151
|
MgrA Negatively Regulates Biofilm Formation and Detachment by Repressing the Expression of psm Operons in Staphylococcus aureus. Appl Environ Microbiol 2018. [PMID: 29884758 DOI: 10.1128/aem01008-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Phenol-soluble modulins (PSMs) are amphipathic peptides that are produced by staphylococci and play important roles in Staphylococcus aureus biofilm formation and dissemination. Although the multiple functions of PSMs have been recognized, the regulatory mechanisms controlling the expression of psm operons remain largely unknown. In this study, we identified MgrA in a DNA pulldown assay and further demonstrated, by electrophoretic mobility shift assays and DNase I footprinting assays, that MgrA could bind specifically to the promoter regions of psm operons. We then constructed an isogenic mgrA deletion strain and compared biofilm formation and detachment in the wild-type and isogenic mgrA deletion strains. Our results indicated that biofilm formation and detachment were significantly increased in the mgrA mutant strain. Real-time quantitative reverse transcription-PCR data indicated that MgrA repressed the transcription of psm operons in cultures and biofilms, suggesting that MgrA is a negative regulator of psm expression. Furthermore, we analyzed biofilm formation by the psm mutant strains, and we found that PSMs promoted biofilm structuring and development in the mgrA mutant strain. These findings reveal that MgrA negatively regulates biofilm formation and detachment by repressing the expression of psm operons through direct binding to the psm promoter regions.IMPORTANCEStaphylococcus aureus is a human and animal pathogen that can cause biofilm-associated infections. PSMs have multiple functions in biofilm development and virulence in staphylococcal pathogenesis. This study has revealed that MgrA can negatively regulate psm expression by binding directly to the promoter regions of psm operons. Furthermore, our results show that MgrA can modulate biofilm structuring and development by repressing the production of PSMs in S. aureus Our findings provide novel insights into the regulatory mechanisms of S. aureus psm gene expression, biofilm development, and pathogenesis.
Collapse
|
152
|
Melok AL, Lee LH, Mohamed Yussof SA, Chu T. Green Tea Polyphenol Epigallocatechin-3-Gallate-Stearate Inhibits the Growth of Streptococcus mutans: A Promising New Approach in Caries Prevention. Dent J (Basel) 2018; 6:dj6030038. [PMID: 30082585 PMCID: PMC6162448 DOI: 10.3390/dj6030038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 01/08/2023] Open
Abstract
Streptococcus mutans (S. mutans) is the main etiological bacteria present in the oral cavity that leads to dental caries. All of the S. mutans in the oral cavity form biofilms that adhere to the surfaces of teeth. Dental caries are infections facilitated by the development of biofilm. An esterified derivative of epigallocatechin-3-gallate (EGCG), epigallocatechin-3-gallate-stearate (EGCG-S), was used in this study to assess its ability to inhibit the growth and biofilm formation of S. mutans. The effect of EGCG-S on bacterial growth was evaluated with colony forming units (CFU) and log reduction; biofilm formation was qualitatively determined by Congo red assay, and quantitatively determined by crystal violet assay, fluorescence-based LIVE/DEAD assays to study the cell viability, and scanning electron microscopy (SEM) was used to evaluate the morphological changes. The results indicated that EGCG-S was able to completely inhibit growth and biofilm formation at concentrations of 250 µg/mL. Its effectiveness was also compared with a commonly prescribed mouthwash in the United States, chlorhexidine gluconate. EGCG-S was shown to be equally effective in reducing S. mutans growth as chlorhexidine gluconate. In conclusion, EGCG-S is potentially an anticariogenic agent by reducing bacterial presence in the oral cavity.
Collapse
Affiliation(s)
- Amy Lynn Melok
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA.
| | - Lee H Lee
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA.
| | - Siti Ayuni Mohamed Yussof
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA.
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA.
| | - Tinchun Chu
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA.
| |
Collapse
|
153
|
Zheng Y, Joo HS, Nair V, Le KY, Otto M. Do amyloid structures formed by Staphylococcus aureus phenol-soluble modulins have a biological function? Int J Med Microbiol 2018; 308:675-682. [PMID: 28867522 PMCID: PMC5832552 DOI: 10.1016/j.ijmm.2017.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 11/17/2022] Open
Abstract
Phenol-soluble modulins (PSMs) are alpha-helical, amphipathic peptides that have multiple functions in staphylococcal physiology and virulence. Recent research has suggested that PSMs form amyloid fibrils and amyloids are involved in PSM-mediated phenotypes such as cytolysis and biofilm stability. While we observed PSM amyloid formation using electron microscopy and dye assays, there were no apparent differences in the production of extracellular fibrous material between a PSM-deficient strain and the isogenic wild-type strain. Furthermore, we detected no correlation between cytolytic or pro-inflammatory activities with the propensity of PSM derivatives to form amyloids. In addition, we propose a model based on our finding of non-specific attachment of PSMs to DNA, which we here report results in resistance to DNase digestion, explaining previous findings on PSM-mediated biofilm stability without the necessity to assume amyloid involvement. Collectively, our results indicate that PSM amyloid formation may not be of major relevance for known key biological functions of PSMs. Intriguingly, however, we found that amyloid-forming capacity of PSMalpha3 allows almost no amino acid exchanges, suggesting importance of amyloid formation in possibly yet unknown functions of PSMs.
Collapse
Affiliation(s)
- Yue Zheng
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA
| | - Hwang-Soo Joo
- Department of Prepharm-Med, College of Natural Sciences, Duksung Women's University, 33 Samyang-ro 144-gil, Seoul 01369, South Korea
| | - Vinod Nair
- Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Katherine Y Le
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA.
| |
Collapse
|
154
|
MgrA Negatively Regulates Biofilm Formation and Detachment by Repressing the Expression of psm Operons in Staphylococcus aureus. Appl Environ Microbiol 2018; 84:AEM.01008-18. [PMID: 29884758 PMCID: PMC6070752 DOI: 10.1128/aem.01008-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/03/2018] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a human and animal pathogen that can cause biofilm-associated infections. PSMs have multiple functions in biofilm development and virulence in staphylococcal pathogenesis. This study has revealed that MgrA can negatively regulate psm expression by binding directly to the promoter regions of psm operons. Furthermore, our results show that MgrA can modulate biofilm structuring and development by repressing the production of PSMs in S. aureus. Our findings provide novel insights into the regulatory mechanisms of S. aureus psm gene expression, biofilm development, and pathogenesis. Phenol-soluble modulins (PSMs) are amphipathic peptides that are produced by staphylococci and play important roles in Staphylococcus aureus biofilm formation and dissemination. Although the multiple functions of PSMs have been recognized, the regulatory mechanisms controlling the expression of psm operons remain largely unknown. In this study, we identified MgrA in a DNA pulldown assay and further demonstrated, by electrophoretic mobility shift assays and DNase I footprinting assays, that MgrA could bind specifically to the promoter regions of psm operons. We then constructed an isogenic mgrA deletion strain and compared biofilm formation and detachment in the wild-type and isogenic mgrA deletion strains. Our results indicated that biofilm formation and detachment were significantly increased in the mgrA mutant strain. Real-time quantitative reverse transcription-PCR data indicated that MgrA repressed the transcription of psm operons in cultures and biofilms, suggesting that MgrA is a negative regulator of psm expression. Furthermore, we analyzed biofilm formation by the psm mutant strains, and we found that PSMs promoted biofilm structuring and development in the mgrA mutant strain. These findings reveal that MgrA negatively regulates biofilm formation and detachment by repressing the expression of psm operons through direct binding to the psm promoter regions. IMPORTANCEStaphylococcus aureus is a human and animal pathogen that can cause biofilm-associated infections. PSMs have multiple functions in biofilm development and virulence in staphylococcal pathogenesis. This study has revealed that MgrA can negatively regulate psm expression by binding directly to the promoter regions of psm operons. Furthermore, our results show that MgrA can modulate biofilm structuring and development by repressing the production of PSMs in S. aureus. Our findings provide novel insights into the regulatory mechanisms of S. aureus psm gene expression, biofilm development, and pathogenesis.
Collapse
|
155
|
Suppression of Staphylococcus aureus virulence by a small-molecule compound. Proc Natl Acad Sci U S A 2018; 115:8003-8008. [PMID: 30012613 DOI: 10.1073/pnas.1720520115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Emerging antibiotic resistance among bacterial pathogens has necessitated the development of alternative approaches to combat drug-resistance-associated infection. The abolition of Staphylococcus aureus virulence by targeting multiple-virulence gene products represents a promising strategy for exploration. A multiplex promoter reporter platform using gfp-luxABCDE dual-reporter plasmids with selected promoters from S. aureus-virulence-associated genes was used to identify compounds that modulate the expression of virulence factors. One small-molecule compound, M21, was identified from a chemical library to reverse virulent S. aureus into its nonvirulent state. M21 is a noncompetitive inhibitor of ClpP and alters α-toxin expression in a ClpP-dependent manner. A mouse model of infection indicated that M21 could attenuate S. aureus virulence. This nonantibiotic compound has been shown to suppress the expression of multiple unrelated virulence factors in S. aureus, suggesting that targeting a master regulator of virulence is an effective way to control virulence. Our results illustrate the power of chemical genetics in the modulation of virulence gene expression in pathogenic bacteria.
Collapse
|
156
|
Van Gerven N, Van der Verren SE, Reiter DM, Remaut H. The Role of Functional Amyloids in Bacterial Virulence. J Mol Biol 2018; 430:3657-3684. [PMID: 30009771 PMCID: PMC6173799 DOI: 10.1016/j.jmb.2018.07.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
Amyloid fibrils are best known as a product of human and animal protein misfolding disorders, where amyloid formation is associated with cytotoxicity and disease. It is now evident that for some proteins, the amyloid state constitutes the native structure and serves a functional role. These functional amyloids are proving widespread in bacteria and fungi, fulfilling diverse functions as structural components in biofilms or spore coats, as toxins and surface-active fibers, as epigenetic material, peptide reservoirs or adhesins mediating binding to and internalization into host cells. In this review, we will focus on the role of functional amyloids in bacterial pathogenesis. The role of functional amyloids as virulence factor is diverse but mostly indirect. Nevertheless, functional amyloid pathways deserve consideration for the acute and long-term effects of the infectious disease process and may form valid antimicrobial targets. Functional amyloids are widespread in bacteria, pathogenic and non-pathogenic. Bacterial biofilms most commonly function as structural support in the extracellular matrix of biofilms or spore coats, and in cell–cell and cell-surface adherence. The amyloid state can be the sole structured and functional state, or can be facultative, as a secondary state to folded monomeric subunits. Bacterial amyloids can enhance virulence by increasing persistence, cell adherence and invasion, intracellular survival, and pathogen spread by increased environmental survival. Bacterial amyloids may indirectly inflict disease by triggering inflammation, contact phase activation and possibly induce or aggravate human pathological aggregation disorders.
Collapse
Affiliation(s)
- Nani Van Gerven
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sander E Van der Verren
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Dirk M Reiter
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
157
|
Amyloid by Design: Intrinsic Regulation of Microbial Amyloid Assembly. J Mol Biol 2018; 430:3631-3641. [PMID: 30017921 DOI: 10.1016/j.jmb.2018.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
The term amyloid has historically been used to describe fibrillar aggregates formed as the result of protein misfolding and that are associated with a range of diseases broadly termed amyloidoses. The discovery of "functional amyloids" expanded the amyloid umbrella to encompass aggregates structurally similar to disease-associated amyloids but that engage in a variety of biologically useful tasks without incurring toxicity. The mechanisms by which functional amyloid systems ensure nontoxic assembly has provided insights into potential therapeutic strategies for treating amyloidoses. Some of the most-studied functional amyloids are ones produced by bacteria. Curli amyloids are extracellular fibers made by enteric bacteria that function to encase and protect bacterial communities during biofilm formation. Here we review recent studies highlighting microbial functional amyloid assembly systems that are tailored to enable the assembly of non-toxic amyloid aggregates.
Collapse
|
158
|
The Catabolite Repressor/Activator Cra Is a Bridge Connecting Carbon Metabolism and Host Colonization in the Plant Drought Resistance-Promoting Bacterium Pantoea alhagi LTYR-11Z. Appl Environ Microbiol 2018; 84:AEM.00054-18. [PMID: 29703735 DOI: 10.1128/aem.00054-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022] Open
Abstract
Efficient root colonization is a prerequisite for application of plant growth-promoting (PGP) bacteria in improving health and yield of agricultural crops. We have recently identified an endophytic bacterium, Pantoea alhagi LTYR-11Z, with multiple PGP properties that effectively colonizes the root system of wheat and improves its growth and drought tolerance. To identify novel regulatory genes required for wheat colonization, we screened an LTYR-11Z transposon (Tn) insertion library and found cra to be a colonization-related gene. By using transcriptome (RNA-seq) analysis, we found that transcriptional levels of an eps operon, the ydiV gene encoding an anti-FlhD4C2 factor, and the yedQ gene encoding an enzyme for synthesis of cyclic dimeric GMP (c-di-GMP) were significantly downregulated in the Δcra mutant. Further studies demonstrated that Cra directly binds to the promoters of the eps operon, ydiV, and yedQ and activates their expression, thus inhibiting motility and promoting exopolysaccharide (EPS) production and biofilm formation. Consistent with previous findings that Cra plays a role in transcriptional regulation in response to carbon source availability, the activating effects of Cra were much more pronounced when LTYR-11Z was grown within a gluconeogenic environment than when it was grown within a glycolytic environment. We further demonstrate that the ability of LTYR-11Z to colonize wheat roots is modulated by the availability of carbon sources. Altogether, these results uncover a novel strategy utilized by LTYR-11Z to achieve host colonization in response to carbon nutrition in the environment, in which Cra bridges a connection between carbon metabolism and colonization capacity of LTYR-11Z.IMPORTANCE Rapid and appropriate response to environmental signals is crucial for bacteria to adapt to competitive environments and to establish interactions with their hosts. Efficient colonization and persistence within the host are controlled by various regulatory factors that respond to specific environmental cues. The most common is nutrient availability. In this work, we unraveled the pivotal role of Cra in regulation of colonization ability of Pantoea alhagi LTYR-11Z in response to carbon source availability. Moreover, we identified three novel members of the Cra regulon involved in EPS synthesis, regulation of flagellar biosynthesis, and synthesis of c-di-GMP and propose a working model to explain the Cra-mediated regulatory mechanism that links carbon metabolism to host colonization. This study elucidates the regulatory role of Cra in bacterial attachment and colonization of plants, which raises the possibility of extending our studies to other bacteria associated with plant and human health.
Collapse
|
159
|
Sugimoto S, Arita-Morioka KI, Terao A, Yamanaka K, Ogura T, Mizunoe Y. Multitasking of Hsp70 chaperone in the biogenesis of bacterial functional amyloids. Commun Biol 2018; 1:52. [PMID: 30271935 PMCID: PMC6123696 DOI: 10.1038/s42003-018-0056-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
Biofilms are intricate communities of microorganisms embedded in a self-produced matrix of extracellular polymer, which provides microbes survival advantages in stressful environments and can cause chronic infections in humans. Curli are functional amyloids that assemble on the extracellular surface of enteric bacteria such as Escherichia coli during biofilm development and colonization. The molecular chaperone DnaK, a bacterial Hsp70 homologue, promotes curli biogenesis via unknown mechanism(s). Here we show that DnaK increases the expression of CsgA and CsgB—the major and minor structural components of curli, respectively—via a quantity and quality control of RpoS, a stationary phase-specific alternative sigma factor regulating bacterial transcription, and CsgD, the master transcriptional regulator of curli formation. DnaK also keeps CsgA and CsgB in a translocation-competent state by binding to their signal peptides prone to aggregation. Our findings suggest that DnaK controls the homoeostasis of curli biogenesis at multiple stages to organize the biofilm matrix. Shinya Sugimoto et al. demonstrate how molecular chaperone DnaK regulates biofilm formation through the production of curli, which anchor enteric bacteria to the biofilm. This finding provides mechanistic insights into the development of anti-biofilm agents as antibiotics.
Collapse
Affiliation(s)
- Shinya Sugimoto
- Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan. .,Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan.
| | - Ken-Ichi Arita-Morioka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.,Advanced Science Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-Ku, Fukuoka, 814-0193, Japan
| | - Akari Terao
- Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Kunitoshi Yamanaka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Yoshimitsu Mizunoe
- Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan.,Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| |
Collapse
|
160
|
Malishev R, Tayeb-Fligelman E, David S, Meijler MM, Landau M, Jelinek R. Reciprocal Interactions between Membrane Bilayers and S. aureus PSMα3 Cross-α Amyloid Fibrils Account for Species-Specific Cytotoxicity. J Mol Biol 2018; 430:1431-1441. [DOI: 10.1016/j.jmb.2018.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
|
161
|
Chu M, Zhou M, Jiang C, Chen X, Guo L, Zhang M, Chu Z, Wang Y. Staphylococcus aureus Phenol-Soluble Modulins α1-α3 Act as Novel Toll-Like Receptor (TLR) 4 Antagonists to Inhibit HMGB1/TLR4/NF-κB Signaling Pathway. Front Immunol 2018; 9:862. [PMID: 29922279 PMCID: PMC5996891 DOI: 10.3389/fimmu.2018.00862] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/06/2018] [Indexed: 01/23/2023] Open
Abstract
Phenol-soluble modulins (PSMs) have recently emerged as key virulence determinants, particularly in highly aggressive Staphylococcus aureus isolates. These peptides contribute to the pathogenesis of S. aureus infections, participating in multiple inflammatory responses. Here, we report a new role for S. aureus PSMs in high mobility group box-1 protein (HMGB1) induced inflammation by modulating toll-like receptor (TLR) 4 pathway. Direct ligation of TLR4 with S. aureus PSMα1–α3 and PSMβ1–β2 was identified by surface plasmon resonance. Remarkably, the binding affinity of TLR4 with HMGB1 was attenuated by PSMα1–α3. Further study revealed that PSMα1–α3 directly inhibited HMGB1-induced NF-κB activation and proinflammatory cytokines production in vitro using HEK-Blue hTLR4 cells and THP-1 cells. To analyze the molecular interactions between PSMs and TLR4, blast similarity search was performed and identified that PSMα1 and PSMβ2 were ideal templates for homology modeling. The three-dimensional structures of PSMα2, PSMα4, PSMβ1, and δ-toxin were successfully generated with MODELLER, and further refined using CHARMm. PSMs docking into TLR4 were done using ZDOCK, indicating that PSMα1–α3 compete with HMGB1 for interacting with the surrounding residues (336–477) of TLR4 domain. Our study reveals that S. aureus PSMα1–α3 can act as novel TLR4 antagonists, which account at least in part for the staphylococcal immune evasion. Modulation of this process will lead to new therapeutic strategies against S. aureus infections.
Collapse
Affiliation(s)
- Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Mingya Zhou
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | | | - Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Likai Guo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Mingbo Zhang
- Pharmacy Departments, Liao Ning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhengyun Chu
- Pharmacy Departments, Liao Ning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| |
Collapse
|
162
|
Di Martino P. Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol 2018; 4:274-288. [PMID: 31294215 PMCID: PMC6604936 DOI: 10.3934/microbiol.2018.2.274] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/23/2018] [Indexed: 11/20/2022] Open
Abstract
One of the key elements in the establishment and maintenance of the biofilm structure and properties is the extracellular matrix. The extracellular matrix is composed of water and extracellular polymeric substances (EPS): primarily polysaccharides, proteins and DNA. Characterization of the matrix requires component identification, as well as determination of the relative concentration of EPS constituents, including their physicochemical properties and descriptions of their interactions. Several types of experimental approaches with varying degrees of destructiveness can be utilized for this characterization. The analysis of biofilm by infrared spectroscopy gives information about the chemical content of the matrix and the proportions of different EPS. The sensitivity of a biofilm to hydrolytic enzymes targeting different EPS gives insight into the composition of the matrix and the involvement of matrix components in the integrity of the structure. Using both chemical and physical treatments, extraction and purification of EPS from the biofilm also provides a means of determining matrix composition. Purified and/or artificial EPS can be used to obtain artificial matrices and to study their properties. Using examples from the literature, this review will illustrate selected technologies useful in the study of EPS that provide a better understanding of the structure-function relationships in extracellular matrix, and thus the structure-function relationships of the biofilm phenotype.
Collapse
Affiliation(s)
- Patrick Di Martino
- Groupe Biofilm et Comportement Microbien aux Interfaces, Laboratoire ERRMECe-EA1391, Université de Cergy-Pontoise, rue Descartes site de Neuville-sur-Oise 95031 Cergy-Pontoise, cedex France
| |
Collapse
|
163
|
Malishev R, Abbasi R, Jelinek R, Chai L. Bacterial Model Membranes Reshape Fibrillation of a Functional Amyloid Protein. Biochemistry 2018; 57:5230-5238. [DOI: 10.1021/acs.biochem.8b00002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ravit Malishev
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Razan Abbasi
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Liraz Chai
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|
164
|
Burgui S, Gil C, Solano C, Lasa I, Valle J. A Systematic Evaluation of the Two-Component Systems Network Reveals That ArlRS Is a Key Regulator of Catheter Colonization by Staphylococcus aureus. Front Microbiol 2018; 9:342. [PMID: 29563900 PMCID: PMC5845881 DOI: 10.3389/fmicb.2018.00342] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/12/2018] [Indexed: 12/29/2022] Open
Abstract
Two-component systems (TCS) are modular signal transduction pathways that allow cells to adapt to prevailing environmental conditions by modifying cellular physiology. Staphylococcus aureus has 16 TCSs to adapt to the diverse microenvironments encountered during its life cycle, including host tissues and implanted medical devices. S. aureus is particularly prone to cause infections associated to medical devices, whose surfaces coated by serum proteins constitute a particular environment. Identification of the TCSs involved in the adaptation of S. aureus to colonize and survive on the surface of implanted devices remains largely unexplored. Here, using an in vivo catheter infection model and a collection of mutants in each non-essential TCS of S. aureus, we investigated the requirement of each TCS for colonizing the implanted catheter. Among the 15 mutants in non-essential TCSs, the arl mutant exhibited the strongest deficiency in the capacity to colonize implanted catheters. Moreover, the arl mutant was the only one presenting a major deficit in PNAG production, the main exopolysaccharide of the S. aureus biofilm matrix whose synthesis is mediated by the icaADBC locus. Regulation of PNAG synthesis by ArlRS occurred through repression of IcaR, a transcriptional repressor of icaADBC operon expression. Deficiency in catheter colonization was restored when the arl mutant was complemented with the icaADBC operon. MgrA, a global transcriptional regulator downstream ArlRS that accounts for a large part of the arlRS regulon, was unable to restore PNAG expression and catheter colonization deficiency of the arlRS mutant. These findings indicate that ArlRS is the key TCS to biofilm formation on the surface of implanted catheters and that activation of PNAG exopolysaccharide production is, among the many traits controlled by the ArlRS system, a major contributor to catheter colonization.
Collapse
Affiliation(s)
- Saioa Burgui
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Carmen Gil
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Cristina Solano
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Jaione Valle
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
165
|
Peterson CP, Sauer C, Chatfield CH. The Extracellular Polymeric Substances of Legionella pneumophila Biofilms Contain Amyloid Structures. Curr Microbiol 2018; 75:736-744. [PMID: 29468303 DOI: 10.1007/s00284-018-1440-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/16/2018] [Indexed: 12/25/2022]
Abstract
Human infection by bacteria of the genus Legionella most often result in the pneumonia known as Legionnaires Disease. Legionella is found as a resident of adherent biofilms in man-made water systems. Disinfection efforts to prevent Legionella infections require a better understanding of the structures that promote Legionella surface attachment and biofilm colonization. Various enzymatic treatments, including multiple carbohydrate-targeting mixtures, failed to disrupt Legionella biofilms, despite the presence of carbohydrates in the biofilms as shown by biochemical methods and concanavalin-A lectin staining. Moreover, Legionella biofilms contained amyloids as detected by three microscopic staining methods (congo red, thioflavin T, and the amyloid-specific antibody WO2). Amyloid structures were seen in biofilms of both L. pneumophila and L. longbeachae, the two Legionella species most associated with human infection. Inhibition of amyloid assembly by congo red and thioflavin T limited both self-aggregation and surface attachment of L. pneumophila, indicating that functional amyloid structures have a key role in initial biofilm formation by these pathogenic bacteria.
Collapse
Affiliation(s)
- Casey P Peterson
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| | - Cassidy Sauer
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| | | |
Collapse
|
166
|
Bojer MS, Lindemose S, Vestergaard M, Ingmer H. Quorum Sensing-Regulated Phenol-Soluble Modulins Limit Persister Cell Populations in Staphylococcus aureus. Front Microbiol 2018; 9:255. [PMID: 29515541 PMCID: PMC5826201 DOI: 10.3389/fmicb.2018.00255] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 11/15/2022] Open
Abstract
Incomplete killing of bacterial pathogens by antibiotics is an underlying cause of treatment failure and accompanying complications. Among those avoiding chemotherapy are persisters being individual cells in a population that for extended periods of time survive high antibiotic concentrations proposedly by being in a quiescent state refractory to antibiotic killing. While investigating the human pathogen Staphylococcus aureus and the influence of growth phase on persister formation, we noted that spent supernatants of stationary phase cultures of S. aureus or S. epidermidis, but not of distantly related bacteria, significantly reduced the persister cell frequency upon ciprofloxacin challenge when added to exponentially growing and stationary phase S. aureus cells. Curiously, the persister reducing activity of S. aureus supernatants was also effective against persisters formed by either S. carnosus or Listeria monocytogenes. The persister reducing component, which resisted heat but not proteases and was produced in the late growth phase in an agr quorum-sensing dependent manner, was identified to be the phenol-soluble modulin (PSM) toxins. S. aureus express several PSMs, each with distinct cytolytic and antimicrobial properties; however, the persister reducing activity was specifically linked to synthesis of the PSMα family. Correspondingly, a high-persister phenotype of a PSMα mutant was observed upon fluoroquinolone or aminoglycoside challenge, demonstrating that the persister reducing activity of PSMs can be endogenously synthesized or extrinsically added. Given that PSMs have been associated with lytic activity against bacterial membranes we propose that PSM toxins increase the susceptibility of persister cells to killing by intracellularly acting antibiotics and that chronic and re-occurring infections with quorum sensing, agr negative mutants may be difficult to treat with antibiotics because of persister cells formed in the absence of PSM toxins.
Collapse
Affiliation(s)
- Martin S. Bojer
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Søren Lindemose
- Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Martin Vestergaard
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Ingmer
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
167
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
168
|
Upadhyay A, Mishra A. Amyloids of multiple species: are they helpful in survival? Biol Rev Camb Philos Soc 2018; 93:1363-1386. [DOI: 10.1111/brv.12399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| |
Collapse
|
169
|
Abstract
Microbial biofilms, which are elaborate and highly resistant microbial aggregates formed on surfaces or medical devices, cause two-thirds of infections and constitute a serious threat to public health. Immunocompromised patients, individuals who require implanted devices, artificial limbs, organ transplants, or external life support and those with major injuries or burns, are particularly prone to become infected. Antibiotics, the mainstay treatments of bacterial infections, have often proven ineffective in the fight against microbes when growing as biofilms, and to date, no antibiotic has been developed for use against biofilm infections. Antibiotic resistance is rising, but biofilm-mediated multidrug resistance transcends this in being adaptive and broad spectrum and dependent on the biofilm growth state of organisms. Therefore, the treatment of biofilms requires drug developers to start thinking outside the constricted "antibiotics" box and to find alternative ways to target biofilm infections. Here, we highlight recent approaches for combating biofilms focusing on the eradication of preformed biofilms, including electrochemical methods, promising antibiofilm compounds and the recent progress in drug delivery strategies to enhance the bioavailability and potency of antibiofilm agents.
Collapse
Affiliation(s)
- Heidi Wolfmeier
- Department of Microbiology and Immunology, Center for Microbial Diseases
and Immunity Research, University of British Columbia, Room 232, 2259
Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Daniel Pletzer
- Department of Microbiology and Immunology, Center for Microbial Diseases
and Immunity Research, University of British Columbia, Room 232, 2259
Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sarah C. Mansour
- Department of Microbiology and Immunology, Center for Microbial Diseases
and Immunity Research, University of British Columbia, Room 232, 2259
Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Robert E. W. Hancock
- Department of Microbiology and Immunology, Center for Microbial Diseases
and Immunity Research, University of British Columbia, Room 232, 2259
Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
170
|
Tayeb-Fligelman E, Tabachnikov O, Moshe A, Goldshmidt-Tran O, Sawaya MR, Coquelle N, Colletier JP, Landau M. The cytotoxic Staphylococcus aureus PSMα3 reveals a cross-α amyloid-like fibril. Science 2017; 355:831-833. [PMID: 28232575 DOI: 10.1126/science.aaf4901] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 12/23/2016] [Accepted: 02/02/2017] [Indexed: 12/31/2022]
Abstract
Amyloids are ordered protein aggregates, found in all kingdoms of life, and are involved in aggregation diseases as well as in physiological activities. In microbes, functional amyloids are often key virulence determinants, yet the structural basis for their activity remains elusive. We determined the fibril structure and function of the highly toxic, 22-residue phenol-soluble modulin α3 (PSMα3) peptide secreted by Staphylococcus aureus PSMα3 formed elongated fibrils that shared the morphological and tinctorial characteristics of canonical cross-β eukaryotic amyloids. However, the crystal structure of full-length PSMα3, solved de novo at 1.45 angstrom resolution, revealed a distinctive "cross-α" amyloid-like architecture, in which amphipathic α helices stacked perpendicular to the fibril axis into tight self-associating sheets. The cross-α fibrillation of PSMα3 facilitated cytotoxicity, suggesting that this assembly mode underlies function in S. aureus.
Collapse
Affiliation(s)
- Einav Tayeb-Fligelman
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Orly Tabachnikov
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Asher Moshe
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Orit Goldshmidt-Tran
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Michael R Sawaya
- Department of Biological Chemistry, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Nicolas Coquelle
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes-CEA-CNRS UMR 5075, Grenoble 38044, France
| | - Jacques-Philippe Colletier
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes-CEA-CNRS UMR 5075, Grenoble 38044, France
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
171
|
The Physiological and Pathological Implications of the Formation of Hydrogels, with a Specific Focus on Amyloid Polypeptides. Biomolecules 2017; 7:biom7040070. [PMID: 28937634 PMCID: PMC5745453 DOI: 10.3390/biom7040070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/30/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
Hydrogels are water-swollen and viscoelastic three-dimensional cross-linked polymeric network originating from monomer polymerisation. Hydrogel-forming polypeptides are widely found in nature and, at a cellular and organismal level, they provide a wide range of functions for the organism making them. Amyloid structures, arising from polypeptide aggregation, can be damaging or beneficial to different types of organisms. Although the best-known amyloids are those associated with human pathologies, this underlying structure is commonly used by higher eukaryotes to maintain normal cellular activities, and also by microbial communities to promote their survival and growth. Amyloidogenesis occurs by nucleation-dependent polymerisation, which includes several species (monomers, nuclei, oligomers, and fibrils). Oligomers of pathological amyloids are considered the toxic species through cellular membrane perturbation, with the fibrils thought to represent a protective sink for toxic species. However, both functional and disease-associated amyloids use fibril cross-linking to form hydrogels. The properties of amyloid hydrogels can be exploited by organisms to fulfil specific physiological functions. Non-physiological hydrogelation by pathological amyloids may provide additional toxic mechanism(s), outside of membrane toxicity by oligomers, such as physical changes to the intracellular and extracellular environments, with wide-spread consequences for many structural and dynamic processes, and overall effects on cell survival.
Collapse
|
172
|
Dragoš A, Kovács ÁT, Claessen D. The Role of Functional Amyloids in Multicellular Growth and Development of Gram-Positive Bacteria. Biomolecules 2017; 7:biom7030060. [PMID: 28783117 PMCID: PMC5618241 DOI: 10.3390/biom7030060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 01/15/2023] Open
Abstract
Amyloid fibrils play pivotal roles in all domains of life. In bacteria, these fibrillar structures are often part of an extracellular matrix that surrounds the producing organism and thereby provides protection to harsh environmental conditions. Here, we discuss the role of amyloid fibrils in the two distant Gram-positive bacteria, Streptomyces coelicolor and Bacillus subtilis. We describe how amyloid fibrils contribute to a multitude of developmental processes in each of these systems, including multicellular growth and community development. Despite this variety of tasks, we know surprisingly little about how their assembly is organized to fulfill all these roles.
Collapse
Affiliation(s)
- Anna Dragoš
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Ákos T Kovács
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark.
| | - Dennis Claessen
- Institute of Biology, Leiden University, 2333BE Leiden, The Netherlands.
| |
Collapse
|
173
|
Pollitt EJG, Diggle SP. Defining motility in the Staphylococci. Cell Mol Life Sci 2017; 74:2943-2958. [PMID: 28378043 PMCID: PMC5501909 DOI: 10.1007/s00018-017-2507-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/16/2017] [Accepted: 03/14/2017] [Indexed: 01/17/2023]
Abstract
The ability of bacteria to move is critical for their survival in diverse environments and multiple ways have evolved to achieve this. Two forms of motility have recently been described for Staphylococcus aureus, an organism previously considered to be non-motile. One form is called spreading, which is a type of sliding motility and the second form involves comet formation, which has many observable characteristics associated with gliding motility. Darting motility has also been observed in Staphylococcus epidermidis. This review describes how motility is defined and how we distinguish between passive and active motility. We discuss the characteristics of the various forms of Staphylococci motility, the molecular mechanisms involved and the potential future research directions.
Collapse
Affiliation(s)
- Eric J G Pollitt
- Department of Biomedical Science, Western Bank, University of Sheffield, Sheffield, UK
| | - Stephen P Diggle
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
174
|
Abstract
The staphylococci comprise a diverse genus of Gram-positive, nonmotile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. Staphylococcus aureus and Staphylococcus epidermidis are major sources of hospital-acquired infections and are the most common causes of surgical site infections and medical device-associated bloodstream infections. The ability of staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device infections, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the staphylococcus genus and how this mode of growth impacts the host.
Collapse
|
175
|
Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract. Microbiol Spectr 2017; 4. [PMID: 27227294 DOI: 10.1128/microbiolspec.uti-0012-2012] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gram-positive bacteria are a common cause of urinary-tract infection (UTI), particularly among individuals who are elderly, pregnant, or who have other risk factors for UTI. Here we review the epidemiology, virulence mechanisms, and host response to the most frequently isolated Gram-positive uropathogens: Staphylococcus saprophyticus, Enterococcus faecalis, and Streptococcus agalactiae. We also review several emerging, rare, misclassified, and otherwise underreported Gram-positive pathogens of the urinary tract including Aerococcus, Corynebacterium, Actinobaculum, and Gardnerella. The literature strongly suggests that urologic diseases involving Gram-positive bacteria may be easily overlooked due to limited culture-based assays typically utilized for urine in hospital microbiology laboratories. Some UTIs are polymicrobial in nature, often involving one or more Gram-positive bacteria. We herein review the risk factors and recent evidence for mechanisms of bacterial synergy in experimental models of polymicrobial UTI. Recent experimental data has demonstrated that, despite being cleared quickly from the bladder, some Gram-positive bacteria can impact pathogenic outcomes of co-infecting organisms. When taken together, the available evidence argues that Gram-positive bacteria are important uropathogens in their own right, but that some can be easily overlooked because they are missed by routine diagnostic methods. Finally, a growing body of evidence demonstrates that a surprising variety of fastidious Gram-positive bacteria may either reside in or be regularly exposed to the urinary tract and further suggests that their presence is widespread among women, as well as men. Experimental studies in this area are needed; however, there is a growing appreciation that the composition of bacteria found in the bladder could be a potentially important determinant in urologic disease, including susceptibility to UTI.
Collapse
|
176
|
Bleem A, Francisco R, Bryers JD, Daggett V. Designed α-sheet peptides suppress amyloid formation in Staphylococcus aureus biofilms. NPJ Biofilms Microbiomes 2017; 3:16. [PMID: 28685098 PMCID: PMC5495782 DOI: 10.1038/s41522-017-0025-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
Nosocomial infections affect hundreds of millions of patients worldwide each year, and ~60% of these infections are associated with biofilm formation on an implanted medical device. Biofilms are dense communities of microorganisms in which cells associate with surfaces and each other using a self-produced extracellular matrix composed of proteins, polysaccharides, and genetic material. Proteins in the extracellular matrix take on a variety of forms, but here we focus on functional amyloid structures. Amyloids have long been associated with protein misfolding and neurodegenerative diseases, but recent research has demonstrated that numerous bacterial species utilize the amyloid fold to fortify the biofilm matrix and resist disassembly. Consequently, these functional amyloids, in particular the soluble oligomeric intermediates formed during amyloidogenesis, represent targets to destabilize the extracellular matrix and interrupt biofilm formation. Our previous studies suggested that these amyloidogenic intermediates adopt a non-standard structure, termed "α-sheet", as they aggregate into soluble oligomeric species. This led to the design of complementary α-sheet peptides as anti-α-sheet inhibitors; these designs inhibit amyloidogenesis in three unrelated mammalian disease-associated systems through preferential binding of soluble oligomers. Here we show that these anti-α-sheet peptides inhibit amyloid formation in Staphylococcus aureus biofilms. Furthermore, they inhibit aggregation of pure, synthetic phenol soluble modulin α1, a major component of Staphylococcus aureus functional amyloids. As it aggregates phenol soluble modulin α1 adopts α-helix then α-sheet and finally forms β-sheet fibrils. The binding of the designed peptide inhibitors coincides with the formation of α-sheet.
Collapse
Affiliation(s)
- Alissa Bleem
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013 USA
| | - Robyn Francisco
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013 USA
| | - James D. Bryers
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013 USA
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013 USA
| |
Collapse
|
177
|
Genome-wide screen for genes involved in eDNA release during biofilm formation by Staphylococcus aureus. Proc Natl Acad Sci U S A 2017; 114:E5969-E5978. [PMID: 28674000 DOI: 10.1073/pnas.1704544114] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is a leading cause of both nosocomial and community-acquired infection. Biofilm formation at the site of infection reduces antimicrobial susceptibility and can lead to chronic infection. During biofilm formation, a subset of cells liberate cytoplasmic proteins and DNA, which are repurposed to form the extracellular matrix that binds the remaining cells together in large clusters. Using a strain that forms robust biofilms in vitro during growth under glucose supplementation, we carried out a genome-wide screen for genes involved in the release of extracellular DNA (eDNA). A high-density transposon insertion library was grown under biofilm-inducing conditions, and the relative frequency of insertions was compared between genomic DNA (gDNA) collected from cells in the biofilm and eDNA from the matrix. Transposon insertions into genes encoding functions necessary for eDNA release were identified by reduced representation in the eDNA. On direct testing, mutants of some of these genes exhibited markedly reduced levels of eDNA and a concomitant reduction in cell clustering. Among the genes with robust mutant phenotypes were gdpP, which encodes a phosphodiesterase that degrades the second messenger cyclic-di-AMP, and xdrA, the gene for a transcription factor that, as revealed by RNA-sequencing analysis, influences the expression of multiple genes, including many involved in cell wall homeostasis. Finally, we report that growth in biofilm-inducing medium lowers cyclic-di-AMP levels and does so in a manner that depends on the gdpP phosphodiesterase gene.
Collapse
|
178
|
Abstract
Curli are functional amyloids produced by proteobacteria like Escherichia coli as part of the extracellular matrix that holds cells together into biofilms. The molecular events that occur during curli nucleation and fiber extension remain largely unknown. Combining observations from curli amyloidogenesis in bulk solutions with real-time in situ nanoscopic imaging at the single-fiber level, we show that curli display polar growth, and we detect two kinetic regimes of fiber elongation. Single fibers exhibit stop-and-go dynamics characterized by bursts of steady-state growth alternated with periods of stagnation. At high subunit concentrations, fibers show constant, unperturbed burst growth. Curli follow a one-step nucleation process in which monomers contemporaneously fold and oligomerize into minimal fiber units that have growth characteristics identical to those of the mature fibrils. Kinetic data and interaction studies of curli fibrillation in the presence of the natural inhibitor CsgC show that the inhibitor binds curli fibers and predominantly acts at the level of fiber elongation.
Collapse
|
179
|
Marbach H, Boakes E, Lynham S, Ward M, Otter JA, Edgeworth JD. Identification of a distinctive phenotype for endocarditis-associated clonal complex 22 MRSA isolates with reduced vancomycin susceptibility. J Med Microbiol 2017; 66:584-591. [PMID: 28504620 DOI: 10.1099/jmm.0.000470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE We previously identified an association between CC22 meticillin-resistant Staphylococcus aureus (MRSA) bloodstream infection isolates with an elevated vancomycin MIC (V-MIC) in the susceptible range (1.5-2 mg l-1) and endocarditis. This study explores whether these isolates have a specific phenotype consistent with the clinical findings. METHODOLOGY CC22 and CC30 MRSA isolates with high (1.5-2 mg l-1) and low (≤0.5 mg l-1) V-MICs were tested for fibrinogen and fibronectin binding, virulence in a Galleria mellonella caterpillar model, phenol soluble modulin production and accessory gene regulator (agr) expression. RESULTS CC22 high V-MIC, but not CC30 high V-MIC isolates, showed sustained fibrinogen binding through a stationary growth phase and increased PSM production, specifically PSMα1, compared with respective low V-MIC isolates. Expression was lower in both CC22 and CC30 high V-MIC isolates compared with respective low V-MIC isolates, although there was no associated reduction in virulence in the caterpillar model. CONCLUSIONS The identification of a distinct phenotype for CC22 high V-MIC isolates supports the hypothesis that bacterial factors contribute to the mechanism underlying their association with endocarditis. Further study of these isolates could shed light on the molecular mechanism of endocarditis in humans.
Collapse
Affiliation(s)
- Helene Marbach
- Centre for Clinical Infection and Diagnostics Research (CIDR), Department of Infectious Diseases, King's College London & Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Eve Boakes
- Centre for Clinical Infection and Diagnostics Research (CIDR), Department of Infectious Diseases, King's College London & Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, London, UK
| | - Malcolm Ward
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, London, UK
| | - Jonathan A Otter
- Centre for Clinical Infection and Diagnostics Research (CIDR), Department of Infectious Diseases, King's College London & Guy's and St. Thomas' NHS Foundation Trust, London, UK.,NIHR Health Protection Research Unit (HPRU) in HCAIs and AMR, Imperial College London and Imperial College Healthcare NHS Trust, Infection Prevention and Control, London, UK
| | - Jonathan D Edgeworth
- Centre for Clinical Infection and Diagnostics Research (CIDR), Department of Infectious Diseases, King's College London & Guy's and St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
180
|
Besingi RN, Wenderska IB, Senadheera DB, Cvitkovitch DG, Long JR, Wen ZT, Brady LJ. Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c. MICROBIOLOGY-SGM 2017; 163:488-501. [PMID: 28141493 DOI: 10.1099/mic.0.000443] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amyloids have been identified as functional components of the extracellular matrix of bacterial biofilms. Streptococcus mutans is an established aetiologic agent of dental caries and a biofilm dweller. In addition to the previously identified amyloidogenic adhesin P1 (also known as AgI/II, PAc), we show that the naturally occurring antigen A derivative of S. mutans wall-associated protein A (WapA) and the secreted protein SMU_63c can also form amyloid fibrils. P1, WapA and SMU_63c were found to significantly influence biofilm development and architecture, and all three proteins were shown by immunogold electron microscopy to reside within the fibrillar extracellular matrix of the biofilms. We also showed that SMU_63c functions as a negative regulator of biofilm cell density and genetic competence. In addition, the naturally occurring C-terminal cleavage product of P1, C123 (also known as AgII), was shown to represent the amyloidogenic moiety of this protein. Thus, P1 and WapA both represent sortase substrates that are processed to amyloidogenic truncation derivatives. Our current results suggest a novel mechanism by which certain cell surface adhesins are processed and contribute to the amyloidogenic capability of S. mutans. We further demonstrate that the polyphenolic small molecules tannic acid and epigallocatechin-3-gallate, and the benzoquinone derivative AA-861, which all inhibit amyloid fibrillization of C123 and antigen A in vitro, also inhibit S. mutans biofilm formation via P1- and WapA-dependent mechanisms, indicating that these proteins serve as therapeutic targets of anti-amyloid compounds.
Collapse
Affiliation(s)
- Richard N Besingi
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | - Iwona B Wenderska
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Dilani B Senadheera
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Dennis G Cvitkovitch
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Zezhang T Wen
- Department of Comprehensive Dentistry and Biomaterials and Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - L Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
181
|
Komodo dragon-inspired synthetic peptide DRGN-1 promotes wound-healing of a mixed-biofilm infected wound. NPJ Biofilms Microbiomes 2017. [PMID: 28649410 PMCID: PMC5445593 DOI: 10.1038/s41522-017-0017-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cationic antimicrobial peptides are multifunctional molecules that have a high potential as therapeutic agents. We have identified a histone H1-derived peptide from the Komodo dragon (Varanus komodoensis), called VK25. Using this peptide as inspiration, we designed a synthetic peptide called DRGN-1. We evaluated the antimicrobial and anti-biofilm activity of both peptides against Pseudomonas aeruginosa and Staphylococcus aureus. DRGN-1, more than VK25, exhibited potent antimicrobial and anti-biofilm activity, and permeabilized bacterial membranes. Wound healing was significantly enhanced by DRGN-1 in both uninfected and mixed biofilm (Pseudomonas aeruginosa and Staphylococcus aureus)-infected murine wounds. In a scratch wound closure assay used to elucidate the wound healing mechanism, the peptide promoted the migration of HEKa keratinocyte cells, which was inhibited by mitomycin C (proliferation inhibitor) and AG1478 (epidermal growth factor receptor inhibitor). DRGN-1 also activated the EGFR-STAT1/3 pathway. Thus, DRGN-1 is a candidate for use as a topical wound treatment. Wound infections are a major concern; made increasingly complicated by the emerging, rapid spread of bacterial resistance. The novel synthetic peptide DRGN-1 (inspired by a peptide identified from Komodo dragon) exhibits pathogen-directed and host-directed activities in promoting the clearance and healing of polymicrobial (Pseudomonas aeruginosa & Staphylococcus aureus) biofilm infected wounds. The effectiveness of this peptide cannot be attributed solely to its ability to act upon the bacteria and disrupt the biofilm, but also reflects the peptide’s ability to promsote keratinocyte migration. When applied in a murine model, infected wounds treated with DRGN-1 healed significantly faster than did untreated wounds, or wounds treated with other peptides. The host-directed mechanism of action was determined to be via the EGFR-STAT1/3 pathway. The pathogen-directed mechanism of action was determined to be via anti-biofilm activity and antibacterial activity through membrane permeabilization. This novel peptide may have potential as a future therapeutic for treating infected wounds. A synthetic peptide based on a natural molecule found in the Komodo dragon promotes healing of biofilm-infected wounds. Peptides are small protein-like molecules. Monique van Hoek, Barney Bishop and colleagues at George Mason University in Virginia, USA, isolated a natural peptide with some antimicrobial properties from Komodo dragon plasma. They designed a modified synthetic version with rearranged amino acids, named DRGN-1 in recognition of the “Komodo dragon” peptide that inspired it. In preliminary trials, DRGN-1 enhanced the healing of biofilm-infected wounds in mice, and was more effective than the natural peptide. This may be due to both bacterial- and host-directed effects. DRGN-1 reduced biofilm and bacterial number while increasing wound closure. The authors suggest DRGN-1 could be developed into a therapeutic agent that may treat the biofilm-infected wounds that are increasingly resistant to conventional antibiotics.
Collapse
|
182
|
Lopes LAA, Dos Santos Rodrigues JB, Magnani M, de Souza EL, de Siqueira-Júnior JP. Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes. Microb Pathog 2017; 107:193-197. [PMID: 28365326 DOI: 10.1016/j.micpath.2017.03.033] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 12/16/2022]
Abstract
This study evaluated the efficacy of glycone (myricitrin, hesperidin and phloridzin) and aglycone flavonoids (myricetin, hesperetin and phloretin) in inhibiting biofilm formation by Staphylococcus aureus RN4220 and S. aureus SA1199B that overexpress the msrA and norA efflux protein genes, respectively. The minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC50 - defined as the lowest concentration that resulted in ≥50% inhibition of biofilm formation) of flavonoids were determined using microdilution in broth procedures. The flavonoids showed MIC >1024 μg/mL against S. aureus RN4220 and S. aureus SA1199B; however, these compounds at lower concentrations (1-256 μg/mL) showed inhibitory effects on biofilm formation by these strains. Aglycone flavonoids showed lower MBIC50 values than their respective glycone forms. The lowest MBIC50 values (1 and 4 μg/mL) were observed against S. aureus RN4220. Myricetin, hesperetin and phloretin exhibited biofilm formation inhibition >70% for S. aureus RN4220, and lower biofilm formation inhibition against S. aureus SA1199B. These results indicate that sub-MICs of the tested flavonoids inhibit biofilm formation by S. aureus strains that overexpress efflux protein genes. These effects are more strongly established by aglycone flavonoids.
Collapse
Affiliation(s)
- Laênia Angélica Andrade Lopes
- Laboratório de Genética de Microrganismos, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Jéssica Bezerra Dos Santos Rodrigues
- Laboratório de Processos Microbianos em Alimentos, Departamento de Engenharia de Alimentos, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Marciane Magnani
- Laboratório de Processos Microbianos em Alimentos, Departamento de Engenharia de Alimentos, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Evandro Leite de Souza
- Laboratório de Microbiologia de Alimentos, Departamento de Nutrição, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
| | - José P de Siqueira-Júnior
- Laboratório de Genética de Microrganismos, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
183
|
García-Bayona L, Guo MS, Laub MT. Contact-dependent killing by Caulobacter crescentus via cell surface-associated, glycine zipper proteins. eLife 2017; 6:e24869. [PMID: 28323618 PMCID: PMC5380434 DOI: 10.7554/elife.24869] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
Most bacteria are in fierce competition with other species for limited nutrients. Some bacteria can kill nearby cells by secreting bacteriocins, a diverse group of proteinaceous antimicrobials. However, bacteriocins are typically freely diffusible, and so of little value to planktonic cells in aqueous environments. Here, we identify an atypical two-protein bacteriocin in the α-proteobacterium Caulobacter crescentus that is retained on the surface of producer cells where it mediates cell contact-dependent killing. The bacteriocin-like proteins CdzC and CdzD harbor glycine-zipper motifs, often found in amyloids, and CdzC forms large, insoluble aggregates on the surface of producer cells. These aggregates can drive contact-dependent killing of other organisms, or Caulobacter cells not producing the CdzI immunity protein. The Cdz system uses a type I secretion system and is unrelated to previously described contact-dependent inhibition systems. However, Cdz-like systems are found in many bacteria, suggesting that this form of contact-dependent inhibition is common.
Collapse
Affiliation(s)
- Leonor García-Bayona
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Graduate Program in Microbiology, Massachusetts Institute of Technology, Cambridge, United States
| | - Monica S Guo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
184
|
Miao J, Liang Y, Chen L, Wang W, Wang J, Li B, Li L, Chen D, Xu Z. Formation and development ofStaphylococcusbiofilm: With focus on food safety. J Food Saf 2017. [DOI: 10.1111/jfs.12358] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jian Miao
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
| | - Yanrui Liang
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
| | - Lequn Chen
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
| | - Wenxin Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
| | - Jingwen Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
| | - Bing Li
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; Guangzhou China
| | - Lin Li
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; Guangzhou China
| | - Dingqiang Chen
- Department of Laboratory Medicine; First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - Zhenbo Xu
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
- Department of Microbial Pathogenesis; University of Maryland; Baltimore
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; Guangzhou China
| |
Collapse
|
185
|
Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol 2017; 104:365-376. [PMID: 28142193 DOI: 10.1111/mmi.13634] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 12/11/2022]
Abstract
Chronic biofilm-associated infections caused by Staphylococcus aureus often lead to significant increases in morbidity and mortality, particularly when associated with indwelling medical devices. This has triggered a great deal of research attempting to understand the molecular mechanisms that control S. aureus biofilm formation and the basis for the recalcitrance of these multicellular structures to antibiotic therapy. The purpose of this review is to summarize our current understanding of S. aureus biofilm development, focusing on the description of a newly-defined, five-stage model of biofilm development and the mechanisms required for each stage. Importantly, this model includes an alternate view of the processes involved in microcolony formation in S. aureus and suggests that these structures originate as a result of stochastically regulated metabolic heterogeneity and proliferation within a maturing biofilm population, rather than a subtractive process involving the release of cell clusters from a thick, unstructured biofilm. Importantly, it is proposed that this new model of biofilm development involves the genetically programmed generation of metabolically distinct subpopulations of cells, resulting in an overall population that is better able to adapt to rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Derek E Moormeier
- Center for Staphylococcal Research, Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kenneth W Bayles
- Center for Staphylococcal Research, Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
186
|
Mashruwala AA, Guchte AVD, Boyd JM. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus. eLife 2017; 6. [PMID: 28221135 PMCID: PMC5380435 DOI: 10.7554/elife.23845] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/20/2017] [Indexed: 01/25/2023] Open
Abstract
Biofilms are communities of microorganisms attached to a surface or each other. Biofilm-associated cells are the etiologic agents of recurrent Staphylococcus aureus infections. Infected human tissues are hypoxic or anoxic. S. aureus increases biofilm formation in response to hypoxia, but how this occurs is unknown. In the current study we report that oxygen influences biofilm formation in its capacity as a terminal electron acceptor for cellular respiration. Genetic, physiological, or chemical inhibition of respiratory processes elicited increased biofilm formation. Impaired respiration led to increased cell lysis via divergent regulation of two processes: increased expression of the AtlA murein hydrolase and decreased expression of wall-teichoic acids. The AltA-dependent release of cytosolic DNA contributed to increased biofilm formation. Further, cell lysis and biofilm formation were governed by the SrrAB two-component regulatory system. Data presented support a model wherein SrrAB-dependent biofilm formation occurs in response to the accumulation of reduced menaquinone. DOI:http://dx.doi.org/10.7554/eLife.23845.001 Millions of bacteria live on the human body. Generally these bacteria co-exist with us peacefully, but sometimes certain bacteria may enter the body and cause infections, such as gum disease or a bone infection called osteomyelitis. Many of these infections are thought to occur when the bacteria become able to form complex communities called biofilms. Bacteria living in a biofilm cooperate and make lifestyle choices as a community, so in this way, they behave like a single organism containing many cells. A sticky glue-like material called the matrix holds the bacteria in a biofilm together. This matrix protects the bacteria in the biofilm from both the human immune system and antibiotics, allowing infections to develop and making them difficult to treat. Previous research has shown that the supply and level of oxygen in infected tissues decreases as an infection gets worse. One bacterium that typically lives peacefully on our bodies, called Staphylococcus aureus, can sometimes cause serious biofilm-associated infections. S. aureus forms biofilms more readily when oxygen is in short supply, but it was not known how these biofilms form. Understanding how S. aureus forms biofilms could help scientists develop better treatments for bacterial infections. Most bacterial cells have a cell wall to provide them with structural support. Mashruwala et al. found that, when oxygen levels are low, S. aureus decreases the production of a type of sugar that makes up the cell wall. At the same time, the bacteria produce more of an enzyme that breaks down cell walls. Together, these processes cause some of the bacteria cells to break open. The contents of these broken cells, including their DNA, help form the matrix that will hold together and protect the other bacterial cells in the biofilm. The experiments also identified a protein called SrrAB that switches on the process that ruptures the cells when oxygen is low. The findings of Mashruwala et al. show how bacteria grown in the laboratory form biofilms when they are starved of oxygen. The next steps following on from this work are to find out whether the same thing happens when bacteria infect animals and whether drugs that block the rupturing of bacterial cells could be used to treat infections. DOI:http://dx.doi.org/10.7554/eLife.23845.002
Collapse
Affiliation(s)
- Ameya A Mashruwala
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| | - Adriana van de Guchte
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| |
Collapse
|
187
|
Figueiredo AMS, Ferreira FA, Beltrame CO, Côrtes MF. The role of biofilms in persistent infections and factors involved in ica-independent biofilm development and gene regulation in Staphylococcus aureus. Crit Rev Microbiol 2017; 43:602-620. [PMID: 28581360 DOI: 10.1080/1040841x.2017.1282941] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Staphylococcus aureus biofilms represent a unique micro-environment that directly contribute to the bacterial fitness within hospital settings. The accumulation of this structure on implanted medical devices has frequently caused the development of persistent and chronic S. aureus-associated infections, which represent an important social and economic burden worldwide. ica-independent biofilms are composed of an assortment of bacterial products and modulated by a multifaceted and overlapping regulatory network; therefore, biofilm composition can vary among S. aureus strains. In the microniches formed by biofilms-produced by a number of bacterial species and composed by different structural components-drug refractory cell subpopulations with distinct physiological characteristics can emerge and result in therapeutic failures in patients with recalcitrant bacterial infections. In this review, we highlight the importance of biofilms in the development of persistence and chronicity in some S. aureus diseases, the main molecules associated with ica-independent biofilm development and the regulatory mechanisms that modulate ica-independent biofilm production, accumulation, and dispersion.
Collapse
Affiliation(s)
- Agnes Marie Sá Figueiredo
- a Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Fabienne Antunes Ferreira
- b Departamento de Microbiologia, Imunologia e Parasitologia , Campus Universitário Setor F, Bloco A. Florianópolis, Universidade Federal de Santa Catarina , Florianopolis , Brazil
| | - Cristiana Ossaille Beltrame
- a Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Marina Farrel Côrtes
- a Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| |
Collapse
|
188
|
Sunde M, Pham CLL, Kwan AH. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins. Annu Rev Biochem 2017; 86:585-608. [PMID: 28125290 DOI: 10.1146/annurev-biochem-061516-044847] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.
Collapse
Affiliation(s)
- Margaret Sunde
- Discipline of Pharmacology, School of Medical Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia; ,
| | - Chi L L Pham
- Discipline of Pharmacology, School of Medical Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia; ,
| | - Ann H Kwan
- School of Life and Environmental Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia;
| |
Collapse
|
189
|
Iqbal Z, Seleem MN, Hussain HI, Huang L, Hao H, Yuan Z. Comparative virulence studies and transcriptome analysis of Staphylococcus aureus strains isolated from animals. Sci Rep 2016; 6:35442. [PMID: 27739497 PMCID: PMC5064352 DOI: 10.1038/srep35442] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/29/2016] [Indexed: 12/13/2022] Open
Abstract
Several studies have been conducted to check the prevalence of methicillin-resistant strains of Staphylococcus aureus (MRSA) in animals and animal-derived food products but limited data are available regarding their virulence and associated gene expression profile. In the present study, antibiotic resistance and virulence of MRSA and methicillin-sensitive S. aureus animal isolates were determined in vitro by agar dilution, biofilm formation, adhesion, invasion and intracellular survivability assays. In addition, the pathogenicity of these isolates was examined in a murine model of S. aureus sepsis. MRSA1679a, a strain isolated from chicken, was observed to be highly virulent, in cell culture and in mouse model, and exhibited extensive resistant profile. Comparative gene expression profile of MRSA1679a and the reference human MRSA strain (ATCC 29213) was performed using Illumina-based transcriptome and RT-qPCR analyses. Several virulence elements including 22 toxin genes were detected in MRSA animal-isolate. In addition, we observed enhanced expression of crucial virulence regulators, such as sarA and KdpDE in MRSA animal-isolate compared to the human isolate. Collectively, gene expression profile including several virulence and drug-resistance factors confirmed the unique and highly virulent determinants of the MRSA strain of poultry origin which warrants further attention due to significant threat to public health.
Collapse
Affiliation(s)
- Zahid Iqbal
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Hafiz Iftikhar Hussain
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
190
|
Kizaki H, Omae Y, Tabuchi F, Saito Y, Sekimizu K, Kaito C. Cell-Surface Phenol Soluble Modulins Regulate Staphylococcus aureus Colony Spreading. PLoS One 2016; 11:e0164523. [PMID: 27723838 PMCID: PMC5056675 DOI: 10.1371/journal.pone.0164523] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/27/2016] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus produces phenol-soluble modulins (PSMs), which are amphipathic small peptides with lytic activity against mammalian cells. We previously reported that PSMα1-4 stimulate S. aureus colony spreading, the phenomenon of S. aureus colony expansion on the surface of soft agar plates, whereas δ-toxin (Hld, PSMγ) inhibits colony-spreading activity. In this study, we revealed the underlying mechanism of the opposing effects of PSMα1-4 and δ-toxin in S. aureus colony spreading. PSMα1-4 and δ-toxin are abundant on the S. aureus cell surface, and account for 18% and 8.5% of the total amount of PSMα1-4 and δ-toxin, respectively, in S. aureus overnight cultures. Knockout of PSMα1-4 did not affect the amount of cell surface δ-toxin. In contrast, knockout of δ-toxin increased the amount of cell surface PSMα1-4, and decreased the amount of culture supernatant PSMα1-4. The δ-toxin inhibited PSMα3 and PSMα2 binding to the S. aureus cell surface in vitro. A double knockout strain of PSMα1-4 and δ-toxin exhibited decreased colony spreading compared with the parent strain. Expression of cell surface PSMα1-4, but not culture supernatant PSMα1-4, restored the colony-spreading activity of the PSMα1-4/δ-toxin double knockout strain. Expression of δ-toxin on the cell surface or in the culture supernatant did not restore the colony-spreading activity of the PSMα1-4/δ-toxin double knockout strain. These findings suggest that cell surface PSMα1-4 promote S. aureus colony spreading, whereas δ-toxin suppresses colony-spreading activity by inhibiting PSMα1-4 binding to the S. aureus cell surface.
Collapse
Affiliation(s)
- Hayato Kizaki
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yosuke Omae
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumiaki Tabuchi
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuki Saito
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuhisa Sekimizu
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chikara Kaito
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
191
|
Dissecting the contribution of Staphylococcus aureus α-phenol-soluble modulins to biofilm amyloid structure. Sci Rep 2016; 6:34552. [PMID: 27708403 PMCID: PMC5052566 DOI: 10.1038/srep34552] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/15/2016] [Indexed: 11/23/2022] Open
Abstract
The opportunistic pathogen Staphylococcus aureus is recognized as one of the most frequent causes of biofilm-associated infections. The recently discovered phenol soluble modulins (PSMs) are small α-helical amphipathic peptides that act as the main molecular effectors of staphylococcal biofilm maturation, promoting the formation of an extracellular fibril structure with amyloid-like properties. Here, we combine computational, biophysical and in cell analysis to address the specific contribution of individual PSMs to biofilm structure. We demonstrate that despite their highly similar sequence and structure, contrary to what it was previously thought, not all PSMs participate in amyloid fibril formation. A balance of hydrophobic/hydrophilic forces and helical propensity seems to define the aggregation propensity of PSMs and control their assembly and function. This knowledge would allow to target specifically the amyloid properties of these peptides. In this way, we show that Epigallocatechin-3-gallate (EGCG), the principal polyphenol in green tea, prevents the assembly of amyloidogenic PSMs and disentangles their preformed amyloid fibrils.
Collapse
|
192
|
Macroscopic amyloid fiber formation by staphylococcal biofilm associated SuhB protein. Biophys Chem 2016; 217:32-41. [DOI: 10.1016/j.bpc.2016.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/04/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022]
|
193
|
Modulation of Staphylococcus aureus Biofilm Matrix by Subinhibitory Concentrations of Clindamycin. Antimicrob Agents Chemother 2016; 60:5957-67. [PMID: 27458233 DOI: 10.1128/aac.00463-16] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/13/2016] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus biofilms are extremely difficult to treat. They provide a protected niche for the bacteria, rendering them highly recalcitrant toward host defenses as well as antibiotic treatment. Bacteria within a biofilm are shielded from the immune system by the formation of an extracellular polymeric matrix, composed of polysaccharides, extracellular DNA (eDNA), and proteins. Many antibiotics do not readily penetrate biofilms, resulting in the presence of subinhibitory concentrations of antibiotics. Here, we show that subinhibitory concentrations of clindamycin triggered a transcriptional stress response in S. aureus via the alternative sigma factor B (σ(B)) and upregulated the expression of the major biofilm-associated genes atlA, lrgA, agrA, the psm genes, fnbA, and fnbB Our data suggest that subinhibitory concentrations of clindamycin alter the ability of S. aureus to form biofilms and shift the composition of the biofilm matrix toward higher eDNA content. An understanding of the molecular mechanisms underlying biofilm assembly and dispersal in response to subinhibitory concentrations of clinically relevant antibiotics such as clindamycin is critical to further optimize antibiotic treatment strategies of biofilm-associated S. aureus infections.
Collapse
|
194
|
Di Domenico EG, Toma L, Provot C, Ascenzioni F, Sperduti I, Prignano G, Gallo MT, Pimpinelli F, Bordignon V, Bernardi T, Ensoli F. Development of an in vitro Assay, Based on the BioFilm Ring Test ®, for Rapid Profiling of Biofilm-Growing Bacteria. Front Microbiol 2016; 7:1429. [PMID: 27708625 PMCID: PMC5030256 DOI: 10.3389/fmicb.2016.01429] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/29/2016] [Indexed: 01/05/2023] Open
Abstract
Microbial biofilm represents a major virulence factor associated with chronic and recurrent infections. Pathogenic bacteria embedded in biofilms are highly resistant to environmental and chemical agents, including antibiotics and therefore difficult to eradicate. Thus, reliable tests to assess biofilm formation by bacterial strains as well as the impact of chemicals or antibiotics on biofilm formation represent desirable tools for a most effective therapeutic management and microbiological risk control. Current methods to evaluate biofilm formation are usually time-consuming, costly, and hardly applicable in the clinical setting. The aim of the present study was to develop and assess a simple and reliable in vitro procedure for the characterization of biofilm-producing bacterial strains for future clinical applications based on the BioFilm Ring Test® (BRT) technology. The procedure developed for clinical testing (cBRT) can provide an accurate and timely (5 h) measurement of biofilm formation for the most common pathogenic bacteria seen in clinical practice. The results gathered by the cBRT assay were in agreement with the traditional crystal violet (CV) staining test, according to the κ coefficient test (κ = 0.623). However, the cBRT assay showed higher levels of specificity (92.2%) and accuracy (88.1%) as compared to CV. The results indicate that this procedure offers an easy, rapid and robust assay to test microbial biofilm and a promising tool for clinical microbiology.
Collapse
Affiliation(s)
- Enea G Di Domenico
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Luigi Toma
- Infectious Disease Consultant, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Rome, Italy
| | - Christian Provot
- BioFilm Control, Biopole Clermont Limagne Saint Beauzire, France
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome Rome, Italy
| | - Isabella Sperduti
- Biostatistics, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Rome, Italy
| | - Grazia Prignano
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Maria T Gallo
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Valentina Bordignon
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Thierry Bernardi
- BioFilm Control, Biopole Clermont Limagne Saint Beauzire, France
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| |
Collapse
|
195
|
Abstract
Recent insights into bacterial biofilm matrix structures have induced a paradigm shift toward the recognition of amyloid fibers as common building block structures that confer stability to the exopolysaccharide matrix. Here we describe the functional amyloid systems related to biofilm matrix formation in both Gram-negative and Gram-positive bacteria and recent knowledge regarding the interaction of amyloids with other biofilm matrix components such as extracellular DNA (eDNA) and the host immune system. In addition, we summarize the efforts to identify compounds that target amyloid fibers for therapeutic purposes and recent developments that take advantage of the amyloid structure to engineer amyloid fibers of bacterial biofilm matrices for biotechnological applications.
Collapse
|
196
|
Abstract
The formation of insulin amyloid can dramatically impact glycemic control in patients with diabetes, making it an important therapeutic consideration. In addition, the cost associated with the excess insulin required by patients with amyloid is estimated to be $3K per patient per year, which adds to the growing financial burden of this disease. Insulin amyloid has been observed with every mode of therapeutic insulin administration (infusion, injection and inhalation), and the number of reported cases has increased significantly since 2002. The new cases represent a much broader demographic, and include many patients who have used exclusively human insulin and human insulin analogs. The reason for the increase in case reports is unknown, but this review explores the possibility that changes in patient care, improved differential diagnosis and/or changes in insulin type and insulin delivery systems may be important factors. The goal of this review is to raise key questions that will inspire proactive measures to prevent, identify and treat insulin amyloid. Furthermore, this comprehensive examination of insulin amyloid can provide insight into important considerations for other injectable drugs that are prone to form amyloid deposits.
Collapse
Affiliation(s)
- Melanie R Nilsson
- a Department of Chemistry , McDaniel College , Westminster , MD , USA
| |
Collapse
|
197
|
Gao P, Wang Y, Villanueva I, Ho PL, Davies J, Kao RYT. Construction of a Multiplex Promoter Reporter Platform to Monitor Staphylococcus aureus Virulence Gene Expression and the Identification of Usnic Acid as a Potent Suppressor of psm Gene Expression. Front Microbiol 2016; 7:1344. [PMID: 27625639 PMCID: PMC5004274 DOI: 10.3389/fmicb.2016.01344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/15/2016] [Indexed: 12/05/2022] Open
Abstract
As antibiotic resistance becomes phenomenal, alternative therapeutic strategies for bacterial infections such as anti-virulence treatments have been advocated. We have constructed a total of 20 gfp-luxABCDE dual-reporter plasmids with selected promoters from S. aureus virulence-associated genes. The plasmids were introduced into various S. aureus strains to establish a gfp-lux based multiplex promoter reporter platform for monitoring S. aureus virulence gene expressions in real time to identify factors or compounds that may perturb virulence of S. aureus. The gene expression profiles monitored by luminescence correlated well with qRT-PCR results and extrinsic factors including carbon dioxide and some antibiotics were shown to suppress or induce the expression of virulence factors in this platform. Using this platform, sub-inhibitory ampicillin was shown to be a potent inducer for the expression of many virulence factors in S. aureus. Bacterial adherence and invasion assays using mammalian cells were employed to measure S. aureus virulence induced by ampicillin. The platform was used for screening of natural extracts that perturb the virulence of S. aureus and usnic acid was identified to be a potent repressor for the expression of psm.
Collapse
Affiliation(s)
- Peng Gao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong KongHong Kong, Hong Kong; Li Ka Shing Faculty of Medicine, The Research Centre of Infection and Immunology, The University of Hong KongHong Kong, Hong Kong
| | - Yanli Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong KongHong Kong, Hong Kong; Li Ka Shing Faculty of Medicine, The Research Centre of Infection and Immunology, The University of Hong KongHong Kong, Hong Kong
| | - Iván Villanueva
- Department of Microbiology and Immunology, The University of British Columbia Vancouver, BC, Canada
| | - Pak Leung Ho
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong KongHong Kong, Hong Kong; Li Ka Shing Faculty of Medicine, The Research Centre of Infection and Immunology, The University of Hong KongHong Kong, Hong Kong; State Key Laboratory for Emerging Infectious Disease, The University of Hong KongHong Kong, Hong Kong
| | - Julian Davies
- Department of Microbiology and Immunology, The University of British Columbia Vancouver, BC, Canada
| | - Richard Yi Tsun Kao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong KongHong Kong, Hong Kong; Li Ka Shing Faculty of Medicine, The Research Centre of Infection and Immunology, The University of Hong KongHong Kong, Hong Kong; State Key Laboratory for Emerging Infectious Disease, The University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
198
|
Bleem A, Daggett V. Structural and functional diversity among amyloid proteins: Agents of disease, building blocks of biology, and implications for molecular engineering. Biotechnol Bioeng 2016; 114:7-20. [PMID: 27474784 DOI: 10.1002/bit.26059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/23/2022]
Abstract
Amyloids have long been associated with protein dysfunction and neurodegenerative diseases, but recent research has demonstrated that some organisms utilize the unique properties of the amyloid fold to create functional structures with important roles in biological processes. Additionally, new engineering approaches have taken advantage of amyloid structures for implementation in a wide variety of materials and devices. In this review, the role of amyloid in human disease is discussed and compared to the functional amyloids, which serve a largely structural purpose. We then consider the use of amyloid constructs in engineering applications, including their utility as building blocks for synthetic biology and molecular engineering. Biotechnol. Bioeng. 2017;114: 7-20. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alissa Bleem
- Department of Bioengineering, University of Washington, Box 355013, Seattle, Washington, 98195-5013
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Box 355013, Seattle, Washington, 98195-5013
| |
Collapse
|
199
|
Knowles TPJ, Mezzenga R. Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:6546-61. [PMID: 27165397 DOI: 10.1002/adma.201505961] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/15/2016] [Indexed: 05/20/2023]
Abstract
Proteinaceous materials based on the amyloid core structure have recently been discovered at the origin of biological functionality in a remarkably diverse set of roles, and attention is increasingly turning towards such structures as the basis of artificial self-assembling materials. These roles contrast markedly with the original picture of amyloid fibrils as inherently pathological structures. Here we outline the salient features of this class of functional materials, both in the context of the functional roles that have been revealed for amyloid fibrils in nature, as well as in relation to their potential as artificial materials. We discuss how amyloid materials exemplify the emergence of function from protein self-assembly at multiple length scales. We focus on the connections between mesoscale structure and material function, and demonstrate how the natural examples of functional amyloids illuminate the potential applications for future artificial protein based materials.
Collapse
Affiliation(s)
- Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Switzerland
- Department of Materials Science, ETH Zurich, Switzerland
| |
Collapse
|
200
|
Zapotoczna M, O’Neill E, O'Gara JP. Untangling the Diverse and Redundant Mechanisms of Staphylococcus aureus Biofilm Formation. PLoS Pathog 2016; 12:e1005671. [PMID: 27442433 PMCID: PMC4956047 DOI: 10.1371/journal.ppat.1005671] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Marta Zapotoczna
- Department of Clinical Microbiology, Education and Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eoghan O’Neill
- Department of Clinical Microbiology, Education and Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Microbiology, Connolly Hospital, Dublin, Ireland
| | - James P. O'Gara
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
- * E-mail:
| |
Collapse
|