151
|
Unexpected role of the steroid-deficiency protein ecdysoneless in pre-mRNA splicing. PLoS Genet 2014; 10:e1004287. [PMID: 24722212 PMCID: PMC3983036 DOI: 10.1371/journal.pgen.1004287] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
The steroid hormone ecdysone coordinates insect growth and development, directing the major postembryonic transition of forms, metamorphosis. The steroid-deficient ecdysoneless1 (ecd1) strain of Drosophila melanogaster has long served to assess the impact of ecdysone on gene regulation, morphogenesis, or reproduction. However, ecd also exerts cell-autonomous effects independently of the hormone, and mammalian Ecd homologs have been implicated in cell cycle regulation and cancer. Why the Drosophila ecd1 mutants lack ecdysone has not been resolved. Here, we show that in Drosophila cells, Ecd directly interacts with core components of the U5 snRNP spliceosomal complex, including the conserved Prp8 protein. In accord with a function in pre-mRNA splicing, Ecd and Prp8 are cell-autonomously required for survival of proliferating cells within the larval imaginal discs. In the steroidogenic prothoracic gland, loss of Ecd or Prp8 prevents splicing of a large intron from CYP307A2/spookier (spok) pre-mRNA, thus eliminating this essential ecdysone-biosynthetic enzyme and blocking the entry to metamorphosis. Human Ecd (hEcd) can substitute for its missing fly ortholog. When expressed in the Ecd-deficient prothoracic gland, hEcd re-establishes spok pre-mRNA splicing and protein expression, restoring ecdysone synthesis and normal development. Our work identifies Ecd as a novel pre-mRNA splicing factor whose function has been conserved in its human counterpart. Whether the role of mammalian Ecd in cancer involves pre-mRNA splicing remains to be discovered.
Collapse
|
152
|
Chen W, Moore MJ. The spliceosome: disorder and dynamics defined. Curr Opin Struct Biol 2014; 24:141-9. [PMID: 24530854 DOI: 10.1016/j.sbi.2014.01.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 01/02/2023]
Abstract
Among the many macromolecular machines involved in eukaryotic gene expression, the spliceosome remains one of the most challenging for structural biologists. Defining features of this highly complex apparatus are its excessive number of individual parts, many of which have been evolutionarily selected for regions of structural disorder, and the remarkable compositional and conformation dynamics it must undertake to complete each round of splicing. Here we review recent advances in our understanding of spliceosome structural dynamics stemming from bioinformatics, deep sequencing, high throughput methods for determining protein-protein, protein-RNA and RNA-RNA interaction dynamics, single molecule microscopy and more traditional structural analyses. Together, these tools are rapidly changing our structural appreciation of this remarkably dynamic machine.
Collapse
Affiliation(s)
- Weijun Chen
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, RNA and Neuro Therapeutics Institutes, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Melissa J Moore
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, RNA and Neuro Therapeutics Institutes, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
153
|
CERKL, a retinal disease gene, encodes an mRNA-binding protein that localizes in compact and untranslated mRNPs associated with microtubules. PLoS One 2014; 9:e87898. [PMID: 24498393 PMCID: PMC3912138 DOI: 10.1371/journal.pone.0087898] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/30/2013] [Indexed: 11/25/2022] Open
Abstract
The function of CERKL (CERamide Kinase Like), a causative gene of retinitis pigmentosa and cone-rod dystrophy, still awaits characterization. To approach its cellular role we have investigated the subcellular localization and interaction partners of the full length CERKL isoform, CERKLa of 532 amino acids, in different cell lines, including a photoreceptor-derived cell line. We demonstrate that CERKLa is a main component of compact and untranslated mRNPs and that associates with other RNP complexes such as stress granules, P-bodies and polysomes. CERKLa is a protein that binds through its N-terminus to mRNAs and interacts with other mRNA-binding proteins like eIF3B, PABP, HSP70 and RPS3. Except for eIF3B, these interactions depend on the integrity of mRNAs but not of ribosomes. Interestingly, the C125W CERKLa pathological mutant does not interact with eIF3B and is absent from these complexes. Compact mRNPs containing CERKLa also associate with microtubules and are found in neurites of neural differentiated cells. These localizations had not been reported previously for any member of the retinal disorders gene family and should be considered when investigating the pathogenic mechanisms and therapeutical approaches in these diseases.
Collapse
|
154
|
Galej WP, Nguyen THD, Newman AJ, Nagai K. Structural studies of the spliceosome: zooming into the heart of the machine. Curr Opin Struct Biol 2014; 25:57-66. [PMID: 24480332 PMCID: PMC4045393 DOI: 10.1016/j.sbi.2013.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 11/30/2022]
Abstract
Spliceosomes are large, dynamic ribonucleoprotein complexes that catalyse the removal of introns from messenger RNA precursors via a two-step splicing reaction. The recent crystal structure of Prp8 has revealed Reverse Transcriptase-like, Linker and Endonuclease-like domains. The intron branch-point cross-link with the Linker domain of Prp8 in active spliceosomes and together with suppressors of 5' and 3' splice site mutations this unambiguously locates the active site cavity. Structural and mechanistic similarities with group II self-splicing introns have encouraged the notion that the spliceosome is at heart a ribozyme, and recently the ligands for two catalytic magnesium ions were identified within U6 snRNA. They position catalytic divalent metal ions in the same way as Domain V of group II intron RNA, suggesting that the spliceosome and group II intron use the same catalytic mechanisms.
Collapse
Affiliation(s)
- Wojciech P Galej
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| | - Thi Hoang Duong Nguyen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
155
|
Price AM, Görnemann J, Guthrie C, Brow DA. An unanticipated early function of DEAD-box ATPase Prp28 during commitment to splicing is modulated by U5 snRNP protein Prp8. RNA (NEW YORK, N.Y.) 2014; 20:46-60. [PMID: 24231520 PMCID: PMC3866644 DOI: 10.1261/rna.041970.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The stepwise assembly of the highly dynamic spliceosome is guided by RNA-dependent ATPases of the DEAD-box family, whose regulation is poorly understood. In the canonical assembly model, the U4/U6.U5 triple snRNP binds only after joining of the U1 and, subsequently, U2 snRNPs to the intron-containing pre-mRNA. Catalytic activation requires the exchange of U6 for U1 snRNA at the 5' splice site, which is promoted by the DEAD-box protein Prp28. Because Prp8, an integral U5 snRNP protein, is thought to be a central regulator of DEAD-box proteins, we conducted a targeted search in Prp8 for cold-insensitive suppressors of a cold-sensitive Prp28 mutant, prp28-1. We identified a cluster of suppressor mutations in an N-terminal bromodomain-like sequence of Prp8. To identify the precise defect in prp28-1 strains that is suppressed by the Prp8 alleles, we analyzed spliceosome assembly in vivo and in vitro. Surprisingly, in the prp28-1 strain, we observed a block not only to spliceosome activation but also to one of the earliest steps of assembly, formation of the ATP-independent commitment complex 2 (CC2). The Prp8 suppressor partially corrected both the early assembly and later activation defects of prp28-1, supporting a role for this U5 snRNP protein in both the ATP-independent and ATP-dependent functions of Prp28. We conclude that the U5 snRNP has a role in the earliest events of assembly, prior to its stable incorporation into the spliceosome.
Collapse
Affiliation(s)
- Argenta M. Price
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA
| | - Janina Görnemann
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA
- Corresponding authorsE-mail E-mail
| | - David A. Brow
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|
156
|
Klusza S, Novak A, Figueroa S, Palmer W, Deng WM. Prp22 and spliceosome components regulate chromatin dynamics in germ-line polyploid cells. PLoS One 2013; 8:e79048. [PMID: 24244416 PMCID: PMC3820692 DOI: 10.1371/journal.pone.0079048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/18/2013] [Indexed: 12/15/2022] Open
Abstract
During Drosophila oogenesis, the endopolyploid nuclei of germ-line nurse cells undergo a dramatic shift in morphology as oogenesis progresses; the easily-visible chromosomes are initially polytenic during the early stages of oogenesis before they transiently condense into a distinct '5-blob' configuration, with subsequent dispersal into a diffuse state. Mutations in many genes, with diverse cellular functions, can affect the ability of nurse cells to fully decondense their chromatin, resulting in a '5-blob arrest' phenotype that is maintained throughout the later stages of oogenesis. However, the mechanisms and significance of nurse-cell (NC) chromatin dispersal remain poorly understood. Here, we report that a screen for modifiers of the 5-blob phenotype in the germ line isolated the spliceosomal gene peanuts, the Drosophila Prp22. We demonstrate that reduction of spliceosomal activity through loss of peanuts promotes decondensation defects in NC nuclei during mid-oogenesis. We also show that the Prp38 spliceosomal protein accumulates in the nucleoplasm of nurse cells with impaired peanuts function, suggesting that spliceosomal recycling is impaired. Finally, we reveal that loss of additional spliceosomal proteins impairs the full decondensation of NC chromatin during later stages of oogenesis, suggesting that individual spliceosomal subcomplexes modulate expression of the distinct subset of genes that are required for correct morphology in endopolyploid nurse cells.
Collapse
Affiliation(s)
- Stephen Klusza
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Amanda Novak
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Shirelle Figueroa
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - William Palmer
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
157
|
Livesay SB, Collier SE, Bitton DA, Bähler J, Ohi MD. Structural and functional characterization of the N terminus of Schizosaccharomyces pombe Cwf10. EUKARYOTIC CELL 2013; 12:1472-89. [PMID: 24014766 PMCID: PMC3837936 DOI: 10.1128/ec.00140-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/03/2013] [Indexed: 01/10/2023]
Abstract
The spliceosome is a dynamic macromolecular machine that catalyzes the removal of introns from pre-mRNA, yielding mature message. Schizosaccharomyces pombe Cwf10 (homolog of Saccharomyces cerevisiae Snu114 and human U5-116K), an integral member of the U5 snRNP, is a GTPase that has multiple roles within the splicing cycle. Cwf10/Snu114 family members are highly homologous to eukaryotic translation elongation factor EF2, and they contain a conserved N-terminal extension (NTE) to the EF2-like portion, predicted to be an intrinsically unfolded domain. Using S. pombe as a model system, we show that the NTE is not essential, but cells lacking this domain are defective in pre-mRNA splicing. Genetic interactions between cwf10-ΔNTE and other pre-mRNA splicing mutants are consistent with a role for the NTE in spliceosome activation and second-step catalysis. Characterization of Cwf10-NTE by various biophysical techniques shows that in solution the NTE contains regions of both structure and disorder. The first 23 highly conserved amino acids of the NTE are essential for its role in splicing but when overexpressed are not sufficient to restore pre-mRNA splicing to wild-type levels in cwf10-ΔNTE cells. When the entire NTE is overexpressed in the cwf10-ΔNTE background, it can complement the truncated Cwf10 protein in trans, and it immunoprecipitates a complex similar in composition to the late-stage U5.U2/U6 spliceosome. These data show that the structurally flexible NTE is capable of independently incorporating into the spliceosome and improving splicing function, possibly indicating a role for the NTE in stabilizing conformational rearrangements during a splice cycle.
Collapse
Affiliation(s)
- S. Brent Livesay
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Scott E. Collier
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Danny A. Bitton
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
158
|
Affiliation(s)
- Sophie Bonnal
- 1] Centre de Regulació Genòmica, Barcelona, Spain [2] Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
159
|
Tameshige T, Fujita H, Watanabe K, Toyokura K, Kondo M, Tatematsu K, Matsumoto N, Tsugeki R, Kawaguchi M, Nishimura M, Okada K. Pattern dynamics in adaxial-abaxial specific gene expression are modulated by a plastid retrograde signal during Arabidopsis thaliana leaf development. PLoS Genet 2013; 9:e1003655. [PMID: 23935517 PMCID: PMC3723520 DOI: 10.1371/journal.pgen.1003655] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 05/27/2013] [Indexed: 11/29/2022] Open
Abstract
The maintenance and reformation of gene expression domains are the basis for the morphogenic processes of multicellular systems. In a leaf primordium of Arabidopsis thaliana, the expression of FILAMENTOUS FLOWER (FIL) and the activity of the microRNA miR165/166 are specific to the abaxial side. This miR165/166 activity restricts the target gene expression to the adaxial side. The adaxial and abaxial specific gene expressions are crucial for the wide expansion of leaf lamina. The FIL-expression and the miR165/166-free domains are almost mutually exclusive, and they have been considered to be maintained during leaf development. However, we found here that the position of the boundary between the two domains gradually shifts from the adaxial side to the abaxial side. The cell lineage analysis revealed that this boundary shifting was associated with a sequential gene expression switch from the FIL-expressing (miR165/166 active) to the miR165/166-free (non-FIL-expressing) states. Our genetic analyses using the enlarged fil expression domain2 (enf2) mutant and chemical treatment experiments revealed that impairment in the plastid (chloroplast) gene expression machinery retards this boundary shifting and inhibits the lamina expansion. Furthermore, these developmental effects caused by the abnormal plastids were not observed in the genomes uncoupled1 (gun1) mutant background. This study characterizes the dynamic nature of the adaxial-abaxial specification process in leaf primordia and reveals that the dynamic process is affected by the GUN1-dependent retrograde signal in response to the failure of plastid gene expression. These findings advance our understanding on the molecular mechanism linking the plastid function to the leaf morphogenic processes.
Collapse
Affiliation(s)
- Toshiaki Tameshige
- Department of Botany, Kyoto University, Kyoto, Japan
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Hironori Fujita
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | | | - Koichi Toyokura
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Maki Kondo
- Division of Cell Mechanisms, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kiyoshi Tatematsu
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Aichi, Japan
| | | | - Ryuji Tsugeki
- Department of Botany, Kyoto University, Kyoto, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Aichi, Japan
| | - Mikio Nishimura
- Division of Cell Mechanisms, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Aichi, Japan
| | - Kiyotaka Okada
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Aichi, Japan
| |
Collapse
|
160
|
Ohrt T, Odenwälder P, Dannenberg J, Prior M, Warkocki Z, Schmitzová J, Karaduman R, Gregor I, Enderlein J, Fabrizio P, Lührmann R. Molecular dissection of step 2 catalysis of yeast pre-mRNA splicing investigated in a purified system. RNA (NEW YORK, N.Y.) 2013; 19:902-15. [PMID: 23685439 PMCID: PMC3683925 DOI: 10.1261/rna.039024.113] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/08/2013] [Indexed: 05/04/2023]
Abstract
Step 2 catalysis of pre-mRNA splicing entails the excision of the intron and ligation of the 5' and 3' exons. The tasks of the splicing factors Prp16, Slu7, Prp18, and Prp22 in the formation of the step 2 active site of the spliceosome and in exon ligation, and the timing of their recruitment, remain poorly understood. Using a purified yeast in vitro splicing system, we show that only the DEAH-box ATPase Prp16 is required for formation of a functional step 2 active site and for exon ligation. Efficient docking of the 3' splice site (3'SS) to the active site requires only Slu7/Prp18 but not Prp22. Spliceosome remodeling by Prp16 appears to be subtle as only the step 1 factor Cwc25 is dissociated prior to step 2 catalysis, with its release dependent on docking of the 3'SS to the active site and Prp16 action. We show by fluorescence cross-correlation spectroscopy that Slu7/Prp18 and Prp16 bind early to distinct, low-affinity binding sites on the step-1-activated B* spliceosome, which are subsequently converted into high-affinity sites. Our results shed new light on the factor requirements for step 2 catalysis and the dynamics of step 1 and 2 factors during the catalytic steps of splicing.
Collapse
Affiliation(s)
- Thomas Ohrt
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Peter Odenwälder
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Julia Dannenberg
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Mira Prior
- III. Physikalisches Institut (Biophysik), University of Göttingen, 37077 Göttingen, Germany
| | - Zbigniew Warkocki
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Jana Schmitzová
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Ramazan Karaduman
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Ingo Gregor
- III. Physikalisches Institut (Biophysik), University of Göttingen, 37077 Göttingen, Germany
| | - Jörg Enderlein
- III. Physikalisches Institut (Biophysik), University of Göttingen, 37077 Göttingen, Germany
| | - Patrizia Fabrizio
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Reinhard Lührmann
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
161
|
Jacobs J, Marx C, Kock V, Reifschneider O, Fränzel B, Krisp C, Wolters D, Kück U. Identification of a chloroplast ribonucleoprotein complex containing trans-splicing factors, intron RNA, and novel components. Mol Cell Proteomics 2013; 12:1912-25. [PMID: 23559604 PMCID: PMC3708175 DOI: 10.1074/mcp.m112.026583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/27/2013] [Indexed: 11/06/2022] Open
Abstract
Maturation of chloroplast psaA pre-mRNA from the green alga Chlamydomonas reinhardtii requires the trans-splicing of two split group II introns. Several nuclear-encoded trans-splicing factors are required for the correct processing of psaA mRNA. Among these is the recently identified Raa4 protein, which is involved in splicing of the tripartite intron 1 of the psaA precursor mRNA. Part of this tripartite group II intron is the chloroplast encoded tscA RNA, which is specifically bound by Raa4. Using Raa4 as bait in a combined tandem affinity purification and mass spectrometry approach, we identified core components of a multisubunit ribonucleoprotein complex, including three previously identified trans-splicing factors (Raa1, Raa3, and Rat2). We further detected tscA RNA in the purified protein complex, which seems to be specific for splicing of the tripartite group II intron. A yeast-two hybrid screen and co-immunoprecipitation identified chloroplast-localized Raa4-binding protein 1 (Rab1), which specifically binds tscA RNA from the tripartite psaA group II intron. The yeast-two hybrid system provides evidence in support of direct interactions between Rab1 and four trans-splicing factors. Our findings contribute to our knowledge of chloroplast multisubunit ribonucleoprotein complexes and are discussed in support of the generally accepted view that group II introns are the ancestors of the eukaryotic spliceosomal introns.
Collapse
Affiliation(s)
- Jessica Jacobs
- From the ‡Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Christina Marx
- From the ‡Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Vera Kock
- From the ‡Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Olga Reifschneider
- From the ‡Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Benjamin Fränzel
- ¶Department of Analytical Chemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Christoph Krisp
- ¶Department of Analytical Chemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Dirk Wolters
- ¶Department of Analytical Chemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Ulrich Kück
- From the ‡Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
162
|
Splicing functions and global dependency on fission yeast slu7 reveal diversity in spliceosome assembly. Mol Cell Biol 2013; 33:3125-36. [PMID: 23754748 DOI: 10.1128/mcb.00007-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multiple short introns in Schizosaccharomyces pombe genes with degenerate cis sequences and atypically positioned polypyrimidine tracts make an interesting model to investigate canonical and alternative roles for conserved splicing factors. Here we report functions and interactions of the S. pombe slu7(+) (spslu7(+)) gene product, known from Saccharomyces cerevisiae and human in vitro reactions to assemble into spliceosomes after the first catalytic reaction and to dictate 3' splice site choice during the second reaction. By using a missense mutant of this essential S. pombe factor, we detected a range of global splicing derangements that were validated in assays for the splicing status of diverse candidate introns. We ascribe widespread, intron-specific SpSlu7 functions and have deduced several features, including the branch nucleotide-to-3' splice site distance, intron length, and the impact of its A/U content at the 5' end on the intron's dependence on SpSlu7. The data imply dynamic substrate-splicing factor relationships in multiintron transcripts. Interestingly, the unexpected early splicing arrest in spslu7-2 revealed a role before catalysis. We detected a salt-stable association with U5 snRNP and observed genetic interactions with spprp1(+), a homolog of human U5-102k factor. These observations together point to an altered recruitment and dependence on SpSlu7, suggesting its role in facilitating transitions that promote catalysis, and highlight the diversity in spliceosome assembly.
Collapse
|
163
|
Liu MM, Zack DJ. Alternative splicing and retinal degeneration. Clin Genet 2013; 84:142-9. [PMID: 23647439 DOI: 10.1111/cge.12181] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/30/2013] [Accepted: 04/30/2013] [Indexed: 12/27/2022]
Abstract
Alternative splicing is highly regulated in tissue-specific and development-specific patterns, and it has been estimated that 15% of disease-causing point mutations affect pre-mRNA splicing. In this review, we consider the cis-acting splice site and trans-acting splicing factor mutations that affect pre-mRNA splicing and contribute to retinal degeneration. Numerous splice site mutations have been identified in retinitis pigmentosa (RP) and various cone-rod dystrophies. Mutations in alternatively spliced retina-specific exons of the widely expressed RPGR and COL2A1 genes lead primarily to X-linked RP and ocular variants of Stickler syndrome, respectively. Furthermore, mutations in general pre-mRNA splicing factors, such as PRPF31, PRPF8, and PRPF3, predominantly cause autosomal dominant RP. These findings suggest an important role for pre-mRNA splicing in retinal homeostasis and the pathogenesis of retinal degenerative diseases. The development of novel therapeutic strategies to modulate aberrant splicing, including small molecule-based therapies, has the potential to lead to new treatments for retinal degenerative diseases.
Collapse
Affiliation(s)
- M M Liu
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
164
|
Keightley MC, Crowhurst MO, Layton JE, Beilharz T, Markmiller S, Varma S, Hogan BM, de Jong-Curtain TA, Heath JK, Lieschke GJ. In vivo mutation of pre-mRNA processing factor 8 (Prpf8) affects transcript splicing, cell survival and myeloid differentiation. FEBS Lett 2013; 587:2150-7. [PMID: 23714367 DOI: 10.1016/j.febslet.2013.05.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 01/09/2023]
Abstract
Mutated spliceosome components are recurrently being associated with perturbed tissue development and disease pathogenesis. Cephalophŏnus (cph), is a zebrafish mutant carrying an early premature STOP codon in the spliceosome component Prpf8 (pre-mRNA processing factor 8). Cph initially develops normally, but then develops widespread cell death, especially in neurons, and is embryonic lethal. Cph mutants accumulate aberrantly spliced transcripts retaining both U2- and U12-type introns. Within early haematopoiesis, myeloid differentiation is impaired, suggesting Prpf8 is required for haematopoietic development. Cph provides an animal model for zygotic PRPF8 dysfunction diseases and for evaluating therapeutic interventions.
Collapse
Affiliation(s)
- Maria-Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Schellenberg MJ, Wu T, Ritchie DB, Fica S, Staley JP, Atta KA, LaPointe P, MacMillan AM. A conformational switch in PRP8 mediates metal ion coordination that promotes pre-mRNA exon ligation. Nat Struct Mol Biol 2013; 20:728-34. [PMID: 23686287 PMCID: PMC3703396 DOI: 10.1038/nsmb.2556] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/12/2013] [Indexed: 01/05/2023]
Abstract
Splicing of pre-mRNAs in eukaryotes is catalyzed by the spliceosome a large RNA–protein metalloenzyme. The catalytic center of the spliceosome involves a structure comprised of the U2 and U6 snRNAs and includes a metal bound by U6 snRNA. The precise architecture of the splicesome active site however, including the question of whether it includes protein components, remains unresolved. A wealth of evidence places the protein PRP8 at the heart of the spliceosome through assembly and catalysis. Here we provide evidence that the RNase H domain of PRP8 undergoes a conformational switch between the two steps of splicing rationalizing yeast prp8 alleles promoting either the first or second step. We also show that this switch unmasks a metal-binding site involved in the second step. Together these data establish that PRP8 is a metalloprotein that promotes exon ligation within the spliceosome.
Collapse
|
166
|
PRP8 intein in cryptic species of Histoplasma capsulatum: evolution and phylogeny. INFECTION GENETICS AND EVOLUTION 2013; 18:174-82. [PMID: 23665464 DOI: 10.1016/j.meegid.2013.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/12/2013] [Accepted: 05/01/2013] [Indexed: 02/03/2023]
Abstract
The PRP8 intein is the most widespread intein among the Kingdom Fungi. This genetic element occurs within the prp8 gene, and is transcribed and translated simultaneously with the gene. After translation, the intein excises itself from the Prp8 protein by an autocatalytic splicing reaction, subsequently joining the N and C terminals of the host protein, which retains its functional conformation. Besides the splicing domain, some PRP8 inteins also have a homing endonuclease (HE) domain which, if functional, makes the intein a mobile element capable of becoming fixed in a population. This work aimed to study (1) The occurrence of this intein in Histoplasma capsulatum isolates (n=99) belonging to different cryptic species collected in diverse geographical locations, and (2) The functionality of the endonuclease domains of H. capsulatum PRP8 inteins and their phylogenetic relationship among the cryptic species. Our results suggest that the PRP8 intein is fixed in H. capsulatum populations and that an admixture or a probable ancestral polymorphism of the PRP8 intein sequences is responsible for the apparent paraphyletic pattern of the LAmA clade which, in the intein phylogeny, also encompasses sequences from LAmB isolates. The PRP8 intein sequences clearly separate the different cryptic species, and may serve as an additional molecular typing tool, as previously proposed for other fungi genus, such as Cryptococcus and Paracoccidioides.
Collapse
|
167
|
Dreumont N, Séraphin B. Rapid screening of yeast mutants with reporters identifies new splicing phenotypes. FEBS J 2013; 280:2712-26. [PMID: 23560879 DOI: 10.1111/febs.12277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 11/29/2022]
Abstract
Nuclear precursor mRNA splicing requires the stepwise assembly of a large complex, the spliceosome. Recent large-scale analyses, including purification of splicing complexes, high-throughput genetic screens and interactomic studies, have linked numerous factors to this dynamic process, including a well-defined core conserved from yeast to human. Intriguingly, despite extensive studies, no splicing defects were reported for some of the corresponding yeast mutants. To resolve this paradox, we screened a collection of viable yeast strains carrying mutations in splicing-related factors with a set of reporters including artificial constructs carrying competing splice sites. Previous analyses have indeed demonstrated that this strategy identifies yeast factors able to regulate alternative splicing and whose properties are conserved in human cells. The method, sensitive to subtle defects, revealed new splicing phenotypes for most analyzed factors such as the Urn1 protein. Interestingly, a mutant of PRP8 specifically lacking an N-terminal proline-rich region stimulated the splicing of a reporter containing competing branchpoint/3' splice site regions. Thus, using appropriate reporters, yeast can be used to quickly delineate the effect of various factors on splicing and identify those with the propensity to regulate alternative splicing events.
Collapse
Affiliation(s)
- Natacha Dreumont
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France
| | | |
Collapse
|
168
|
Zhang L, Li X, Zhao R. Structural analyses of the pre-mRNA splicing machinery. Protein Sci 2013; 22:677-92. [PMID: 23592432 DOI: 10.1002/pro.2266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 01/03/2023]
Abstract
Pre-mRNA splicing is a critical event in the gene expression pathway of all eukaryotes. The splicing reaction is catalyzed by the spliceosome, a huge protein-RNA complex that contains five snRNAs and hundreds of different protein factors. Understanding the structure of this large molecular machinery is critical for understanding its function. Although the highly dynamic nature of the spliceosome, in both composition and conformation, posed daunting challenges to structural studies, there has been significant recent progress on structural analyses of the splicing machinery, using electron microscopy, crystallography, and nuclear magnetic resonance. This review discusses key recent findings in the structural analyses of the spliceosome and its components and how these findings advance our understanding of the function of the splicing machinery.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
169
|
Golisz A, Sikorski PJ, Kruszka K, Kufel J. Arabidopsis thaliana LSM proteins function in mRNA splicing and degradation. Nucleic Acids Res 2013; 41:6232-49. [PMID: 23620288 PMCID: PMC3695525 DOI: 10.1093/nar/gkt296] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sm-like (Lsm) proteins have been identified in all organisms and are related to RNA metabolism. Here, we report that Arabidopsis nuclear AtLSM8 protein, as well as AtLSM5, which localizes to both the cytoplasm and nucleus, function in pre-mRNA splicing, while AtLSM5 and the exclusively cytoplasmic AtLSM1 contribute to 5'-3' mRNA decay. In lsm8 and sad1/lsm5 mutants, U6 small nuclear RNA (snRNA) was reduced and unspliced mRNA precursors accumulated, whereas mRNA stability was mainly affected in plants lacking AtLSM1 and AtLSM5. Some of the mRNAs affected in lsm1a lsm1b and sad1/lsm5 plants were also substrates of the cytoplasmic 5'-3' exonuclease AtXRN4 and of the decapping enzyme AtDCP2. Surprisingly, a subset of substrates was also stabilized in the mutant lacking AtLSM8, which supports the notion that plant mRNAs are actively degraded in the nucleus. Localization of LSM components, purification of LSM-interacting proteins as well as functional analyses strongly suggest that at least two LSM complexes with conserved activities in RNA metabolism, AtLSM1-7 and AtLSM2-8, exist also in plants.
Collapse
Affiliation(s)
- Anna Golisz
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
170
|
Moore CE, Curtis B, Mills T, Tanifuji G, Archibald JM. Nucleomorph genome sequence of the cryptophyte alga Chroomonas mesostigmatica CCMP1168 reveals lineage-specific gene loss and genome complexity. Genome Biol Evol 2013; 4:1162-75. [PMID: 23042551 PMCID: PMC3514955 DOI: 10.1093/gbe/evs090] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cryptophytes are a diverse lineage of marine and freshwater, photosynthetic and secondarily nonphotosynthetic algae that acquired their plastids (chloroplasts) by “secondary” (i.e., eukaryote–eukaryote) endosymbiosis. Consequently, they are among the most genetically complex cells known and have four genomes: a mitochondrial, plastid, “master” nuclear, and residual nuclear genome of secondary endosymbiotic origin, the so-called “nucleomorph” genome. Sequenced nucleomorph genomes are ∼1,000-kilobase pairs (Kbp) or less in size and are comprised of three linear, compositionally biased chromosomes. Although most functionally annotated nucleomorph genes encode proteins involved in core eukaryotic processes, up to 40% of the genes in these genomes remain unidentifiable. To gain insight into the function and evolutionary fate of nucleomorph genomes, we used 454 and Illumina technologies to completely sequence the nucleomorph genome of the cryptophyte Chroomonas mesostigmatica CCMP1168. At 702.9 Kbp in size, the C. mesostigmatica nucleomorph genome is the largest and the most complex nucleomorph genome sequenced to date. Our comparative analyses reveal the existence of a highly conserved core set of genes required for maintenance of the cryptophyte nucleomorph and plastid, as well as examples of lineage-specific gene loss resulting in differential loss of typical eukaryotic functions, e.g., proteasome-mediated protein degradation, in the four cryptophyte lineages examined.
Collapse
Affiliation(s)
- Christa E Moore
- Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
171
|
Abstract
Yeast U5 small nuclear ribonucleoprotein particle (snRNP) is assembled via a cytoplasmic precursor that contains the U5-specific Prp8 protein but lacks the U5-specific Brr2 helicase. Instead, pre-U5 snRNP includes the Aar2 protein not found in mature U5 snRNP or spliceosomes. Aar2p and Brr2p bind competitively to a C-terminal region of Prp8p that comprises consecutive RNase H-like and Jab1/MPN-like domains. To elucidate the molecular basis for this competition, we determined the crystal structure of Aar2p in complex with the Prp8p RNase H and Jab1/MPN domains. Aar2p binds on one side of the RNase H domain and extends its C terminus to the other side, where the Jab1/MPN domain is docked onto a composite Aar2p-RNase H platform. Known Brr2p interaction sites of the Jab1/MPN domain remain available, suggesting that Aar2p-mediated compaction of the Prp8p domains sterically interferes with Brr2p binding. Moreover, Aar2p occupies known RNA-binding sites of the RNase H domain, and Aar2p interferes with binding of U4/U6 di-snRNA to the Prp8p C-terminal region. Structural and functional analyses of phospho-mimetic mutations reveal how phosphorylation reduces affinity of Aar2p for Prp8p and allows Brr2p and U4/U6 binding. Our results show how Aar2p regulates both protein and RNA binding to Prp8p during U5 snRNP assembly.
Collapse
|
172
|
A weak spliceosome-binding domain of Yju2 functions in the first step and bypasses Prp16 in the second step of splicing. Mol Cell Biol 2013; 33:1746-55. [PMID: 23438600 DOI: 10.1128/mcb.00035-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Yju2 is an essential splicing factor required for the first catalytic step after the action of Prp2. We dissected the structure of Yju2 and found that the amino (Yju2-N) and carboxyl (Yju2-C) halves of the protein can be separated and reconstituted for Yju2 function both in vivo and in vitro. Yju2-N has a weak affinity for the spliceosome but functions in promoting the first reaction, with the second reaction being severely impeded. The association of Yju2-N with the spliceosome is stabilized by the presence of Yju2-C at both the precatalytic and postcatalytic stages. Strikingly, Yju2-N supported a low level of the second reaction even in the absence of Prp16. Prp16 is known to mediate destabilization of Yju2 and Cwc25 after the first reaction to allow progression of the second reaction. We propose that in the absence of the C domain, Yju2-N is not stably associated with the spliceosome after lariat formation, and thus bypasses the need for Prp16. We also showed, by UV cross-linking, that Yju2 directly contacts U2 snRNA primarily in the helix II region both pre- and postcatalytically and in the branch-binding region only at the precatalytic stage, suggesting a possible role for Yju2 in positioning the branch point during the first reaction.
Collapse
|
173
|
Chang TH, Tung L, Yeh FL, Chen JH, Chang SL. Functions of the DExD/H-box proteins in nuclear pre-mRNA splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:764-74. [PMID: 23454554 DOI: 10.1016/j.bbagrm.2013.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/05/2013] [Accepted: 02/13/2013] [Indexed: 01/09/2023]
Abstract
In eukaryotes, many genes are transcribed as precursor messenger RNAs (pre-mRNAs) that contain exons and introns, the latter of which must be removed and exons ligated to form the mature mRNAs. This process is called pre-mRNA splicing, which occurs in the nucleus. Although the chemistry of pre-mRNA splicing is identical to that of the self-splicing Group II introns, hundreds of proteins and five small nuclear RNAs (snRNAs), U1, U2, U4, U5, and U6, are essential for executing pre-mRNA splicing. Spliceosome, arguably the most complex cellular machine made up of all those proteins and snRNAs, is responsible for carrying out pre-mRNA splicing. In contrast to the transcription and the translation machineries, spliceosome is formed anew onto each pre-mRNA and undergoes a series of highly coordinated reconfigurations to form the catalytic center. This amazing process is orchestrated by a number of DExD/H-proteins that are the focus of this article, which aims to review the field in general and to project the exciting challenges and opportunities ahead. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
|
174
|
Li X, Zhang W, Xu T, Ramsey J, Zhang L, Hill R, Hansen KC, Hesselberth JR, Zhao R. Comprehensive in vivo RNA-binding site analyses reveal a role of Prp8 in spliceosomal assembly. Nucleic Acids Res 2013; 41:3805-18. [PMID: 23393194 PMCID: PMC3616732 DOI: 10.1093/nar/gkt062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Prp8 stands out among hundreds of splicing factors as a protein that is intimately involved in spliceosomal activation and the catalytic reaction. Here, we present the first comprehensive in vivo RNA footprints for Prp8 in budding yeast obtained using CLIP (cross-linking and immunoprecipitation)/CRAC (cross-linking and analyses of cDNAs) and next-generation DNA sequencing. These footprints encompass known direct Prp8-binding sites on U5, U6 snRNA and intron-containing pre-mRNAs identified using site-directed cross-linking with in vitro assembled small nuclear ribonucleoproteins (snRNPs) or spliceosome. Furthermore, our results revealed novel Prp8-binding sites on U1 and U2 snRNAs. We demonstrate that Prp8 directly cross-links with U2, U5 and U6 snRNAs and pre-mRNA in purified activated spliceosomes, placing Prp8 in position to bring the components of the active site together. In addition, disruption of the Prp8 and U1 snRNA interaction reduces tri-snRNP level in the spliceosome, suggesting a previously unknown role of Prp8 in spliceosomal assembly through its interaction with U1 snRNA.
Collapse
Affiliation(s)
- Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Galej WP, Oubridge C, Newman AJ, Nagai K. Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 2013; 493:638-43. [PMID: 23354046 PMCID: PMC3672837 DOI: 10.1038/nature11843] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/18/2012] [Indexed: 12/21/2022]
Abstract
The active centre of the spliceosome consists of an intricate network formed by U5, U2 and U6 snRNAs, and a pre-mRNA substrate. Prp8, a component of the U5 snRNP, crosslinks extensively with this RNA catalytic core. We present the crystal structure of yeast Prp8 (residues 885-2413) in complex with the U5 snRNP assembly factor Aar2. The structure reveals new tightly associated domains of Prp8 resembling a bacterial group II intron reverse transcriptase and a type II restriction endonuclease. Suppressors of splice site mutations and an intron branchpoint crosslink map to a large cavity formed by the reverse transcriptase thumb, endonuclease-like and the RNaseH-like domains. This cavity is large enough to accommodate the catalytic core of group II intron RNA. The structure provides crucial insights into the architecture of the spliceosome’s active site and reinforces the notion that nuclear pre-mRNA splicing and group II intron splicing have a common origin.
Collapse
Affiliation(s)
- Wojciech P Galej
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | | | | |
Collapse
|
176
|
|
177
|
Utz VM, Beight CD, Marino MJ, Hagstrom SA, Traboulsi EI. Autosomal dominant retinitis pigmentosa secondary to pre-mRNA splicing-factor gene PRPF31 (RP11): review of disease mechanism and report of a family with a novel 3-base pair insertion. Ophthalmic Genet 2013; 34:183-8. [PMID: 23343310 DOI: 10.3109/13816810.2012.762932] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several forms of autosomal dominant retinitis pigmentosa (adRP) are caused by mutations in genes encoding proteins that are ubiquitously expressed and involved in the pre-mRNA spliceosome such as PRPF31. This paper provides an overview of the molecular genetics, pathophysiology, and mechanism for incomplete penetrance and retina-specific disease in pedigrees of families who harbor mutations in PRPF31 (RP11). The molecular and clinical features of a family with a novel 3-base insertion, c.914_915insTGT (p.Val305_Asp306insVal) in exon 9 of PRPF31 are described to illustrate the salient clinical features of mutations in this gene.
Collapse
Affiliation(s)
- Virginia M Utz
- Cole Eye Institute, Cleveland Clinic , Cleveland, OH , USA , and
| | | | | | | | | |
Collapse
|
178
|
Mozaffari-Jovin S, Santos KF, Hsiao HH, Will CL, Urlaub H, Wahl MC, Lührmann R. The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes Dev 2013; 26:2422-34. [PMID: 23124066 DOI: 10.1101/gad.200949.112] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The spliceosomal RNA helicase Brr2 catalyzes unwinding of the U4/U6 snRNA duplex, an essential step for spliceosome catalytic activation. Brr2 is regulated in part by the spliceosomal Prp8 protein by an unknown mechanism. We demonstrate that the RNase H (RH) domain of yeast Prp8 binds U4/U6 small nuclear RNA (snRNA) with the single-stranded regions of U4 and U6 preceding U4/U6 stem I, contributing to its binding. Via cross-linking coupled with mass spectrometry, we identify RH domain residues that contact the U4/U6 snRNA. We further demonstrate that the same single-stranded region of U4 preceding U4/U6 stem I is recognized by Brr2, indicating that it translocates along U4 and first unwinds stem I of the U4/U6 duplex. Finally, we show that the RH domain of Prp8 interferes with U4/U6 unwinding by blocking Brr2's interaction with the U4 snRNA. Our data reveal a novel mechanism whereby Prp8 negatively regulates Brr2 and potentially prevents premature U4/U6 unwinding during splicing. They also support the idea that the RH domain acts as a platform for the exchange of U6 snRNA for U1 at the 5' splice site. Our results provide insights into the mechanism whereby Brr2 unwinds U4/U6 and show how this activity is potentially regulated prior to spliceosome activation.
Collapse
Affiliation(s)
- Sina Mozaffari-Jovin
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
179
|
Abstract
RNA splicing is one of the fundamental processes in gene expression in eukaryotes. Splicing of pre-mRNA is catalysed by a large ribonucleoprotein complex called the spliceosome, which consists of five small nuclear RNAs and numerous protein factors. The spliceosome is a highly dynamic structure, assembled by sequential binding and release of the small nuclear RNAs and protein factors. DExD/H-box RNA helicases are required to mediate structural changes in the spliceosome at various steps in the assembly pathway and have also been implicated in the fidelity control of the splicing reaction. Other proteins also play key roles in mediating the progression of the spliceosome pathway. In this review, we discuss the functional roles of the protein factors involved in the spliceosome pathway primarily from studies in the yeast system.
Collapse
|
180
|
Schmitzová J, Pena V. Emerging views about the molecular structure of the spliceosomal catalytic center. RNA Biol 2012; 9:1311-8. [PMID: 23064115 DOI: 10.4161/rna.22359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pre-mRNA splicing occurs in two chemical steps that are catalyzed by a large, dynamic RNA-protein complex called the spliceosome. Initially assembled in a catalytically inactive form, the spliceosome undergoes massive compositional and conformational remodeling, through which disparate RNA elements are re-configured and juxtaposed into a functional catalytic center. The intricate construction of the catalytic center requires the assistance of spliceosomal proteins. Recent structure-function analyses have demonstrated that the yeast-splicing factor Cwc2 is a main player that contacts and shapes the catalytic center of the spliceosome into a functional conformation. With this advance, corroborated by the atomic structure of the evolutionarily related group IIC introns, our understanding of the organization and formation of the spliceosomal catalytic center has progressed to a new level.
Collapse
Affiliation(s)
- Jana Schmitzová
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical, Macromolecular Crystallography Group, Göttingen, Germany
| | | |
Collapse
|
181
|
Korneta I, Magnus M, Bujnicki JM. Structural bioinformatics of the human spliceosomal proteome. Nucleic Acids Res 2012; 40:7046-65. [PMID: 22573172 PMCID: PMC3424538 DOI: 10.1093/nar/gks347] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this work, we describe the results of a comprehensive structural bioinformatics analysis of the spliceosomal proteome. We used fold recognition analysis to complement prior data on the ordered domains of 252 human splicing proteins. Examples of newly identified domains include a PWI domain in the U5 snRNP protein 200K (hBrr2, residues 258-338), while examples of previously known domains with a newly determined fold include the DUF1115 domain of the U4/U6 di-snRNP protein 90K (hPrp3, residues 540-683). We also established a non-redundant set of experimental models of spliceosomal proteins, as well as constructed in silico models for regions without an experimental structure. The combined set of structural models is available for download. Altogether, over 90% of the ordered regions of the spliceosomal proteome can be represented structurally with a high degree of confidence. We analyzed the reduced spliceosomal proteome of the intron-poor organism Giardia lamblia, and as a result, we proposed a candidate set of ordered structural regions necessary for a functional spliceosome. The results of this work will aid experimental and structural analyses of the spliceosomal proteins and complexes, and can serve as a starting point for multiscale modeling of the structure of the entire spliceosome.
Collapse
Affiliation(s)
- Iga Korneta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw PL-02-109, Poland
| | | | | |
Collapse
|
182
|
Query CC, Konarska MM. CEF1/CDC5 alleles modulate transitions between catalytic conformations of the spliceosome. RNA (NEW YORK, N.Y.) 2012; 18:1001-13. [PMID: 22408182 PMCID: PMC3334688 DOI: 10.1261/rna.029421.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Conformational change within the spliceosome is required between the first and second catalytic steps of pre-mRNA splicing. A prior genetic screen for suppressors of an intron mutant that stalls between the two steps yielded both prp8 and non-prp8 alleles that suppressed second-step splicing defects. We have now identified the strongest non-prp8 suppressors as alleles of the NTC (Prp19 complex) component, CEF1. These cef1 alleles generally suppress second-step defects caused by a variety of intron mutations, mutations in U6 snRNA, or deletion of the second-step protein factor Prp17, and they can activate alternative 3' splice sites. Genetic and functional interactions between cef1 and prp8 alleles suggest that they modulate the same event(s) in the first-to-second-step transition, most likely by stabilization of the second-step spliceosome; in contrast, alleles of U6 snRNA that also alter this transition modulate a distinct event, most likely by stabilization of the first-step spliceosome. These results implicate a myb-like domain of Cef1/CDC5 in interactions that modulate conformational states of the spliceosome and suggest that alteration of these events affects splice site use, resulting in alternative splicing-like patterns in yeast.
Collapse
Affiliation(s)
- Charles C. Query
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
- Corresponding authors.E-mail .E-mail .
| | - Maria M. Konarska
- The Rockefeller University, New York, New York 10065, USA
- Corresponding authors.E-mail .E-mail .
| |
Collapse
|
183
|
van der Feltz C, Anthony K, Brilot A, Pomeranz Krummel DA. Architecture of the Spliceosome. Biochemistry 2012; 51:3321-33. [DOI: 10.1021/bi201215r] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Clarisse van der Feltz
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, Massachusetts
02454, United States
| | - Kelsey Anthony
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, Massachusetts
02454, United States
| | - Axel Brilot
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, Massachusetts
02454, United States
| | - Daniel A. Pomeranz Krummel
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, Massachusetts
02454, United States
| |
Collapse
|
184
|
Gao X, Zhao X, Zhu Y, He J, Shao J, Su C, Zhang Y, Zhang W, Saarikettu J, Silvennoinen O, Yao Z, Yang J. Tudor staphylococcal nuclease (Tudor-SN) participates in small ribonucleoprotein (snRNP) assembly via interacting with symmetrically dimethylated Sm proteins. J Biol Chem 2012; 287:18130-41. [PMID: 22493508 DOI: 10.1074/jbc.m111.311852] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human Tudor staphylococcal nuclease (Tudor-SN) is composed of four tandem repeats of staphylococcal nuclease (SN)-like domains, followed by a tudor and SN-like domain (TSN) consisting of a central tudor flanked by two partial SN-like sequences. The crystal structure of the tudor domain displays a conserved aromatic cage, which is predicted to hook methyl groups. Here, we demonstrated that the TSN domain of Tudor-SN binds to symmetrically dimethylarginine (sDMA)-modified SmB/B' and SmD1/D3 core proteins of the spliceosome. We demonstrated that this interaction ability is reduced by the methyltransferase inhibitor 5-deoxy-5-(methylthio)adenosine. Mutagenesis experiments indicated that the conserved amino acids (Phe-715, Tyr-721, Tyr-738, and Tyr-741) in the methyl-binding cage of the TSN domain are required for Tudor-SN-SmB interaction. Furthermore, depletion of Tudor-SN affects the association of Sm protein with snRNAs and, as a result, inhibits the assembly of uridine-rich small ribonucleoprotein mediated by the Sm core complex in vivo. Our results reveal the molecular basis for the involvement of Tudor-SN in regulating small nuclear ribonucleoprotein biogenesis, which provides novel insight related to the biological activity of Tudor-SN.
Collapse
Affiliation(s)
- Xingjie Gao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 30070, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Syomin BV, Leonova OG, Trendeleva TA, Zvyagilskaya RA, Ilyin YV, Popenko VI. Effect of nucleocapsid on multimerization of gypsy structural protein GAG. Mol Biol 2012. [DOI: 10.1134/s0026893312020148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
186
|
Rasche N, Dybkov O, Schmitzová J, Akyildiz B, Fabrizio P, Lührmann R. Cwc2 and its human homologue RBM22 promote an active conformation of the spliceosome catalytic centre. EMBO J 2012; 31:1591-604. [PMID: 22246180 PMCID: PMC3321175 DOI: 10.1038/emboj.2011.502] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/15/2011] [Indexed: 11/09/2022] Open
Abstract
RNA-structural elements play key roles in pre-mRNA splicing catalysis; yet, the formation of catalytically competent RNA structures requires the assistance of spliceosomal proteins. We show that the S. cerevisiae Cwc2 protein functions prior to step 1 of splicing, and it is not required for the Prp2-mediated spliceosome remodelling that generates the catalytically active B complex, suggesting that Cwc2 plays a more sophisticated role in the generation of a functional catalytic centre. In active spliceosomes, Cwc2 contacts catalytically important RNA elements, including the U6 internal stem-loop (ISL), and regions of U6 and the pre-mRNA intron near the 5' splice site, placing Cwc2 at/near the spliceosome's catalytic centre. These interactions are evolutionarily conserved, as shown by studies with Cwc2's human counterpart RBM22, indicating that Cwc2/RBM22-RNA contacts are functionally important. We propose that Cwc2 induces an active conformation of the spliceosome's catalytic RNA elements. Thus, the function of RNA-RNA tertiary interactions within group II introns, namely to induce an active conformation of domain V, may be fulfilled by proteins that contact the functionally analogous U6-ISL, within the spliceosome.
Collapse
Affiliation(s)
- Nicolas Rasche
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Olexandr Dybkov
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Jana Schmitzová
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Berktan Akyildiz
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Patrizia Fabrizio
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
187
|
Allende-Vega N, Dayal S, Agarwala U, Sparks A, Bourdon JC, Saville MK. p53 is activated in response to disruption of the pre-mRNA splicing machinery. Oncogene 2012; 32:1-14. [PMID: 22349816 DOI: 10.1038/onc.2012.38] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, we show that interfering with the splicing machinery results in activation of the tumour-suppressor p53. The spliceosome was targeted by small interfering RNA-mediated knockdown of proteins associated with different small nuclear ribonucleoprotein complexes and by using the small-molecule splicing modulator TG003. These interventions cause: the accumulation of p53, an increase in p53 transcriptional activity and can result in p53-dependent G(1) cell cycle arrest. Mdm2 and MdmX are two key repressors of p53. We show that a decrease in MdmX protein level contributes to p53 activation in response to targeting the spliceosome. Interfering with the spliceosome also causes an increase in the rate of degradation of Mdm2. Alterations in splicing are linked with tumour development. There are frequently global changes in splicing in cancer. Our study suggests that p53 activation could participate in protection against potential tumour-promoting defects in the spliceosome. A number of known p53-activating agents affect the splicing machinery and this could contribute to their ability to upregulate p53. Preclinical studies indicate that tumours can be more sensitive than normal cells to small-molecule spliceosome inhibitors. Activation of p53 could influence the selective anti-tumour activity of this therapeutic approach.
Collapse
Affiliation(s)
- N Allende-Vega
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Angus, UK
| | | | | | | | | | | |
Collapse
|
188
|
Farkas MH, Grant GR, Pierce EA. Transcriptome analyses to investigate the pathogenesis of RNA splicing factor retinitis pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:519-25. [PMID: 22183372 PMCID: PMC6387625 DOI: 10.1007/978-1-4614-0631-0_65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Michael H. Farkas
- Ocular Genomics Institute, Berman Gund Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA
| | - Greg R. Grant
- Penn Center for Bioinformatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric A. Pierce
- Ocular Genomics Institute, Berman Gund Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA
| |
Collapse
|
189
|
Koncz C, deJong F, Villacorta N, Szakonyi D, Koncz Z. The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. FRONTIERS IN PLANT SCIENCE 2012; 3:9. [PMID: 22639636 PMCID: PMC3355604 DOI: 10.3389/fpls.2012.00009] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/09/2012] [Indexed: 05/18/2023]
Abstract
Correct interpretation of the coding capacity of RNA polymerase II transcribed eukaryotic genes is determined by the recognition and removal of intronic sequences of pre-mRNAs by the spliceosome. Our current knowledge on dynamic assembly and subunit interactions of the spliceosome mostly derived from the characterization of yeast, Drosophila, and human spliceosomal complexes formed on model pre-mRNA templates in cell extracts. In addition to sequential structural rearrangements catalyzed by ATP-dependent DExH/D-box RNA helicases, catalytic activation of the spliceosome is critically dependent on its association with the NineTeen Complex (NTC) named after its core E3 ubiquitin ligase subunit PRP19. NTC, isolated recently from Arabidopsis, occurs in a complex with the essential RNA helicase and GTPase subunits of the U5 small nuclear RNA particle that are required for both transesterification reactions of splicing. A compilation of mass spectrometry data available on the composition of NTC and spliceosome complexes purified from different organisms indicates that about half of their conserved homologs are encoded by duplicated genes in Arabidopsis. Thus, while mutations of single genes encoding essential spliceosome and NTC components lead to cell death in other organisms, differential regulation of some of their functionally redundant Arabidopsis homologs permits the isolation of partial loss of function mutations. Non-lethal pleiotropic defects of these mutations provide a unique means for studying the roles of NTC in co-transcriptional assembly of the spliceosome and its crosstalk with DNA repair and cell death signaling pathways.
Collapse
Affiliation(s)
- Csaba Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of SciencesSzeged, Hungary
- *Correspondence: Csaba Koncz, Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-59829 Cologne, Germany. e-mail:
| | - Femke deJong
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Nicolas Villacorta
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Dóra Szakonyi
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Zsuzsa Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
190
|
Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep 2011; 1:161. [PMID: 22355676 PMCID: PMC3240977 DOI: 10.1038/srep00161] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/07/2011] [Indexed: 12/17/2022] Open
Abstract
Intraductal papillary mucinous neoplasm (IPMN) is a common pancreatic cystic neoplasm that
is often invasive and metastatic, resulting in a poor prognosis. Few molecular alterations
unique to IPMN are known. We performed whole-exome sequencing for a primary IPMN tissue,
which uncovered somatic mutations in KCNF1, DYNC1H1, PGCP, STAB1, PTPRM, PRPF8, RNASE3,
SPHKAP, MLXIPL, VPS13C, PRCC, GNAS, KRAS, RBM10, RNF43, DOCK2, and CENPF. We
further analyzed GNAS mutations in archival cases of 118 IPMNs and 32 pancreatic
ductal adenocarcinomas (PDAs), which revealed that 48 (40.7%) of the 118 IPMNs but none of
the 32 PDAs harbored GNAS mutations. G-protein alpha-subunit encoded by GNAS
and its downstream targets, phosphorylated substrates of protein kinase A, were evidently
expressed in IPMN; the latter was associated with neoplastic grade. These results indicate
that GNAS mutations are common and specific for IPMN, and activation of G-protein
signaling appears to play a pivotal role in IPMN.
Collapse
|
191
|
Horowitz DS. The mechanism of the second step of pre-mRNA splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:331-50. [PMID: 22012849 DOI: 10.1002/wrna.112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The molecular mechanisms of the second step of pre-mRNA splicing in yeast and higher eukaryotes are reviewed. The important elements in the pre-mRNA, the participating proteins, and the proposed secondary structures and roles of the snRNAs are described. The sequence of events in the second step is presented, focusing on the actions of the proteins in setting up and facilitating the second reaction. Mechanisms for avoiding errors in splicing are discussed.
Collapse
Affiliation(s)
- David S Horowitz
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
192
|
Abstract
The U5 snRNP (small ribonucleoprotein) contains several functionally crucial splicing factors that form an extensive interaction network both in the snRNP and within the spliceosome. In this issue of Genes & Development, Weber and colleagues (pp. 1601-1612) shed light on the dynamic assembly of this critical spliceosomal component and elucidate the molecular interactions underlying the ordered addition of Brr2, a pivotal spliceosomal helicase, to the U5 snRNP.
Collapse
Affiliation(s)
- Saba Valadkhan
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| |
Collapse
|
193
|
Weber G, Cristão VF, de L Alves F, Santos KF, Holton N, Rappsilber J, Beggs JD, Wahl MC. Mechanism for Aar2p function as a U5 snRNP assembly factor. Genes Dev 2011; 25:1601-12. [PMID: 21764848 DOI: 10.1101/gad.635911] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Little is known about how particle-specific proteins are assembled on spliceosomal small nuclear ribonucleoproteins (snRNPs). Brr2p is a U5 snRNP-specific RNA helicase required for spliceosome catalytic activation and disassembly. In yeast, the Aar2 protein is part of a cytoplasmic precursor U5 snRNP that lacks Brr2p and is replaced by Brr2p in the nucleus. Here we show that Aar2p and Brr2p bind to different domains in the C-terminal region of Prp8p; Aar2p interacts with the RNaseH domain, whereas Brr2p interacts with the Jab1/MPN domain. These domains are connected by a long, flexible linker, but the Aar2p-RNaseH complex sequesters the Jab1/MPN domain, thereby preventing binding by Brr2p. Aar2p is phosphorylated in vivo, and a phospho-mimetic S253E mutation in Aar2p leads to disruption of the Aar2p-Prp8p complex in favor of the Brr2p-Prp8p complex. We propose a model in which Aar2p acts as a phosphorylation-controlled U5 snRNP assembly factor that regulates the incorporation of the particle-specific Brr2p. The purpose of this regulation may be to safeguard against nonspecific RNA binding to Prp8p and/or premature activation of Brr2p activity.
Collapse
Affiliation(s)
- Gert Weber
- Fachbereich Biologie/Chemie/Pharmazie, Abteilung Strukturbiochemie, Freie Universität Berlin, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
Pre-mRNA splicing is catalyzed by the spliceosome, a multimegadalton ribonucleoprotein (RNP) complex comprised of five snRNPs and numerous proteins. Intricate RNA-RNA and RNP networks, which serve to align the reactive groups of the pre-mRNA for catalysis, are formed and repeatedly rearranged during spliceosome assembly and catalysis. Both the conformation and composition of the spliceosome are highly dynamic, affording the splicing machinery its accuracy and flexibility, and these remarkable dynamics are largely conserved between yeast and metazoans. Because of its dynamic and complex nature, obtaining structural information about the spliceosome represents a major challenge. Electron microscopy has revealed the general morphology of several spliceosomal complexes and their snRNP subunits, and also the spatial arrangement of some of their components. X-ray and NMR studies have provided high resolution structure information about spliceosomal proteins alone or complexed with one or more binding partners. The extensive interplay of RNA and proteins in aligning the pre-mRNA's reactive groups, and the presence of both RNA and protein at the core of the splicing machinery, suggest that the spliceosome is an RNP enzyme. However, elucidation of the precise nature of the spliceosome's active site, awaits the generation of a high-resolution structure of its RNP core.
Collapse
Affiliation(s)
- Cindy L Will
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
195
|
Tanackovic G, Ransijn A, Thibault P, Abou Elela S, Klinck R, Berson EL, Chabot B, Rivolta C. PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Hum Mol Genet 2011; 20:2116-30. [PMID: 21378395 PMCID: PMC3090192 DOI: 10.1093/hmg/ddr094] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/08/2011] [Accepted: 03/01/2011] [Indexed: 01/22/2023] Open
Abstract
Proteins PRPF31, PRPF3 and PRPF8 (RP-PRPFs) are ubiquitously expressed components of the spliceosome, a macromolecular complex that processes nearly all pre-mRNAs. Although these spliceosomal proteins are conserved in eukaryotes and are essential for survival, heterozygous mutations in human RP-PRPF genes lead to retinitis pigmentosa, a hereditary disease restricted to the eye. Using cells from patients with 10 different mutations, we show that all clinically relevant RP-PRPF defects affect the stoichiometry of spliceosomal small nuclear RNAs (snRNAs), the protein composition of tri-small nuclear ribonucleoproteins and the kinetics of spliceosome assembly. These mutations cause inefficient splicing in vitro and affect constitutive splicing ex-vivo by impairing the removal of at least 9% of endogenously expressed introns. Alternative splicing choices are also affected when RP-PRPF defects are present. Furthermore, we show that the steady-state levels of snRNAs and processed pre-mRNAs are highest in the retina, indicating a particularly elevated splicing activity. Our results suggest a role for PRPFs defects in the etiology of PRPF-linked retinitis pigmentosa, which appears to be a truly systemic splicing disease. Although these mutations cause widespread and important splicing defects, they are likely tolerated by the majority of human tissues but are critical for retinal cell survival.
Collapse
Affiliation(s)
- Goranka Tanackovic
- Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland
| | - Adriana Ransijn
- Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland
| | - Philippe Thibault
- Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Canada
| | - Sherif Abou Elela
- Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Canada
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, CanadaJ1H 5N4 and
| | - Roscoe Klinck
- Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Canada
| | - Eliot L. Berson
- The Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Benoit Chabot
- Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Canada
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, CanadaJ1H 5N4 and
| | - Carlo Rivolta
- Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland
| |
Collapse
|
196
|
Dlakić M, Mushegian A. Prp8, the pivotal protein of the spliceosomal catalytic center, evolved from a retroelement-encoded reverse transcriptase. RNA (NEW YORK, N.Y.) 2011; 17:799-808. [PMID: 21441348 PMCID: PMC3078730 DOI: 10.1261/rna.2396011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Prp8 is the largest and most highly conserved protein of the spliceosome, encoded by all sequenced eukaryotic genomes but missing from prokaryotes and viruses. Despite all evidence that Prp8 is an integral part of the spliceosomal catalytic center, much remains to be learned about its molecular functions and evolutionary origin. By analyzing sequence and structure similarities between Prp8 and other protein domains, we show that its N-terminal region contains a putative bromodomain. The central conserved domain of Prp8 is related to the catalytic domain of reverse transcriptases (RTs) and is most similar to homologous enzymes encoded by prokaryotic retroelements. However, putative catalytic residues in this RT domain are only partially conserved and may not be sufficient for the nucleotidyltransferase activity. The RT domain is followed by an uncharacterized sequence region with relatives found in fungal RT-like proteins. This part of Prp8 is predicted to adopt an α-helical structure and may be functionally equivalent to diverse maturase/X domains of retroelements and to the thumb domain of retroviral RTs. Together with a previously identified C-terminal domain that has an RNaseH-like fold, our results suggest evolutionary connections between Prp8 and ancient mobile elements. Prp8 may have evolved by acquiring nucleic acid-binding domains from inactivated retroelements, and their present-day role may be in maintaining proper conformation of the bound RNA cofactors and substrates of the splicing reaction. This is only the second example-the other one being telomerase-of the RT recruitment from a genomic parasite to serve an essential cellular function.
Collapse
Affiliation(s)
- Mensur Dlakić
- Department of Microbiology, Montana State University, Bozeman, Montana 59717, USA.
| | | |
Collapse
|
197
|
Coltri P, Effenberger K, Chalkley RJ, Burlingame AL, Jurica MS. Breaking up the C complex spliceosome shows stable association of proteins with the lariat intron intermediate. PLoS One 2011; 6:e19061. [PMID: 21526149 PMCID: PMC3079748 DOI: 10.1371/journal.pone.0019061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 03/23/2011] [Indexed: 01/13/2023] Open
Abstract
Spliceosome assembly requires several structural rearrangements to position the components of the catalytic core. Many of these rearrangements involve successive strengthening and weakening of different RNA:RNA and RNA:proteins interactions within the complex. To gain insight into the organization of the catalytic core of the spliceosome arrested between the two steps of splicing chemistry (C complex), we investigated the effects of exposing C complex to low concentrations of urea. We find that in the presence of 3M urea C complex separates into at least three sub-complexes. One sub-complex contains the 5'exon, another contains the intron-lariat intermediate, and U2/U5/U6 snRNAs likely comprise a third sub-complex. We purified the intron-lariat intermediate sub-complex and identified several proteins, including U2 snRNP and PRP19 complex (NTC) components. The data from our study indicate that U2 snRNP proteins in C complex are more stably associated with the lariat-intron intermediate than the U2 snRNA. The results also suggest a set of candidate proteins that hold the lariat-intron intermediate together in C complex. This information is critical for further interpreting the complex architecture of the mammalian spliceosome.
Collapse
Affiliation(s)
- Patricia Coltri
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Kerstin Effenberger
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Robert J. Chalkley
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - A. L. Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Melissa S. Jurica
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
198
|
Graziotto JJ, Farkas MH, Bujakowska K, Deramaudt BM, Zhang Q, Nandrot EF, Inglehearn CF, Bhattacharya SS, Pierce EA. Three gene-targeted mouse models of RNA splicing factor RP show late-onset RPE and retinal degeneration. Invest Ophthalmol Vis Sci 2011; 52:190-8. [PMID: 20811066 DOI: 10.1167/iovs.10-5194] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mutations in genes that produce proteins involved in mRNA splicing, including pre-mRNA processing factors 3, 8, and 31 (PRPF3, 8, and 31), RP9, and SNRNP200 are common causes of the late-onset inherited blinding disorder retinitis pigmentosa (RP). It is not known how mutations in these ubiquitously expressed genes lead to retina-specific disease. To investigate the pathogenesis of the RNA splicing factor forms of RP, the authors generated and characterized the retinal phenotypes of Prpf3-T494M, Prpf8-H2309P knockin mice. The retinal ultrastructure of Prpf31-knockout mice was also investigated. METHODS The knockin mice have single codon alterations in their endogenous Prpf3 and Prpf8 genes that mimic the most common disease causing mutations in human PRPF3 and PRPF8. The Prpf31-knockout mice mimic the null alleles that result from the majority of mutations identified in PRPF31 patients. The retinal phenotypes of the gene targeted mice were evaluated by electroretinography (ERG), light, and electron microscopy. RESULTS The RPE cells of heterozygous Prpf3(+/T494M) and Prpf8(+/H2309P) knockin mice exhibited loss of the basal infoldings and vacuolization, with accumulation of amorphous deposits between the RPE and Bruch[b]'s membrane at age two years. These changes were more severe in the homozygous mice, and were associated with decreased rod function in the Prpf3-T494M mice. Similar degenerative changes in the RPE were detected in Prpf31(±) mice at one year of age. CONCLUSIONS The finding of similar degenerative changes in RPE cells of all three mouse models suggests that the RPE may be the primary cell type affected in the RNA splicing factor forms of RP. The relatively late-onset phenotype observed in these mice is consistent with the typical adult onset of disease in patients with RP.
Collapse
Affiliation(s)
- John J Graziotto
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
3D Cryo-EM Structure of an Active Step I Spliceosome and Localization of Its Catalytic Core. Mol Cell 2010; 40:927-38. [DOI: 10.1016/j.molcel.2010.11.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 07/28/2010] [Accepted: 10/07/2010] [Indexed: 11/22/2022]
|
200
|
Valadkhan S, Jaladat Y. The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine. Proteomics 2010; 10:4128-41. [PMID: 21080498 DOI: 10.1002/pmic.201000354] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Almost all primary transcripts in higher eukaryotes undergo several splicing events and alternative splicing is a major factor in generating proteomic diversity. Thus, the spliceosome, the ribonucleoprotein assembly that performs splicing, is a highly critical cellular machine and as expected, a very complex one. Indeed, the spliceosome is one of the largest, if not the largest, molecular machine in the cell with over 150 different components in human. A large fraction of the spliceosomal proteome is organized into small nuclear ribonucleoprotein particles by associating with one of the small nuclear RNAs, and the function of many spliceosomal proteins revolve around their association or interaction with the spliceosomal RNAs or the substrate pre-messenger RNAs. In addition to the complex web of protein-RNA interactions, an equally complex network of protein-protein interactions exists in the spliceosome, which includes a number of large, conserved proteins with critical functions in the spliceosomal catalytic core. These include the largest conserved nuclear protein, Prp8, which plays a critical role in spliceosomal function in a hitherto unknown manner. Taken together, the large spliceosomal proteome and its dynamic nature has made it a highly challenging system to study, and at the same time, provides an exciting example of the evolution of a proteome around a backbone of primordial RNAs likely dating from the RNA World.
Collapse
Affiliation(s)
- Saba Valadkhan
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44113, USA.
| | | |
Collapse
|