151
|
Simonelig M. Developmental functions of piRNAs and transposable elements: a Drosophila point-of-view. RNA Biol 2011; 8:754-9. [PMID: 21712652 DOI: 10.4161/rna.8.5.16042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The primary function of the piRNA pathway is to repress the expression and transposition of transposable elements. However, the piRNA pathway has additional biological and developmental functions. These functions are either a consequence of transposon regulation, or they result from direct roles of transposable elements in chromosome structure and gene regulation through piRNAs. Recent data have extended the functions of transposable elements in gene regulation, revealing a trans-acting role of transposable element piRNAs in the control of gene expression. Over the last few years, extensive studies on the piRNA pathway have rapidly increased our understanding of the relationships between transposable elements and the host genome, and of the essential role of transposable elements in biological and developmental processes.
Collapse
Affiliation(s)
- Martine Simonelig
- mRNA Regulation and Development, Institute of Human Genetics, CNRS UPR1142, Montpellier, France.
| |
Collapse
|
152
|
Ishizu H, Nagao A, Siomi H. Gatekeepers for Piwi-piRNA complexes to enter the nucleus. Curr Opin Genet Dev 2011; 21:484-90. [PMID: 21764576 DOI: 10.1016/j.gde.2011.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 01/05/2023]
Abstract
RNA silencing pathways are now recognized to participate in essential cellular functions ranging from the regulation of mRNA turnover to the suppression of the activity of potentially deleterious transposable elements (TEs). Piwi-interacting RNAs (piRNAs) are germline-specific, small silencing RNAs that suppress TE activity and maintain genome integrity during germline development. In Drosophila ovarian somatic cells, piRNAs are processed from long single-stranded RNAs by a Dicer-independent pathway and are loaded onto Piwi in the cytoplasm. The Piwi-piRNA complexes are then transported into the nucleus to exert TE silencing. This mechanism involves gatekeepers for a functional Piwi-piRNA complex to be imported, which parallels with the Tetrahymena Twi1p-scan RNA pathway used to carry out the programmed DNA elimination.
Collapse
Affiliation(s)
- Hirotsugu Ishizu
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | |
Collapse
|
153
|
Rozhkov NV, Zelentsova ES, Shostak NG, Evgen'ev MB. Expression of Drosophila virilis retroelements and role of small RNAs in their intrastrain transposition. PLoS One 2011; 6:e21883. [PMID: 21779346 PMCID: PMC3136932 DOI: 10.1371/journal.pone.0021883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/10/2011] [Indexed: 11/18/2022] Open
Abstract
Transposition of two retroelements (Ulysses and Penelope) mobilized in the course of hybrid dysgenesis in Drosophila virilis has been investigated by in situ hybridization on polytene chromosomes in two D. virilis strains of different cytotypes routinely used to get dysgenic progeny. The analysis has been repeatedly performed over the last two decades, and has revealed transpositions of Penelope in one of the strains, while, in the other strain, the LTR-containing element Ulysses was found to be transpositionally active. The gypsy retroelement, which has been previously shown to be transpositionally inactive in D. virilis strains, was also included in the analysis. Whole mount is situ hybridization with the ovaries revealed different subcellular distribution of the transposable elements transcripts in the strains studied. Ulysses transpositions occur only in the strain where antisense piRNAs homologous to this TE are virtually absent and the ping-pong amplification loop apparently does not take place. On the other hand small RNAs homologous to Penelope found in the other strain, belong predominantly to the siRNA category (21nt), and consist of sense and antisense species observed in approximately equal proportion. The number of Penelope copies in the latter strain has significantly increased during the last decades, probably because Penelope-derived siRNAs are not maternally inherited, while the low level of Penelope-piRNAs, which are faithfully transmitted from mother to the embryo, is not sufficient to silence this element completely. Therefore, we speculate that intrastrain transposition of the three retroelements studied is controlled predominantly at the post-transcriptional level.
Collapse
|
154
|
DEAD-box RNA helicase Belle/DDX3 and the RNA interference pathway promote mitotic chromosome segregation. Proc Natl Acad Sci U S A 2011; 108:12007-12. [PMID: 21730191 DOI: 10.1073/pnas.1106245108] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During mitosis, faithful inheritance of genetic material is achieved by chromosome segregation, as mediated by the condensin I and II complexes. Failed chromosome segregation can result in neoplasm formation, infertility, and birth defects. Recently, the germ-line-specific DEAD-box RNA helicase Vasa was demonstrated to promote mitotic chromosome segregation in Drosophila by facilitating robust chromosomal localization of Barren (Barr), a condensin I component. This mitotic function of Vasa is mediated by Aubergine and Spindle-E, which are two germ-line components of the Piwi-interacting RNA pathway. Faithful segregation of chromosomes should be executed both in germ-line and somatic cells. However, whether a similar mechanism also functions in promoting chromosome segregation in somatic cells has not been elucidated. Here, we present evidence that belle (vasa paralog) and the RNA interference pathway regulate chromosome segregation in Drosophila somatic cells. During mitosis, belle promotes robust Barr chromosomal localization and chromosome segregation. Belle's localization to condensing chromosomes depends on dicer-2 and argonaute2. Coimmunoprecipitation experiments indicated that Belle interacts with Barr and Argonaute2 and is enriched at endogenous siRNA (endo-siRNA)-generating loci. Our results suggest that Belle functions in promoting chromosome segregation in Drosophila somatic cells via the endo-siRNA pathway. DDX3 (human homolog of belle) and DICER function in promoting chromosome segregation and hCAP-H (human homolog of Barr) localization in HeLa cells, indicating a conserved function for those proteins in human cells. Our results suggest that the RNA helicase Belle/DDX3 and the RNA interference pathway perform a common role in regulating chromosome segregation in Drosophila and human somatic cells.
Collapse
|
155
|
Kawaoka S, Arai Y, Kadota K, Suzuki Y, Hara K, Sugano S, Shimizu K, Tomari Y, Shimada T, Katsuma S. Zygotic amplification of secondary piRNAs during silkworm embryogenesis. RNA (NEW YORK, N.Y.) 2011; 17:1401-7. [PMID: 21628432 PMCID: PMC3138575 DOI: 10.1261/rna.2709411] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 04/28/2011] [Indexed: 05/18/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are 23-30-nucleotide-long small RNAs that act as sequence-specific silencers of transposable elements in animal gonads. In flies, genetics and deep sequencing data have led to a hypothesis for piRNA biogenesis called the ping-pong cycle, where antisense primary piRNAs initiate an amplification loop to generate sense secondary piRNAs. However, to date, the process of the ping-pong cycle has never been monitored at work. Here, by large-scale profiling of piRNAs from silkworm ovary and embryos of different developmental stages, we demonstrate that maternally inherited antisense-biased piRNAs trigger acute amplification of secondary sense piRNA production in zygotes, at a time coinciding with zygotic transcription of sense transposon mRNAs. These results provide on-site evidence for the ping-pong cycle.
Collapse
MESH Headings
- Animals
- Bombyx/embryology
- Bombyx/genetics
- Cluster Analysis
- Embryo, Nonmammalian
- Embryonic Development/genetics
- Embryonic Development/physiology
- Female
- Gene Amplification/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Microarray Analysis
- Models, Biological
- Molecular Sequence Data
- RNA, Messenger, Stored/analysis
- RNA, Messenger, Stored/genetics
- RNA, Messenger, Stored/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Zygote/metabolism
Collapse
Affiliation(s)
- Shinpei Kawaoka
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuji Arai
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koji Kadota
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kahori Hara
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kentaro Shimizu
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Corresponding author.E-mail .
| |
Collapse
|
156
|
Abstract
PIWI-interacting RNAs (piRNAs) are a distinct class of small non-coding RNAs that form the piRNA-induced silencing complex (piRISC) in the germ line of many animal species. The piRISC protects the integrity of the genome from invasion by 'genomic parasites'--transposable elements--by silencing them. Owing to their limited expression in gonads and their sequence diversity, piRNAs have been the most mysterious class of small non-coding RNAs regulating RNA silencing. Now, much progress is being made into our understanding of their biogenesis and molecular functions, including the specific subcellular compartmentalization of the piRNA pathway in granular cytoplasmic bodies.
Collapse
|
157
|
Abstract
Small RNAs with lengths of 20-30 nucleotides, such as microRNAs (miRNAs), play important regulatory roles in various cellular processes. In conventional linear processing pathways, precursors of miRNAs are transported out of the nucleus by the specific nuclear transport receptor, exportin-5. The exported precursors are further processed and eventually incorporated into the RNA-induced silencing complex (RISC), which silences the expression of the target genes by posttranscriptional mechanisms in the cytoplasm. Subsequent identification and characterization of P-element induced wimpy testis (PIWI)-interacting small RNAs (piRNAs) and endogenous small interfering RNAs (endo-siRNAs) revealed that the processing mechanisms of these newly emerging small RNAs differ from those of miRNAs. Moreover, cumulative experimental evidence indicates that the nuclear functions of the small RNAs, such as transcriptional gene silencing, could be widespread in divergent species. These observations appended other interesting features in the biogenesis and nucleocytoplasmic transport mechanisms of these small RNAs. In this review, we discuss the mechanisms and biological significance of the intracellular trafficking of small RNAs in animal cells.
Collapse
Affiliation(s)
- Jun Katahira
- Biomolecular Networks Laboratories, Biomolecular Dynamics Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
158
|
Pek JW, Kai T. Non-coding RNAs enter mitosis: functions, conservation and implications. Cell Div 2011; 6:6. [PMID: 21356070 PMCID: PMC3055801 DOI: 10.1186/1747-1028-6-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 02/28/2011] [Indexed: 12/28/2022] Open
Abstract
Nuage (or commonly known as chromatoid body in mammals) is a conserved germline-specific organelle that has been linked to the Piwi-interacting RNA (piRNA) pathway. piRNAs are a class of gonadal-specific RNAs that are ~23-29 nucleotides in length and protect genome stability by repressing the expression of deleterious retrotransposons. More recent studies in Drosophila have implicated the piRNA pathway in other functions including canalization of embryonic development, regulation of maternal gene expression and telomere protection. We have recently shown that Vasa (known as Mouse Vasa Homolog in mouse), a nuage component, plays a mitotic role in promoting chromosome condensation and segregation by facilitating robust chromosomal localization of condensin I in the Drosophila germline. Vasa functions together with Aubergine (a PIWI family protein) and Spindle-E/mouse TDRD-9, two other nuage components that are involved in the piRNA pathway, therefore providing a link between the piRNA pathway and mitotic chromosome condensation. Here, we propose and discuss possible models for the role of Vasa and the piRNA pathway during mitosis. We also highlight relevant studies implicating mitotic roles for RNAs and/or nuage in other model systems and their implications for cancer development.
Collapse
Affiliation(s)
- Jun Wei Pek
- Department of Biological Sciences and Temasek Life Sciences Laboratory, 1 Research Link, The National University of Singapore, 117604, Singapore.
| | | |
Collapse
|
159
|
Blanks, a nuclear siRNA/dsRNA-binding complex component, is required for Drosophila spermiogenesis. Proc Natl Acad Sci U S A 2011; 108:3204-9. [PMID: 21300896 DOI: 10.1073/pnas.1009781108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small RNAs and a diverse array of protein partners control gene expression in eukaryotes through a variety of mechanisms. By combining siRNA affinity chromatography and mass spectrometry, we have identified the double-stranded RNA-binding domain protein Blanks to be an siRNA- and dsRNA-binding protein from Drosophila S2 cells. We find that Blanks is a nuclear factor that contributes to the efficiency of RNAi. Biochemical fractionation of a Blanks-containing complex shows that the Blanks complex is unlike previously described RNA-induced silencing complexes and associates with the DEAD-box helicase RM62, a protein previously implicated in RNA silencing. In flies, Blanks is highly expressed in testes tissues and is necessary for postmeiotic spermiogenesis, but loss of Blanks is not accompanied by detectable transposon derepression. Instead, genes related to innate immunity pathways are up-regulated in blanks mutant testes. These results reveal Blanks to be a unique component of a nuclear siRNA/dsRNA-binding complex that contributes to essential RNA silencing-related pathways in the male germ line.
Collapse
|
160
|
Khurana JS, Theurkauf W. piRNAs, transposon silencing, and Drosophila germline development. ACTA ACUST UNITED AC 2011; 191:905-13. [PMID: 21115802 PMCID: PMC2995163 DOI: 10.1083/jcb.201006034] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transposons are prominent features of most eukaryotic genomes and mobilization of these elements triggers genetic instability. Transposon silencing is particularly critical in the germline, which maintains the heritable genetic complement. Piwi-interacting RNAs (piRNAs) have emerged as central players in transposon silencing and genome maintenance during germline development. In particular, research on Drosophila oogenesis has provided critical insights into piRNA biogenesis and transposon silencing. In this system, the ability to place piRNA mutant phenotypes within a well-defined developmental framework has been instrumental in elucidating the molecular mechanisms underlying the connection between piRNAs and transposon control.
Collapse
Affiliation(s)
- Jaspreet S Khurana
- Program in Cell and Developmental Dynamics, and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
161
|
Senti KA, Brennecke J. The piRNA pathway: a fly's perspective on the guardian of the genome. Trends Genet 2010; 26:499-509. [PMID: 20934772 DOI: 10.1016/j.tig.2010.08.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 08/27/2010] [Accepted: 08/31/2010] [Indexed: 11/29/2022]
Abstract
Throughout the eukaryotic lineage, small RNA silencing pathways protect the genome against the deleterious influence of selfish genetic elements such as transposons. In animals an elaborate small RNA pathway centered on PIWI proteins and their interacting piRNAs silences transposons within the germline. In contrast to other small RNA silencing pathways, we lack a mechanistic understanding of this genome defense system. However, genetic and molecular studies have uncovered a fascinating conceptual framework for this pathway that is conserved from sponges to mammals. We discuss our current understanding of the piRNA pathway in Drosophila with an emphasis on origin and biogenesis of piRNAs.
Collapse
Affiliation(s)
- Kirsten-André Senti
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | | |
Collapse
|
162
|
Khurana JS, Xu J, Weng Z, Theurkauf WE. Distinct functions for the Drosophila piRNA pathway in genome maintenance and telomere protection. PLoS Genet 2010; 6:e1001246. [PMID: 21179579 PMCID: PMC3003142 DOI: 10.1371/journal.pgen.1001246] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/11/2010] [Indexed: 12/30/2022] Open
Abstract
Transposons and other selfish DNA elements can be found in all phyla, and mobilization of these elements can compromise genome integrity. The piRNA (PIWI-interacting RNA) pathway silences transposons in the germline, but it is unclear if this pathway has additional functions during development. Here we show that mutations in the Drosophila piRNA pathway genes, armi, aub, ago3, and rhi, lead to extensive fragmentation of the zygotic genome during the cleavage stage of embryonic divisions. Additionally, aub and armi show defects in telomere resolution during meiosis and the cleavage divisions; and mutations in lig-IV, which disrupt non-homologous end joining, suppress these fusions. By contrast, lig-IV mutations enhance chromosome fragmentation. Chromatin immunoprecipitation studies show that aub and armi mutations disrupt telomere binding of HOAP, which is a component of the telomere protection complex, and reduce expression of a subpopulation of 19- to 22-nt telomere-specific piRNAs. Mutations in rhi and ago3, by contrast, do not block HOAP binding or production of these piRNAs. These findings uncover genetically separable functions for the Drosophila piRNA pathway. The aub, armi, rhi, and ago3 genes silence transposons and maintain chromosome integrity during cleavage-stage embryonic divisions. However, the aub and armi genes have an additional function in assembly of the telomere protection complex.
Collapse
Affiliation(s)
- Jaspreet S. Khurana
- Program in Cell and Developmental Dynamics and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jia Xu
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology and Department in Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - William E. Theurkauf
- Program in Cell and Developmental Dynamics and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
163
|
Nagao A, Mituyama T, Huang H, Chen D, Siomi MC, Siomi H. Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis. RNA (NEW YORK, N.Y.) 2010; 16:2503-15. [PMID: 20980675 PMCID: PMC2995411 DOI: 10.1261/rna.2270710] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/16/2010] [Indexed: 05/25/2023]
Abstract
PIWI-interacting RNAs (piRNAs) silence transposable elements in animal germ cells. In Drosophila ovaries, piRNAs are produced by two distinct pathways: the "ping-pong" amplification cycle that operates in germ cells and a ping-pong-independent pathway termed the primary pathway that mainly operates in somatic cells. AGO3, one of three PIWI proteins in flies, is involved in the ping-pong cycle in ovaries. We characterized AGO3-associated piRNAs in fly testes and found that like in ovaries, AGO3 functions in the ping-pong cycle with Aubergine (Aub) for piRNA production from transposon transcripts. In contrast, most AGO3-associated piRNAs corresponding to Suppressor of Stellate [Su(Ste)] genes are antisense-oriented and bound to Aub. In addition, the vast majority of AGO3-bound piRNAs derived from the AT-chX locus on chromosome X are antisense-oriented and are also found among Aub-associated piRNAs. The presence of very few sense Su(Ste) and AT-chX piRNAs suggests that biogenesis of both Su(Ste) and AT-chX piRNAs by a ping-pong mechanism only is highly unlikely. Nevertheless, the mutual interdependence of AGO3 and Aub for the accumulation of these piRNAs shows that their production relies on both AGO3 and Aub. Analysis of piRNA pathway mutants revealed that although the requirements for piRNA factors for Su(Ste)- and AT-chX-piRNA levels mostly overlap and resemble those for the ping-pong mechanism in the ovaries, Armitage (armi) is not required for the accumulation of AT-chX-1 piRNA. These findings suggest that the impacts of armi mutants on the operation of the piRNA pathway are variable in germ cells of fly testes.
Collapse
Affiliation(s)
- Akihiro Nagao
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
164
|
Bourc'his D, Voinnet O. A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 2010; 330:617-22. [PMID: 21030645 DOI: 10.1126/science.1194776] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transient populations of cis- and trans-acting small RNAs have recently emerged as key regulators of extensive epigenetic changes taking place during periconception, which encompasses gametogenesis, fertilization, and early zygotic development. These small RNAs are not only important to maintain genome integrity in the gametes and zygote, but they also actively contribute to assessing the compatibility of parental genomes at fertilization and to promoting long-term memory of the zygotic epigenetic landscape by affecting chromatin. Striking parallels exist in the biogenesis and modus operandi of these molecules among diverse taxa, unraveling universal themes of small-RNA-mediated epigenetic reprogramming during sexual reproduction.
Collapse
Affiliation(s)
- Déborah Bourc'his
- Institut Curie, CNRS UMR 3215, INSERM U934, 75248 Paris cedex 05, France.
| | | |
Collapse
|
165
|
|
166
|
Brackney DE, Scott JC, Sagawa F, Woodward JE, Miller NA, Schilkey FD, Mudge J, Wilusz J, Olson KE, Blair CD, Ebel GD. C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl Trop Dis 2010; 4:e856. [PMID: 21049065 PMCID: PMC2964293 DOI: 10.1371/journal.pntd.0000856] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/24/2010] [Indexed: 12/02/2022] Open
Abstract
Mosquitoes rely on RNA interference (RNAi) as their primary defense against viral infections. To this end, the combination of RNAi and invertebrate cell culture systems has become an invaluable tool in studying virus-vector interactions. Nevertheless, a recent study failed to detect an active RNAi response to West Nile virus (WNV) infection in C6/36 (Aedes albopictus) cells, a mosquito cell line frequently used to study arthropod-borne viruses (arboviruses). Therefore, we sought to determine if WNV actively evades the host's RNAi response or if C6/36 cells have a dysfunctional RNAi pathway. C6/36 and Drosophila melanogaster S2 cells were infected with WNV (Flaviviridae), Sindbis virus (SINV, Togaviridae) and La Crosse virus (LACV, Bunyaviridae) and total RNA recovered from cell lysates. Small RNA (sRNA) libraries were constructed and subjected to high-throughput sequencing. In S2 cells, virus-derived small interfering RNAs (viRNAs) from all three viruses were predominantly 21 nt in length, a hallmark of the RNAi pathway. However, in C6/36 cells, viRNAs were primarily 17 nt in length from WNV infected cells and 26–27 nt in length in SINV and LACV infected cells. Furthermore, the origin (positive or negative viral strand) and distribution (position along viral genome) of S2 cell generated viRNA populations was consistent with previously published studies, but the profile of sRNAs isolated from C6/36 cells was altered. In total, these results suggest that C6/36 cells lack a functional antiviral RNAi response. These findings are analogous to the type-I interferon deficiency described in Vero (African green monkey kidney) cells and suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions at the molecular level. Cell culture systems are invaluable tools for studying virus-host interactions. These systems are typically easy to maintain and manipulate; however, they can fail to accurately mimic the host environment encountered by viruses. Therefore, defining the limitations of each system is critical to properly interpreting the results. C6/36 Aedes albopictus cells are commonly used to study arthropod-borne viruses (arboviruses), such as West Nile virus (WNV). Recent evidence suggests that the RNA interference (RNAi) pathway, a critical aspect of the cellular innate antiviral immune response in invertebrates, may not actively target WNV in C6/36 cells. However, it is unknown whether this observation is limited to WNV. Therefore, we examined small RNA populations from C6/36 and Drosophila melanogastor S2 cells infected with WNV, Sindbis virus and La Crosse virus by high-throughput sequencing. We demonstrate that the RNAi pathway actively targets each of the three viruses in S2 cells, but does not in C6/36 cells. These findings suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions.
Collapse
Affiliation(s)
- Doug E Brackney
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Saito K, Ishizu H, Komai M, Kotani H, Kawamura Y, Nishida KM, Siomi H, Siomi MC. Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev 2010; 24:2493-8. [PMID: 20966047 DOI: 10.1101/gad.1989510] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PIWI-interacting RNAs (piRNAs) protect genome integrity from transposons. In Drosophila ovarian somas, primary piRNAs are produced and loaded onto Piwi. Here, we describe roles for the cytoplasmic Yb body components Armitage and Yb in somatic primary piRNA biogenesis. Armitage binds to Piwi and is required for localizing Piwi into Yb bodies. Without Armitage or Yb, Piwi is freed from the piRNAs and does not enter the nucleus. Thus, piRNA loading is required for Piwi nuclear entry. We propose that a functional Piwi-piRNA complex is formed and inspected in Yb bodies before its nuclear entry to exert transposon silencing.
Collapse
|
168
|
Siomi MC, Miyoshi T, Siomi H. piRNA-mediated silencing in Drosophila germlines. Semin Cell Dev Biol 2010; 21:754-9. [DOI: 10.1016/j.semcdb.2010.01.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 10/20/2022]
|
169
|
Zhang D, Duarte-Guterman P, Langlois VS, Trudeau VL. Temporal expression and steroidal regulation of piRNA pathway genes (mael, piwi, vasa) during Silurana (Xenopus) tropicalis embryogenesis and early larval development. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:202-6. [PMID: 20388553 DOI: 10.1016/j.cbpc.2010.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 03/21/2010] [Accepted: 04/07/2010] [Indexed: 12/24/2022]
Abstract
It has been extensively documented that exposure of amphibians and teleost fish to exogenous steroid hormones like estrogen, androgen, xenoestrogen or steroid biosynthesis inhibitors can impair their gonadal development or induce sex reversal against genotypic sex. However, the molecular pathways underlying sexual development and the effects of sex steroids or other exogenous hormones in these aquatic vertebrates remain elusive. Recently, a germ plasm-associated piRNA (piwi-interacting RNA) pathway has been shown to be a determinant in the development of animal gonadal germline cells. In the current study, we examined whether this piRNA pathway is involved in the regulation of sex steroid hormones in gonadal development. We firstly established developmental expression patterns of three key piRNA pathway genes (mael, piwi and vasa), during Silurana (Xenopus) tropicalis embryogenesis and early larval development. All three genes exhibit high expression at early developmental stages and have significantly decreased expression thereafter, indicating a very active involvement of piRNA pathway at the beginning of embryogenesis. We further examined gene expression changes of those genes in frog larvae exposed to two sex steroid biosynthesis inhibitors, fadrozole and finasteride, both of which are known to result in male-biased or female-biased phenotypes, respectively. We found that fadrozole and finasteride exposures increased the expression of piRNA pathway genes such as mael and vasa at the larval stage when the expression of piRNA pathway genes is programmed to be very low. Therefore, our results indicate that the piRNA pathway is likely a common pathway by which different sex steroid hormones regulate gonadal sex differentiation.
Collapse
Affiliation(s)
- Dapeng Zhang
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N6N5
| | | | | | | |
Collapse
|
170
|
Han JS. Non-long terminal repeat (non-LTR) retrotransposons: mechanisms, recent developments, and unanswered questions. Mob DNA 2010; 1:15. [PMID: 20462415 PMCID: PMC2881922 DOI: 10.1186/1759-8753-1-15] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 05/12/2010] [Indexed: 12/22/2022] Open
Abstract
Non-long terminal repeat (non-LTR) retrotransposons are present in most eukaryotic genomes. In some species, such as humans, these elements are the most abundant genome sequence and continue to replicate to this day, creating a source of endogenous mutations and potential genotoxic stress. This review will provide a general outline of the replicative cycle of non-LTR retrotransposons. Recent findings regarding the host regulation of non-LTR retrotransposons will be summarized. Finally, future directions of interest will be discussed.
Collapse
Affiliation(s)
- Jeffrey S Han
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD, USA.
| |
Collapse
|
171
|
Siomi MC, Mannen T, Siomi H. How does the royal family of Tudor rule the PIWI-interacting RNA pathway? Genes Dev 2010; 24:636-46. [PMID: 20360382 DOI: 10.1101/gad.1899210] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PIWI (P-element-induced wimpy testis) proteins are a subset of the Argonaute proteins and are expressed predominantly in the germlines of a variety of organisms, including Drosophila and mammals. PIWI proteins associate specifically with PIWI-interacting RNAs (piRNAs), small RNAs that are also expressed predominantly in germlines, and silence transposable DNA elements and other genes showing complementarities to the sequences of associated piRNAs. This mechanism helps to maintain the integrity of the genome and the development of gametes. PIWI proteins have been shown recently to contain symmetrical dimethyl arginines (sDMAs), and this modification is mediated by the methyltransferase PRMT5 (also known as Dart5 or Capsuleen). It was then demonstrated that multiple members of the Tudor (Tud) family of proteins, which are necessary for gametogenesis in both flies and mice, associate with PIWI proteins specifically through sDMAs in various but particular combinations. Although Tud domains in Tud family members are known to be sDMA-binding modules, involvement of the Tudor family at the molecular level in the piRNA pathway has only recently come into focus.
Collapse
Affiliation(s)
- Mikiko C Siomi
- Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
172
|
Patil VS, Kai T. Repression of Retroelements in Drosophila Germline via piRNA Pathway by the Tudor Domain Protein Tejas. Curr Biol 2010; 20:724-30. [PMID: 20362446 DOI: 10.1016/j.cub.2010.02.046] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/10/2010] [Accepted: 02/12/2010] [Indexed: 01/12/2023]
Affiliation(s)
- Veena S Patil
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | | |
Collapse
|
173
|
Abstract
An expanding assortment of small, noncoding RNAs identified in the nervous system suggests a strong connection between their combinatorial regulatory potential and the complexity of the nervous system. Misregulation of these small regulatory RNAs could contribute to the abnormalities in brain development that are associated with neurodevelopmental disorders. Here we give an overview of the diversity and unexpected abundance of small RNAs, as well as specific examples that illustrate their functional significance in neurodevelopmental disorders. We also discuss an intriguing, albeit elusive area of study: the potential impact of newly discovered classes of small RNAs in the nervous system.
Collapse
Affiliation(s)
- Abrar Qurashi
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
174
|
Lau NC. Small RNAs in the animal gonad: guarding genomes and guiding development. Int J Biochem Cell Biol 2010; 42:1334-47. [PMID: 20227517 DOI: 10.1016/j.biocel.2010.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
Germ cells must safeguard, apportion, package, and deliver their genomes with exquisite precision to ensure proper reproduction and embryonic development. Classical genetic approaches have identified many genes controlling animal germ cell development, but only recently have some of these genes been linked to the RNA interference (RNAi) pathway, a gene silencing mechanism centered on small regulatory RNAs. Germ cells contain microRNAs (miRNAs), endogenous siRNAs (endo-siRNAs), and Piwi-interacting RNAs (piRNAs); these are bound by members of the Piwi/Argonaute protein family. piwi genes were known to specify germ cell development, but we now understand that mutations disrupting germline development can also affect small RNA accumulation. Small RNA studies in germ cells have revealed a surprising diversity of regulatory mechanisms and a unifying function for germline genes in controlling the spread of transposable elements. Future challenges will be to understand the production of germline small RNAs and to identify the full breadth of gene regulation by these RNAs. Progress in this area will likely impact biomedical goals of manipulating stem cells and preventing diseases caused by the transposition of mobile DNA elements.
Collapse
Affiliation(s)
- Nelson C Lau
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
175
|
Nishida KM, Okada TN, Kawamura T, Mituyama T, Kawamura Y, Inagaki S, Huang H, Chen D, Kodama T, Siomi H, Siomi MC. Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J 2010; 28:3820-31. [PMID: 19959991 DOI: 10.1038/emboj.2009.365] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 11/10/2009] [Indexed: 12/25/2022] Open
Abstract
In Drosophila, the PIWI proteins, Aubergine (Aub), AGO3, and Piwi are expressed in germlines and function in silencing transposons by associating with PIWI-interacting RNAs (piRNAs). Recent studies show that PIWI proteins contain symmetric dimethyl-arginines (sDMAs) and that dPRMT5/Capsuleen/DART5 is the modifying enzyme. Here, we show that Tudor (Tud), one of Tud domain-containing proteins, associates with Aub and AGO3, specifically through their sDMA modifications and that these three proteins form heteromeric complexes. piRNA precursor-like molecules are detected in these complexes. The expression levels of Aub and AGO3, along with their degree of sDMA modification, were not changed by tud mutations. However, the population of transposon-derived piRNAs associated with Aub and AGO3 was altered by tud mutations, whereas the total amounts of small RNAs on Aub and AGO3 was increased. Loss of dprmt5 did not change the stability of Aub, but impaired its association with Tud and lowered piRNA association with Aub. Thus, in germline cells, piRNAs are quality-controlled by dPRMT5 that modifies PIWI proteins, in tight association with Tud.
Collapse
Affiliation(s)
- Kazumichi M Nishida
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Specchia V, Piacentini L, Tritto P, Fanti L, D'Alessandro R, Palumbo G, Pimpinelli S, Bozzetti MP. Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 2010; 463:662-5. [PMID: 20062045 DOI: 10.1038/nature08739] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 12/10/2009] [Indexed: 01/01/2023]
Abstract
The canalization concept describes the resistance of a developmental process to phenotypic variation, regardless of genetic and environmental perturbations, owing to the existence of buffering mechanisms. Severe perturbations, which overcome such buffering mechanisms, produce altered phenotypes that can be heritable and can themselves be canalized by a genetic assimilation process. An important implication of this concept is that the buffering mechanism could be genetically controlled. Recent studies on Hsp90, a protein involved in several cellular processes and development pathways, indicate that it is a possible molecular mechanism for canalization and genetic assimilation. In both flies and plants, mutations in the Hsp90-encoding gene induce a wide range of phenotypic abnormalities, which have been interpreted as an increased sensitivity of different developmental pathways to hidden genetic variability. Thus, Hsp90 chaperone machinery may be an evolutionarily conserved buffering mechanism of phenotypic variance, which provides the genetic material for natural selection. Here we offer an additional, perhaps alternative, explanation for proposals of a concrete mechanism underlying canalization. We show that, in Drosophila, functional alterations of Hsp90 affect the Piwi-interacting RNA (piRNA; a class of germ-line-specific small RNAs) silencing mechanism leading to transposon activation and the induction of morphological mutants. This indicates that Hsp90 mutations can generate new variation by transposon-mediated 'canonical' mutagenesis.
Collapse
Affiliation(s)
- Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Kirino Y, Vourekas A, Sayed N, de Lima Alves F, Thomson T, Lasko P, Rappsilber J, Jongens TA, Mourelatos Z. Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. RNA (NEW YORK, N.Y.) 2010; 16:70-8. [PMID: 19926723 PMCID: PMC2802038 DOI: 10.1261/rna.1869710] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 10/05/2009] [Indexed: 05/24/2023]
Abstract
Piwi proteins such as Drosophila Aubergine (Aub) and mouse Miwi are essential for germline development and for primordial germ cell (PGC) specification. They bind piRNAs and contain symmetrically dimethylated arginines (sDMAs), catalyzed by dPRMT5. PGC specification in Drosophila requires maternal inheritance of cytoplasmic factors, including Aub, dPRMT5, and Tudor (Tud), that are concentrated in the germ plasm at the posterior end of the oocyte. Here we show that Miwi binds to Tdrd6 and Aub binds to Tudor, in an sDMA-dependent manner, demonstrating that binding of sDMA-modified Piwi proteins with Tudor-domain proteins is an evolutionarily conserved interaction in germ cells. We report that in Drosophila tud(1) mutants, the piRNA pathway is intact and most transposons are not de-repressed. However, the localization of Aub in the germ plasm is severely reduced. These findings indicate that germ plasm assembly requires sDMA modification of Aub by dPRMT5, which, in turn, is required for binding to Tudor. Our study also suggests that the function of the piRNA pathway in PGC specification may be independent of its role in transposon control.
Collapse
Affiliation(s)
- Yohei Kirino
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine,Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Lu J, Clark AG. Population dynamics of PIWI-interacting RNAs (piRNAs) and their targets in Drosophila. Genome Res 2009; 20:212-27. [PMID: 19948818 DOI: 10.1101/gr.095406.109] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) are mobile DNA sequences that make up a large fraction of eukaryotic genomes. Recently it was discovered that PIWI-interacting RNAs (piRNAs), a class of small RNA molecules that are mainly generated from transposable elements, are crucial repressors of active TEs in the germline of fruit flies. By quantifying expression levels of 32 TE families in piRNA pathway mutants relative to wild-type fruit flies, we provide evidence that piRNAs can severely silence the activities of retrotransposons. We incorporate piRNAs into a population genetic framework for retrotransposons and perform forward simulations to model the population dynamics of piRNA loci and their targets. Using parameters optimized for Drosophila melanogaster, our simulation results indicate that (1) piRNAs can significantly reduce the fitness cost of retrotransposons; (2) retrotransposons that generate piRNAs (piRTs) are selectively more advantageous, and such retrotransposon insertions more easily attain high frequency or fixation; (3) retrotransposons that are repressed by piRNAs (targetRTs), however, also have an elevated probability of reaching high frequency or fixation in the population because their deleterious effects are attenuated. By surveying the polymorphisms of piRT and targetRT insertions across nine strains of D. melanogaster, we verified these theoretical predictions with population genomic data. Our theoretical and empirical analysis suggests that piRNAs can significantly increase the fitness of individuals that bear them; however, piRNAs may provide a shelter or Trojan horse for retrotransposons, allowing them to increase in frequency in a population by shielding the host from the deleterious consequences of retrotransposition.
Collapse
Affiliation(s)
- Jian Lu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
179
|
The telomere-specific non-LTR retrotransposons SART1 and TRAS1 are suppressed by Piwi subfamily proteins in the silkworm, Bombyx mori. Cell Mol Biol Lett 2009; 15:118-33. [PMID: 19943120 PMCID: PMC6275988 DOI: 10.2478/s11658-009-0038-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 11/24/2009] [Indexed: 01/22/2023] Open
Abstract
The telomere structures in Bombyx mori are thought to be maintained mainly by the transposition of the specialized telomeric retroelements SART and TRAS. The silkworm genome has telomeric TTAGG repeats and telomerase, but this telomerase displays little or no activity. Here, we report that the transcription of the telomeric retroelements SART1 and TRAS1 is suppressed by the silkworm Piwi subfamily proteins BmAgo3 and Siwi. The silkworm Piwi subfamily was found to be expressed predominantly in the gonads and early embryo, as in other model organisms, but in BmN4 cultured cells, these proteins formed granules that were separate from the nuage, which is a different behaviour pattern. The expression of TRAS1 was increased in BmN4 cells when BmAgo3 or Siwi were silenced by RNAi. Our results suggest that B. mori Piwi proteins are involved in regulating the transposition of telomeric retroelements, and that the functional piRNA pathway is conserved in BmN4 cultured cells.
Collapse
|
180
|
Saito K, Inagaki S, Mituyama T, Kawamura Y, Ono Y, Sakota E, Kotani H, Asai K, Siomi H, Siomi MC. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature 2009; 461:1296-9. [PMID: 19812547 DOI: 10.1038/nature08501] [Citation(s) in RCA: 339] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/16/2009] [Indexed: 12/24/2022]
Abstract
PIWI-interacting RNAs (piRNAs) silence retrotransposons in Drosophila germ lines by associating with the PIWI proteins Argonaute 3 (AGO3), Aubergine (Aub) and Piwi. piRNAs in Drosophila are produced from intergenic repetitive genes and piRNA clusters by two systems: the primary processing pathway and the amplification loop. The amplification loop occurs in a Dicer-independent, PIWI-Slicer-dependent manner. However, primary piRNA processing remains elusive. Here we analysed piRNA processing in a Drosophila ovarian somatic cell line where Piwi, but not Aub or AGO3, is expressed; thus, only the primary piRNAs exist. In addition to flamenco, a Piwi-specific piRNA cluster, traffic jam (tj), a large Maf gene, was determined as a new piRNA cluster. piRNAs arising from tj correspond to the untranslated regions of tj messenger RNA and are sense-oriented. piRNA loading on to Piwi may occur in the cytoplasm. zucchini, a gene encoding a putative cytoplasmic nuclease, is required for tj-derived piRNA production. In tj and piwi mutant ovaries, somatic cells fail to intermingle with germ cells and Fasciclin III is overexpressed. Loss of tj abolishes Piwi expression in gonadal somatic cells. Thus, in gonadal somatic cells, tj gives rise simultaneously to two different molecules: the TJ protein, which activates Piwi expression, and piRNAs, which define the Piwi targets for silencing.
Collapse
Affiliation(s)
- Kuniaki Saito
- Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Lim AK, Tao L, Kai T. piRNAs mediate posttranscriptional retroelement silencing and localization to pi-bodies in the Drosophila germline. ACTA ACUST UNITED AC 2009; 186:333-42. [PMID: 19651888 PMCID: PMC2728408 DOI: 10.1083/jcb.200904063] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuage, a well-conserved perinuclear organelle found in germline cells, is thought to mediate retroelement repression in Drosophila melanogaster by regulating the production of Piwi-interacting RNAs (piRNAs). In this study, we present evidence that the nuage-piRNA pathway components can be found in cytoplasmic foci that also contain retroelement transcripts, antisense piRNAs, and proteins involved in messenger RNA (mRNA) degradation. These mRNA degradation proteins, decapping protein 1/2 (DCP1/2), Me31B (maternal expression at 31B), and pacman (PCM), are normally thought of as components of processing bodies. In spindle-E (spn-E) and aubergine (aub) mutants that lack piRNA production, piRNA pathway proteins no longer overlap the mRNA degradation proteins. Concomitantly, spn-E and aub mutant ovaries show an accumulation of full-length retroelement transcripts and prolonged stabilization of HeT-A mRNA, supporting the role of piRNAs in mediating posttranscriptional retroelement silencing. HeT-A mRNA is derepressed in mRNA degradation mutants twin, dcp1, and ski3, indicating that these enzymes also aid in removing full-length transcripts and/or decay intermediates.
Collapse
Affiliation(s)
- Ai Khim Lim
- Temasek Life Sciences Laboratory, The National University of Singapore, 117604 Singapore
| | | | | |
Collapse
|
182
|
Drosophila RISC component VIG and its homolog Vig2 impact heterochromatin formation. PLoS One 2009; 4:e6182. [PMID: 19584931 PMCID: PMC2703606 DOI: 10.1371/journal.pone.0006182] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 05/29/2009] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin formation plays an important role in gene regulation and the maintenance of genome integrity. Here we present results from a study of the D. melanogaster gene vig, encoding an RNAi complex component and its homolog vig2 (CG11844) that support their involvement in heterochromatin formation and/or maintenance. Protein null mutations vig(EP812) and vig2(PL470) act as modifiers of Position Effect Variegation (PEV). VIG and Vig2 are present in polytene chromosomes and partially overlap with HP1. Quantitative immunoblots show depletion of HP1 and HP2 (large isoform) in isolated nuclei from the vig(EP812) mutant. The vig2(PL470) mutant strain demonstrates a decreased level of H3K9me2. Pull-down experiments using antibodies specific to HP1 recovered both VIG and Vig2. The association between HP1 and both VIG and Vig2 proteins depends on an RNA component. The above data and the developmental profiles of the two genes suggest that Vig2 may be involved in heterochromatin targeting and establishment early in development, while VIG may have a role in stabilizing HP1/HP2 chromatin binding during later stages.
Collapse
|
183
|
Miyoshi K, Okada TN, Siomi H, Siomi MC. Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. RNA (NEW YORK, N.Y.) 2009; 15:1282-91. [PMID: 19451544 PMCID: PMC2704077 DOI: 10.1261/rna.1541209] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Accepted: 04/14/2009] [Indexed: 05/22/2023]
Abstract
In Drosophila, miRNA is processed by Dicer-1 (DCR-1) from its precursor and loaded onto Argonaute1 (AGO1). AGO1 recognizes target mRNAs based on the miRNA sequence and suppresses the expression at post-transcriptional levels. GW182, a P-body component, localizes the AGO1 complex to processing bodies (P-bodies) where mRNA targets are decayed or stored. However, the details of the pathway remain elusive. In this study, two distinct types of AGO1-containing complexes from Drosophila Schneider2 (S2) cells were isolated and compared at the molecular level. The AGO1 complex with DCR-1 contained neither mature miRNA nor GW182 but exhibited pre-miRNA processing activity. The resultant mature RNA was loaded onto AGO1 within the complex. The AGO1 complex with GW182 excluded DCR-1, but possessed mature miRNA and showed no pre-miRNA processing activity. Thus, the AGO1-DCR-1 and AGO1-GW182 complexes correspond to miRLC (miRISC loading complex) and miRISC, respectively. The requirement for various domains of AGO1 in miRNA-loading and DCR-1/GW182 interaction was also examined. The Mid domain mutant (F2V2) interacted with DCR-1 but not with mature miRNA and GW182. The AGO1-PAZ mutant lacks the mature miRNA-binding ability but associates with either DCR-1 or GW182. The AGO1-PIWI mutant showed no Slicer activity but associates with mature miRNA. These results indicate that these domains are required differently for miRLC and miRISC formation in the miRNA pathway.
Collapse
Affiliation(s)
- Keita Miyoshi
- School of Medicine, Keio University, Tokyo 160-8582, Japan
| | | | | | | |
Collapse
|
184
|
Lau NC, Robine N, Martin R, Chung WJ, Niki Y, Berezikov E, Lai EC. Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line. Genome Res 2009; 19:1776-85. [PMID: 19541914 DOI: 10.1101/gr.094896.109] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Piwi proteins, a subclass of Argonaute-family proteins, carry approximately 24-30-nt Piwi-interacting RNAs (piRNAs) that mediate gonadal defense against transposable elements (TEs). We analyzed the Drosophila ovary somatic sheet (OSS) cell line and found that it expresses miRNAs, endogenous small interfering RNAs (endo-siRNAs), and piRNAs in abundance. In contrast to intact gonads, which contain mixtures of germline and somatic cell types that express different Piwi-class proteins, OSS cells are a homogenous somatic cell population that expresses only PIWI and primary piRNAs. Detailed examination of its TE-derived piRNAs and endo-siRNAs revealed aspects of TE defense that do not rely upon ping-pong amplification. In particular, we provide evidence that a subset of piRNA master clusters, including flamenco, are specifically expressed in OSS and ovarian follicle cells. These data indicate that the restriction of certain TEs in somatic gonadal cells is largely mediated by a primary piRNA pathway.
Collapse
Affiliation(s)
- Nelson C Lau
- Department of Molecular Biology, Massachusetts General Hospital, Boston, 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
185
|
Riddle NC, Shaffer CD, Elgin SCR. A lot about a little dot - lessons learned from Drosophila melanogaster chromosome 4. Biochem Cell Biol 2009; 87:229-41. [PMID: 19234537 DOI: 10.1139/o08-119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The fourth chromosome of Drosophila melanogaster has a number of unique properties that make it a convenient model for the study of chromatin structure. Only 4.2 Mb overall, the 1.2 Mb distal arm of chromosome 4 seen in polytene chromosomes combines characteristics of heterochromatin and euchromatin. This domain has a repeat density of ~35%, comparable to some pericentric chromosome regions, while maintaining a gene density similar to that of the other euchromatic chromosome arms. Studies of position-effect variegation have revealed that heterochromatic and euchromatic domains are interspersed on chromosome 4, and both cytological and biochemical studies have demonstrated that chromosome 4 is associated with heterochromatic marks, such as heterochromatin protein 1 and histone 3 lysine 9 methylation. Chromosome 4 is also marked by POF (painting-of-fourth), a chromosome 4-specific chromosomal protein, and utilizes a dedicated histone methyltransferase, EGG. Studies of chromosome 4 have helped to shape our understanding of heterochromatin domains and their establishment and maintenance. In this review, we provide a synthesis of the work to date and an outlook to the future.
Collapse
Affiliation(s)
- Nicole C Riddle
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
186
|
Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H, Seitz H, Horwich MD, Syrzycka M, Honda BM, Kittler ELW, Zapp ML, Klattenhoff C, Schulz N, Theurkauf WE, Weng Z, Zamore PD. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 2009; 137:509-21. [PMID: 19395009 DOI: 10.1016/j.cell.2009.04.027] [Citation(s) in RCA: 421] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/24/2009] [Accepted: 04/10/2009] [Indexed: 10/20/2022]
Abstract
Piwi-interacting RNAs (piRNAs) silence transposons in animal germ cells. piRNAs are thought to derive from long transcripts spanning transposon-rich genomic loci and to direct an autoamplification loop in which an antisense piRNA, bound to Aubergine or Piwi protein, triggers production of a sense piRNA bound to the PIWI protein Argonaute3 (Ago3). In turn, the new piRNA is envisioned to produce a second antisense piRNA. Here, we describe strong loss-of-function mutations in ago3, allowing a direct genetic test of this model. We find that Ago3 acts to amplify piRNA pools and to enforce on them an antisense bias, increasing the number of piRNAs that can act to silence transposons. We also detect a second, Ago3-independent piRNA pathway centered on Piwi. Transposons targeted by this second pathway often reside in the flamenco locus, which is expressed in somatic ovarian follicle cells, suggesting a role for piRNAs beyond the germline.
Collapse
Affiliation(s)
- Chengjian Li
- Department of Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Kotelnikov RN, Klenov MS, Rozovsky YM, Olenina LV, Kibanov MV, Gvozdev VA. Peculiarities of piRNA-mediated post-transcriptional silencing of Stellate repeats in testes of Drosophila melanogaster. Nucleic Acids Res 2009; 37:3254-63. [PMID: 19321499 PMCID: PMC2691822 DOI: 10.1093/nar/gkp167] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Silencing of Stellate genes in Drosophila melanogaster testes is caused by antisense piRNAs produced as a result of transcription of homologous Suppressor of Stellate (Su(Ste)) repeats. Mechanism of piRNA-dependent Stellate repression remains poorly understood. Here, we show that deletion of Su(Ste) suppressors causes accumulation of spliced, but not nonspliced Stellate transcripts both in the nucleus and cytoplasm, revealing post-transcriptional degradation of Stellate RNA as the predominant mechanism of silencing. We found a significant amount of Su(Ste) piRNAs and piRNA-interacting protein Aubergine (Aub) in the nuclear fraction. Immunostaining of isolated nuclei revealed co-localization of a portion of cellular Aub with the nuclear lamina. We suggest that the piRNA–Aub complex is potentially able to perform Stellate silencing in the cell nucleus. Also, we revealed that the level of the Stellate protein in Su(Ste)-deficient testes is increased much more dramatically than the Stellate mRNA level. Similarly, Su(Ste) repeats deletion exerts an insignificant effect on mRNA abundance of the Ste-lacZ reporter, but causes a drastic increase of β-gal activity. In cell culture, exogenous Su(Ste) dsRNA dramatically decreases β-gal activity of hsp70-Ste-lacZ construct, but not its mRNA level. We suggest that piRNAs, similarly to siRNAs, degrade only unmasked transcripts, which are accessible for translation.
Collapse
Affiliation(s)
- Roman N Kotelnikov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | | | | | | | | | | |
Collapse
|
188
|
Siomi MC, Kuramochi-Miyagawa S. RNA silencing in germlines--exquisite collaboration of Argonaute proteins with small RNAs for germline survival. Curr Opin Cell Biol 2009; 21:426-34. [PMID: 19303759 DOI: 10.1016/j.ceb.2009.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/02/2009] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
As the proper development of germlines is vital for species preservation, elaborative, regulatory systems for gene expression must operate in germlines. One such system is RNA silencing, sequence-specific gene silencing mechanisms mediated by small RNAs of 20-30 nucleotides long. Indeed, recent studies have revealed that various types of small RNAs are expressed germline-specifically. To preserve the germlines, they collaborate with Argonaute proteins, the catalytic engines in RNA silencing, to inhibit injurious, parasitic genes, transcriptionally or post-transcriptionally. This chapter summarizes the exquisite collaboration of Argonaute proteins with small RNAs in the RNA silencing mechanisms necessary for germline survival in Drosophila and mice.
Collapse
Affiliation(s)
- Mikiko C Siomi
- Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | |
Collapse
|
189
|
Abstract
Since the discovery in 1993 of the first small silencing RNA, a dizzying number of small RNA classes have been identified, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). These classes differ in their biogenesis, their modes of target regulation and in the biological pathways they regulate. There is a growing realization that, despite their differences, these distinct small RNA pathways are interconnected, and that small RNA pathways compete and collaborate as they regulate genes and protect the genome from external and internal threats.
Collapse
Affiliation(s)
- Megha Ghildiyal
- Department of Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
190
|
Abstract
Small RNAs of 20-30 nucleotides can target both chromatin and transcripts, and thereby keep both the genome and the transcriptome under extensive surveillance. Recent progress in high-throughput sequencing has uncovered an astounding landscape of small RNAs in eukaryotic cells. Various small RNAs of distinctive characteristics have been found and can be classified into three classes based on their biogenesis mechanism and the type of Argonaute protein that they are associated with: microRNAs (miRNAs), endogenous small interfering RNAs (endo-siRNAs or esiRNAs) and Piwi-interacting RNAs (piRNAs). This Review summarizes our current knowledge of how these intriguing molecules are generated in animal cells.
Collapse
Affiliation(s)
- V Narry Kim
- School of Biological Sciences and Center for National Creative Research, Seoul National University, Seoul, 151-742, Korea.
| | | | | |
Collapse
|
191
|
Wilczynska A, Minshall N, Armisen J, Miska EA, Standart N. Two Piwi proteins, Xiwi and Xili, are expressed in the Xenopus female germline. RNA (NEW YORK, N.Y.) 2009; 15:337-45. [PMID: 19144913 PMCID: PMC2648701 DOI: 10.1261/rna.1422509] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Argonaute superfamily is a large family of RNA-binding proteins involved in gene regulation mediated by small noncoding RNA and characterized by the presence of PAZ and PIWI domains. The family consists of two branches, the Ago and the Piwi clade. Piwi proteins bind to 21-30-nucleotide-long Piwi-interacting RNAs (piRNAs), which map primarily to transposons and repeated sequence elements. Piwi/piRNAs are important regulators of gametogenesis and have been proposed to play roles in transposon silencing, DNA methylation, transcriptional silencing, and/or post-transcriptional control of translation and RNA stability. Most reports to date have concentrated on the Piwi family members in the male germline. We have identified four Piwi proteins in Xenopus and demonstrate that two, namely, Xiwi1b and Xili, are expressed in the oocyte and early embryo. Xiwi1 and Xili are predominantly found in small, separate complexes, and we do not detect significant interaction of Piwi proteins with the cap-binding complex. Putative nuclear localization and export signals were identified in Xiwi1 and Xili, supporting our observation that Xiwi1, but not Xili, is a nucleo-cytoplasmic protein. Furthermore, by immunoprecipitation of small RNAs, we establish Xiwi1 as a bona fide Piwi protein. These results suggest that the Piwi/piRNA pathway is active in translationally repressed oocytes. This is a significant finding as the Xenopus model provides an excellent tool to study post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Anna Wilczynska
- Department of Biochemistry, University of Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
192
|
Zhang D, Xiong H, Shan J, Xia X, Trudeau VL. Functional insight into Maelstrom in the germline piRNA pathway: a unique domain homologous to the DnaQ-H 3'-5' exonuclease, its lineage-specific expansion/loss and evolutionarily active site switch. Biol Direct 2008; 3:48. [PMID: 19032786 PMCID: PMC2628886 DOI: 10.1186/1745-6150-3-48] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/25/2008] [Indexed: 11/10/2022] Open
Abstract
Abstract Maelstrom (MAEL) plays a crucial role in a recently-discovered piRNA pathway; however its specific function remains unknown. Here a novel MAEL-specific domain characterized by a set of conserved residues (Glu-His-His-Cys-His-Cys, EHHCHC) was identified in a broad range of species including vertebrates, sea squirts, insects, nematodes, and protists. It exhibits ancient lineage-specific expansions in several species, however, appears to be lost in all examined teleost fish species. Functional involvement of MAEL domains in DNA- and RNA-related processes was further revealed by its association with HMG, SR-25-like and HDAC_interact domains. A distant similarity to the DnaQ-H 3'–5' exonuclease family with the RNase H fold was discovered based on the evidence that all MAEL domains adopt the canonical RNase H fold; and several protist MAEL domains contain the conserved 3'–5' exonuclease active site residues (Asp-Glu-Asp-His-Asp, DEDHD). This evolutionary link together with structural examinations leads to a hypothesis that MAEL domains may have a potential nuclease activity or RNA-binding ability that may be implicated in piRNA biogenesis. The observed transition of two sets of characteristic residues between the ancestral DnaQ-H and the descendent MAEL domains may suggest a new mode for protein function evolution called "active site switch", in which the protist MAEL homologues are the likely evolutionary intermediates due to harboring the specific characteristics of both 3'–5' exonuclease and MAEL domains. Reviewers This article was reviewed by L Aravind, Wing-Cheong Wong and Frank Eisenhaber. For the full reviews, please go to the Reviewers' Comments section.
Collapse
Affiliation(s)
- Dapeng Zhang
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | |
Collapse
|
193
|
piRNA-mediated nuclear accumulation of retrotransposon transcripts in the Drosophila female germline. Proc Natl Acad Sci U S A 2008; 105:14964-9. [PMID: 18809914 DOI: 10.1073/pnas.0805943105] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Germline silencing of transposable elements is essential for the maintenance of genome integrity. Recent results indicate that this repression is largely achieved through a RNA silencing pathway that involves Piwi-interacting RNAs (piRNAs). However the repressive mechanisms are not well understood. To address this question, we used the possibility to disrupt the repression of the Drosophila I element retrotransposon by hybrid dysgenesis. We show here that the repression of the functional I elements that are located in euchromatin requires proteins of the piRNA pathway, and that the amount of ovarian I element piRNAs correlates with the strength of the repression in the female germline. Antisense RNAs, which are likely used to produce antisense piRNAs, are transcribed by heterochromatic defective I elements, but efficient production of these antisense small RNAs requires the presence in the genome of euchromatic functional I elements. Finally, we demonstrate that the piRNA-induced silencing of the functional I elements is at least partially posttranscriptional. In a repressive background, these elements are still transcribed, but some of their sense transcripts are kept in nurse cell nuclear foci together with those of the Doc retrotransposon. In the absence of I element piRNAs, either in dysgenic females or in mutants of the piRNA silencing pathway, sense I element transcripts are transported toward the oocyte where retrotransposition occurs. Our results indicate that piRNAs are involved in a posttranscriptional gene-silencing mechanism resulting in RNA nuclear accumulation.
Collapse
|
194
|
Yokota S. Historical survey on chromatoid body research. Acta Histochem Cytochem 2008; 41:65-82. [PMID: 18787638 PMCID: PMC2532602 DOI: 10.1267/ahc.08010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/14/2008] [Indexed: 12/22/2022] Open
Abstract
The chromatoid body (CB) is a male reproductive cell-specific organelle that appears in spermatocytes and spermatids. The cytoplasmic granule corresponding to the CB was first discovered some 130 years ago by von Brunn in 1876. Thirty years later the German term "chromatoide Körper" (chromatoid body) was introduced to describe this granule and is still used today. In this review, first, the results obtained by light microscopic studies on the CB for the first 60 years are examined. Next, many findings revealed by electron microscopic studies are reviewed. Finally, recent molecular cell biological studies concerning the CB are discussed. The conclusion obtained by exploring the papers on CB published during the past 130 years is that many of the modern molecular cell biological studies are undoubtedly based on information accumulated by vast amounts of early studies.
Collapse
Affiliation(s)
- Sadaki Yokota
- Section of Functional Morphology, Faculty of Pharmaceutical Science, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan.
| |
Collapse
|
195
|
Small RNA-directed heterochromatin formation in the context of development: what flies might learn from fission yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:3-16. [PMID: 18789407 DOI: 10.1016/j.bbagrm.2008.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 08/03/2008] [Accepted: 08/07/2008] [Indexed: 11/21/2022]
Abstract
A link between the RNAi system and heterochromatin formation has been established in several model organisms including Schizosaccharomyces pombe and Arabidopsis thaliana. However, the data to support a role for small RNAs and the associated machinery in transcriptional gene silencing in animal systems is more tenuous. Using the S. pombe system as a model, we analyze the role of small RNA pathway components and associated small RNAs in regulating transposable elements and potentially directing heterochromatin formation at these elements in Drosophila melanogaster.
Collapse
|
196
|
How selfish retrotransposons are silenced inDrosophilagermline and somatic cells. FEBS Lett 2008; 582:2473-8. [DOI: 10.1016/j.febslet.2008.06.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/12/2008] [Accepted: 06/12/2008] [Indexed: 12/26/2022]
|
197
|
aubergine gene overexpression in somatic tissues of aubergine(sting) mutants interferes with the RNAi pathway of a yellow hairpin dsRNA in Drosophila melanogaster. Genetics 2008; 178:1271-82. [PMID: 18385112 DOI: 10.1534/genetics.107.078626] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AUBERGINE (AUB) is a member of the PPD family of proteins. These proteins are implicated in RNA interference. In this article we demonstrate that the expression of the aub gene and protein increase in aub(sting) mutants. We used a genetic method to test whether aub(sting) overexpression could interfere with proper functioning of the process of RNA interference in somatic tissues of Drosophila melanogaster. This method is based on a transgenic line bearing a construct in which a fragment of the yellow (y) gene is cloned to form an inverted repeat (y-IR) under the control of the upstream activation sequence (UAS) of the yeast transcriptional activator GAL4. The UAS-y-IR transgene and the Act5C-GAL4 driver were brought together on chromosome 3 via recombination. In the resulting strain (Act5C-y-IR), transcriptional activation by GAL4 constitutively produces a dsRNA hairpin bearing cognate sequences to the yellow gene causing continuing degradation of y mRNA resulting in yellow(1) (y(1)) phenocopies. In this genetic background, the mutation of any factor involved in RNAi should repress degradation of y mRNA, restoring the wild-type phenotype. We employed this genetic approach to show that an increased amount of AUBERGINE interferes with the regular functioning of the somatic RNAi pathway.
Collapse
|
198
|
Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Proc Natl Acad Sci U S A 2008; 105:7964-9. [PMID: 18524951 DOI: 10.1073/pnas.0800334105] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small RNAs triggering RNA silencing are loaded onto Argonautes and then sequence-specifically guide them to target transcripts. Epitope-tagged human Argonautes (hAgo1, hAgo2, hAgo3, and hAgo4) are associated with siRNAs and miRNAs, but only epitope-tagged hAgo2 has been shown to have Slicer activity. Contrarily, how endogenous hAgos behave with respect to small RNA association and target RNA destruction has remained unclear. Here, we produced monoclonal antibodies for individual hAgos. High-throughput pyrosequencing revealed that immunopurified endogenous hAgo2 and hAgo3 associated mostly with miRNAs. Endogenous hAgo3 did not show Slicer function but localized in P-bodies, suggesting that hAgo3 endogenously expressed is, like hAgo2, involved in the miRNA pathway but antagonizes the RNAi activity of hAgo2. Sequence variations of miRNAs were found at both 5' and 3' ends, suggesting that multiple mature miRNAs containing different "seed" sequences can arise from one miRNA precursor. The hAgo antibodies we raised are valuable tools for ascertaining the functional behavior of endogenous Argonautes and miRNAs in RNA silencing.
Collapse
|
199
|
Siomi H. Transposable elements, RNA silencing, and their impacts on the genome throughout evolution. Uirusu 2008; 58:55-60. [PMID: 19122389 DOI: 10.2222/jsv.58.55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
It is remarkable to consider that more than 40% of the human genome is comprised of transposable elements (TEs) and their relics. TEs were long thought of as either 'selfish' or 'parasitic' DNA elements that were there not for the sake of the host organism, but for their own sake in an evolutionary sense; thus they were considered to be either neutral or deleterious to their hosts. However, it is becoming increasingly clear that there are more complex interactions between TEs and their hosts than strict parasitism; these elements produce changes that have a broad range of fitness values at an organismal level. Recent evidence indicates that these elements confer a fitness benefit to the host more frequently than previously recognized. RNA silencing is thought to have evolved as a form of nucleic-acid-based, and thus sequence-directed, immunity to block the action of viruses and TEs. Host-parasite interactions are typically associated with rapid evolution because of a permanent antagonistic relationship resembling an "arms race" in which parasite adaptations are countered by host adaptations. Complex interactions between TEs and RNA silencing machineries have been co-opted to regulate cellular genes.
Collapse
Affiliation(s)
- Haruhiko Siomi
- Department of Molecular Biology Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
200
|
Kawamura Y, Saito K, Kin T, Ono Y, Asai K, Sunohara T, Okada TN, Siomi MC, Siomi H. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature 2008; 453:793-7. [PMID: 18463636 DOI: 10.1038/nature06938] [Citation(s) in RCA: 350] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Accepted: 04/02/2008] [Indexed: 11/09/2022]
Abstract
RNA silencing is a conserved mechanism in which small RNAs trigger various forms of sequence-specific gene silencing by guiding Argonaute complexes to target RNAs by means of base pairing. RNA silencing is thought to have evolved as a form of nucleic-acid-based immunity to inactivate viruses and transposable elements. Although the activity of transposable elements in animals has been thought largely to be restricted to the germ line, recent studies have shown that they may also actively transpose in somatic cells, creating somatic mosaicism in animals. In the Drosophila germ line, Piwi-interacting RNAs arise from repetitive intergenic elements including retrotransposons by a Dicer-independent pathway and function through the Piwi subfamily of Argonautes to ensure silencing of retrotransposons. Here we show that, in cultured Drosophila S2 cells, Argonaute 2 (AGO2), an AGO subfamily member of Argonautes, associates with endogenous small RNAs of 20-22 nucleotides in length, which we have collectively named endogenous short interfering RNAs (esiRNAs). esiRNAs can be divided into two groups: one that mainly corresponds to a subset of retrotransposons, and the other that arises from stem-loop structures. esiRNAs are produced in a Dicer-2-dependent manner from distinctive genomic loci, are modified at their 3' ends and can direct AGO2 to cleave target RNAs. Mutations in Dicer-2 caused an increase in retrotransposon transcripts. Together, our findings indicate that different types of small RNAs and Argonautes are used to repress retrotransposons in germline and somatic cells in Drosophila.
Collapse
Affiliation(s)
- Yoshinori Kawamura
- Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|