151
|
Computational approaches from polymer physics to investigate chromatin folding. Curr Opin Cell Biol 2020; 64:10-17. [DOI: 10.1016/j.ceb.2020.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022]
|
152
|
Are Parallel Proliferation Pathways Redundant? Trends Biochem Sci 2020; 45:554-563. [PMID: 32345469 DOI: 10.1016/j.tibs.2020.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
Are the receptor tyrosine kinase (RTK) and JAK-STAT-driven proliferation pathways 'parallel' or 'redundant'? And what about those of K-Ras4B versus N-Ras? 'Parallel' proliferation pathways accomplish a similar drug resistance outcome. Thus, are they 'redundant'? In this paper, it is argued that there is a fundamental distinction between 'parallel' and 'redundant'. Cellular proliferation pathways are influenced by the genome sequence, 3D organization and chromatin accessibility, and determined by protein availability prior to cancer emergence. In the opinion presented, if they operate the same downstream protein families, they are redundant; if evolutionary-independent, they are parallel. Thus, RTK and JAK-STAT-driven proliferation pathways are parallel; those of Ras isoforms are redundant. Our Precision Medicine Call to map cancer proliferation pathways is vastly important since it can expedite effective therapeutics.
Collapse
|
153
|
Luppino JM, Joyce EF. Single cell analysis pushes the boundaries of TAD formation and function. Curr Opin Genet Dev 2020; 61:25-31. [PMID: 32302920 DOI: 10.1016/j.gde.2020.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/30/2022]
Abstract
Eukaryotic genomes encode genetic information in their linear sequence, but appropriate expression of their genes requires chromosomes to fold into complex three-dimensional structures. Fueled by a growing collection of sequencing and imaging-based technologies, studies have uncovered a hierarchy of DNA interactions, from small chromatin loops that connect genes and enhancers to larger topologically associated domains (TADs) and compartments. However, despite the remarkable conservation of these organizational features, we have a very limited understanding of how this organization influences gene expression. This issue is further complicated in the context of single-cell heterogeneity, as has recently been revealed at both the level of gene activation and chromatin topology. Here, we provide a perspective on recent studies that address cell-to-cell variability and the relationship between structural heterogeneity and gene expression. We propose that transcription is regulated by variable 3D structures driven by at least two independent and partially redundant mechanisms. Collectively, this may provide flexibility to transcriptional regulation at the level of individual cells as well as reproducibility across whole tissues.
Collapse
Affiliation(s)
- Jennifer M Luppino
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
154
|
Abstract
Current methods for chromosome painting via fluorescence in situ hybridization (FISH) are costly, time-consuming, and limited in complexity. In contrast to conventional sources of probe, Oligopaints are computationally designed, synthesized on microarrays, and amplified by PCR. This approach allows for precise control over the sequences they target, which can range from a few kilobases to entire chromosomes with the same basic protocol. We have utilized the flexibility and scalability of Oligopaints to generate low-cost and renewable chromosome paints for Drosophila, mouse, and human chromosomes. These Oligopaint libraries can be customized to label any genomic feature(s) in a chromosome-wide manner. Additionally, this method is compatible with sequential FISH to label entire genomes with a single denaturation step. Here, we outline a protocol and considerations to scale the Oligopaint technology for fluorescent labeling of whole chromosomes.
Collapse
|
155
|
Boettiger A, Murphy S. Advances in Chromatin Imaging at Kilobase-Scale Resolution. Trends Genet 2020; 36:273-287. [PMID: 32007290 PMCID: PMC7197267 DOI: 10.1016/j.tig.2019.12.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
Abstract
It is now widely appreciated that the spatial organization of the genome is nonrandom, and its complex 3D folding has important consequences for many genome processes. Recent developments in multiplexed, super-resolution microscopy have enabled an unprecedented view of the polymeric structure of chromatin - from the loose folds of whole chromosomes to the detailed loops of cis-regulatory elements that regulate gene expression. Facilitated by the use of robotics, microfluidics, and improved approaches to super-resolution, thousands to hundreds of thousands of individual cells can now be analyzed in an individual experiment. This has led to new insights into the nature of genomic structural features identified by sequencing, such as topologically associated domains (TADs), and the nature of enhancer-promoter interactions underlying transcriptional regulation. We review these recent improvements.
Collapse
Affiliation(s)
- Alistair Boettiger
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Sedona Murphy
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
156
|
Rout MP, Sali A. Principles for Integrative Structural Biology Studies. Cell 2020; 177:1384-1403. [PMID: 31150619 DOI: 10.1016/j.cell.2019.05.016] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022]
Abstract
Integrative structure determination is a powerful approach to modeling the structures of biological systems based on data produced by multiple experimental and theoretical methods, with implications for our understanding of cellular biology and drug discovery. This Primer introduces the theory and methods of integrative approaches, emphasizing the kinds of data that can be effectively included in developing models and using the nuclear pore complex as an example to illustrate the practice and challenges involved. These guidelines are intended to aid the researcher in understanding and applying integrative structural methods to systems of their interest and thus take advantage of this rapidly evolving field.
Collapse
Affiliation(s)
- Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
157
|
Pericentromeric heterochromatin is hierarchically organized and spatially contacts H3K9me2 islands in euchromatin. PLoS Genet 2020; 16:e1008673. [PMID: 32203508 PMCID: PMC7147806 DOI: 10.1371/journal.pgen.1008673] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/10/2020] [Accepted: 02/14/2020] [Indexed: 01/02/2023] Open
Abstract
Membraneless pericentromeric heterochromatin (PCH) domains play vital roles in chromosome dynamics and genome stability. However, our current understanding of 3D genome organization does not include PCH domains because of technical challenges associated with repetitive sequences enriched in PCH genomic regions. We investigated the 3D architecture of Drosophila melanogaster PCH domains and their spatial associations with the euchromatic genome by developing a novel analysis method that incorporates genome-wide Hi-C reads originating from PCH DNA. Combined with cytogenetic analysis, we reveal a hierarchical organization of the PCH domains into distinct “territories.” Strikingly, H3K9me2-enriched regions embedded in the euchromatic genome show prevalent 3D interactions with the PCH domain. These spatial contacts require H3K9me2 enrichment, are likely mediated by liquid-liquid phase separation, and may influence organismal fitness. Our findings have important implications for how PCH architecture influences the function and evolution of both repetitive heterochromatin and the gene-rich euchromatin. The three dimensional (3D) organization of genomes in cell nuclei can influence a wide variety of genome functions. However, most of our understanding of this critical architecture has been limited to the gene-rich euchromatin, and largely ignores the gene-poor and repeat-rich pericentromeric heterochromatin, or PCH. PCH comprises a large part of most eukaryotic genomes, forms 3D membraneless PCH domains in nuclei, and plays a vital role in chromosome dynamics and genome stability. In this study, we developed a new method that overcomes the technical challenges imposed by the highly repetitive PCH DNA, and generated a comprehensive picture of its 3D organization. Combined with image analyses, we reveal a hierarchical organization of the PCH domains. Surprisingly, we showed that distant euchromatic regions enriched for repressive epigenetic marks also dynamically interact with the main PCH domains. These 3D interactions are likely mediated by liquid-liquid phase separation (similar to how oil and vinegar separate in salad dressing) and the resulting liquid-like fusion events, and can influence the fitness of individuals. Our discoveries have strong implications for how seemingly “junk” DNA could impact functions in the gene-rich euchromatin.
Collapse
|
158
|
Lakadamyali M, Cosma MP. Visualizing the genome in high resolution challenges our textbook understanding. Nat Methods 2020; 17:371-379. [DOI: 10.1038/s41592-020-0758-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/22/2020] [Indexed: 12/29/2022]
|
159
|
Job Opening for Nucleosome Mechanic: Flexibility Required. Cells 2020; 9:cells9030580. [PMID: 32121488 PMCID: PMC7140402 DOI: 10.3390/cells9030580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
The nucleus has been studied for well over 100 years, and chromatin has been the intense focus of experiments for decades. In this review, we focus on an understudied aspect of chromatin biology, namely the chromatin fiber polymer’s mechanical properties. In recent years, innovative work deploying interdisciplinary approaches including computational modeling, in vitro manipulations of purified and native chromatin have resulted in deep mechanistic insights into how the mechanics of chromatin might contribute to its function. The picture that emerges is one of a nucleus that is shaped as much by external forces pressing down upon it, as internal forces pushing outwards from the chromatin. These properties may have evolved to afford the cell a dynamic and reversible force-induced communication highway which allows rapid coordination between external cues and internal genomic function.
Collapse
|
160
|
Lamina-Dependent Stretching and Unconventional Chromosome Compartments in Early C. elegans Embryos. Mol Cell 2020; 78:96-111.e6. [PMID: 32105612 DOI: 10.1016/j.molcel.2020.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/20/2019] [Accepted: 02/04/2020] [Indexed: 11/22/2022]
Abstract
Current models suggest that chromosome domains segregate into either an active (A) or inactive (B) compartment. B-compartment chromatin is physically separated from the A compartment and compacted by the nuclear lamina. To examine these models in the developmental context of C. elegans embryogenesis, we undertook chromosome tracing to map the trajectories of entire autosomes. Early embryonic chromosomes organized into an unconventional barbell-like configuration, with two densely folded B compartments separated by a central A compartment. Upon gastrulation, this conformation matured into conventional A/B compartments. We used unsupervised clustering to uncover subpopulations with differing folding properties and variable positioning of compartment boundaries. These conformations relied on tethering to the lamina to stretch the chromosome; detachment from the lamina compacted, and allowed intermingling between, A/B compartments. These findings reveal the diverse conformations of early embryonic chromosomes and uncover a previously unappreciated role for the lamina in systemic chromosome stretching.
Collapse
|
161
|
McCord RP, Kaplan N, Giorgetti L. Chromosome Conformation Capture and Beyond: Toward an Integrative View of Chromosome Structure and Function. Mol Cell 2020; 77:688-708. [PMID: 32001106 PMCID: PMC7134573 DOI: 10.1016/j.molcel.2019.12.021] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rapidly developing technologies have recently fueled an exciting era of discovery in the field of chromosome structure and nuclear organization. In addition to chromosome conformation capture (3C) methods, new alternative techniques have emerged to study genome architecture and biological processes in the nucleus, often in single or living cells. This sets an unprecedented stage for exploring the mechanisms that link chromosome structure and biological function. Here we review popular as well as emerging approaches to study chromosome organization, focusing on the contribution of complementary methodologies to our understanding of structures revealed by 3C methods and their biological implications, and discuss the next technical and conceptual frontiers.
Collapse
Affiliation(s)
- Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Noam Kaplan
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
162
|
Crosetto N, Bienko M. Radial Organization in the Mammalian Nucleus. Front Genet 2020; 11:33. [PMID: 32117447 PMCID: PMC7028756 DOI: 10.3389/fgene.2020.00033] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, most of the genetic material is contained within a highly specialized organelle-the nucleus. A large body of evidence indicates that, within the nucleus, chromatinized DNA is spatially organized at multiple length scales. The higher-order organization of chromatin is crucial for proper execution of multiple genome functions, including DNA replication and transcription. Here, we review our current knowledge on the spatial organization of chromatin in the nucleus of mammalian cells, focusing in particular on how chromatin is radially arranged with respect to the nuclear lamina. We then discuss the possible mechanisms by which the radial organization of chromatin in the cell nucleus is established. Lastly, we propose a unifying model of nuclear spatial organization, and suggest novel approaches to test it.
Collapse
Affiliation(s)
| | - Magda Bienko
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
163
|
Direct and simultaneous observation of transcription and chromosome architecture in single cells with Hi-M. Nat Protoc 2020; 15:840-876. [PMID: 31969721 DOI: 10.1038/s41596-019-0269-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
Simultaneous observation of 3D chromatin organization and transcription at the single-cell level and with high spatial resolution may hold the key to unveiling the mechanisms regulating embryonic development, cell differentiation and even disease. We recently developed Hi-M, a technology that enables the sequential labeling, 3D imaging and localization of multiple genomic DNA loci, together with RNA expression, in single cells within whole, intact Drosophila embryos. Importantly, Hi-M enables simultaneous detection of RNA expression and chromosome organization without requiring sample unmounting and primary probe rehybridization. Here, we provide a step-by-step protocol describing the design of probes, the preparation of samples, the stable immobilization of embryos in microfluidic chambers, and the complete procedure for image acquisition. The combined RNA/DNA fluorescence in situ hybridization procedure takes 4-5 d, including embryo collection. In addition, we describe image analysis software to segment nuclei, detect genomic spots, correct for drift and produce Hi-M matrices. A typical Hi-M experiment takes 1-2 d to complete all rounds of labeling and imaging and 4 additional days for image analysis. This technology can be easily expanded to investigate cell differentiation in cultured cells or organization of chromatin within complex tissues.
Collapse
|
164
|
Robson MI, Ringel AR, Mundlos S. Regulatory Landscaping: How Enhancer-Promoter Communication Is Sculpted in 3D. Mol Cell 2020; 74:1110-1122. [PMID: 31226276 DOI: 10.1016/j.molcel.2019.05.032] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
During embryogenesis, precise gene transcription in space and time requires that distal enhancers and promoters communicate by physical proximity within gene regulatory landscapes. To achieve this, regulatory landscapes fold in nuclear space, creating complex 3D structures that influence enhancer-promoter communication and gene expression and that, when disrupted, can cause disease. Here, we provide an overview of how enhancers and promoters construct regulatory landscapes and how multiple scales of 3D chromatin structure sculpt their communication. We focus on emerging views of what enhancer-promoter contacts and chromatin domains physically represent and how two antagonistic fundamental forces-loop extrusion and homotypic attraction-likely form them. We also examine how these same forces spatially separate regulatory landscapes by functional state, thereby creating higher-order compartments that reconfigure during development to enable proper enhancer-promoter communication.
Collapse
Affiliation(s)
- Michael I Robson
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alessa R Ringel
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
165
|
Cardozo Gizzi AM, Cattoni DI, Nollmann M. TADs or no TADS: Lessons From Single-cell Imaging of Chromosome Architecture. J Mol Biol 2020; 432:682-693. [PMID: 31904354 DOI: 10.1016/j.jmb.2019.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/12/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022]
Abstract
Eukaryotic genomes are folded in a hierarchical organization that reflects and possibly regulates their function. Genomewide studies revealed a new level of organization at the kilobase-to-megabase scale termed "topological associating domains" (TADs). TADs are characterized as stable units of chromosome organization that restrict the action of regulatory sequences within one "functional unit." Consequently, TADs are expected to appear as physical entities in most cells. Very recent single-cell studies have shown a notable variability in genome architecture at this scale, raising concerns about this model. Furthermore, the direct and simultaneous observation of genome architecture and transcriptional output showed the lack of stable interactions between regulatory sequences in transcribing cells. These findings are consistent with a large body of evidence suggesting that genome organization is highly heterogeneous at different scales. In this review, we discuss the main strategies employed to image chromatin organization, present the latest state-of-the-art developments, and propose an interpretation reconciling population-based findings with direct single-cell chromatin organization observations. All in all, we propose that TADs are made of multiple, low-frequency, low-affinity interactions that increase the probability, but are not deterministic, of regulatory interactions.
Collapse
Affiliation(s)
- Andrés M Cardozo Gizzi
- CIQUIBIC (CONICET), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Diego I Cattoni
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France.
| |
Collapse
|
166
|
Esposito A, Chiariello AM, Conte M, Fiorillo L, Musella F, Sciarretta R, Bianco S. Higher-order Chromosome Structures Investigated by Polymer Physics in Cellular Morphogenesis and Differentiation. J Mol Biol 2019; 432:701-711. [PMID: 31863751 DOI: 10.1016/j.jmb.2019.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 12/11/2019] [Indexed: 01/06/2023]
Abstract
Experimental advances in Molecular Biology demonstrated that chromatin architecture and gene regulation are deeply related. Hi-C data, for instance, returned a scenario where chromosomes form a complex pattern of interactions, including TADs, metaTADs, and compartments, correlated with genomic and epigenomic features. Here, we discuss the emerging hierarchical organization of chromatin and show how it remains partially conserved during mouse neuronal differentiation with changes highly related to modifications in gene expression. In this scenario, models of polymer physics, such as the Strings & Binders (SBS) model, can be a crucial instrument to understand the molecular mechanisms underlying the formation of such a higher order 3D structure. In particular, we focus on the case study of the murine Pitx1 genomic region. At this locus, two alternative spatial conformations take place in the hindlimb and forelimb tissues, corresponding to two different transcriptional states of Pitx1. We finally show how the structural variants can affect the locus 3D organization leading to ectopic gene expression and limb malformations.
Collapse
Affiliation(s)
- Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy.
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Luca Fiorillo
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Francesco Musella
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Renato Sciarretta
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy.
| |
Collapse
|
167
|
Otterstrom J, Castells-Garcia A, Vicario C, Gomez-Garcia PA, Cosma MP, Lakadamyali M. Super-resolution microscopy reveals how histone tail acetylation affects DNA compaction within nucleosomes in vivo. Nucleic Acids Res 2019; 47:8470-8484. [PMID: 31287868 PMCID: PMC6895258 DOI: 10.1093/nar/gkz593] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/31/2019] [Accepted: 07/04/2019] [Indexed: 01/28/2023] Open
Abstract
Chromatin organization is crucial for regulating gene expression. Previously, we showed that nucleosomes form groups, termed clutches. Clutch size correlated with the pluripotency grade of mouse embryonic stem cells and human induced pluripotent stem cells. Recently, it was also shown that regions of the chromatin containing activating epigenetic marks were composed of small and dispersed chromatin nanodomains with lower DNA density compared to the larger silenced domains. Overall, these results suggest that clutch size may regulate DNA packing density and gene activity. To directly test this model, we carried out 3D, two-color super-resolution microscopy of histones and DNA with and without increased histone tail acetylation. Our results showed that lower percentage of DNA was associated with nucleosome clutches in hyperacetylated cells. We further showed that the radius and compaction level of clutch-associated DNA decreased in hyperacetylated cells, especially in regions containing several neighboring clutches. Importantly, this change was independent of clutch size but dependent on the acetylation state of the clutch. Our results directly link the epigenetic state of nucleosome clutches to their DNA packing density. Our results further provide in vivo support to previous in vitro models that showed a disruption of nucleosome-DNA interactions upon hyperacetylation.
Collapse
Affiliation(s)
- Jason Otterstrom
- ICFO-Institute of Photonic Sciences, Barcelona Institute of Science and Technology, Barcelona
| | - Alvaro Castells-Garcia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Chiara Vicario
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Pablo A Gomez-Garcia
- ICFO-Institute of Photonic Sciences, Barcelona Institute of Science and Technology, Barcelona.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.,Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China
| | - Melike Lakadamyali
- ICFO-Institute of Photonic Sciences, Barcelona Institute of Science and Technology, Barcelona.,Perelman School of Medicine, Department of Physiology, University of Pennsylvania, Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
168
|
Darzynkiewicz Z, Halicka DH, Zhao H, Li J. Assessment of DNA Susceptibility to Denaturation as a Marker of Chromatin Structure. ACTA ACUST UNITED AC 2019; 91:e65. [PMID: 31763788 DOI: 10.1002/cpcy.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The susceptibility of DNA in situ to denaturation is modulated by its interactions with histone and nonhistone proteins, as well as with other chromatin components related to the maintenance of the 3D nuclear structure. Measurement of DNA proclivity to denature by cytometry provides insight into chromatin structure and thus can be used to recognize cells in different phases of the cell cycle, including mitosis, quiescence (G0 ), and apoptosis, as well as to identify the effects of drugs that modify chromatin structure. Particularly useful is the method's ability to detect chromatin changes in sperm cells related to DNA fragmentation and infertility. This article presents a flow cytometric procedure for assessing DNA denaturation based on application of the metachromatic property of acridine orange (AO) to differentially stain single- versus double-stranded DNA. This approach circumvents limitations of biochemical methods of examining DNA denaturation, in particular the fact that the latter destroy higher orders of chromatin structure and that, being applied to bulk cell populations, they cannot detect heterogeneity of individual cells. Because the metachromatic properties of AO have also found application in other cytometric procedures, such as differential staining of RNA versus DNA and assessment of lysosomal proton pump including autophagy, to avert confusion between these approaches and the use of this dye in the DNA denaturation assay, these AO applications are briefly outlined in this unit as well. © 2019 by John Wiley & Sons, Inc. Basic Protocol: Differential staining of single- versus double-stranded DNA with acridine orange.
Collapse
Affiliation(s)
| | - Dorota H Halicka
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York
| | - Hong Zhao
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York
| | - Jiangwei Li
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York
| |
Collapse
|
169
|
Rosa A, Di Stefano M, Micheletti C. Topological Constraints in Eukaryotic Genomes and How They Can Be Exploited to Improve Spatial Models of Chromosomes. Front Mol Biosci 2019; 6:127. [PMID: 31803755 PMCID: PMC6873889 DOI: 10.3389/fmolb.2019.00127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/28/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Angelo Rosa
- Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Marco Di Stefano
- Centre Nacional d'Anàlisi Genòmica-Centre de Regulació Genòmica, Barcelona, Spain
| | | |
Collapse
|
170
|
Chromatin Is Frequently Unknotted at the Megabase Scale. Biophys J 2019; 118:2268-2279. [PMID: 31818464 PMCID: PMC7202934 DOI: 10.1016/j.bpj.2019.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022] Open
Abstract
Knots in the human genome would greatly impact diverse cellular processes ranging from transcription to gene regulation. To date, it has not been possible to directly examine the genome in vivo for the presence of knots. Recently, methods for serial fluorescent in situ hybridization have made it possible to measure the three-dimensional position of dozens of consecutive genomic loci in vivo. However, the determination of whether genomic trajectories are knotted remains challenging because small errors in the localization of a single locus can transform an unknotted trajectory into a highly knotted trajectory and vice versa. Here, we use stochastic closure analysis to determine if a genomic trajectory is knotted in the setting of experimental noise. We analyze 4727 deposited genomic trajectories of a 2-Mb-long chromatin interval from human chromosome 21. For 243 of these trajectories, their knottedness could be reliably determined despite the possibility of localization errors. Strikingly, in each of these 243 cases, the trajectory was unknotted. We note a potential source of bias insofar as knotted contours may be more difficult to reliably resolve. Nevertheless, our data are consistent with a model in which, at the scales probed, the human genome is often free of knots.
Collapse
|
171
|
Jerković I, Szabo Q, Bantignies F, Cavalli G. Higher-Order Chromosomal Structures Mediate Genome Function. J Mol Biol 2019; 432:676-681. [PMID: 31689436 DOI: 10.1016/j.jmb.2019.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022]
Abstract
How chromosomes are organized within the tridimensional space of the nucleus and how can this organization affect genome function have been long-standing questions on the path to understanding genome activity and its link to disease. In the last decade, high-throughput chromosome conformation capture techniques, such as Hi-C, have facilitated the discovery of new principles of genome folding. Chromosomes are folded in multiple high-order structures, with local contacts between enhancers and promoters, intermediate-level contacts forming Topologically Associating Domains (TADs) and higher-order chromatin structures sequestering chromatin into active and repressive compartments. However, despite the increasing evidence that genome organization can influence its function, we are still far from understanding the underlying mechanisms. Deciphering these mechanisms represents a major challenge for the future, which large, international initiatives, such as 4DN, HCA and LifeTime, aim to collaboratively tackle by using a conjunction of state-of-the-art population-based and single-cell approaches.
Collapse
Affiliation(s)
- Ivana Jerković
- Institute of Human Genetics, CNRS and University of Montpellier, France
| | - Quentin Szabo
- Institute of Human Genetics, CNRS and University of Montpellier, France
| | | | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and University of Montpellier, France.
| |
Collapse
|
172
|
Ochs F, Karemore G, Miron E, Brown J, Sedlackova H, Rask MB, Lampe M, Buckle V, Schermelleh L, Lukas J, Lukas C. Stabilization of chromatin topology safeguards genome integrity. Nature 2019; 574:571-574. [PMID: 31645724 DOI: 10.1038/s41586-019-1659-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/10/2019] [Indexed: 11/10/2022]
Abstract
To safeguard genome integrity in response to DNA double-strand breaks (DSBs), mammalian cells mobilize the neighbouring chromatin to shield DNA ends against excessive resection that could undermine repair fidelity and cause damage to healthy chromosomes1. This form of genome surveillance is orchestrated by 53BP1, whose accumulation at DSBs triggers sequential recruitment of RIF1 and the shieldin-CST-POLα complex2. How this pathway reflects and influences the three-dimensional nuclear architecture is not known. Here we use super-resolution microscopy to show that 53BP1 and RIF1 form an autonomous functional module that stabilizes three-dimensional chromatin topology at sites of DNA breakage. This process is initiated by accumulation of 53BP1 at regions of compact chromatin that colocalize with topologically associating domain (TAD) sequences, followed by recruitment of RIF1 to the boundaries between such domains. The alternating distribution of 53BP1 and RIF1 stabilizes several neighbouring TAD-sized structures at a single DBS site into an ordered, circular arrangement. Depletion of 53BP1 or RIF1 (but not shieldin) disrupts this arrangement and leads to decompaction of DSB-flanking chromatin, reduction in interchromatin space, aberrant spreading of DNA repair proteins, and hyper-resection of DNA ends. Similar topological distortions are triggered by depletion of cohesin, which suggests that the maintenance of chromatin structure after DNA breakage involves basic mechanisms that shape three-dimensional nuclear organization. As topological stabilization of DSB-flanking chromatin is independent of DNA repair, we propose that, besides providing a structural scaffold to protect DNA ends against aberrant processing, 53BP1 and RIF1 safeguard epigenetic integrity at loci that are disrupted by DNA breakage.
Collapse
Affiliation(s)
- Fena Ochs
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gopal Karemore
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Modeling and Predictive Technologies, Novo Nordisk A/S, Måløv, Denmark
| | - Ezequiel Miron
- Micron Oxford Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK
- Division of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jill Brown
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Hana Sedlackova
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maj-Britt Rask
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marko Lampe
- European Molecular Biology Laboratory, Advanced Light Microscopy Core Facility, Heidelberg, Germany
| | - Veronica Buckle
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Lothar Schermelleh
- Micron Oxford Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Jiri Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Claudia Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
173
|
Ing-Simmons E, Vaquerizas JM. Visualising three-dimensional genome organisation in two dimensions. Development 2019; 146:146/19/dev177162. [PMID: 31558569 DOI: 10.1242/dev.177162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The three-dimensional organisation of the genome plays a crucial role in developmental gene regulation. In recent years, techniques to investigate this organisation have become more accessible to labs worldwide due to improvements in protocols and decreases in the cost of high-throughput sequencing. However, the resulting datasets are complex and can be challenging to analyse and interpret. Here, we provide a guide to visualisation approaches that can aid the interpretation of such datasets and the communication of biological results.
Collapse
Affiliation(s)
- Elizabeth Ing-Simmons
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, DE-48149 Muenster, Germany
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, DE-48149 Muenster, Germany
| |
Collapse
|
174
|
Deakin JE, Potter S, O'Neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MDB, Fukui K, Marshall Graves JA, Griffin D, Grutzner F, Kratochvíl L, Miura I, Rovatsos M, Srikulnath K, Wapstra E, Ezaz T. Chromosomics: Bridging the Gap between Genomes and Chromosomes. Genes (Basel) 2019; 10:genes10080627. [PMID: 31434289 PMCID: PMC6723020 DOI: 10.3390/genes10080627] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
The recent advances in DNA sequencing technology are enabling a rapid increase in the number of genomes being sequenced. However, many fundamental questions in genome biology remain unanswered, because sequence data alone is unable to provide insight into how the genome is organised into chromosomes, the position and interaction of those chromosomes in the cell, and how chromosomes and their interactions with each other change in response to environmental stimuli or over time. The intimate relationship between DNA sequence and chromosome structure and function highlights the need to integrate genomic and cytogenetic data to more comprehensively understand the role genome architecture plays in genome plasticity. We propose adoption of the term 'chromosomics' as an approach encompassing genome sequencing, cytogenetics and cell biology, and present examples of where chromosomics has already led to novel discoveries, such as the sex-determining gene in eutherian mammals. More importantly, we look to the future and the questions that could be answered as we enter into the chromosomics revolution, such as the role of chromosome rearrangements in speciation and the role more rapidly evolving regions of the genome, like centromeres, play in genome plasticity. However, for chromosomics to reach its full potential, we need to address several challenges, particularly the training of a new generation of cytogeneticists, and the commitment to a closer union among the research areas of genomics, cytogenetics, cell biology and bioinformatics. Overcoming these challenges will lead to ground-breaking discoveries in understanding genome evolution and function.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia.
| | - Sally Potter
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
- Australian Museum Research Institute, Australian Museum, 1 William St Sydney, NSW 2010, Australia
| | - Rachel O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Marcelo B Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| | - Mark D B Eldridge
- Australian Museum Research Institute, Australian Museum, 1 William St Sydney, NSW 2010, Australia
| | - Kichi Fukui
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Osaka, Japan
| | - Jennifer A Marshall Graves
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia
- School of Life Sciences, LaTrobe University, Melbourne, VIC 3168, Australia
| | - Darren Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Frank Grutzner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Michail Rovatsos
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics & Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart 7000, Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia.
| |
Collapse
|
175
|
Mirny LA, Imakaev M, Abdennur N. Two major mechanisms of chromosome organization. Curr Opin Cell Biol 2019; 58:142-152. [PMID: 31228682 DOI: 10.1016/j.ceb.2019.05.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/14/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
The spatial organization of chromosomes has long been connected to their polymeric nature and is believed to be important for their biological functions, including the control of interactions between genomic elements, the maintenance of genetic information, and the compaction and safe transfer of chromosomes to cellular progeny. chromosome conformation capture techniques, particularly Hi-C, have provided a comprehensive picture of spatial chromosome organization and revealed new features and elements of chromosome folding. Furthermore, recent advances in microscopy have made it possible to obtain distance maps for extensive regions of chromosomes (Bintu et al., 2018; Nir et al., 2018 [2••,3]), providing information complementary to, and in excellent agreement with, Hi-C maps. Not only has the resolution of both techniques advanced significantly, but new perturbation data generated in the last two years have led to the identification of molecular mechanisms behind large-scale genome organization. Two major mechanisms that have been proposed to govern chromosome organization are (i) the active (ATP-dependent) process of loop extrusion by Structural Maintenance of Chromosomes (SMC) complexes, and (ii) the spatial compartmentalization of the genome, which is likely mediated by affinity interactions between heterochromatic regions (Falk et al., 2019 [76••]) rather than by ATP-dependent processes. Here, we review existing evidence that these two processes operate together to fold chromosomes in interphase and that loop extrusion alone drives mitotic compaction. We discuss possible implications of these mechanisms for chromosome function.
Collapse
Affiliation(s)
- Leonid A Mirny
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| | - Maxim Imakaev
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Nezar Abdennur
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
176
|
Fields BD, Nguyen SC, Nir G, Kennedy S. A multiplexed DNA FISH strategy for assessing genome architecture in Caenorhabditis elegans. eLife 2019; 8:42823. [PMID: 31084706 PMCID: PMC6516958 DOI: 10.7554/elife.42823] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 04/02/2019] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic DNA is highly organized within nuclei and this organization is important for genome function. Fluorescent in situ hybridization (FISH) approaches allow 3D architectures of genomes to be visualized. Scalable FISH technologies, which can be applied to whole animals, are needed to help unravel how genomic architecture regulates, or is regulated by, gene expression during development, growth, reproduction, and aging. Here, we describe a multiplexed DNA FISH Oligopaint library that targets the entire Caenorhabditis elegans genome at chromosome, three megabase, and 500 kb scales. We describe a hybridization strategy that provides flexibility to DNA FISH experiments by coupling a single primary probe synthesis reaction to dye conjugated detection oligos via bridge oligos, eliminating the time and cost typically associated with labeling probe sets for individual experiments. The approach allows visualization of genome organization at varying scales in all/most cells across all stages of development in an intact animal model system. DNA contains the instructions needed to build and maintain a living organism. How DNA is physically arranged inside a cell is not random, and DNA organization is important because it can affect, for example, which genes are active, and which are not. Researchers often use a technique called “fluorescence in situ hybridization” (or FISH for short) to study how DNA is organized in cells. FISH tethers fluorescent molecules to defined sections of DNA, making those sections glow under the right wavelength of light. It is possible to collect images of the fluorescent DNA regions under a microscope to see where they are in relation to each other and to the rest of the cell. Fields, Nguyen et al. have now created a new library of FISH molecules that can be used to analyze the DNA of a microscopic worm known as Caenorhabditis elegans – a model organism that is widely used to study genetics, animal development, and cell biology. The library can be used to visualize the worm’s whole genome at different scales. The library enables accurate and reliable investigations of how DNA is organized inside C. elegans, including in intact worms, meaning it also offers the first chance to study DNA organization in a whole organism through all stages of its life cycle. This new resource could help to reveal the relationships between DNA organization, cell specialization and gene activity in different cells at different stages of development. This could help to clarify the relationships between physical DNA organization and biological change. This design strategy behind this whole genome library should also be adaptable for similar studies in other animal species.
Collapse
Affiliation(s)
- Brandon D Fields
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| | - Son C Nguyen
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Guy Nir
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Scott Kennedy
- Department of Genetics, Harvard Medical School, Boston, United States
| |
Collapse
|
177
|
|
178
|
Gelali E, Girelli G, Matsumoto M, Wernersson E, Custodio J, Mota A, Schweitzer M, Ferenc K, Li X, Mirzazadeh R, Agostini F, Schell JP, Lanner F, Crosetto N, Bienko M. iFISH is a publically available resource enabling versatile DNA FISH to study genome architecture. Nat Commun 2019; 10:1636. [PMID: 30967549 PMCID: PMC6456570 DOI: 10.1038/s41467-019-09616-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/19/2019] [Indexed: 11/23/2022] Open
Abstract
DNA fluorescence in situ hybridization (DNA FISH) is a powerful method to study chromosomal organization in single cells. At present, there is a lack of free resources of DNA FISH probes and probe design tools which can be readily applied. Here, we describe iFISH, an open-source repository currently comprising 380 DNA FISH probes targeting multiple loci on the human autosomes and chromosome X, as well as a genome-wide database of optimally designed oligonucleotides and a freely accessible web interface ( http://ifish4u.org ) that can be used to design DNA FISH probes. We individually validate 153 probes and take advantage of our probe repository to quantify the extent of intermingling between multiple heterologous chromosome pairs, showing a much higher extent of intermingling in human embryonic stem cells compared to fibroblasts. In conclusion, iFISH is a versatile and expandable resource, which can greatly facilitate the use of DNA FISH in research and diagnostics.
Collapse
Affiliation(s)
- Eleni Gelali
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165, Stockholm, Sweden
| | - Gabriele Girelli
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165, Stockholm, Sweden
| | - Masahiro Matsumoto
- R&D division, Medical Business Group, Sony Imaging Products & Solutions, Inc., Tokyo, 108-0075, Japan
| | - Erik Wernersson
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165, Stockholm, Sweden
| | - Joaquin Custodio
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165, Stockholm, Sweden
| | - Ana Mota
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165, Stockholm, Sweden
| | - Maud Schweitzer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165, Stockholm, Sweden
| | - Katalin Ferenc
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165, Stockholm, Sweden
| | - Xinge Li
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165, Stockholm, Sweden
| | - Reza Mirzazadeh
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165, Stockholm, Sweden
| | - Federico Agostini
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165, Stockholm, Sweden
| | - John P Schell
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, SE-171 77, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, SE-14186, Stockholm, Sweden
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, SE-171 77, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, SE-14186, Stockholm, Sweden
| | - Nicola Crosetto
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165, Stockholm, Sweden.
| | - Magda Bienko
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165, Stockholm, Sweden.
| |
Collapse
|
179
|
Szabo Q, Bantignies F, Cavalli G. Principles of genome folding into topologically associating domains. SCIENCE ADVANCES 2019; 5:eaaw1668. [PMID: 30989119 PMCID: PMC6457944 DOI: 10.1126/sciadv.aaw1668] [Citation(s) in RCA: 362] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/20/2019] [Indexed: 05/12/2023]
Abstract
This review discusses the features of TADs across species, and their role in chromosome organization, genome function, and evolution.
Collapse
Affiliation(s)
- Quentin Szabo
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France
| | - Frédéric Bantignies
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France
| |
Collapse
|
180
|
Mateo LJ, Murphy SE, Hafner A, Cinquini IS, Walker CA, Boettiger AN. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 2019; 568:49-54. [PMID: 30886393 PMCID: PMC6556380 DOI: 10.1038/s41586-019-1035-4] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/25/2019] [Indexed: 01/09/2023]
Abstract
The establishment of cell types during development requires precise interactions between genes and distal regulatory sequences. We have a limited understanding of how these interactions look in three dimensions, vary across cell types in complex tissue, and relate to transcription. Here we describe optical reconstruction of chromatin architecture (ORCA), a method that can trace the DNA path in single cells with nanoscale accuracy and genomic resolution reaching two kilobases. We used ORCA to study a Hox gene cluster in cryosectioned Drosophila embryos and labelled around 30 RNA species in parallel. We identified cell-type-specific physical borders between active and Polycomb-repressed DNA, and unexpected Polycomb-independent borders. Deletion of Polycomb-independent borders led to ectopic enhancer-promoter contacts, aberrant gene expression, and developmental defects. Together, these results illustrate an approach for high-resolution, single-cell DNA domain analysis in vivo, identify domain structures that change with cell identity, and show that border elements contribute to the formation of physical domains in Drosophila.
Collapse
Affiliation(s)
- Leslie J Mateo
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Sedona E Murphy
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Antonina Hafner
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Isaac S Cinquini
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Carly A Walker
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
181
|
Hofman P, Badoual C, Henderson F, Berland L, Hamila M, Long-Mira E, Lassalle S, Roussel H, Hofman V, Tartour E, Ilié M. Multiplexed Immunohistochemistry for Molecular and Immune Profiling in Lung Cancer-Just About Ready for Prime-Time? Cancers (Basel) 2019; 11:cancers11030283. [PMID: 30818873 PMCID: PMC6468415 DOI: 10.3390/cancers11030283] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/31/2022] Open
Abstract
As targeted molecular therapies and immuno-oncology have become pivotal in the management of patients with lung cancer, the essential requirement for high throughput analyses and clinical validation of biomarkers has become even more intense, with response rates maintained in the 20%–30% range. Moreover, the list of treatment alternatives, including combination therapies, is rapidly evolving. The molecular profiling and specific tumor-associated immune contexture may be predictive of response or resistance to these therapeutic strategies. Multiplexed immunohistochemistry is an effective and proficient approach to simultaneously identify specific proteins or molecular abnormalities, to determine the spatial distribution and activation state of immune cells, as well as the presence of immunoactive molecular expression. This method is highly advantageous for investigating immune evasion mechanisms and discovering potential biomarkers to assess mechanisms of action and to predict response to a given treatment. This review provides views on the current technological status and evidence for clinical applications of multiplexing and how it could be applied to optimize clinical management of patients with lung cancer.
Collapse
Affiliation(s)
- Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Nice Hospital University, FHU OncoAge, Université Côte d'Azur, Nice 06000, France.
- Team 4, Institute for Research on Cancer and Aging, Nice (IRCAN), INSERM U1081/UMR CNRS 7284, FHU OncoAge, Université Côte d'Azur, Nice 06107, France.
| | - Cécile Badoual
- Department of Pathology, Hôpital Européen Georges Pompidou, APHP, Paris 75015, France.
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris 75015, France.
| | - Fiona Henderson
- Department EMEA, Indica Labs, 2469 Corrales Rd Bldg. A-3 Corrales, NM 87048, USA.
| | - Léa Berland
- Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Nice Hospital University, FHU OncoAge, Université Côte d'Azur, Nice 06000, France.
| | - Marame Hamila
- Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Nice Hospital University, FHU OncoAge, Université Côte d'Azur, Nice 06000, France.
| | - Elodie Long-Mira
- Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Nice Hospital University, FHU OncoAge, Université Côte d'Azur, Nice 06000, France.
- Team 4, Institute for Research on Cancer and Aging, Nice (IRCAN), INSERM U1081/UMR CNRS 7284, FHU OncoAge, Université Côte d'Azur, Nice 06107, France.
| | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Nice Hospital University, FHU OncoAge, Université Côte d'Azur, Nice 06000, France.
- Team 4, Institute for Research on Cancer and Aging, Nice (IRCAN), INSERM U1081/UMR CNRS 7284, FHU OncoAge, Université Côte d'Azur, Nice 06107, France.
| | - Hélène Roussel
- Department of Pathology, Hôpital Européen Georges Pompidou, APHP, Paris 75015, France.
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris 75015, France.
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Nice Hospital University, FHU OncoAge, Université Côte d'Azur, Nice 06000, France.
- Team 4, Institute for Research on Cancer and Aging, Nice (IRCAN), INSERM U1081/UMR CNRS 7284, FHU OncoAge, Université Côte d'Azur, Nice 06107, France.
| | - Eric Tartour
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris 75015, France.
- Department of Immunology, Hôpital Européen Georges Pompidou, Paris 75015, France.
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Nice Hospital University, FHU OncoAge, Université Côte d'Azur, Nice 06000, France.
- Team 4, Institute for Research on Cancer and Aging, Nice (IRCAN), INSERM U1081/UMR CNRS 7284, FHU OncoAge, Université Côte d'Azur, Nice 06107, France.
| |
Collapse
|
182
|
|
183
|
Vermunt MW, Zhang D, Blobel GA. The interdependence of gene-regulatory elements and the 3D genome. J Cell Biol 2019; 218:12-26. [PMID: 30442643 PMCID: PMC6314554 DOI: 10.1083/jcb.201809040] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 01/12/2023] Open
Abstract
Imaging studies, high-resolution chromatin conformation maps, and genome-wide occupancy data of architectural proteins have revealed that genome topology is tightly intertwined with gene expression. Cross-talk between gene-regulatory elements is often organized within insulated neighborhoods, and regulatory cues that induce transcriptional changes can reshape chromatin folding patterns and gene positioning within the nucleus. The cause-consequence relationship of genome architecture and gene expression is intricate, and its molecular mechanisms are under intense investigation. Here, we review the interdependency of transcription and genome organization with emphasis on enhancer-promoter contacts in gene regulation.
Collapse
Affiliation(s)
- Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Di Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|