18/2008] [Accepted: 03/19/2008] [Indexed: 12/24/2022] Open
Abstract
The position of a poly(A) site of eukaryotic mRNA is determined by sequence signals in pre-mRNA and a group of polyadenylation factors. To reveal rice poly(A) signals at a genome level, we constructed a dataset of 55 742 authenticated poly(A) sites and characterized the poly(A) signals. This resulted in identifying the typical tripartite cis-elements, including FUE, NUE and CE, as previously observed in Arabidopsis. The average size of the 3'-UTR was 289 nucleotides. When mapped to the genome, however, 15% of these poly(A) sites were found to be located in the currently annotated intergenic regions. Moreover, an extensive alternative polyadenylation profile was evident where 50% of the genes analyzed had more than one unique poly(A) site (excluding microheterogeneity sites), and 13% had four or more poly(A) sites. About 4% of the analyzed genes possessed alternative poly(A) sites at their introns, 5'-UTRs, or protein coding regions. The authenticity of these alternative poly(A) sites was partially confirmed using MPSS data. Analysis of nucleotide profile and signal patterns indicated that there may be a different set of poly(A) signals for those poly(A) sites found in the coding regions. Based on the features of rice poly(A) signals, an updated algorithm termed PASS-Rice was designed to predict poly(A) sites.
Collapse
Affiliation(s)
- Yingjia Shen
- Department of Botany, Miami University, Oxford, OH 45056, USA, Department of Automation, Xiamen University, Xiamen, Fujian, China 361005, The Genome Research Institute, Rockville, MD 20850 and IT Research Computing Support Group, Miami University, Oxford, OH 45056, USA
| | - Guoli Ji
- Department of Botany, Miami University, Oxford, OH 45056, USA, Department of Automation, Xiamen University, Xiamen, Fujian, China 361005, The Genome Research Institute, Rockville, MD 20850 and IT Research Computing Support Group, Miami University, Oxford, OH 45056, USA
| | - Brian J. Haas
- Department of Botany, Miami University, Oxford, OH 45056, USA, Department of Automation, Xiamen University, Xiamen, Fujian, China 361005, The Genome Research Institute, Rockville, MD 20850 and IT Research Computing Support Group, Miami University, Oxford, OH 45056, USA
| | - Xiaohui Wu
- Department of Botany, Miami University, Oxford, OH 45056, USA, Department of Automation, Xiamen University, Xiamen, Fujian, China 361005, The Genome Research Institute, Rockville, MD 20850 and IT Research Computing Support Group, Miami University, Oxford, OH 45056, USA
| | - Jianti Zheng
- Department of Botany, Miami University, Oxford, OH 45056, USA, Department of Automation, Xiamen University, Xiamen, Fujian, China 361005, The Genome Research Institute, Rockville, MD 20850 and IT Research Computing Support Group, Miami University, Oxford, OH 45056, USA
| | - Greg J. Reese
- Department of Botany, Miami University, Oxford, OH 45056, USA, Department of Automation, Xiamen University, Xiamen, Fujian, China 361005, The Genome Research Institute, Rockville, MD 20850 and IT Research Computing Support Group, Miami University, Oxford, OH 45056, USA
| | - Qingshun Quinn Li
- Department of Botany, Miami University, Oxford, OH 45056, USA, Department of Automation, Xiamen University, Xiamen, Fujian, China 361005, The Genome Research Institute, Rockville, MD 20850 and IT Research Computing Support Group, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
153
|
McNally MT. RNA processing control in avian retroviruses. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:3869-83. [PMID: 18508481 PMCID: PMC2575692 DOI: 10.2741/2975] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Upon integration into the host chromosome, retroviral gene expression requires transcription by the host RNA polymerase II, and viral messages are subject RNA processing events including 5'-end capping, pre-mRNA splicing, and polyadenylation. At a minimum, RNA splicing is required to generate the env mRNA, but viral replication requires substantial amounts of unspliced RNA to serve as mRNA and for incorporation into progeny virions as genomic RNA. Therefore, splicing has to be controlled to preserve the large unspliced RNA pool. Considering the current view that splicing and polyadenylation are coupled, the question arises as to how genome-length viral RNA is efficiently polyadenylated in the absence of splicing. Polyadenylation of many retroviral mRNAs is inefficient; in avian retroviruses, approximately 15 percent of viral transcripts extend into and are polyadenylated at downstream host genes, which often has profound biological consequences. Retroviruses have served as important models to study RNA processing and this review summarizes a body of work using avian retroviruses that has led to the discovery of novel RNA splicing and polyadenylation control mechanisms.
Collapse
Affiliation(s)
- Mark T McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
154
|
Mining small RNA structure elements in untranslated regions of human and mouse mRNAs using structure-based alignment. BMC Genomics 2008; 9:189. [PMID: 18439287 PMCID: PMC2413145 DOI: 10.1186/1471-2164-9-189] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 04/25/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND UnTranslated Regions (UTRs) of mRNAs contain regulatory elements for various aspects of mRNA metabolism, such as mRNA localization, translation, and mRNA stability. Several RNA stem-loop structures in UTRs have been experimentally identified, including the histone 3' UTR stem-loop structure (HSL3) and iron response element (IRE). These stem-loop structures are conserved among mammalian orthologs, and exist in a group of genes encoding proteins involved in the same biological pathways. It is not known to what extent RNA structures like these exist in all mammalian UTRs. RESULTS In this paper we took a systematic approach, named GLEAN-UTR, to identify small stem-loop RNA structure elements in UTRs that are conserved between human and mouse orthologs and exist in multiple genes with common Gene Ontology terms. This approach resulted in 90 distinct RNA structure groups containing 748 structures, with HSL3 and IRE among the top hits based on conservation of structure. CONCLUSION Our result indicates that there may exist many conserved stem-loop structures in mammalian UTRs that are involved in coordinate post-transcriptional regulation of biological pathways.
Collapse
|
155
|
Abstract
Most eukaryotic mRNA precursors (premRNAs) must undergo extensive processing, including cleavage and polyadenylation at the 3'-end. Processing at the 3'-end is controlled by sequence elements in the pre-mRNA (cis elements) as well as protein factors. Despite the seeming biochemical simplicity of the processing reactions, more than 14 proteins have been identified for the mammalian complex, and more than 20 proteins have been identified for the yeast complex. The 3'-end processing machinery also has important roles in transcription and splicing. The mammalian machinery contains several sub-complexes, including cleavage and polyadenylation specificity factor, cleavage stimulation factor, cleavage factor I, and cleavage factor II. Additional protein factors include poly(A) polymerase, poly(A)-binding protein, symplekin, and the C-terminal domain of RNA polymerase II largest subunit. The yeast machinery includes cleavage factor IA, cleavage factor IB, and cleavage and polyadenylation factor.
Collapse
Affiliation(s)
- C. R. Mandel
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Y. Bai
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - L. Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| |
Collapse
|
156
|
Ibrahim H, Wilusz J, Wilusz CJ. RNA recognition by 3'-to-5' exonucleases: the substrate perspective. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:256-65. [PMID: 18078842 PMCID: PMC2365504 DOI: 10.1016/j.bbagrm.2007.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/08/2007] [Accepted: 11/09/2007] [Indexed: 12/30/2022]
Abstract
The 3'-to-5' exonucleolytic decay and processing of a variety of RNAs is an essential feature of RNA metabolism in all cells. The 3'-5' exonucleases, and in particular the exosome, are involved in a large number of pathways from 3' processing of rRNA, snRNA and snoRNA, to decay of mRNAs and mRNA surveillance. The potent enzymes performing these reactions are regulated to prevent processing of inappropriate substrates whilst mature RNA molecules exhibit several attributes that enable them to evade 3'-5' attack. How does an enzyme perform such selective activities on different substrates? The goal of this review is to provide an overview and perspective of available data on the underlying principles for the recognition of RNA substrates by 3'-to-5' exonucleases.
Collapse
Affiliation(s)
- Hend Ibrahim
- Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, CO 80525
| | - Jeffrey Wilusz
- Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, CO 80525
| | - Carol J. Wilusz
- Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, CO 80525
| |
Collapse
|
157
|
Fujita S, Ito T, Mizutani T, Minoguchi S, Yamamichi N, Sakurai K, Iba H. miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 2008; 378:492-504. [PMID: 18384814 DOI: 10.1016/j.jmb.2008.03.015] [Citation(s) in RCA: 349] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 02/20/2008] [Accepted: 03/09/2008] [Indexed: 12/11/2022]
Abstract
miR-21 has been reported to be highly expressed in various cancers and to be inducible in a human promyelocytic cell line, HL-60, after phorbol 12-myristate 13-acetate (PMA) treatment. To examine molecular mechanisms involved in miR-21 expression, we analyzed the structure of the miR-21 gene by determining its promoter and primary transcripts. We show that activation protein 1 (AP-1) activates the miR-21 transcription in conjugation with the SWI/SNF complex, after PMA stimulation, through the conserved AP-1 and PU.1 binding sites in the promoter identified here. The previous findings of enhanced miR-21 expression in several cancers may therefore reflect the elevated AP-1 activity in these carcinomas. A single precursor RNA containing miR-21 was transcribed just downstream from the TATA box in this promoter, which is located in an intron of a coding gene, TMEM49. More important, expression of this overlapping gene is completely PMA-independent and all its transcripts are polyadenylated before reaching the miR-21 hairpin embedding region, indicating that miRNAs could have their own promoter even if overlapped with other genes. By available algorithms that predict miRNA target using a conservation of sequence complementary to the miRNA seed sequence, we next predicted and confirmed that the NFIB mRNA is a target of miR-21. NFIB protein usually binds the miR-21 promoter in HL-60 cells as a negative regulator and is swept off from the miR-21 promoter during PMA-induced macrophage differentiation of HL-60. The translational repression of NFIB mRNA by miR-21 accelerates clearance of NFIB in parallel with the simultaneous miR-21-independent transcriptional repression of NFIB after PMA stimulation. Since exogenous miR-21 expression moderately induced endogenous miR-21, an evolutionarily conserved double-negative feedback regulation would be operating as a mechanism to sustain miR-21 expression.
Collapse
Affiliation(s)
- Shuji Fujita
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
158
|
3' end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J 2008; 27:482-98. [PMID: 18256699 DOI: 10.1038/sj.emboj.7601932] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 10/24/2007] [Indexed: 12/27/2022] Open
Abstract
Recent advances in the understanding of the molecular mechanism of mRNA 3' end processing have uncovered a previously unanticipated integrated network of transcriptional and RNA-processing mechanisms. A variety of human diseases impressively reflect the importance of the precision of the complex 3' end-processing machinery and gene specific deregulation of 3' end processing can result from mutations of RNA sequence elements that bind key specific processing factors. Interestingly, more general deregulation of 3' end processing can be caused either by mutations of these processing factors or by the disturbance of the well-coordinated equilibrium between these factors. From a medical perspective, both loss of function and gain of function can be functionally relevant, and an increasing number of different disease entities exemplifies that inappropriate 3' end formation of human mRNAs can have a tremendous impact on health and disease. Here, we review the mechanistic hallmarks of mRNA 3' end processing, highlight the medical relevance of deregulation of this important step of mRNA maturation and illustrate the implications for diagnostic and therapeutic strategies.
Collapse
|
159
|
Sartini BL, Wang H, Wang W, Millette CF, Kilpatrick DL. Pre-Messenger RNA Cleavage Factor I (CFIm): Potential Role in Alternative Polyadenylation During Spermatogenesis1. Biol Reprod 2008; 78:472-82. [DOI: 10.1095/biolreprod.107.064774] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
160
|
|
161
|
Tharun S. Roles of eukaryotic Lsm proteins in the regulation of mRNA function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:149-89. [PMID: 19121818 DOI: 10.1016/s1937-6448(08)01604-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The eukaryotic Lsm proteins belong to the large family of Sm-like proteins, which includes members from all organisms ranging from archaebacteria to humans. The Sm and Lsm proteins typically exist as hexameric or heptameric complexes in vivo and carry out RNA-related functions. Multiple complexes made up of different combinations of Sm and Lsm proteins are known in eukaryotes and these complexes are involved in a variety of functions such as mRNA decay in the cytoplasm, mRNA and pre-mRNA decay in the nucleus, pre-mRNA splicing, replication dependent histone mRNA 3'-end processing, etc. While most Lsm proteins function in the form of heteromeric complexes that include other Lsm proteins, some Lsm proteins are also known that do not behave in that manner. Abnormal expression of some Lsm proteins has also been implicated in human diseases. The various roles of eukaryotic Lsm complexes impacting mRNA function are discussed in this review.
Collapse
Affiliation(s)
- Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
162
|
Lee JY, Park JY, Tian B. Identification of mRNA polyadenylation sites in genomes using cDNA sequences, expressed sequence tags, and Trace. Methods Mol Biol 2008; 419:23-37. [PMID: 18369973 DOI: 10.1007/978-1-59745-033-1_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Polyadenylation of nascent transcripts is an essential step for most mRNAs in eukaryotic cells. It is directly involved in the termination of transcription and is coupled with other steps of pre-mRNA processing. Recent studies have shown that transcript variants resulting from alternative polyadenylation are widespread for human and mouse genes, contributing to the complexity of mRNA pool in the cell. In addition to 3'-most exons, alternative polyadenylation sites (or poly(A) sites) can be located in internal exons and introns. Identification of poly(A) sites in genomes is critical for understanding the occurrence and significance of alternative polyadenylation events. Bioinformatic methods using cDNA sequences, Expressed Sequence Tags (ESTs), and Trace offer a sensitive and systematic approach to detect poly(A) sites in genomes. Various criteria can be employed to enhance the specificity of the detection, including identifying sequences derived from internal priming of mRNA and polyadenylated RNAs during degradation.
Collapse
Affiliation(s)
- Ju Youn Lee
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | | | |
Collapse
|
163
|
Loss of polyadenylation protein tauCstF-64 causes spermatogenic defects and male infertility. Proc Natl Acad Sci U S A 2007; 104:20374-9. [PMID: 18077340 DOI: 10.1073/pnas.0707589104] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polyadenylation, the process of eukaryotic mRNA 3' end formation, is essential for gene expression and cell viability. Polyadenylation of male germ cell mRNAs is unusual, exhibiting increased alternative polyadenylation, decreased AAUAAA polyadenylation signal use, and reduced downstream sequence element dependence. CstF-64, the RNA-binding component of the cleavage stimulation factor (CstF), interacts with pre-mRNAs at sequences downstream of the cleavage site. In mammalian testes, meiotic XY-body formation causes suppression of X-linked CstF-64 expression during pachynema. Consequently, an autosomal paralog, tauCstF-64 (gene name Cstf2t), is expressed during meiosis and subsequent haploid differentiation. Here we show that targeted disruption of Cstf2t in mice causes aberrant spermatogenesis, specifically disrupting meiotic and postmeiotic development, resulting in male infertility resembling oligoasthenoteratozoospermia. Furthermore, the Cstf2t mutant phenotype displays variable expressivity such that spermatozoa show a broad range of defects. The overall phenotype is consistent with a requirement for tauCstF-64 in spermatogenesis as indicated by the significant changes in expression of thousands of genes in testes of Cstf2t(-/-) mice as measured by microarray. Our results indicate that, although the infertility in Cstf2t(-/-) males is due to low sperm count, multiple genes controlling many aspects of germ-cell development depend on tauCstF-64 for their normal expression. Finally, these transgenic mice provide a model for the study of polyadenylation in an isolated in vivo system and highlight the role of a growing family of testis-expressed autosomal retroposed variants of X-linked genes.
Collapse
|
164
|
Feng Z, Wu CF, Zhou X, Kuang J. Alternative polyadenylation produces two major transcripts of Alix. Arch Biochem Biophys 2007; 465:328-35. [PMID: 17673164 PMCID: PMC4104816 DOI: 10.1016/j.abb.2007.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 06/21/2007] [Accepted: 06/21/2007] [Indexed: 01/23/2023]
Abstract
The mammalian adaptor protein Alix participates in multiple cellular processes. Since mouse Alix cDNA detects two distinct transcripts of approximately 3.5 and approximately 7.0 kb in various mouse tissues, it is possible that there exist isoforms of Alix protein that perform varied biological functions. In this study, we first demonstrate that four different anti-Alix monoclonal antibodies immunoblot the single Alix protein in nine different mouse tissues. We then show that the two transcripts of 3.2 and 6.4 kb are widely expressed in various human tissues and cell lines. These two transcripts are generated from the same Alix gene localizing at 3p22.3 via alternative polyadenylation, thus containing an identical open reading frame. However, the 3.2-kb transcript is much more active in translation than the 6.4-kb transcript in a randomly selected cell line. These results eliminate the possibility that the two transcript variants encode different isoforms of Alix protein and suggest that alternative polyadenylation is one of the mechanisms controlling Alix protein expression.
Collapse
Affiliation(s)
| | | | - Xi Zhou
- Departments of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Jian Kuang
- Departments of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
165
|
Graber JH, Salisbury J, Hutchins LN, Blumenthal T. C. elegans sequences that control trans-splicing and operon pre-mRNA processing. RNA (NEW YORK, N.Y.) 2007; 13:1409-26. [PMID: 17630324 PMCID: PMC1950753 DOI: 10.1261/rna.596707] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 05/17/2007] [Indexed: 05/04/2023]
Abstract
Many mRNAs in Caenorhabditis elegans are generated through a trans-splicing reaction that adds one of two classes of spliced leader RNA to an independently transcribed pre-mRNA. SL1 leaders are spliced mostly to pre-mRNAs from genes with outrons, intron-like sequences at the 5'-ends of the pre-mRNAs. In contrast, SL2 leaders are nearly exclusively trans-spliced to genes that occur downstream in polycistronic pre-mRNAs produced from operons. Operon pre-mRNA processing requires separation into individual transcripts, which is accomplished by 3'-processing of upstream genes and spliced leader trans-splicing to the downstream genes. We used a novel computational analysis, based on nonnegative matrix factorization, to identify and characterize significant differences in the cis-acting sequence elements that differentiate various types of functional site, including internal versus terminal 3'-processing sites, and SL1 versus SL2 trans-splicing sites. We describe several key elements, including the U-rich (Ur) element that couples 3'-processing with SL2 trans-splicing, and a novel outron (Ou) element that occurs upstream of SL1 trans-splicing sites. Finally, we present models of the distinct classes of trans-splicing reaction, including SL1 trans-splicing at the outron, SL2 trans-splicing in standard operons, competitive SL1-SL2 trans-splicing in operons with large intergenic separation, and SL1 trans-splicing in SL1-type operons, which have no intergenic separation.
Collapse
|
166
|
Maciolek NL, McNally MT. Serine/arginine-rich proteins contribute to negative regulator of splicing element-stimulated polyadenylation in rous sarcoma virus. J Virol 2007; 81:11208-17. [PMID: 17670832 PMCID: PMC2045511 DOI: 10.1128/jvi.00919-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rous sarcoma virus (RSV) requires large amounts of unspliced RNA for replication. Splicing and polyadenylation are coupled in the cells they infect, which raises the question of how viral RNA is efficiently polyadenylated in the absence of splicing. Optimal RSV polyadenylation requires a far-upstream splicing control element, the negative regulator of splicing (NRS), that binds SR proteins and U1/U11 snRNPs and functions as a pseudo-5' splice site that interacts with and sequesters 3' splice sites. We investigated a link between NRS-mediated splicing inhibition and efficient polyadenylation. In vitro, the NRS alone activated a model RSV polyadenylation substrate, and while the effect did not require the snRNP-binding sites or a downstream 3' splice site, SR proteins were sufficient to stimulate polyadenylation. Consistent with this, SELEX-binding sites for the SR proteins ASF/SF2, 9G8, and SRp20 were able to stimulate polyadenylation when placed upstream of the RSV poly(A) site. In vivo, however, the SELEX sites improved polyadenylation in proviral clones only when the NRS-3' splice site complex could form. Deletions that positioned the SR protein-binding sites closer to the poly(A) site eliminated the requirement for the NRS-3' splice site interaction. This indicates a novel role for SR proteins in promoting RSV polyadenylation in the context of the NRS-3' splice site complex, which is thought to bridge the long distance between the NRS and poly(A) site. The results further suggest a more general role for SR proteins in polyadenylation of cellular mRNAs.
Collapse
Affiliation(s)
- Nicole L Maciolek
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | |
Collapse
|
167
|
Hall-Pogar T, Liang S, Hague LK, Lutz CS. Specific trans-acting proteins interact with auxiliary RNA polyadenylation elements in the COX-2 3'-UTR. RNA (NEW YORK, N.Y.) 2007; 13:1103-15. [PMID: 17507659 PMCID: PMC1894925 DOI: 10.1261/rna.577707] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Two cyclooxygenase (COX) enzymes, COX-1 and COX-2, are present in human cells. While COX-1 is constitutively expressed, COX-2 is inducible and up-regulated in response to many signals. Since increased transcriptional activity accounts for only part of COX-2 up-regulation, we chose to explore other RNA processing mechanisms in the regulation of this gene. Previously, we showed that COX-2 is regulated by alternative polyadenylation, and that the COX-2 proximal polyadenylation signal contains auxiliary upstream sequence elements (USEs) that are very important in efficient polyadenylation. To explore trans-acting protein factors interacting with these cis-acting RNA elements, we performed pull-down assays with HeLa nuclear extract and biotinylated RNA oligonucleotides representing COX-2 USEs. We identified PSF, p54(nrb), PTB, and U1A as proteins specifically bound to the COX-2 USEs. We further explored their participation in polyadenylation using MS2 phage coat protein-MS2 RNA binding site tethering assays, and found that tethering any of these four proteins to the COX-2 USE mutant RNA can compensate for these cis-acting elements. Finally, we suggest that these proteins (p54(nrb), PTB, PSF, and U1A) may interact as a complex since immunoprecipitations of the transfected MS2 fusion proteins coprecipitate the other proteins.
Collapse
Affiliation(s)
- Tyra Hall-Pogar
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
168
|
Kim Guisbert KS, Li H, Guthrie C. Alternative 3' pre-mRNA processing in Saccharomyces cerevisiae is modulated by Nab4/Hrp1 in vivo. PLoS Biol 2007; 5:e6. [PMID: 17194212 PMCID: PMC1717019 DOI: 10.1371/journal.pbio.0050006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 11/03/2006] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae RNA-binding protein Nab4/Hrp1 is a component of the cleavage factor complex required for 3' pre-mRNA processing. Although the precise role of Nab4/Hrp1 remains unclear, it has been implicated in correct positioning of the cleavage site in vitro. Here, we show that mutation or overexpression of NAB4/HRP1 alters polyA cleavage site selection in vivo. Using bioinformatic analysis, we identified four related motifs that are statistically enriched in Nab4-associated transcripts; each motif is similar to the known binding site for Nab4/Hrp1. Site-directed mutations in predicted Nab4/Hrp1 binding elements result in decreased use of adjacent cleavage sites. Additionally, we show that the nab4-7 mutant displays a striking resistance to toxicity from excess copper. We identify a novel target of alternative 3' pre-mRNA processing, CTR2, and demonstrate that CTR2 is required for the copper resistance phenotype in the nab4-7 strain. We propose that alternative 3' pre-mRNA processing is mediated by a Nab4-based mechanism and that these alternative processing events could help control gene expression as part of a physiological response in S. cerevisiae.
Collapse
Affiliation(s)
- Karen S. Kim Guisbert
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
169
|
Identification of candidate regulatory sequences in mammalian 3' UTRs by statistical analysis of oligonucleotide distributions. BMC Bioinformatics 2007; 8:174. [PMID: 17524134 PMCID: PMC1904458 DOI: 10.1186/1471-2105-8-174] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 05/24/2007] [Indexed: 12/11/2022] Open
Abstract
Background 3' untranslated regions (3' UTRs) contain binding sites for many regulatory elements, and in particular for microRNAs (miRNAs). The importance of miRNA-mediated post-transcriptional regulation has become increasingly clear in the last few years. Results We propose two complementary approaches to the statistical analysis of oligonucleotide frequencies in mammalian 3' UTRs aimed at the identification of candidate binding sites for regulatory elements. The first method is based on the identification of sets of genes characterized by evolutionarily conserved overrepresentation of an oligonucleotide. The second method is based on the identification of oligonucleotides showing statistically significant strand asymmetry in their distribution in 3' UTRs. Conclusion Both methods are able to identify many previously known binding sites located in 3'UTRs, and in particular seed regions of known miRNAs. Many new candidates are proposed for experimental verification.
Collapse
|
170
|
Danckwardt S, Kaufmann I, Gentzel M, Foerstner KU, Gantzert AS, Gehring NH, Neu-Yilik G, Bork P, Keller W, Wilm M, Hentze MW, Kulozik AE. Splicing factors stimulate polyadenylation via USEs at non-canonical 3' end formation signals. EMBO J 2007; 26:2658-69. [PMID: 17464285 PMCID: PMC1888663 DOI: 10.1038/sj.emboj.7601699] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 04/02/2007] [Indexed: 12/26/2022] Open
Abstract
The prothrombin (F2) 3' end formation signal is highly susceptible to thrombophilia-associated gain-of-function mutations. In its unusual architecture, the F2 3' UTR contains an upstream sequence element (USE) that compensates for weak activities of the non-canonical cleavage site and the downstream U-rich element. Here, we address the mechanism of USE function. We show that the F2 USE contains a highly conserved nonameric core sequence, which promotes 3' end formation in a position- and sequence-dependent manner. We identify proteins that specifically interact with the USE, and demonstrate their function as trans-acting factors that promote 3' end formation. Interestingly, these include the splicing factors U2AF35, U2AF65 and hnRNPI. We show that these splicing factors not only modulate 3' end formation via the USEs contained in the F2 and the complement C2 mRNAs, but also in the biocomputationally identified BCL2L2, IVNS and ACTR mRNAs, suggesting a broader functional role. These data uncover a novel mechanism that functionally links the splicing and 3' end formation machineries of multiple cellular mRNAs in an USE-dependent manner.
Collapse
Affiliation(s)
- Sven Danckwardt
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
- Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | | | - Marc Gentzel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Anne-Susan Gantzert
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
- Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Niels H Gehring
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
- Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Gabriele Neu-Yilik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
- Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Matthias Wilm
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Matthias W Hentze
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory, Meyerhof str. 1, 69117 Heidelberg, Germany. Tel.: +49 6221 387501; Fax: +49 6221 387518; E-mail:
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
- Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany. Tel.: +49 6221 564555; Fax: +49 6221 564559; E-mail:
| |
Collapse
|
171
|
Abstract
Polyadenylation of nascent transcripts is one of the key mRNA processing events in eukaryotic cells. A large number of human and mouse genes have alternative polyadenylation sites, or poly(A) sites, leading to mRNA variants with different protein products and/or 3′-untranslated regions (3′-UTRs). PolyA_DB 2 contains poly(A) sites identified for genes in several vertebrate species, including human, mouse, rat, chicken and zebrafish, using alignments between cDNA/ESTs and genome sequences. Several new features have been added to the database since its last release, including syntenic genome regions for human poly(A) sites in seven other vertebrates and cis-element information adjacent to poly(A) sites. Trace sequences are used to provide additional evidence for poly(A/T) tails in cDNA/ESTs. The updated database is intended to broaden poly(A) site coverage in vertebrate genomes, and provide means to assess the authenticity of poly(A) sites identified by bioinformatics. The URL for this database is .
Collapse
Affiliation(s)
| | | | | | - Bin Tian
- To whom correspondence should be addressed. Tel: +1 973 972 3615; Fax: +1 973 972 5594;
| |
Collapse
|
172
|
Ivanov IP, Atkins JF. Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res 2007; 35:1842-58. [PMID: 17332016 PMCID: PMC1874602 DOI: 10.1093/nar/gkm035] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The protein antizyme is a negative regulator of intracellular polyamine levels. Ribosomes synthesizing antizyme start in one ORF and at the codon 5′ adjacent to its stop codon, shift +1 to a second and partially overlapping ORF which encodes most of the protein. The ribosomal frameshifting is a sensor and effector of an autoregulatory circuit which is conserved in animals, fungi and protists. Stimulatory signals encoded 5′ and 3′ of the shift site act to program the frameshifting. Despite overall conservation, many individual branches have evolved specific features surrounding the frameshift site. Among these are RNA pseudoknots, RNA stem-loops, conserved primary RNA sequences, nascent peptide sequences and branch-specific ‘shifty’ codons.
Collapse
Affiliation(s)
- Ivaylo P. Ivanov
- Biosciences Institute, University College Cork, Cork, Ireland and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
- *Correspondence may be addressed to either author at +1-353 21 490 1313+1-353 23 55147 and
| | - John F. Atkins
- Biosciences Institute, University College Cork, Cork, Ireland and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
- *Correspondence may be addressed to either author at +1-353 21 490 1313+1-353 23 55147 and
| |
Collapse
|
173
|
Ji G, Zheng J, Shen Y, Wu X, Jiang R, Lin Y, Loke JC, Davis KM, Reese GJ, Li QQ. Predictive modeling of plant messenger RNA polyadenylation sites. BMC Bioinformatics 2007; 8:43. [PMID: 17286857 PMCID: PMC1805453 DOI: 10.1186/1471-2105-8-43] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 02/07/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the essential processing events during pre-mRNA maturation is the post-transcriptional addition of a polyadenine [poly(A)] tail. The 3'-end poly(A) track protects mRNA from unregulated degradation, and indicates the integrity of mRNA through recognition by mRNA export and translation machinery. The position of a poly(A) site is predetermined by signals in the pre-mRNA sequence that are recognized by a complex of polyadenylation factors. These signals are generally tri-part sequence patterns around the cleavage site that serves as the future poly(A) site. In plants, there is little sequence conservation among these signal elements, which makes it difficult to develop an accurate algorithm to predict the poly(A) site of a given gene. We attempted to solve this problem. RESULTS Based on our current working model and the profile of nucleotide sequence distribution of the poly(A) signals and around poly(A) sites in Arabidopsis, we have devised a Generalized Hidden Markov Model based algorithm to predict potential poly(A) sites. The high specificity and sensitivity of the algorithm were demonstrated by testing several datasets, and at the best combinations, both reach 97%. The accuracy of the program, called poly(A) site sleuth or PASS, has been demonstrated by the prediction of many validated poly(A) sites. PASS also predicted the changes of poly(A) site efficiency in poly(A) signal mutants that were constructed and characterized by traditional genetic experiments. The efficacy of PASS was demonstrated by predicting poly(A) sites within long genomic sequences. CONCLUSION Based on the features of plant poly(A) signals, a computational model was built to effectively predict the poly(A) sites in Arabidopsis genes. The algorithm will be useful in gene annotation because a poly(A) site signifies the end of the transcript. This algorithm can also be used to predict alternative poly(A) sites in known genes, and will be useful in the design of transgenes for crop genetic engineering by predicting and eliminating undesirable poly(A) sites.
Collapse
Affiliation(s)
- Guoli Ji
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Jianti Zheng
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Yingjia Shen
- Department of Botany, Miami University, Oxford, OH 45056, USA
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Ronghan Jiang
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Yun Lin
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Johnny C Loke
- Department of Botany, Miami University, Oxford, OH 45056, USA
- Current address: Department of Medicine, Division of Liver Diseases, Mount Sinai Medical Center, 1425 Madison Avenue, RM 1176, New York, NY 10029, USA
| | | | - Greg J Reese
- Research Computing Group, IT Services, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
174
|
Tian B, Pan Z, Lee JY. Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing. Genes Dev 2007; 17:156-65. [PMID: 17210931 PMCID: PMC1781347 DOI: 10.1101/gr.5532707] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Accepted: 11/20/2006] [Indexed: 12/31/2022]
Abstract
mRNA polyadenylation and pre-mRNA splicing are two essential steps for the maturation of most human mRNAs. Studies have shown that some genes generate mRNA variants involving both alternative polyadenylation and alternative splicing. Polyadenylation in introns can lead to conversion of an internal exon to a 3' terminal exon, which is termed composite terminal exon, or usage of a 3' terminal exon that is otherwise skipped, which is termed skipped terminal exon. Using cDNA/EST and genome sequences, we identified polyadenylation sites in introns for all currently known human genes. We found that approximately 20% human genes have at least one intronic polyadenylation event that can potentially lead to mRNA variants, most of which encode different protein products. The conservation of human intronic poly(A) sites in mouse and rat genomes is lower than that of poly(A) sites in 3'-most exons. Quantitative analysis of a number of mRNA variants generated by intronic poly(A) sites suggests that the intronic polyadenylation activity can vary under different cellular conditions for most genes. Furthermore, we found that weak 5' splice site and large intron size are the determining factors controlling the usage of composite terminal exon poly(A) sites, whereas skipped terminal exon poly(A) sites tend to be associated with strong polyadenylation signals. Thus, our data indicate that dynamic interplay between polyadenylation and splicing leads to widespread polyadenylation in introns and contributes to the complexity of transcriptome in the cell.
Collapse
Affiliation(s)
- Bin Tian
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101, USA.
| | | | | |
Collapse
|
175
|
Al-Zoghaibi F, Ashour T, Al-Ahmadi W, Abulleef H, Demirkaya O, Khabar KSA. Bioinformatics and experimental derivation of an efficient hybrid 3' untranslated region and use in expression active linear DNA with minimum poly(A) region. Gene 2006; 391:130-9. [PMID: 17258873 DOI: 10.1016/j.gene.2006.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2006] [Revised: 12/11/2006] [Accepted: 12/15/2006] [Indexed: 11/25/2022]
Abstract
Untranslated regions at the 3' end of the messenger RNA (3' UTR) contain regulatory elements that affect mRNA stability and translation and subsequently the protein levels. In this report, we performed bioinformatics analysis on housekeeping genes with putative stable mRNAs in comparison with Class II AU-rich elements (ARE)-containing mRNAs, a group of mRNAs known to represent many labile transcripts. We have found that ARE-mRNAs are less abundant and had longer 3' UTR than stable housekeeping mRNAs. As a result of the analysis, we evaluated the use of a 3' UTR derived from the abundant elongation factor 1 alpha 1 (EEF1A1) mRNA, in expression vectors. Due to the excellent consequence of the modified 3' UTR, we were able to produce expression active linear DNA generated by cloning-free PCR. We have also applied this approach to study the in vivo minimum requirement of poly(A) signal context that allows efficient protein synthesis. The efficient 3' UTR may find use in enhanced recombinant protein production and also provide a simplified tool for generation of expression active linear DNA.
Collapse
Affiliation(s)
- Fahad Al-Zoghaibi
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
176
|
Dalziel M, Nunes NM, Furger A. Two G-rich regulatory elements located adjacent to and 440 nucleotides downstream of the core poly(A) site of the intronless melanocortin receptor 1 gene are critical for efficient 3' end processing. Mol Cell Biol 2006; 27:1568-80. [PMID: 17189425 PMCID: PMC1820467 DOI: 10.1128/mcb.01821-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cleavage and polyadenylation is an essential processing reaction required for the maturation of pre-mRNAs into stable, export- and translation-competent mature mRNA molecules. This reaction requires the assembly of a multimeric protein complex onto a bipartite core sequence element consisting of an AAUAAA hexamer and a GU/U-rich downstream sequence element. In this study we have analyzed 3' end processing of the human melanocortin 1 receptor gene (MC1R). The MC1R gene is an intron-free transcription unit, and its poly(A) site lacks a defined U/GU-rich element. We describe two G-rich sequence elements that are critical for efficient cleavage at the MC1R poly(A) site. The first element is located 30 nucleotides downstream of the cleavage site and acts as an essential closely positioned enhancer. The second G-rich region is positioned more than 440 nucleotides downstream of the MC1R processing site and is instrumental for optimal processing efficiency. Both G-rich sequences contain clusters of heterogeneous nuclear ribonucleoprotein binding motifs and act together to enhance cleavage at the MC1R poly(A) site.
Collapse
Affiliation(s)
- Martin Dalziel
- Genetics Unit, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
177
|
Liu D, Brockman JM, Dass B, Hutchins LN, Singh P, McCarrey JR, MacDonald CC, Graber JH. Systematic variation in mRNA 3'-processing signals during mouse spermatogenesis. Nucleic Acids Res 2006; 35:234-46. [PMID: 17158511 PMCID: PMC1802579 DOI: 10.1093/nar/gkl919] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Gene expression and processing during mouse male germ cell maturation (spermatogenesis) is highly specialized. Previous reports have suggested that there is a high incidence of alternative 3′-processing in male germ cell mRNAs, including reduced usage of the canonical polyadenylation signal, AAUAAA. We used EST libraries generated from mouse testicular cells to identify 3′-processing sites used at various stages of spermatogenesis (spermatogonia, spermatocytes and round spermatids) and testicular somatic Sertoli cells. We assessed differences in 3′-processing characteristics in the testicular samples, compared to control sets of widely used 3′-processing sites. Using a new method for comparison of degenerate regulatory elements between sequence samples, we identified significant changes in the use of putative 3′-processing regulatory sequence elements in all spermatogenic cell types. In addition, we observed a trend towards truncated 3′-untranslated regions (3′-UTRs), with the most significant differences apparent in round spermatids. In contrast, Sertoli cells displayed a much smaller trend towards 3′-UTR truncation and no significant difference in 3′-processing regulatory sequences. Finally, we identified a number of genes encoding mRNAs that were specifically subject to alternative 3′-processing during meiosis and postmeiotic development. Our results highlight developmental differences in polyadenylation site choice and in the elements that likely control them during spermatogenesis.
Collapse
Affiliation(s)
- Donglin Liu
- The Jackson Laboratory, 600 Main StreetBar Harbor, ME 04609, USA
| | - J. Michael Brockman
- The Jackson Laboratory, 600 Main StreetBar Harbor, ME 04609, USA
- Bioinformatics Program, Boston University24 Cummington Street, Boston, MA 02215, USA
| | - Brinda Dass
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences CenterLubbock, TX 79430, USA
| | | | - Priyam Singh
- The Jackson Laboratory, 600 Main StreetBar Harbor, ME 04609, USA
- Bioinformatics Program, Boston University24 Cummington Street, Boston, MA 02215, USA
| | - John R. McCarrey
- Department of Biology, University of Texas at San AntonioSan Antonio, TX 78249, USA
| | - Clinton C. MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences CenterLubbock, TX 79430, USA
| | - Joel H. Graber
- The Jackson Laboratory, 600 Main StreetBar Harbor, ME 04609, USA
- Bioinformatics Program, Boston University24 Cummington Street, Boston, MA 02215, USA
- To whom correspondence should be addressed. Tel: +1 207 288 6847; Fax: +1 207 288 6073;
| |
Collapse
|
178
|
Stadler MB, Shomron N, Yeo GW, Schneider A, Xiao X, Burge CB. Inference of splicing regulatory activities by sequence neighborhood analysis. PLoS Genet 2006; 2:e191. [PMID: 17121466 PMCID: PMC1657047 DOI: 10.1371/journal.pgen.0020191] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 09/26/2006] [Indexed: 12/13/2022] Open
Abstract
Sequence-specific recognition of nucleic-acid motifs is critical to many cellular processes. We have developed a new and general method called Neighborhood Inference (NI) that predicts sequences with activity in regulating a biochemical process based on the local density of known sites in sequence space. Applied to the problem of RNA splicing regulation, NI was used to predict hundreds of new exonic splicing enhancer (ESE) and silencer (ESS) hexanucleotides from known human ESEs and ESSs. These predictions were supported by cross-validation analysis, by analysis of published splicing regulatory activity data, by sequence-conservation analysis, and by measurement of the splicing regulatory activity of 24 novel predicted ESEs, ESSs, and neutral sequences using an in vivo splicing reporter assay. These results demonstrate the ability of NI to accurately predict splicing regulatory activity and show that the scope of exonic splicing regulatory elements is substantially larger than previously anticipated. Analysis of orthologous exons in four mammals showed that the NI score of ESEs, a measure of function, is much more highly conserved above background than ESE primary sequence. This observation indicates a high degree of selection for ESE activity in mammalian exons, with surprisingly frequent interchangeability between ESE sequences. Gene expression involves a series of steps in which specific short DNA or RNA segments are recognized by nucleic acid–binding proteins. One step that is particularly prominent and complex in humans and other vertebrates is the removal of introns and the ligation of exons in the process of pre-mRNA splicing. To better understand the sequences in exons that regulate this process, the authors have developed a method termed Neighborhood Inference that predicts the splicing regulatory activity of RNA segments based on the known splicing enhancer or silencer activity of other segments that have closely neighboring sequences. This method is applied to predict hundreds of new exonic splicing regulatory elements, as well as splicing-neutral sequences. A number of these predictions were validated experimentally, indicating that the number of exonic splicing regulatory sequences is larger than previously suspected. Neighborhood Inference scoring is also used to show that selection on exonic splicing enhancers (ESEs) frequently allows conversion of one ESE sequence to another over evolutionary time periods, suggesting that ESEs are, to at least some degree, interchangeable in constitutively spliced exons. The methods described may also find application in the study of other biomolecular processes that involve sequence-specific nucleic acid–binding proteins.
Collapse
Affiliation(s)
- Michael B Stadler
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail: (MBS); (CBB)
| | - Noam Shomron
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Gene W Yeo
- Crick-Jacobs Center for Computational and Theoretical Biology and Laboratory of Genetics, The Salk Institute, La Jolla, California, United States of America
| | - Aniket Schneider
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Xinshu Xiao
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail: (MBS); (CBB)
| |
Collapse
|
179
|
Peterson ML, Bingham GL, Cowan C. Multiple features contribute to the use of the immunoglobulin M secretion-specific poly(A) signal but are not required for developmental regulation. Mol Cell Biol 2006; 26:6762-71. [PMID: 16943419 PMCID: PMC1592873 DOI: 10.1128/mcb.00889-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The secretory-specific poly(A) signal (mus) of the immunoglobulin mu gene plays a central role in regulating alternative RNA processing to produce RNAs that encode membrane-associated and secreted immunoglobulins. This poly(A) signal is in direct competition with a splice reaction, and regulation requires that these two reaction efficiencies be balanced. The mus poly(A) signal has several unique sequence features that may contribute to its strength and regulation. Site-directed mutations and small internal deletions made in the intact mu gene show that an extensive AU/A-rich sequence surrounding AAUAAA enhances signal use and that, of the two potential downstream GU-rich elements, both of which appear suboptimally located, only the proximal GU-rich sequence contributes substantially to use of this signal. A GU-rich sequence placed at a more standard location did not improve mus poly(A) signal use. All mu genes tested that contained modified mus poly(A) signals were developmentally regulated, indicating that the GU-rich sequences, the sequences between them previously identified as suboptimal U1A binding sites, and an upstream suboptimal U1A site do not contribute to mu mRNA processing regulation. Expression of wild-type and modified mu genes in HeLa cells overexpressing U1A also failed to demonstrate that U1A contributes to mus poly(A) signal regulation.
Collapse
Affiliation(s)
- Martha L Peterson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, 800 Rose St., 108A Combs Building, Lexington, KY 40536-0096, USA.
| | | | | |
Collapse
|
180
|
Ara T, Lopez F, Ritchie W, Benech P, Gautheret D. Conservation of alternative polyadenylation patterns in mammalian genes. BMC Genomics 2006; 7:189. [PMID: 16872498 PMCID: PMC1550727 DOI: 10.1186/1471-2164-7-189] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 07/26/2006] [Indexed: 11/26/2022] Open
Abstract
Background Alternative polyadenylation is a widespread mechanism contributing to transcript diversity in eukaryotes. Over half of mammalian genes are alternatively polyadenylated. Our understanding of poly(A) site evolution is limited by the lack of a reliable identification of conserved, equivalent poly(A) sites among species. We introduce here a working definition of conserved poly(A) sites as sites that are both (i) properly aligned in human and mouse orthologous 3' untranslated regions (UTRs) and (ii) supported by EST or cDNA data in both species. Results We identified about 4800 such conserved poly(A) sites covering one third of the orthologous gene set studied. Characteristics of conserved poly(A) sites such as processing efficiency and tissue-specificity were analyzed. Conserved sites show a higher processing efficiency but no difference in tissular distribution when compared to non-conserved sites. In general, alternative poly(A) sites are species-specific and involve minor, non-conserved sites that are unlikely to play essential roles. However, there are about 500 genes with conserved tandem poly(A) sites. A significant fraction of these conserved tandems display a conserved arrangement of major/minor sites in their 3' UTR, suggesting that these alternative 3' ends may be under selection. Conclusion This analysis allows us to identify potential functional alternative poly(A) sites and provides clues on the selective mechanisms at play in the appearance of multiple poly(A) sites and their maintenance in the 3' UTRs of genes.
Collapse
Affiliation(s)
- Takeshi Ara
- INSERM ERM 206, Université de la Méditerranée, Luminy Case 906, 13288 Marseille, Cedex 09, France
| | - Fabrice Lopez
- INSERM ERM 206, Université de la Méditerranée, Luminy Case 906, 13288 Marseille, Cedex 09, France
| | - William Ritchie
- INSERM ERM 206, Université de la Méditerranée, Luminy Case 906, 13288 Marseille, Cedex 09, France
| | - Philippe Benech
- INSERM ERM 206, Université de la Méditerranée, Luminy Case 906, 13288 Marseille, Cedex 09, France
| | - Daniel Gautheret
- INSERM ERM 206, Université de la Méditerranée, Luminy Case 906, 13288 Marseille, Cedex 09, France
- Institut de Génétique et Microbiologie, Université Paris-Sud – CNRS UMR 8621, Bât 400, 91405 Orsay Cedex, France
| |
Collapse
|
181
|
Abstract
mRNA polyadenylation is responsible for the 3' end formation of most mRNAs in eukaryotic cells and is linked to termination of transcription. Prediction of mRNA polyadenylation sites [poly(A) sites] can help identify genes, define gene boundaries, and elucidate regulatory mechanisms. Current methods for poly(A) site prediction achieve moderate sensitivity and specificity. Here, we present a method using support vector machine for poly(A) site prediction. Using 15 cis-regulatory elements that are over-represented in various regions surrounding poly(A) sites, this method achieves higher sensitivity and similar specificity when compared with polyadq, a common tool for poly(A) site prediction. In addition, we found that while the polyadenylation signal AAUAAA and U-rich elements are primary determinants for poly(A) site prediction, other elements contribute to both sensitivity and specificity of the prediction, indicating a combinatorial mechanism involving multiple elements when choosing poly(A) sites in human cells.
Collapse
Affiliation(s)
- Yiming Cheng
- Department of Mathematical Sciences, New Jersey Institute of Technology Newark, NJ 07102, USA
| | | | | |
Collapse
|
182
|
Retelska D, Iseli C, Bucher P, Jongeneel CV, Naef F. Similarities and differences of polyadenylation signals in human and fly. BMC Genomics 2006; 7:176. [PMID: 16836751 PMCID: PMC1574307 DOI: 10.1186/1471-2164-7-176] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 07/12/2006] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Cleavage of messenger RNA (mRNA) precursors is an essential step in mRNA maturation. The signal recognized by the cleavage enzyme complex has been characterized as an A rich region upstream of the cleavage site containing a motif with consensus AAUAAA, followed by a U or UG rich region downstream of the cleavage site. RESULTS We studied these signals using exhaustive databases of cleavage sites obtained from aligning raw expressed sequence tags (EST) sequences to genomic sequences in Homo sapiens and Drosophila melanogaster. These data show that the polyadenylation signal is highly conserved in human and fly. In addition, de novo motif searches generated a refined description of the U-rich downstream sequence (DSE) element, which shows more divergence between the two species. These refined motifs are applied, within a Hidden Markov Model (HMM) framework, to predict mRNA cleavage sites. CONCLUSION We demonstrate that the DSE is a specific motif in both human and Drosophila. These findings shed light on the sequence correlates of a highly conserved biological process, and improve in silico prediction of 3' mRNA cleavage and polyadenylation sites.
Collapse
Affiliation(s)
- Dorota Retelska
- Swiss Institute of Bioinformatics, Batiment Genopode, UNIL, 1015 Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), AAB-021, CH-1015 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Batiment Genopode, UNIL, 1015 Lausanne, Switzerland
| | - Christian Iseli
- Swiss Institute of Bioinformatics, Batiment Genopode, UNIL, 1015 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Batiment Genopode, UNIL, 1015 Lausanne, Switzerland
| | - Philipp Bucher
- Swiss Institute of Bioinformatics, Batiment Genopode, UNIL, 1015 Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), AAB-021, CH-1015 Lausanne, Switzerland
| | - C Victor Jongeneel
- Swiss Institute of Bioinformatics, Batiment Genopode, UNIL, 1015 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Batiment Genopode, UNIL, 1015 Lausanne, Switzerland
| | - Felix Naef
- Swiss Institute of Bioinformatics, Batiment Genopode, UNIL, 1015 Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), AAB-021, CH-1015 Lausanne, Switzerland
| |
Collapse
|
183
|
Chen JM, Férec C, Cooper DN. A systematic analysis of disease-associated variants in the 3' regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3' UTR variants. Hum Genet 2006; 120:301-33. [PMID: 16807757 DOI: 10.1007/s00439-006-0218-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 05/29/2006] [Indexed: 12/13/2022]
Abstract
In an attempt both to catalogue 3' regulatory region (3' RR)-mediated disease and to improve our understanding of the structure and function of the 3' RR, we have performed a systematic analysis of disease-associated variants in the 3' RRs of human protein-coding genes. We have previously analysed the variants that have occurred in two specific domains/motifs of the 3' untranslated region (3' UTR) as well as in the 3' flanking region. Here we have focused upon 83 known variants within the upstream sequence (USS; between the translational termination codon and the upstream core polyadenylation signal sequence) of the 3' UTR. To place these variants in their proper context, we first performed a comprehensive survey of known cis-regulatory elements within the USS and the mechanisms by which they effect post-transcriptional gene regulation. Although this survey supports the view that RNA regulatory elements function within the context of specific secondary structures, there are no general rules governing how secondary structure might exert its influence. We have therefore addressed this question by systematically evaluating both functional and non-functional (based upon in vitro reporter gene and/or electrophoretic mobility shift assay data) USS variant-containing sequences against known cis-regulatory motifs within the context of predicted RNA secondary structures. This has allowed us not only to establish a reliable and objective means to perform secondary structure prediction but also to identify consistent patterns of secondary structural change that could potentiate the discrimination of functional USS variants from their non-functional counterparts. The resulting rules were then used to infer potential functionality in the case of some of the remaining functionally uncharacterized USS variants, from their predicted secondary structures. This not only led us to identify further patterns of secondary structural change but also several potential novel cis-regulatory motifs within the 3' UTRs studied.
Collapse
|
184
|
Chen JM, Férec C, Cooper DN. A systematic analysis of disease-associated variants in the 3' regulatory regions of human protein-coding genes I: general principles and overview. Hum Genet 2006; 120:1-21. [PMID: 16645853 DOI: 10.1007/s00439-006-0180-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 03/26/2006] [Indexed: 10/24/2022]
Abstract
The 3' regulatory regions (3' RRs) of human genes play an important role in regulating mRNA 3' end formation, stability/degradation, nuclear export, subcellular localization and translation and are consequently rich in regulatory elements. Although 3' RRs contain only approximately 0.2% of known disease-associated mutations, this is likely to represent a rather conservative estimate of their actual prevalence. In an attempt to catalogue 3' RR-mediated disease and also to gain a greater understanding of the functional role of regulatory elements within 3' RRs, we have performed a systematic analysis of disease-associated 3' RR variants; 121 3' RR variants in 94 human genes were collated. These included 17 mutations in the upstream core polyadenylation signal sequence (UCPAS), 81 in the upstream sequence (USS) between the translational termination codon and the UCPAS, 6 in the left arm of the 'spacer' sequence (LAS) between the UCPAS and the pre-mRNA cleavage site (CS), 3 in the right arm of the 'spacer' sequence (RAS) or downstream core polyadenylation signal sequence (DCPAS) and 7 in the downstream sequence (DSS) of the 3'-flanking region, with 7 further mutations being treated as isolated examples. All the UCPAS mutations and the rather unusual cases of the DMPK, SCA8, FCMD and GLA mutations exert a significant effect on the mRNA phenotype and are usually associated with monogenic disease. By contrast, most of the remaining variants are polymorphisms that exert a comparatively minor influence on mRNA expression, but which may nevertheless predispose to or otherwise modify complex clinical phenotypes. Considerable efforts have been made to validate/elucidate the mechanisms through which the 3' untranslated region (3' UTR) variants affect gene expression. It is hoped that the integrative approach employed here in the study of naturally occurring variants of actual or potential pathological significance will serve to complement ongoing efforts to identify all functional regulatory elements in the human genome.
Collapse
|
185
|
Salisbury J, Hutchison KW, Graber JH. A multispecies comparison of the metazoan 3'-processing downstream elements and the CstF-64 RNA recognition motif. BMC Genomics 2006; 7:55. [PMID: 16542450 PMCID: PMC1539018 DOI: 10.1186/1471-2164-7-55] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 03/16/2006] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Cleavage Stimulation Factor (CstF) is a required protein complex for eukaryotic mRNA 3'-processing. CstF interacts with 3'-processing downstream elements (DSEs) through its 64-kDa subunit, CstF-64; however, the exact nature of this interaction has remained unclear. We used EST-to-genome alignments to identify and extract large sets of putative 3'-processing sites for mRNA from ten metazoan species, including Homo sapiens, Canis familiaris, Rattus norvegicus, Mus musculus, Gallus gallus, Danio rerio, Takifugu rubripes, Drosophila melanogaster, Anopheles gambiae, and Caenorhabditis elegans. In order to further delineate the details of the mRNA-protein interaction, we obtained and multiply aligned CstF-64 protein sequences from the same species. RESULTS We characterized the sequence content and specific positioning of putative DSEs across the range of organisms studied. Our analysis characterized the downstream element (DSE) as two distinct parts - a proximal UG-rich element and a distal U-rich element. We find that while the U-rich element is largely conserved in all of the organisms studied, the UG-rich element is not. Multiple alignment of the CstF-64 RNA recognition motif revealed that, while it is highly conserved throughout metazoans, we can identify amino acid changes that correlate with observed variation in the sequence content and positioning of the DSEs. CONCLUSION Our analysis confirms the early reports of separate U- and UG-rich DSEs. The correlated variations in protein sequence and mRNA binding sequences provide novel insights into the interactions between the precursor mRNA and the 3'-processing machinery.
Collapse
Affiliation(s)
- Jesse Salisbury
- Functional Genomics Program, The University of Maine, Orono, Maine 04469, USA
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA
| | - Keith W Hutchison
- Functional Genomics Program, The University of Maine, Orono, Maine 04469, USA
- Department of Biochemistry, Microbiology and Molecular Biology, The University of Maine, Orono, ME 04469, USA
| | - Joel H Graber
- Functional Genomics Program, The University of Maine, Orono, Maine 04469, USA
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA
| |
Collapse
|
186
|
Pan Z, Zhang H, Hague LK, Lee JY, Lutz CS, Tian B. An intronic polyadenylation site in human and mouse CstF-77 genes suggests an evolutionarily conserved regulatory mechanism. Gene 2006; 366:325-34. [PMID: 16316725 DOI: 10.1016/j.gene.2005.09.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 08/09/2005] [Accepted: 09/22/2005] [Indexed: 01/24/2023]
Abstract
Human CstF-77 is one of the three subunits of cleavage stimulation factor (CstF) that is essential for mRNA polyadenylation. Its Drosophila homologue, suppressor of forked [su(f)], contains an intronic poly(A) site, which can lead to a short transcript without a stop codon. By both bioinformatic searches and validation with molecular biology experiments, we found that human and mouse CstF-77 genes also contain an intronic poly(A) site, which can be utilized to produce short CstF-77 transcripts lacking sequences encoding domains that are involved in many of the CstF-77 functions. The genomic sequence surrounding the poly(A) site is highly conserved among all vertebrates, but is not present in non-vertebrate species. Using public Serial Analysis of Gene Expression (SAGE) data, we found that the intronic poly(A) site is utilized in a wide range of tissues. This finding indicates that vertebrates may employ a similar alternative polyadenylation mechanism to modulate CstF-77, highlighting the importance of the regulation of CstF-77 in various species.
Collapse
Affiliation(s)
- Zhenhua Pan
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101, USA
| | | | | | | | | | | |
Collapse
|
187
|
Zhang H, Lee JY, Tian B. Biased alternative polyadenylation in human tissues. Genome Biol 2005; 6:R100. [PMID: 16356263 PMCID: PMC1414089 DOI: 10.1186/gb-2005-6-12-r100] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/31/2005] [Accepted: 10/18/2005] [Indexed: 11/15/2022] Open
Abstract
Bioinformatic analyses of the occurrence and mechanism of alternative polyadenylation in different human tissues reveals systematic differences among tissues and suggests the involvement of both trans- and cis-regulatory elements. Background Alternative polyadenylation is one of the mechanisms in human cells that give rise to a variety of transcripts from a single gene. More than half of the human genes have multiple polyadenylation sites (poly(A) sites), leading to variable mRNA and protein products. Previous studies of individual genes have indicated that alternative polyadenylation could occur in a tissue-specific manner. Results We set out to systematically investigate the occurrence and mechanism of alternative polyadenylation in different human tissues using bioinformatic approaches. Using expressed sequence tag (EST) data, we investigated 42 distinct tissue types. We found that several tissues tend to use poly(A) sites that are biased toward certain locations of a gene, such as sites located in introns or internal exons, and various sites in the exon located closest to the 3' end. We also identified several tissues, including eye, retina and placenta, that tend to use poly(A) sites not frequently used in other tissues. By exploring microarray expression data, we analyzed over 20 genes whose protein products are involved in the process or regulation of mRNA polyadenylation. Several brain tissues showed high concordance of gene expression of these genes with each other, but low concordance with other tissue types. By comparing genomic regions surrounding poly(A) sites preferentially used in brain tissues with those in other tissues, we identified several cis-regulatory elements that were significantly associated with brain-specific poly(A) sites. Conclusion Our results indicate that there are systematic differences in poly(A) site usage among human tissues, and both trans-acting factors and cis-regulatory elements may be involved in regulating alternative polyadenylation in different tissues.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07101-1709, USA
| | - Ju Youn Lee
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07101-1709, USA
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07101-1709, USA
| |
Collapse
|
188
|
|