151
|
Studte P, Zink S, Jablonowski D, Bär C, von der Haar T, Tuite MF, Schaffrath R. tRNA and protein methylase complexes mediate zymocin toxicity in yeast. Mol Microbiol 2008; 69:1266-77. [PMID: 18657261 DOI: 10.1111/j.1365-2958.2008.06358.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modification of Saccharomyces cerevisiae tRNA anticodons at the wobble uridine (U34) position is required for tRNA cleavage by the zymocin tRNase killer toxin from Kluyveromyces lactis. Hence, U34 modification defects including lack of the U34 tRNA methyltransferase Trm9 protect against tRNA cleavage and zymocin. Using zymocin as a tool, we have identified toxin-resistant mutations in TRM9 that are likely to affect the U34 methylation reaction. Most strikingly, C-terminal truncations in Trm9 abolish interaction with Trm112, a protein shown to individually purify with Lys9 and two more methylases, Trm11 and Mtq2. Downregulation of a GAL1-TRM112 allele protects against zymocin whereas LYS9, TRM11 and MTQ2 are dosage suppressors of zymocin. Based on immune precipitation studies, the latter scenario correlates with competition for Trm112 and in excess, some of these Trm112 partners interfere with formation of the toxin-relevant Trm9.Trm112 complex. In contrast to trm11Delta or lys9Delta cells, trm112Delta and mtq2Delta null mutants are zymocin resistant. In line with the identified role that methylation of Sup45 by Mtq2 has for translation termination by the release factor dimer Sup45.Sup35, we observe that SUP45 overexpression and sup45 mutants suppress zymocin. Intriguingly, this suppression correlates with upregulated levels of tRNA species targeted by zymocin's tRNase activity.
Collapse
Affiliation(s)
- Patrick Studte
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität, Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | | | | | | | |
Collapse
|
152
|
Bär C, Zabel R, Liu S, Stark MJR, Schaffrath R. A versatile partner of eukaryotic protein complexes that is involved in multiple biological processes: Kti11/Dph3. Mol Microbiol 2008; 69:1221-33. [PMID: 18627462 DOI: 10.1111/j.1365-2958.2008.06350.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Kluyveromyces lactis killer toxin zymocin insensitive 11 (KTI11) gene from Saccharomyces cerevisiae is allelic with the diphthamide synthesis 3 (DPH3) locus. Here, we present evidence that the KTI11 gene product is a versatile partner of proteins and operates in multiple biological processes. Notably, Kti11 immune precipitates contain Elp2 and Elp5, two subunits of the Elongator complex which is involved in transcription, tRNA modification and zymocin toxicity. KTI11 deletion phenocopies Elongator-minus cells and causes antisuppression of nonsense and missense suppressor tRNAs (SUP4, SOE1), zymocin resistance and protection against the tRNase attack of zymocin. In addition and unlike Elongator mutants, kti11 mutants resist diphtheria toxin (DT), protect against ADP-ribosylation of eukaryotic translation elongation factor 2 (eEF2) by DT and induce resistance against sordarin, an eEF2 poisoning antifungal. The latter phenotype applies to all diphthamide mutants (dph1-dph5) tested and Kti11/Dph3 physically interacts with diphthamide synthesis factors Dph1 and Dph2, presumably as part of a trimeric complex. Moreover, we present a separation of function mutation in KTI11, kti11-1, which dissociates zymocin resistance from DT sensitivity. It encodes a C-terminal Kti11 truncation that almost entirely abolishes Elongator interaction without affecting association with Kti13, another Kti11 partner protein.
Collapse
Affiliation(s)
- Christian Bär
- Biologicum, Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
153
|
Klassen R, Paluszynski JP, Wemhoff S, Pfeiffer A, Fricke J, Meinhardt F. The primary target of the killer toxin from Pichia acaciae is tRNA(Gln). Mol Microbiol 2008; 69:681-97. [PMID: 18532979 DOI: 10.1111/j.1365-2958.2008.06319.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Pichia acaciae killer toxin (PaT) arrests yeast cells in the S-phase of the cell cycle and induces DNA double-strand breaks (DSBs). Surprisingly, loss of the tRNA-methyltransferase Trm9 - along with the Elongator complex involved in synthesis of 5-methoxy-carbonyl-methyl (mcm(5)) modification in certain tRNAs - conferred resistance against PaT. Overexpression of mcm(5)-modified tRNAs identified tRNA(Gln)((UUG)) as the intracellular target. Consistently, toxin-challenged cells displayed reduced levels of tRNA(Gln) and in vitro the heterologously expressed active toxin subunit disrupts the integrity of tRNA(Gln)((UUG)). Other than Kluyveromyces lactis zymocin, an endonuclease specific for tRNA(Glu)((UUC)), affecting its target in a mcm(5)-dependent manner, PaT exerts activity also on tRNA(Gln) lacking such modification. As sensitivity is restored in trm9 elp3 double mutants, target tRNA cleavage is selectively inhibited by incomplete wobble uridine modification, as seen in trm9, but not in elp3 or trm9 elp3 cells. In addition to tRNA(Gln)((UUG)), tRNA(Gln)((CUG)) is also cleaved in vitro and overexpression of the corresponding gene increased resistance. Consistent with tRNA(Gln)((CUG)) as an additional TRM9-independent target, overexpression of PaT's tRNase subunit abolishes trm9 resistance. Most interestingly, a functional DSB repair pathway confers PaT but also zymocin resistance, suggesting DNA damage to occur generally concomitant with specific tRNA offence.
Collapse
Affiliation(s)
- Roland Klassen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
154
|
Zabel R, Bär C, Mehlgarten C, Schaffrath R. Yeast alpha-tubulin suppressor Ats1/Kti13 relates to the Elongator complex and interacts with Elongator partner protein Kti11. Mol Microbiol 2008; 69:175-87. [PMID: 18466297 DOI: 10.1111/j.1365-2958.2008.06273.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The alpha-tubulin suppressor 1 (ATS1) gene and the killer toxin-insensitive 13 (KTI13) locus from Saccharomyces cerevisiae are allelic. The Ats1/Kti13 gene product interacts with the cell polarity factor Nap1 and promotes growth inhibition of S. cerevisiae by zymocin, a tRNAse toxin complex from Kluyveromyces lactis. Kti13 removal causes zymocin resistance, a trait that is typical of defects in the Elongator complex. Here, we show that Kti13 co-purifies with the Elongator partner protein Kti11 and that the Kti11 interaction, not the Nap1 partnership, requires the C-terminus of Kti13. Moreover, Kti13 functionally relates to roles of the Elongator complex in tRNA wobble uridine modification, tRNA suppression of nonsense (SUP4) and missense (SOE1) mutations and tRNA restriction by zymocin. Also, inactivation of Kti13 or Elongator rescues the thermosensitive growth defect of secretory mutants (sec2-59(ts), sec12-4(ts)), suggesting that Kti13 and Elongator affect secretion processes that depend on the GTP exchange factors Sec2 and Sec12 respectively. Distinct from tandem deletions in KTI13 and Elongator genes, a kti13Delta kti11Delta double deletion induces synthetic sickness or lethality. In sum, our data suggest that Kti13 and Kti11 support Elongator functions and that they both share Elongator-independent role(s) that are important for cell viability.
Collapse
Affiliation(s)
- René Zabel
- Biologicum, Institut für Biologie, Institutsbereich Genetik, Martin-Luther-Universität, Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | |
Collapse
|
155
|
Dupasquier M, Kim S, Halkidis K, Gamper H, Hou YM. tRNA integrity is a prerequisite for rapid CCA addition: implication for quality control. J Mol Biol 2008; 379:579-88. [PMID: 18466919 DOI: 10.1016/j.jmb.2008.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 03/22/2008] [Accepted: 04/02/2008] [Indexed: 12/01/2022]
Abstract
CCA addition to the 3' end is an essential step in tRNA maturation. High-resolution crystal structures of the CCA enzymes reveal primary enzyme contact with the tRNA minihelix domain, consisting of the acceptor stem and T stem-loop. RNA and DNA minihelices are efficient substrates for CCA addition in steady-state kinetics. However, in contrast to structural models and steady-state experiments, we show here by single-turnover kinetics that minihelices are insufficient substrates for the Escherichia coli CCA enzyme and that only the full-length tRNA is kinetically competent. Even a nick in the full-length tRNA backbone in the T loop, or as far away from the minihelix domain as in the anticodon loop, prevents efficient CCA addition. These results suggest a kinetic quality control provided by the CCA enzyme to inspect the integrity of the tRNA molecule and to discriminate against nicked or damaged species from further maturation.
Collapse
Affiliation(s)
- Marcel Dupasquier
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
156
|
Gustavsson M, Ronne H. Evidence that tRNA modifying enzymes are important in vivo targets for 5-fluorouracil in yeast. RNA (NEW YORK, N.Y.) 2008; 14:666-74. [PMID: 18314501 PMCID: PMC2271368 DOI: 10.1261/rna.966208] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We have screened a collection of haploid yeast knockout strains for increased sensitivity to 5-fluorouracil (5-FU). A total of 138 5-FU sensitive strains were found. Mutants affecting rRNA and tRNA maturation were particularly sensitive to 5-FU, with the tRNA methylation mutant trm10 being the most sensitive mutant. This is intriguing since trm10, like many other tRNA modification mutants, lacks a phenotype under normal conditions. However, double mutants for nonessential tRNA modification enzymes are frequently temperature sensitive, due to destabilization of hypomodified tRNAs. We therefore tested if the sensitivity of our mutants to 5-FU is affected by the temperature. We found that the cytotoxic effect of 5-FU is strongly enhanced at 38 degrees C for tRNA modification mutants. Furthermore, tRNA modification mutants show similar synthetic interactions for temperature sensitivity and sensitivity to 5-FU. A model is proposed for how 5-FU kills these mutants by reducing the number of tRNA modifications, thus destabilizing tRNA. Finally, we found that also wild-type cells are temperature sensitive at higher concentrations of 5-FU. This suggests that tRNA destabilization contributes to 5-FU cytotoxicity in wild-type cells and provides a possible explanation why hyperthermia can enhance the effect of 5-FU in cancer therapy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Drug Resistance, Fungal/genetics
- Fluorouracil/pharmacology
- Gene Deletion
- Genes, Fungal
- Haploidy
- Humans
- Models, Biological
- Models, Molecular
- Mutation
- Nucleic Acid Conformation
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Temperature
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- Marie Gustavsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | | |
Collapse
|
157
|
Abstract
Growth inhibition of Saccharomyces cerevisiae by the plasmid-encoded trimeric (alphabetagamma) zymocin toxin from dairy yeast, Kluyveromyces lactis, depends on a multistep response pathway in budding yeast. Following early processes that mediate cell-surface contact by the chitinase alpha-subunit of zymocin, later steps enable import of the gamma-toxin tRNase subunit and cleavage of target tRNAs that carry modified U34 (wobble uridine) bases. With the emergence of zymocin-like toxins, continued zymocin research is expected to yield new insights into the evolution of yeast pathosystems and their lethal modes of action.
Collapse
|
158
|
Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol Cell Biol 2008; 28:3301-12. [PMID: 18332122 DOI: 10.1128/mcb.01542-07] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The translational decoding properties of tRNAs are modulated by naturally occurring modifications of their nucleosides. Uridines located at the wobble position (nucleoside 34 [U(34)]) in eukaryotic cytoplasmic tRNAs often harbor a 5-methoxycarbonylmethyl (mcm(5)) or a 5-carbamoylmethyl (ncm(5)) side chain and sometimes an additional 2-thio (s(2)) or 2'-O-methyl group. Although a variety of models explaining the role of these modifications have been put forth, their in vivo functions have not been defined. In this study, we utilized recently characterized modification-deficient Saccharomyces cerevisiae cells to test the wobble rules in vivo. We show that mcm(5) and ncm(5) side chains promote decoding of G-ending codons and that concurrent mcm(5) and s(2) groups improve reading of both A- and G-ending codons. Moreover, the observation that the mcm(5)U(34)- and some ncm(5)U(34)-containing tRNAs efficiently read G-ending codons challenges the notion that eukaryotes do not use U-G wobbling.
Collapse
|
159
|
|
160
|
Begley U, Dyavaiah M, Patil A, Rooney JP, DiRenzo D, Young CM, Conklin DS, Zitomer RS, Begley TJ. Trm9-catalyzed tRNA modifications link translation to the DNA damage response. Mol Cell 2008; 28:860-70. [PMID: 18082610 DOI: 10.1016/j.molcel.2007.09.021] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/26/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
Transcriptional and posttranslational signals are known mechanisms that promote efficient responses to DNA damage. We have identified Saccharomyces cerevisiae tRNA methyltransferase 9 (Trm9) as an enzyme that prevents cell death via translational enhancement of DNA damage response proteins. Trm9 methylates the uridine wobble base of tRNAARG(UCU) and tRNAGLU(UUC). We used computational and molecular approaches to predict that Trm9 enhances the translation of some transcripts overrepresented with specific arginine and glutamic acid codons. We found that translation elongation factor 3 (YEF3) and the ribonucleotide reductase (RNR1 and RNR3) large subunits are overrepresented with specific arginine and glutamic acid codons, and we demonstrated that Trm9 significantly enhances Yef3, Rnr1, and Rnr3 protein levels. Additionally, we identified 425 genes, which included YEF3, RNR1, and RNR3, with a unique codon usage pattern linked to Trm9. We propose that Trm9-specific tRNA modifications enhance codon-specific translation elongation and promote increased levels of key damage response proteins.
Collapse
Affiliation(s)
- Ulrike Begley
- Department of Biomedical Sciences, GenNYsis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Lu J, Esberg A, Huang B, Byström AS. Kluyveromyces lactis gamma-toxin, a ribonuclease that recognizes the anticodon stem loop of tRNA. Nucleic Acids Res 2007; 36:1072-80. [PMID: 18096622 PMCID: PMC2275089 DOI: 10.1093/nar/gkm1121] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Kluyveromyces lactis γ-toxin is a tRNA endonuclease that cleaves Saccharomyces cerevisiaetRNAmcm5s2UUCGlu3, tRNAmcm5s2UUULys and tRNAmcm5s2UUGGln between position 34 and position 35. All three substrate tRNAs carry a 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) residue at position 34 (wobble position) of which the mcm5 group is required for efficient cleavage. However, the different cleavage efficiencies of mcm5s2U34-containing tRNAs suggest that additional features of these tRNAs affect cleavage. In the present study, we show that a stable anticodon stem and the anticodon loop are the minimal requirements for cleavage by γ-toxin. A synthetic minihelix RNA corresponding to the anticodon stem loop (ASL) of the natural substrate tRNAmcm5s2UUCGlu3 is cleaved at the same position as the natural substrate. In ASLUUCGlu3, the nucleotides U34U35C36A37C38 are required for optimal γ-toxin cleavage, whereas a purine at position 32 or a G in position 33 dramatically reduces the cleavage of the ASL. Comparing modified and partially modified forms of E. coli and yeast tRNAUUCGlu reinforced the strong stimulatory effects of the mcm5 group, revealed a weak positive effect of the s2 group and a negative effect of the bacterial 5-methylaminomethyl (mnm5) group. The data underscore the high specificity of this yeast tRNA toxin.
Collapse
Affiliation(s)
- Jian Lu
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
162
|
Keppetipola N, Shuman S. Characterization of the 2',3' cyclic phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase-phosphatase and bacteriophage lambda phosphatase. Nucleic Acids Res 2007; 35:7721-32. [PMID: 17986465 PMCID: PMC2190708 DOI: 10.1093/nar/gkm868] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium thermocellum polynucleotide kinase-phosphatase (CthPnkp) catalyzes 5′ and 3′ end-healing reactions that prepare broken RNA termini for sealing by RNA ligase. The central phosphatase domain of CthPnkp belongs to the dinuclear metallophosphoesterase superfamily exemplified by bacteriophage λ phosphatase (λ-Pase). CthPnkp is a Ni2+/Mn2+-dependent phosphodiesterase-monoesterase, active on nucleotide and non-nucleotide substrates, that can be transformed toward narrower metal and substrate specificities via mutations of the active site. Here we characterize the Mn2+-dependent 2′,3′ cyclic nucleotide phosphodiesterase activity of CthPnkp, the reaction most relevant to RNA repair pathways. We find that CthPnkp prefers a 2′,3′ cyclic phosphate to a 3′,5′ cyclic phosphate. A single H189D mutation imposes strict specificity for a 2′,3′ cyclic phosphate, which is cleaved to form a single 2′-NMP product. Analysis of the cyclic phosphodiesterase activities of mutated CthPnkp enzymes illuminates the active site and the structural features that affect substrate affinity and kcat. We also characterize a previously unrecognized phosphodiesterase activity of λ-Pase, which catalyzes hydrolysis of bis-p-nitrophenyl phosphate. λ-Pase also has cyclic phosphodiesterase activity with nucleoside 2′,3′ cyclic phosphates, which it hydrolyzes to yield a mixture of 2′-NMP and 3′-NMP products. We discuss our results in light of available structural and functional data for other phosphodiesterase members of the binuclear metallophosphoesterase family and draw inferences about how differences in active site composition influence catalytic repertoire.
Collapse
|
163
|
Björk GR, Huang B, Persson OP, Byström AS. A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast. RNA (NEW YORK, N.Y.) 2007; 13:1245-55. [PMID: 17592039 PMCID: PMC1924908 DOI: 10.1261/rna.558707] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Transfer RNAs specific for Gln, Lys, and Glu from all organisms (except Mycoplasma) and organelles have a 2-thiouridine derivative (xm(5)s(2)U) as wobble nucleoside. These tRNAs read the A- and G-ending codons in the split codon boxes His/Gln, Asn/Lys, and Asp/Glu. In eukaryotic cytoplasmic tRNAs the conserved constituent (xm(5)-) in position 5 of uridine is 5-methoxycarbonylmethyl (mcm(5)). A protein (Tuc1p) from yeast resembling the bacterial protein TtcA, which is required for the synthesis of 2-thiocytidine in position 32 of the tRNA, was shown instead to be required for the synthesis of 2-thiouridine in the wobble position (position 34). Apparently, an ancient member of the TtcA family has evolved to thiolate U34 in tRNAs of organisms from the domains Eukarya and Archaea. Deletion of the TUC1 gene together with a deletion of the ELP3 gene, which results in the lack of the mcm(5) side chain, removes all modifications from the wobble uridine derivatives of the cytoplasmic tRNAs specific for Gln, Lys, and Glu, and is lethal to the cell. Since excess of the unmodified form of these three tRNAs rescued the double mutant elp3 tuc1, the primary function of mcm(5)s(2)U34 seems to be to improve the efficiency to read the cognate codons rather than to prevent mis-sense errors. Surprisingly, overexpression of the mcm(5)s(2)U-lacking tRNA(Lys) alone was sufficient to restore viability of the double mutant.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
164
|
Keppetipola N, Nandakumar J, Shuman S. Reprogramming the tRNA-splicing activity of a bacterial RNA repair enzyme. Nucleic Acids Res 2007; 35:3624-30. [PMID: 17488852 PMCID: PMC1920235 DOI: 10.1093/nar/gkm110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Programmed RNA breakage is an emerging theme underlying cellular responses to stress, virus infection and defense against foreign species. In many cases, site-specific cleavage of the target RNA generates 2′,3′ cyclic phosphate and 5′-OH ends. For the damage to be repaired, both broken ends must be healed before they can be sealed by a ligase. Healing entails hydrolysis of the 2′,3′ cyclic phosphate to form a 3′-OH and phosphorylation of the 5′-OH to form a 5′-PO4. Here, we demonstrate that a polynucleotide kinase-phosphatase enzyme from Clostridium thermocellum (CthPnkp) can catalyze both of the end-healing steps of tRNA splicing in vitro. The route of tRNA repair by CthPnkp can be reprogrammed by a mutation in the 3′ end-healing domain (H189D) that yields a 2′-PO4 product instead of a 2′-OH. Whereas tRNA ends healed by wild-type CthPnkp are readily sealed by T4 RNA ligase 1, the H189D enzyme generates ends that are spliced by yeast tRNA ligase. Our findings suggest that RNA repair enzymes can evolve their specificities to suit a particular pathway.
Collapse
Affiliation(s)
| | | | - Stewart Shuman
- *To whom correspondence should be addressed. +1-212 639-7145; +1-212 717-3623
| |
Collapse
|
165
|
Paluszynski JP, Klassen R, Meinhardt F. Pichia acaciae killer system: genetic analysis of toxin immunity. Appl Environ Microbiol 2007; 73:4373-8. [PMID: 17483256 PMCID: PMC1932769 DOI: 10.1128/aem.00271-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene responsible for self-protection in the Pichia acaciae killer plasmid system was identified by heterologous expression in Saccharomyces cerevisiae. Resistance profiling and conditional toxin/immunity coexpression analysis revealed dose-independent protection by pPac1-2 ORF4 and intracellular interference with toxin function, suggesting toxin reinternalization in immune killer cells.
Collapse
Affiliation(s)
- John P Paluszynski
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr 3, Münster, Germany
| | | | | |
Collapse
|
166
|
Svejstrup JQ. Elongator complex: how many roles does it play? Curr Opin Cell Biol 2007; 19:331-6. [PMID: 17466506 DOI: 10.1016/j.ceb.2007.04.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 04/12/2007] [Indexed: 11/29/2022]
Abstract
The multi-subunit Elongator complex was first identified by its association with an RNA polymerase II holoenzyme engaged in transcriptional elongation, and subsequent data have provided further evidence that the complex is involved in histone acetylation and transcription. However, most Elongator is cytoplasmic, and recent data has indicated a role in processes as diverse as exocytosis and tRNA modification. One of the subunits of Elongator is encoded by a gene that is mutated in patients suffering from the severe neurodevelopmental disorder familial dysautonomia.
Collapse
Affiliation(s)
- Jesper Q Svejstrup
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, EN6 3LD, UK.
| |
Collapse
|
167
|
Jeske S, Meinhardt F, Klassen R. Extranuclear Inheritance: Virus-Like DNA-Elements in Yeast. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-3-540-36832-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
168
|
Esberg A, Huang B, Johansson MJO, Byström AS. Elevated levels of two tRNA species bypass the requirement for elongator complex in transcription and exocytosis. Mol Cell 2006; 24:139-48. [PMID: 17018299 DOI: 10.1016/j.molcel.2006.07.031] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Revised: 06/20/2006] [Accepted: 07/28/2006] [Indexed: 12/18/2022]
Abstract
The Saccharomyces cerevisiae Elongator complex consisting of the six Elp1-Elp6 proteins has been proposed to participate in three distinct cellular processes: transcriptional elongation, polarized exocytosis, and formation of modified wobble uridines in tRNA. Therefore it was important to clarify whether Elongator has three distinct functions or whether it regulates one key process that leads to multiple downstream effects. Here, we show that the phenotypes of Elongator-deficient cells linking the complex to transcription and exocytosis are suppressed by increased expression of two tRNA species. Elongator is required for formation of the mcm(5) group of the modified wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U) in these tRNAs. Hence, in cells with normal levels of these tRNAs, presence of mcm(5)s(2)U is crucial for posttranscriptional expression of gene products important in transcription and exocytosis. Our results indicate that the physiologically relevant function of the evolutionary-conserved Elongator complex is in formation of modified nucleosides in tRNAs.
Collapse
Affiliation(s)
- Anders Esberg
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
169
|
Yajima S, Inoue S, Ogawa T, Nonaka T, Ohsawa K, Masaki H. Structural basis for sequence-dependent recognition of colicin E5 tRNase by mimicking the mRNA-tRNA interaction. Nucleic Acids Res 2006; 34:6074-82. [PMID: 17099236 PMCID: PMC1669751 DOI: 10.1093/nar/gkl729] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Colicin E5—a tRNase toxin—specifically cleaves QUN (Q: queuosine) anticodons of the Escherichia coli tRNAs for Tyr, His, Asn and Asp. Here, we report the crystal structure of the C-terminal ribonuclease domain (CRD) of E5 complexed with a substrate analog, namely, dGpdUp, at a resolution of 1.9 Å. Thisstructure is the first to reveal the substrate recognition mechanism of sequence-specific ribonucleases. E5-CRD realized the strict recognition for both the guanine and uracil bases of dGpdUp forming Watson–Crick-type hydrogen bonds and ring stacking interactions, thus mimicking the codons of mRNAs to bind to tRNA anticodons. The docking model of E5-CRD with tRNA also suggests its substrate preference for tRNA over ssRNA. In addition, the structure of E5-CRD/dGpdUp along with the mutational analysis suggests that Arg33 may play an important role in the catalytic activity, and Lys25/Lys60 may also be involved without His in E5-CRD. Finally, the comparison of the structures of E5-CRD/dGpdUp and E5-CRD/ImmE5 (an inhibitor protein) complexes suggests that the binding mode of E5-CRD and ImmE5 mimics that of mRNA and tRNA; this may represent the evolutionary pathway of these proteins from the RNA–RNA interaction through the RNA–protein interaction of tRNA/E5-CRD.
Collapse
Affiliation(s)
- Shunsuke Yajima
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan.
| | | | | | | | | | | |
Collapse
|
170
|
Chen Z, Zhang H, Jablonowski D, Zhou X, Ren X, Hong X, Schaffrath R, Zhu JK, Gong Z. Mutations in ABO1/ELO2, a subunit of holo-Elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Mol Cell Biol 2006; 26:6902-12. [PMID: 16943431 PMCID: PMC1592858 DOI: 10.1128/mcb.00433-06] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phytohormone abscisic acid (ABA) plays an important role in modulating plant growth, development, and stress responses. In a genetic screen for mutants with altered drought stress responses, we identified an ABA-overly sensitive mutant, the abo1 mutant, which showed a drought-resistant phenotype. The abo1 mutation enhances ABA-induced stomatal closing and increases ABA sensitivity in inhibiting seedling growth. abo1 mutants are more resistant to oxidative stress than the wild type and show reduced levels of transcripts of several stress- or ABA-responsive genes. Interestingly, the mutation also differentially modulates the development and growth of adjacent guard cells. Map-based cloning identified ABO1 as a new allele of ELO2, which encodes a homolog of Saccharomyces cerevisiae Iki3/Elp1/Tot1 and human IkappaB kinase-associated protein. Iki3/Elp1/Tot1 is the largest subunit of Elongator, a multifunctional complex with roles in transcription elongation, secretion, and tRNA modification. Ecotopic expression of plant ABO1/ELO2 in a tot1/elp1Delta yeast Elongator mutant complements resistance to zymocin, a yeast killer toxin complex, indicating that ABO1/ELO2 substitutes for the toxin-relevant function of yeast Elongator subunit Tot1/Elp1. Our results uncover crucial roles for ABO1/ELO2 in modulating ABA and drought responses in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhizhong Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Ogawa T, Inoue S, Yajima S, Hidaka M, Masaki H. Sequence-specific recognition of colicin E5, a tRNA-targeting ribonuclease. Nucleic Acids Res 2006; 34:6065-73. [PMID: 16963495 PMCID: PMC1635277 DOI: 10.1093/nar/gkl629] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Colicin E5 is a novel Escherichia coli ribonuclease that specifically cleaves the anticodons of tRNA(Tyr), tRNA(His), tRNA(Asn) and tRNA(Asp). Since this activity is confined to its 115 amino acid long C-terminal domain (CRD), the recognition mechanism of E5-CRD is of great interest. The four tRNA substrates share the unique sequence UQU within their anticodon loops, and are cleaved between Q (modified base of G) and 3' U. Synthetic minihelix RNAs corresponding to the substrate tRNAs were completely susceptible to E5-CRD and were cleaved in the same manner as the authentic tRNAs. The specificity determinant for E5-CRD was YGUN at -1 to +3 of the 'anticodon'. The YGU is absolutely required and the extent of susceptibility of minihelices depends on N (third letter of the anticodon) in the order A > C > G > U accounting for the order of susceptibility tRNA(Tyr) > tRNA(Asp) > tRNA(His), tRNA(Asn). Contrastingly, we showed that GpUp is the minimal substrate strictly retaining specificity to E5-CRD. The effect of contiguous nucleotides is inconsistent between the loop and linear RNAs, suggesting that nucleotide extension on each side of GpUp introduces a structural constraint, which is reduced by a specific loop structure formation that includes a 5' pyrimidine and 3' A.
Collapse
Affiliation(s)
- Tetsuhiro Ogawa
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
172
|
Liu S, Wiggins JF, Sreenath T, Kulkarni AB, Ward JM, Leppla SH. Dph3, a small protein required for diphthamide biosynthesis, is essential in mouse development. Mol Cell Biol 2006; 26:3835-41. [PMID: 16648478 PMCID: PMC1488998 DOI: 10.1128/mcb.26.10.3835-3841.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The translation elongation factor 2 in eukaryotes (eEF-2) contains a unique posttranslationally modified histidine residue, termed diphthamide, which serves as the only target for diphtheria toxin and Pseudomonas aeruginosa exotoxin A. Diphthamide biosynthesis is carried out by five highly conserved proteins, Dph1 to Dph5, and an as-yet-unidentified amidating enzyme. The evolutionary conservation of the complex diphthamide biosynthesis pathway throughout eukaryotes implies a key role for diphthamide in normal cellular physiology. Of the proteins required for diphthamide synthesis, Dph3 is the smallest, containing only 82 residues. In addition to having a role in diphthamide biosynthesis, Dph3 is also involved in modulating the functions of the Elongator complex in yeast. To explore the physiological roles of Dph3 and to begin to investigate the function of diphthamide, we generated dph3 knockout mice and showed that dph3+/- mice are phenotypically normal, whereas dph3-/- mice, which lack the diphthamide modification on eEF-2, are embryonic lethal. Loss of both dph3 alleles causes a general delay in embryonic development accompanied by lack of allantois fusion to the chorion and increased degeneration and necrosis in neural tubes and is not compatible with life beyond embryonic day 11.5. The dph3-/- placentas also developed abnormally, showing a thinner labyrinth lacking embryonic erythrocytes and blood vessels. These results attest to the physiological importance of Dph3 in development. The biological roles of Dph3 are also discussed.
Collapse
Affiliation(s)
- Shihui Liu
- Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
173
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|