Fungal iron availability during deep seated candidiasis is defined by a complex interplay involving systemic and local events.
PLoS Pathog 2013;
9:e1003676. [PMID:
24146619 PMCID:
PMC3798425 DOI:
10.1371/journal.ppat.1003676]
[Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/16/2013] [Indexed: 11/19/2022] Open
Abstract
Nutritional immunity – the withholding of nutrients by the host – has long been recognised as an important factor that shapes bacterial-host interactions. However, the dynamics of nutrient availability within local host niches during fungal infection are poorly defined. We have combined laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS), MALDI imaging and immunohistochemistry with microtranscriptomics to examine iron homeostasis in the host and pathogen in the murine model of systemic candidiasis. Dramatic changes in the renal iron landscape occur during disease progression. The infection perturbs global iron homeostasis in the host leading to iron accumulation in the renal medulla. Paradoxically, this is accompanied by nutritional immunity in the renal cortex as iron exclusion zones emerge locally around fungal lesions. These exclusion zones correlate with immune infiltrates and haem oxygenase 1-expressing host cells. This local nutritional immunity decreases iron availability, leading to a switch in iron acquisition mechanisms within mature fungal lesions, as revealed by laser capture microdissection and qRT-PCR analyses. Therefore, a complex interplay of systemic and local events influences iron homeostasis and pathogen-host dynamics during disease progression.
Microbial pathogens must assimilate essential micronutrients to establish infections. During bacterial infection, mammals limit the availability of micronutrients to inhibit the growth of the pathogen – a phenomenon termed ‘nutrient immunity.’ Nutrient immunity has not been examined during disseminated candidiasis. Yet micronutrient assimilation, and iron assimilation in particular, is required for fungal virulence, and life-threatening disseminated fungal infections are recognised as a major medical threat for patients with compromised immune systems. We show that nutrient immunity operates during disseminated Candida albicans infections in mice. Over time immune cells congregate around the fungal lesions in the kidney cortex, driving nutrient immunity and reducing iron availability for the pathogen. The fungus responds by tuning its iron assimilation strategies to the reduced iron levels. Paradoxically, iron levels increase in other parts of the kidney as Candida infections progress. We show that the fungal infection disturbs global iron homeostasis in the host by perturbing red blood cell recycling in the spleen and this is associated with increased iron storage in the kidney medulla. Therefore, fungal infection exerts system-wide effects upon iron homeostasis in the mammalian host, whilst triggering local nutrient immunity to limit the infection.
Collapse