151
|
Lohar S, Jadhav S, Chakravarty R, Chakraborty S, Sarma HD, Dash A. A kit based methodology for convenient formulation of 166Ho-Chitosan complex for treatment of liver cancer. Appl Radiat Isot 2020; 161:109161. [PMID: 32250846 DOI: 10.1016/j.apradiso.2020.109161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/26/2020] [Accepted: 03/27/2020] [Indexed: 11/30/2022]
Abstract
The effectiveness of 166Ho-chitosan complex as a radiopharmaceutical for trans-arterial radiation therapy of liver cancer has been established in clinical trials. We have developed a simple kit-bade strategy for convenient formulation of therapeutically relevant doses of 166Ho-chitosan complex in a hospital radiopharmacy in order to facilitate its widespread utilization. Quality control studies established the suitability of the radiopharmaceutical formulated using the developed strategy for in vivo administration. Biodistribution studies in normal Wistar rats showed excellent retention of the radiopharmaceutical in the liver, thus, paving the way towards utility of this approach in clinical context.
Collapse
Affiliation(s)
- Sharad Lohar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Sachin Jadhav
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| |
Collapse
|
152
|
Reactive oxygen species generation and mitochondrial dysfunction for the initiation of apoptotic cell death in human hepatocellular carcinoma HepG2 cells by a cyclic dipeptide Cyclo(-Pro-Tyr). Mol Biol Rep 2020; 47:3347-3359. [PMID: 32248385 DOI: 10.1007/s11033-020-05407-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
Cyclic dipeptides are increasingly gaining importance as considering its significant biological and pharmacological activities. This study was aimed to investigate the anticancer activity of a dipeptide Cyclo(-Pro-Tyr) (DP) identified from marine sponge Callyspongia fistularis symbiont Bacillus pumilus AMK1 and the underlying apoptotic mechanisms in the liver cancer HepG2 cell lines. MTT assay was done to demonstrate the cytotoxic effect of DP in HepG2 cells and mouse Fibroblast McCoy cells. Initially, apoptosis inducing activity of DP was identified using propidium iodide (PI) and acridine orange/ethidium bromide (AO/EB) dual staining, then it was confirmed by DNA fragmentation assay and western blotting analysis of apoptosis related markers Bax, Bcl-2, cytochrome c, caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP). Rhodamine 123 staining was performed to observe DP effects on the mitochondrial membrane potential (MMP) and DCFH-DA (Dichloro-dihydro-fluorescein diacetate) staining was done to measure the intracellular reactive oxygen species (ROS) levels. The MTT results revealed that DP initiated dose-dependent cytotoxicity in HepG2 cells, but no significant toxicity in mouse Fibroblast McCoy cells treated with DP at the specified concentrations. DP induced apoptosis, which is confirmed by the appearance of apoptotic bodies with PI and AO/EB dual staining, and DNA fragmentation. DP significantly elevated the Bax/Bcl-2 ratio, disrupted the mitochondrial membrane potential (MMP), enhanced cytochrome c release from mitochondria, increased caspase-3 activation, the cleavage of PARP and increased intracellular reactive oxygen species (ROS) levels. Besides this, DP successfully inhibited the phosphorylation of PI3K, AKT and increased PTEN expression. These results suggested DP might have anti-cancer effect by initiating apoptosis through mitochondrial dysfunction and downregulating PI3K/Akt signaling pathway in HepG2 cells with no toxicity effect on normal fibroblast cells. Therefore, DP may be developed as a potential alternative therapeutic agent for treating hepatocellular carcinoma.
Collapse
|
153
|
Huang J, Chen F, Zhong Z, Tan HY, Wang N, Liu Y, Fang X, Yang T, Feng Y. Interpreting the Pharmacological Mechanisms of Huachansu Capsules on Hepatocellular Carcinoma Through Combining Network Pharmacology and Experimental Evaluation. Front Pharmacol 2020; 11:414. [PMID: 32308626 PMCID: PMC7145978 DOI: 10.3389/fphar.2020.00414] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal cancers across the world. Chinese medicine has been used as adjunctive or complementary therapy for the management of HCC. Huachansu belongs to a class of toxic steroids isolated from toad venom that has important anti-cancer property. This study was aimed to identify the bioactive constituents and molecular targets of Huachansu capsules (HCSCs) for treating HCC using network pharmacology analysis and experimental assays. The major bioactive components of HCSCs were determined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A series of network pharmacology methods including target prediction, pathway identification, and network establishment were applied to identify the modes of action of HCSCs against HCC. Furthermore, a series of experiments, including MTT, clonogenic assay, 3-D transwell, wound healing assay, as well as flow cytometry, were conducted to verify the inhibitory ability of HCSCs on HCC in vitro. The results showed that 11 chemical components were identified from HCSCs. The network pharmacological analysis showed that there were 82 related anti-HCC targets and 14 potential pathways for these 11 components. Moreover, experimental assays confirmed the inhibitory effects of HCSCs against HCC in vitro. Taken together, our study revealed the synergistic effects of HCSCs on a systematic level, and suggested that HCSCs exhibited anti-HCC effects in a multi-component, multi-target, and multi-pathway manner.
Collapse
Affiliation(s)
- Jihan Huang
- Center for Drug Clinical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Cardiology, Cardiovascular Research Institute, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Zhangfeng Zhong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hor Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yuting Liu
- Department of Cardiology, Cardiovascular Research Institute, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyuan Fang
- Marine College, Shandong University (Weihai), Weihai, China
| | - Tao Yang
- Center for Drug Clinical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiology, Cardiovascular Research Institute, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
154
|
Liu J, Shi Y, Han J, Zhang Y, Cao Z, Cheng J. Quantitative Tracking Tumor Suppression Efficiency of Human Umbilical Cord-Derived Mesenchymal Stem Cells by Bioluminescence Imaging in Mice Hepatoma Model. Int J Stem Cells 2020; 13:104-115. [PMID: 31887848 PMCID: PMC7119203 DOI: 10.15283/ijsc19098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/07/2019] [Accepted: 11/07/2019] [Indexed: 01/02/2023] Open
Abstract
Background and Objectives Tracking of the tumor progression by MSCs-based therapy is being increasingly important in evaluating relative therapy effectively. Herein, Bioluminescence imaging (BLI) technology was used to dynamically and quantitatively track the hepatocellular carcinoma suppressive effects by human umbilical cord mesenchymal stem cells (UC-MSCs). Methods and Results The stem cells present typical phenotypic characteristics and differentiation ability by morphology and flow cytometry analysis of marker expression. Then, the growth inhibition effect of conditioned medium and UC-MSC on H7402 cells was studied. It is found both the conditioned medium and UC-MSC can effectively decrease the proliferation of H7402 cells compared with the control group. Meanwhile, the relative migration of UC-MSC to H7402 is also increased through the transwell migration assay. In addition, a mice hepatoma tumor model was built by H7402 cells which can express a pLenti-6.3/DEST-CMV-luciferase 2-mKate2 gene. The effect of stem cells on growth inhibition of tumor in a mice transplantation model was dynamically monitored by bioluminescence imaging within 5 weeks. It has shown the bioluminescence signal intensity of the tumor model was significantly higher than that of the UC-MSC co-acting tumor model, indicating that the inhibition of UC-MSC on liver cancer resulted in low expression of bioluminescent signals. Conclusions The microenvironment of UC-MSCs can effectively inhibit the growth of liver cancer cells, and this therapeutic effect can be dynamically and quantitatively monitored in vivo by BLI. This is of great significance for the imaging research and application of stem cells in anticancer therapy.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yupeng Shi
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Han
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenghao Cao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
155
|
A Disintegrin and Metalloproteinase 9 (ADAM9) in Advanced Hepatocellular Carcinoma and Their Role as a Biomarker During Hepatocellular Carcinoma Immunotherapy. Cancers (Basel) 2020; 12:cancers12030745. [PMID: 32245188 PMCID: PMC7140088 DOI: 10.3390/cancers12030745] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
The chemotherapeutics sorafenib and regorafenib inhibit shedding of MHC class I-related chain A (MICA) from hepatocellular carcinoma (HCC) cells by suppressing a disintegrin and metalloprotease 9 (ADAM9). MICA is a ligand for natural killer (NK) group 2 member D (NKG2D) and is expressed on tumor cells to elicit attack by NK cells. This study measured ADAM9 mRNA levels in blood samples of advanced HCC patients (n = 10). In newly diagnosed patients (n = 5), the plasma ADAM9 mRNA level was significantly higher than that in healthy controls (3.001 versus 1.00, p < 0.05). Among four patients treated with nivolumab therapy, two patients with clinical response to nivolumab showed significant decreases in fold changes of serum ADAM9 mRNA level from 573.98 to 262.58 and from 323.88 to 85.52 (p < 0.05); however, two patients with no response to nivolumab did not. Using the Cancer Genome Atlas database, we found that higher expression of ADAM9 in tumor tissues was associated with poorer survival of HCC patients (log-rank p = 0.00039), while ADAM10 and ADAM17 exhibited no such association. In addition, ADAM9 expression showed a positive correlation with the expression of inhibitory checkpoint molecules. This study, though small in sample size, clearly suggested that ADAM9 mRNA might serve as biomarker predicting clinical response and that the ADAM9-MICA-NKG2D system can be a good therapeutic target for HCC immunotherapy. Future studies are warranted to validate these findings.
Collapse
|
156
|
Iqbal J, Abbasi BA, Munir A, Uddin S, Kanwal S, Mahmood T. Facile green synthesis approach for the production of chromium oxide nanoparticles and their different in vitro biological activities. Microsc Res Tech 2020; 83:706-719. [DOI: 10.1002/jemt.23460] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/03/2020] [Accepted: 02/04/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Javed Iqbal
- Department of Plant SciencesQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Plant SciencesQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| | - Akhtar Munir
- Department of Chemistry and Chemical EngineeringSBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), DHA Lahore Pakistan
| | - Siraj Uddin
- Department of Plant SciencesQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| | - Sobia Kanwal
- Department of ZoologyRawalpindi Women University Rawalpindi Pakistan
| | - Tariq Mahmood
- Department of Plant SciencesQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| |
Collapse
|
157
|
Barefoot ME, Varghese RS, Zhou Y, Poto CD, Ferrarini A, Ressom HW. Multi-omic Pathway and Network Analysis to Identify Biomarkers for Hepatocellular Carcinoma. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1350-1354. [PMID: 31946143 DOI: 10.1109/embc.2019.8856576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The threat of Hepatocellular Carcinoma (HCC) is a growing problem, with incidence rates anticipated to near double over the next two decades. The increasing burden makes discovery of novel diagnostic, prognostic, and therapeutic biomarkers distinguishing HCC from underlying cirrhosis a significant focus. In this study, we analyzed tissue and serum samples from 40 HCC cases and 25 patients with liver cirrhosis (CIRR) to better understand the mechanistic differences between HCC and CIRR. Through pathway and network analysis, we are able to take a systems biology approach to conduct multi-omic analysis of transcriptomic, glycoproteomic, and metabolomic data acquired through various platforms. As a result, we are able to identify the FXR/RXR Activation pathway as being represented by molecules spanning multiple molecular compartments in these samples. Specifically, serum metabolites deoxycholate and chenodeoxycholic acid and serum glycoproteins C4A/C4B, KNG1, and HPX are biomarker candidates identified from this analysis that are of interest for future targeted studies. These results demonstrate the integrative power of multi-omic analysis to prioritize clinically and biologically relevant biomarker candidates that can increase understanding of molecular mechanisms driving HCC and make an impact in patient care.
Collapse
|
158
|
Ruan Q, Wang H, Burke LJ, Bridle KR, Li X, Zhao CX, Crawford DHG, Roberts MS, Liang X. Therapeutic modulators of hepatic stellate cells for hepatocellular carcinoma. Int J Cancer 2020; 147:1519-1527. [PMID: 32010970 DOI: 10.1002/ijc.32899] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary tumor in the liver and is a leading cause of cancer-related death worldwide. Activated hepatic stellate cells (HSCs) are key components of the HCC microenvironment and play an important role in the onset and progression of HCC through the secretion of growth factors and cytokines. Current treatment modalities that include chemotherapy, radiotherapy and ablation are able to activate HSCs and remodel the tumor microenvironment. Growing evidence has demonstrated that the complex interaction between activated HSCs and tumor cells can facilitate cancer chemoresistance and metastasis. Therefore, therapeutic targeting of activated HSCs has emerged as a promising strategy to improve treatment outcomes for HCC. This review summarizes the molecular mechanisms of HSC activation triggered by treatment modalities, the function of activated HSCs in HCC, as well as the crosstalk between tumor cells and activated HSCs. Pathways of activated HSC reduction are discussed, including inhibition, apoptosis, and reversion to the inactivated state. Finally, we outline the progress and challenges of therapeutic approaches targeting activated HSCs in the development of HCC treatment.
Collapse
Affiliation(s)
- Qi Ruan
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Haolu Wang
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Leslie J Burke
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kim R Bridle
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Xinxing Li
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Darrell H G Crawford
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michael S Roberts
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Xiaowen Liang
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
159
|
Baboci L, Capolla S, Di Cintio F, Colombo F, Mauro P, Dal Bo M, Argenziano M, Cavalli R, Toffoli G, Macor P. The Dual Role of the Liver in Nanomedicine as an Actor in the Elimination of Nanostructures or a Therapeutic Target. JOURNAL OF ONCOLOGY 2020; 2020:4638192. [PMID: 32184825 PMCID: PMC7060440 DOI: 10.1155/2020/4638192] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
The development of nanostructures for therapeutic purpose is rapidly growing, following the results obtained in vivo in animal models and in the clinical trials. Unfortunately, the potential therapeutic efficacy is not completely exploited, yet. This is mainly due to the fast clearance of the nanostructures in the body. Nanoparticles and the liver have a unique interaction because the liver represents one of the major barriers for drug delivery. This interaction becomes even more relevant and complex when the drug delivery strategies employing nanostructures are proposed for the therapy of liver diseases, such as hepatocellular carcinoma (HCC). In this case, the selective delivery of therapeutic nanoparticles to the tumor microenvironment collides with the tendency of nanostructures to be quickly eliminated by the organ. The design of a new therapeutic approach based on nanoparticles to treat HCC has to particularly take into consideration passive and active mechanisms to avoid or delay liver elimination and to specifically address cancer cells or the cancer microenvironment. This review will analyze the different aspects concerning the dual role of the liver, both as an organ carrying out a clearance activity for the nanostructures and as target for therapeutic strategies for HCC treatment.
Collapse
Affiliation(s)
- Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Federico Colombo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Prisca Mauro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Paolo Macor
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
160
|
Huang J, Guo W, Cheung F, Tan HY, Wang N, Feng Y. Integrating Network Pharmacology and Experimental Models to Investigate the Efficacy of Coptidis and Scutellaria Containing Huanglian Jiedu Decoction on Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:161-182. [PMID: 31964157 DOI: 10.1142/s0192415x20500093] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Unlike Western medicines with single-target, the traditional Chinese medicines (TCM) always exhibit diverse curative effects against multiple diseases through its "multi-components" and "multi-targets" manifestations. However, discovery and identification of the major therapeutic diseases and the underlying molecular mechanisms of TCM remain to be challenged. In the current study, we, for the first time, applied an integrated strategy by combining network pharmacology with experimental evaluation, for exploration and demonstration of the therapeutic potentials and the underlying possible mechanisms of a classic TCM formula, Huanglian Jiedu decoction (HLJDD). First, the herb-compound, compound-protein, protein-pathway, and gene-disease networks were constructed to predict the major therapeutic diseases of HLJDD and explore the underlying molecular mechanisms. Network pharmacology analysis showed the top one predicted disease of HLJDD treatment was cancer, especially hepatocellular carcinoma (HCC) and inflammation-related genes played an important role in the treatment of HLJDD on cancer. Next, based on the prediction by network pharmacology analysis, both in vitro HCC cell and in vivo orthotopic HCC implantation mouse models were established to validate the curative role of HLJDD. HLJDD exerted its antitumor activity on HCC in vitro, as demonstrated by impaired cell proliferation and colony formation abilities, induced apoptosis and cell cycle arrest, as well as inhibited migratory and invasive properties of HCC cells. The orthotopic HCC implantation mouse model further demonstrated the remarkable antitumour effects of HLJDD on HCC in vivo. In conclusion, our study demonstrated the effectiveness of integrating network pharmacology with experimental study for discovery and identification of the major therapeutic diseases and the underlying molecular mechanisms of TCM.
Collapse
Affiliation(s)
- Jihan Huang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Guo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fan Cheung
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
161
|
Rau KM, Liu CT, Hsiao YC, Hsiao KY, Wang TM, Hung WS, Su YL, Liu WC, Wang CH, Hsu HL, Chuang PH, Cheng JC, Tseng CP. Sequential Circulating Tumor Cell Counts in Patients with Locally Advanced or Metastatic Hepatocellular Carcinoma: Monitoring the Treatment Response. J Clin Med 2020; 9:E188. [PMID: 32071283 PMCID: PMC7019972 DOI: 10.3390/jcm9010188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common causes of cancer death in men. Whether or not a longitudinal follow-up of circulating tumor cells (CTCs) before and at different time points during systemic/targeted therapy is useful for monitoring the treatment response of patients with locally advanced or metastatic HCC has been evaluated in this study. Blood samples (n = 104) were obtained from patients with locally advanced or metastatic HCC (n = 30) for the enrichment of CTCs by a negative selection method. Analysis of the blood samples from patients with defined disease status (n = 81) revealed that those with progressive disease (PD, n = 37) had significantly higher CTC counts compared to those with a partial response (PR) or stable disease (SD; n = 44 for PR + SD, p = 0.0002). The median CTC count for patients with PD and for patients with PR and SD was 50 (interquartile range 21-139) and 15 (interquartile range 4-41) cells/mL of blood, respectively. A longitudinal analysis of patients (n = 17) after a series of blood collections demonstrated that a change in the CTC count correlated with the patient treatment response in most of the cases and was particularly useful for monitoring patients without elevated serum alpha-fetoprotein (AFP) levels. Sequential CTC enumeration during treatment can supplement standard medical tests and benefit the management of patients with locally advanced or metastatic HCC, in particular for the AFP-low cases.
Collapse
Affiliation(s)
- Kun-Ming Rau
- Department of Hematology-Oncology, E-Da Cancer Hospital, Kaohsiung 824, Taiwan;
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| | - Chien-Ting Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-T.L.); (K.-Y.H.); (Y.-L.S.); (W.-C.L.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yu-Chiao Hsiao
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.H.); (T.-M.W.); (W.-S.H.); (H.-L.H.)
| | - Kai-Yin Hsiao
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-T.L.); (K.-Y.H.); (Y.-L.S.); (W.-C.L.)
| | - Tzu-Min Wang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.H.); (T.-M.W.); (W.-S.H.); (H.-L.H.)
| | - Wei-Shan Hung
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.H.); (T.-M.W.); (W.-S.H.); (H.-L.H.)
| | - Yu-Li Su
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-T.L.); (K.-Y.H.); (Y.-L.S.); (W.-C.L.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Wei-Ching Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-T.L.); (K.-Y.H.); (Y.-L.S.); (W.-C.L.)
| | - Cheng-Hsu Wang
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Hematology/Oncology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Hsueh-Ling Hsu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.H.); (T.-M.W.); (W.-S.H.); (H.-L.H.)
| | - Po-Heng Chuang
- Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan;
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan;
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.H.); (T.-M.W.); (W.-S.H.); (H.-L.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Department of Laboratory Medicine, Linko Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
162
|
Casadei-Gardini A, Orsi G, Caputo F, Ercolani G. Developments in predictive biomarkers for hepatocellular carcinoma therapy. Expert Rev Anticancer Ther 2020; 20:63-74. [PMID: 31910040 DOI: 10.1080/14737140.2020.1712198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver and the third largest cause of cancer-relateddeaths worldwide. Potentially curative treatments (surgical resection, radiofrequency or liver transplantation) are only available for few patients, while transarterial chemoembolization (TACE) or systemic agents are the best treatments for intermediate and advanced stage disease. The identification of markers that allow us to choose the best treatment for the patient is urgent.Areas covered: In this review we summarize the potential biological markers to predict the efficacy of all treatment available in patients with HCC and discuss anew biomarker with ahigher potential of success in the next future.Expert opinion: HCC is aheterogeneous disease. Tumors are heterogeneous in terms of genetic alteration,with spatial heterogeneity in cellular density, necrosis and angiogenesis.This heterogeneity may affect prognosis and treatment. Tumor heterogeneity can be difficult to quantify with traditional imaging due to subjective assessment of images; the same for sampling biopsy, which evaluates only asmall part of the tumor. We think that combining multi-OMICSwith radiomics represents apromising strategy for evaluating tumor heterogenicity and for identifying biomarkers of response and prognosis.
Collapse
Affiliation(s)
- Andrea Casadei-Gardini
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Orsi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Caputo
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio Ercolani
- General and Oncology Surgery, Morgagni-Pierantoni Hospital, Forli, Italy.,Department of Medical & Surgical Sciences-DIMEC, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
163
|
PAK1 promotes proliferation, migration and invasion of hepatocellular carcinoma by facilitating EMT via directly up-regulating Snail. Genomics 2020; 112:694-702. [DOI: 10.1016/j.ygeno.2019.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023]
|
164
|
Barabadi H, Webster TJ, Vahidi H, Sabori H, Damavandi Kamali K, Jazayeri Shoushtari F, Mahjoub MA, Rashedi M, Mostafavi E, Cruz DM, Hosseini O, Saravana M. Green Nanotechnology-based Gold Nanomaterials for Hepatic Cancer Therapeutics: A Systematic Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:3-17. [PMID: 33680005 PMCID: PMC7757980 DOI: 10.22037/ijpr.2020.113820.14504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The objective of the current study was to systematically review the in-vitro anticancer activity of green synthesized gold nanoparticles (AuNPs) against hepatic cancer cells. The articles were identified through electronic databases, including PubMed, Scopus, Embase, Web of Science, Science Direct, ProQuest, and Cochrane. In total, 20 articles were found eligible to enter into our systematic review. Our findings showed that 65% of the articles used herbal extracts for the synthesis of AuNPs. Significantly, almost all of the articles stated the biofabrication of AuNPs below 100 nm in diameter. Impressively, most of the studies showed significant anticancer activity against HepG2 cells. Molecular studies stated the induction of apoptosis through the AuNPs-treated cells. We provided valuable information about the molecular mechanisms of AuNPs-induced cytotoxicity against HepG2 cells as well as their biocompatibility. The studies represented that AuNPs can be effective as anticancer drug nanocarrier for drug delivery systems. In addition, AuNP surface functionalization provides an opportunity to design multifunctional nanoparticles by conjugating them to diagnostic and/or therapeutic agents for theranostic purposes. Overall, our findings depicted considerable biogenic AuNPs-induced cytotoxicity, however, future studies should assess the anticancer activity of biogenic AuNPs through in-vivo studies, which was missing from such studies.
Collapse
Affiliation(s)
- Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA.
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Sabori
- Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | - Mohammad Ali Mahjoub
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Rashedi
- Student Research Committee, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA.
| | - David Medina Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA.
| | - Omid Hosseini
- Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Muthupandian Saravana
- Department of Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Science, Mekelle University, Mekelle-1871, Ethiopia.
| |
Collapse
|
165
|
Abbasi BA, Iqbal J, Ahmad R, Zia L, Kanwal S, Mahmood T, Wang C, Chen JT. Bioactivities of Geranium wallichianum Leaf Extracts Conjugated with Zinc Oxide Nanoparticles. Biomolecules 2019; 10:biom10010038. [PMID: 31888037 PMCID: PMC7022592 DOI: 10.3390/biom10010038] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
This study attempts to obtain and test the bioactivities of leaf extracts from a medicinal plant, Geranium wallichianum (GW), when conjugated with zinc oxide nanoparticles (ZnONPs). The integrity of leaf extract-conjugated ZnONPs (GW-ZnONPs) was confirmed using various techniques, including Ultraviolet-visible spectroscopy, X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, energy-dispersive spectra (EDS), scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The size of ZnONPs was approximately 18 nm, which was determined by TEM analysis. Additionally, the energy-dispersive spectra (EDS) revealed that NPs have zinc in its pure form. Bioactivities of GW-ZnONPs including antimicrobial potentials, cytotoxicity, antioxidative capacities, inhibition potentials against α-amylase, and protein kinases, as well as biocompatibility were intensively tested and confirmed. Altogether, the results revealed that GW-ZnONPs are non-toxic, biocompatible, and have considerable potential in biological applications.
Collapse
Affiliation(s)
- Banzeer Ahsan Abbasi
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.A.); (T.M.)
| | - Javed Iqbal
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.A.); (T.M.)
- Correspondence: (J.I.); (J.-T.C.)
| | - Riaz Ahmad
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China;
| | - Layiq Zia
- Superconductivity and Magnetism Laboratory, Department of Physics Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Sobia Kanwal
- Department of Zoology, University of Gujrat, Sub-Campus Rawalpindi, Punjab 46300, Pakistan;
| | - Tariq Mahmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.A.); (T.M.)
| | - Canran Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
- Correspondence: (J.I.); (J.-T.C.)
| |
Collapse
|
166
|
Jianyong L, Lunan Y, Dajiang L, Wentao W. Comparison of open liver resection and RFA for the treatment of solitary 3-5-cmhepatocellular carcinoma: a retrospective study. BMC Surg 2019; 19:195. [PMID: 31842844 PMCID: PMC6916101 DOI: 10.1186/s12893-019-0663-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The goal of this study was to compare the postoperative results of liver resection and radiofrequency ablation (RFA) for the treatment of small hepatocellular carcinoma (HCC) (3-5 cm). PATIENTS AND METHODS We retrospectively collected 122 cases of small solitary HCC treated at our center from Jan 2011 to Dec 2015, with diameters in the range of 3-5 cm. According to the treatment program received at our center, the patients were divided into liver resection (72 patients) and RFA (50 patients) groups. RESULT In comparison with the RFA group, the resection group had a longer operative time, greater intraoperative blood loss (P < 0.01), more hepatic inflow occlusion, and a longer postoperative hospital stay (P < 0.01). The 1-, 3-, and 5-year expected overall survival rates and tumor-free survival rates were comparable between the two groups. Cox regression analysis showed that neither resection nor RFA was a significant risk factor for overall or tumor-free survival in HCC. CONCLUSIONS For solitary HCC of 3-5 cm in diameter, RFA can achieve better in-hospital clinical results and similar long-term outcomes than resection and can be considered for wide application, especially for central-location cases.
Collapse
Affiliation(s)
- Lei Jianyong
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, 610041, China. .,Liver Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Yan Lunan
- Liver Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Li Dajiang
- The Medical Department, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wang Wentao
- Liver Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | | |
Collapse
|
167
|
Dadfar SMM, Sekula-Neuner S, Trouillet V, Liu HY, Kumar R, Powell AK, Hirtz M. Evaluation of click chemistry microarrays for immunosensing of alpha-fetoprotein (AFP). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2505-2515. [PMID: 31921529 PMCID: PMC6941445 DOI: 10.3762/bjnano.10.241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The level of cancer biomarkers in cells, tissues or body fluids can be used for the prediction of the presence of cancer or can even indicate the stage of the disease. Alpha-fetoprotein (AFP) is the most commonly used biomarker for early screening and diagnosis of hepatocellular carcinoma (HCC). Here, a combination of three techniques (click chemistry, the biotin-streptavidin-biotin sandwich strategy and the use of antigen-antibody interactions) were combined to implement a sensitive fluorescent immunosensor for AFP detection. Three types of functionalized glasses (dibenzocyclooctyne- (DBCO-), thiol- and epoxy-terminated surfaces) were biotinylated by employing the respective adequate click chemistry counterparts (biotin-thiol or biotin-azide for the first class, biotin-maleimide or biotin-DBCO for the second class and biotin-amine or biotin-thiol for the third class). The anti-AFP antibody was immobilized on the surfaces via a biotin-streptavidin-biotin sandwich technique. To evaluate the sensing performance of the differently prepared surfaces, fluorescently labeled AFP was spotted onto them via microchannel cantilever spotting (µCS). Based on the fluorescence measurements, the optimal microarray design was found and its sensitivity was determined.
Collapse
Affiliation(s)
- Seyed Mohammad Mahdi Dadfar
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
| | - Sylwia Sekula-Neuner
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
| | - Vanessa Trouillet
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
| | - Hui-Yu Liu
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
| | - Ravi Kumar
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
| | - Annie K Powell
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
| |
Collapse
|
168
|
Liver Cancer: Current and Future Trends Using Biomaterials. Cancers (Basel) 2019; 11:cancers11122026. [PMID: 31888198 PMCID: PMC6966667 DOI: 10.3390/cancers11122026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common type of cancer diagnosed and the second leading cause of death worldwide. Despite advancement in current treatments for HCC, the prognosis for this cancer is still unfavorable. This comprehensive review article focuses on all the current technology that applies biomaterials to treat and study liver cancer, thus showing the versatility of biomaterials to be used as smart tools in this complex pathologic scenario. Specifically, after introducing the liver anatomy and pathology by focusing on the available treatments for HCC, this review summarizes the current biomaterial-based approaches for systemic delivery and implantable tools for locally administrating bioactive factors and provides a comprehensive discussion of the specific therapies and targeting agents to efficiently deliver those factors. This review also highlights the novel application of biomaterials to study HCC, which includes hydrogels and scaffolds to tissue engineer 3D in vitro models representative of the tumor environment. Such models will serve to better understand the tumor biology and investigate new therapies for HCC. Special focus is given to innovative approaches, e.g., combined delivery therapies, and to alternative approaches-e.g., cell capture-as promising future trends in the application of biomaterials to treat HCC.
Collapse
|
169
|
Development of Asialoglycoprotein Receptor-Targeted Nanoparticles for Selective Delivery of Gemcitabine to Hepatocellular Carcinoma. Molecules 2019; 24:molecules24244566. [PMID: 31847085 PMCID: PMC6943439 DOI: 10.3390/molecules24244566] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Selective targeting of anticancer drugs to the tumor site is beneficial in the pharmacotherapy of hepatocellular carcinoma (HCC). This study evaluated the prospective of galactosylated chitosan nanoparticles as a liver-specific carrier to improve the therapeutic efficacy of gemcitabine in HCC by targeting asialoglycoprotein receptors expressed on hepatocytes. Nanoparticles were formulated (G1–G5) by an ionic gelation method and evaluated for various physicochemical characteristics. Targeting efficacy of formulation G4 was evaluated in rats. Physicochemical characteristics exhibited by nanoparticles were optimal for administering and targeting gemcitabine effectively to the liver. The biphasic release behavior observed with G4 can provide higher drug concentration and extend the pharmacotherapy in the liver target site. Rapid plasma clearance of gemcitabine (70% in 30 min) from G4 was noticed in rats with HCC as compared to pure drug (p < 0.05). Higher uptake of gemcitabine predominantly by HCC (64% of administered dose; p < 0.0001) demonstrated excellent liver targeting by G4, while mitigating systemic toxicity. Morphological, biochemical, and histopathological examination as well as blood levels of the tumor marker, alpha-fetoprotein, in rats confirmed the curative effect of G4. In conclusion, this study demonstrated site-specific delivery and enhanced in vivo anti-HCC efficacy of gemcitabine by G4, which could function as promising carrier in hepatoma.
Collapse
|
170
|
Wang L, Huang W, Zhan J. Grape Seed Proanthocyanidins Induce Autophagy and Modulate Survivin in HepG2 Cells and Inhibit Xenograft Tumor Growth in Vivo. Nutrients 2019; 11:E2983. [PMID: 31817589 PMCID: PMC6950679 DOI: 10.3390/nu11122983] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
Liver cancer is one of the leading causes of death worldwide. Although radiotherapy and chemotherapy are effective in general, they present various side effects, significantly limiting the curative effect. Increasing evidence has shown that the dietary intake of phytochemicals plays an essential role in the chemoprevention or chemotherapy of tumors. In this work, HepG2 cells and nude mice with HepG2-derived xenografts were treated with grape seed proanthocyanidins (GSPs). The results showed that GSPs induced autophagy, and inhibition of autophagy increased apoptosis in HepG2 cells. In addition, GSPs also reduced the expression of survivin. Moreover, survivin was involved in GSPs-induced apoptosis. GSPs at 100 mg/kg and 200 mg/kg significantly inhibited the growth of HepG2 cells in nude mice without causing observable toxicity and autophagy, while inducing the phosphorylation of mitogen-activated protein kinase (MAPK) pathway-associated proteins, p-JNK, p-ERK and p-p38 MAPK and reducing the expression of survivin. These results suggested that GSPs might be promising phytochemicals against liver cancer.
Collapse
Affiliation(s)
| | | | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.W.); (W.H.)
| |
Collapse
|
171
|
Hu Y, Yang Z, Bao D, Ni JS, Lou J. miR-455-5p suppresses hepatocellular carcinoma cell growth and invasion via IGF-1R/AKT/GLUT1 pathway by targeting IGF-1R. Pathol Res Pract 2019; 215:152674. [DOI: 10.1016/j.prp.2019.152674] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022]
|
172
|
Transarterial Chemoembolization in Treatment-Naïve and Recurrent Hepatocellular Carcinoma: A Propensity-Matched Outcome Analysis. Dig Dis Sci 2019; 64:3660-3668. [PMID: 31187326 DOI: 10.1007/s10620-019-05701-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Transarterial chemoembolization (TACE) improves the survival of patients with hepatocellular carcinoma (HCC); however, TACE treatment outcomes of patients with treatment-naïve HCC (TN-HCC) and those with recurrent HCC after curative resection (R-HCC) have not yet been compared. METHODS We recruited 448 patients with TN-HCC, and 275 patients with R-HCC treated with TACE as first-line anti-cancer treatment. RESULTS At first TACE, patients with TN-HCC showed a significantly lower proportion of male gender (74.9% vs. 84.3%), higher proportion of liver cirrhosis (61.9% vs. 49.3%), higher aspartate aminotransferase (median 48 vs. 31 IU/L), alanine aminotransferase (median 38 vs. 26 IU/L), alpha-fetoprotein (AFP) (median 96.6 vs. 7.7 ng/mL), and total bilirubin (mean 1.0 vs. 0.8 mg/dL) levels, longer prothrombin time (median 1.05 vs. 1.01 international normalized ratio), higher tumor number (mean 2.1 vs. 1.7), larger tumor size (median 3.1 vs. 1.6 cm), and lower proportion of Barcelona Clinic Liver Cancer stage 0-A (55.6% vs. 71.9%) than patients with R-HCC (all P < 0.05). Multivariate analysis showed that TACE for TN-HCC (vs. R-HCC) was an independent predictor of mortality (hazard ratio, 1.328; P = 0.024) with AFP level and tumor number (all P < 0.05). However, treatment outcomes between TN-HCC and R-HCC became statistically similar after propensity score-matched (PSM) analysis using liver cirrhosis, tumor size, and multiple tumors (P < 0.05). CONCLUSIONS Based on the similar TACE treatment outcomes observed with the PSM analysis, the current TACE treatment guideline for patients with TN-HCC might similarly be applied for patients with R-HCC.
Collapse
|
173
|
Ozunal ZG, Cakil YD, Isan H, Saglam E, Aktas RG. Sertraline in combination with sorafenib: A promising pharmacotherapy to target both depressive disorders and hepatocellular cancer. Biol Futur 2019; 70:341-348. [PMID: 34554537 DOI: 10.1556/019.70.2019.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/05/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is found within the first five most common tumors worldwide. Sorafenib is an approved agent in HCC treatment. Sertraline is a selective serotonin reuptake inhibitor. The aim of the study is to investigate the combination of sertraline and sorafenib at hepatocellular cancer cell proliferation and death. METHODS HepG2 cells were treated with drugs and viability test XTT was performed. Cells were stained with hematoxylin and eosin for histological examination or with anti-Bcl-2 antibody and Hoechst 33258 for immunofluorescence. RESULTS Viability results supported dose-dependent antiproliferative effect for both sertraline and sorafenib. Microscopic evaluation of stained cells exerts morphological changes. DISCUSSION This is the first study to show that sorafenib and sertraline have synergistic effect in hepatocellular cancer.
Collapse
Affiliation(s)
- Zeynep Gunes Ozunal
- Department of Medical Pharmacology, Faculty of Medicine, Maltepe University, Maltepe University, Turkey. .,Cancer and Stem Cell Research Center (MUKKAM), Maltepe University, Istanbul, Turkey.
| | - Yaprak Donmez Cakil
- Cancer and Stem Cell Research Center (MUKKAM), Maltepe University, Istanbul, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Hatice Isan
- Cancer and Stem Cell Research Center (MUKKAM), Maltepe University, Istanbul, Turkey
| | - Esra Saglam
- Department of Medical Pharmacology, Faculty of Medicine, Maltepe University, Maltepe University, Turkey
| | - Ranan Gulhan Aktas
- Cancer and Stem Cell Research Center (MUKKAM), Maltepe University, Istanbul, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| |
Collapse
|
174
|
Acher AW, Abbott DE. Rethinking Resection and Transplant Candidacy for HCC: Should Tumor Biology Replace Size-Based Criteria? Ann Surg Oncol 2019; 27:1309-1311. [PMID: 31728794 DOI: 10.1245/s10434-019-08081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Alexandra W Acher
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Daniel E Abbott
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, USA.
| |
Collapse
|
175
|
Mouse Models for Immunotherapy in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11111800. [PMID: 31731753 PMCID: PMC6896030 DOI: 10.3390/cancers11111800] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
Liver cancer is one of the dominant causes of cancer-related mortality, and the survival rate of liver cancer is among the lowest for all cancers. Immunotherapy for hepatocellular carcinoma (HCC) has yielded some encouraging results, but the percentage of patients responding to single-agent therapies remains low. Therefore, potential directions for improved immunotherapies include identifying new immune targets and checkpoints and customizing treatment procedures for individual patients. The development of combination therapies for HCC is also crucial and urgent and, thus, further studies are required. Mice have been utilized in immunotherapy research due to several advantages, for example, being low in cost, having high success rates for inducing tumor growth, and so on. Moreover, immune-competent mice are used in immunotherapy research to clarify the role that the immune system plays in cancer growth. In this review paper, the advantages and disadvantages of mouse models for immunotherapy, the equipment that are used for monitoring HCC, and the cell strains used for inducing HCC are reviewed.
Collapse
|
176
|
Li P, Xu Y, Zhang Q, Li Y, Jia W, Wang X, Xie Z, Liu J, Zhao D, Shao M, Chen S, Mo N, Jiang Z, Li L, Liu R, Huang W, Chang L, Chen S, Li H, Zuo W, Li J, Zhang R, Yang X. Evaluating the role of RAD52 and its interactors as novel potential molecular targets for hepatocellular carcinoma. Cancer Cell Int 2019; 19:279. [PMID: 31719794 PMCID: PMC6836504 DOI: 10.1186/s12935-019-0996-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background Radiation sensitive 52 (RAD52) is an important protein that mediates DNA repair in tumors. However, little is known about the impact of RAD52 on hepatocellular carcinoma (HCC). We investigated the expression of RAD52 and its values in HCC. Some proteins that might be coordinated with RAD52 in HCC were also analyzed. Methods Global RAD52 mRNA levels in HCC were assessed using The Cancer Genome Atlas (TCGA) database. RAD52 expression was analyzed in 70 HCC tissues and adjacent tissues by quantitative real-time PCR (qRT-PCR), Western blotting and immunohistochemistry. The effect of over-expressed RAD52 in Huh7 HCC cells was investigated. The String database was then used to perform enrichment and functional analysis of RAD52 and its interactome. Cytoscape software was used to create a protein–protein interaction network. Molecular interaction studies with RAD52 and its interactome were performed using the molecular docking tools in Hex8.0.0. Finally, these DNA repair proteins, which interact with RAD52, were also analyzed using the TCGA dataset and were detected by qRT-PCR. Based on the TCGA database, algorithms combining ROC between RAD52 and RAD52 interactors were used to diagnose HCC by binary logistic regression. Results In TCGA, upregulated RAD52 related to gender was obtained in HCC. The area under the receiver operating characteristic curve (AUC) of RAD52 was 0.704. The results of overall survival (OS) and recurrence-free survival (RFS) indicated no difference in the prognosis between patients with high and low RAD52 gene expression. We validated that RAD52 expression was increased at the mRNA and protein levels in Chinese HCC tissues compared with adjacent tissues. Higher RAD52 was associated with older age, without correlation with other clinicopathological factors. In vitro, over-expressed RAD52 significantly promoted the proliferation and migration of Huh7 cells. Furthermore, RAD52 interactors (radiation sensitive 51, RAD51; X-ray repair cross complementing 6, XRCC6; Cofilin, CFL1) were also increased in HCC and participated in some biological processes with RAD52. Protein structure analysis showed that RAD52–RAD51 had the firmest binding structure with the lowest E-total energy (− 1120.5 kcal/mol) among the RAD52–RAD51, RAD52–CFL1, and RAD52–XRCC6 complexes. An algorithm combining ROC between RAD52 and its interactome indicated a greater specificity and sensitivity for HCC screening. Conclusions Overall, our study suggested that RAD52 plays a vital role in HCC pathogenesis and serves as a potential molecular target for HCC diagnosis and treatment. This study’s findings regarding the multigene prediction and diagnosis of HCC are valuable.
Collapse
Affiliation(s)
- Ping Li
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,4College & Hospital of Stomatology Guangxi Medical University, Nanning, Guangxi China.,5Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi China
| | - YanZhen Xu
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,8Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi China
| | - Qinle Zhang
- Genetic and Metabolic Central Laboratory, The Maternal and Children Health Hospital of Guangxi, Guangxi, China
| | - Yu Li
- Medical Science Laboratory at Liuzhou Worker's Hospital, Liuzhou, Guangxi China
| | - Wenxian Jia
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,6College of Pharmacy, Guangxi Medical University, Nanning, Guangxi China
| | - Xiao Wang
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Zhibin Xie
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China
| | - Jiayi Liu
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,4College & Hospital of Stomatology Guangxi Medical University, Nanning, Guangxi China.,5Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi China
| | - Dong Zhao
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China
| | - Mengnan Shao
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China
| | - Suixia Chen
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,8Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi China
| | - Nanfang Mo
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Zhiwen Jiang
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Liuyan Li
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Run Liu
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Wanying Huang
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Li Chang
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Siyu Chen
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Hongtao Li
- 2Scientific Research Center, Guilin Medical University, Guilin, Guangxi China
| | - Wenpu Zuo
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Jiaquan Li
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | | | - Xiaoli Yang
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,2Scientific Research Center, Guilin Medical University, Guilin, Guangxi China
| |
Collapse
|
177
|
van Tienderen GS, Groot Koerkamp B, IJzermans JNM, van der Laan LJW, Verstegen MMA. Recreating Tumour Complexity in a Dish: Organoid Models to Study Liver Cancer Cells and their Extracellular Environment. Cancers (Basel) 2019; 11:E1706. [PMID: 31683901 PMCID: PMC6896153 DOI: 10.3390/cancers11111706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
Primary liver cancer, consisting predominantly of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), remains one of the most lethal malignancies worldwide. This high malignancy is related to the complex and dynamic interactions between tumour cells, stromal cells and the extracellular environment. Novel in vitro models that can recapitulate the tumour are essential in increasing our understanding of liver cancer. Herein, primary liver cancer-derived organoids have opened up new avenues due to their patient-specificity, self-organizing ability and potential recapitulation of many of the tumour properties. Organoids are solely of epithelial origin, but incorporation into co-culture models can enable the investigation of the cellular component of the tumour microenvironment. However, the extracellular component also plays a vital role in cancer progression and representation is lacking within current in vitro models. In this review, organoid technology is discussed in the context of liver cancer models through comparisons to other cell culture systems. In addition, the role of the tumour extracellular environment in primary liver cancer will be highlighted with an emphasis on its importance in in vitro modelling. Converging novel organoid-based models with models incorporating the native tumour microenvironment could lead to experimental models that can better recapitulate liver tumours in vivo.
Collapse
Affiliation(s)
- Gilles S van Tienderen
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| |
Collapse
|
178
|
Jak-Stat Signaling Induced by Interleukin-6 Family Cytokines in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11111704. [PMID: 31683891 PMCID: PMC6896168 DOI: 10.3390/cancers11111704] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. It can be caused by chronic liver cell injury with resulting sustained inflammation, e.g., triggered by infections with hepatitis viruses B (HBV) and C (HCV). Death of hepatocytes leads to the activation of compensatory mechanisms, which can ultimately result in liver fibrosis and cirrhosis. Another common feature is the infiltration of the liver with inflammatory cells, which secrete cytokines and chemokines that act directly on the hepatocytes. Among several secreted proteins, members of the interleukin-6 (IL-6) family of cytokines have emerged as important regulatory proteins that might constitute an attractive target for therapeutic intervention. The IL-6-type cytokines activate multiple intracellular signaling pathways, and especially the Jak/STAT cascade has been shown to be crucial for HCC development. In this review, we give an overview about HCC pathogenesis with respect to IL-6-type cytokines and the Jak/STAT pathway. We highlight the role of mutations in genes encoding several proteins involved in the cytokine/Jak/STAT axis and summarize current knowledge about IL-6 family cytokines in this context. We further discuss possible anti-cytokine therapies for HCC patients in comparison to already established therapies.
Collapse
|
179
|
De Stefanis D, Scimè S, Accomazzo S, Catti A, Occhipinti A, Bertea CM, Costelli P. Anti-Proliferative Effects of an Extra-Virgin Olive Oil Extract Enriched in Ligstroside Aglycone and Oleocanthal on Human Liver Cancer Cell Lines. Cancers (Basel) 2019; 11:cancers11111640. [PMID: 31653043 PMCID: PMC6896128 DOI: 10.3390/cancers11111640] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022] Open
Abstract
Oleocanthal and ligstroside aglycone are olive oil-derived polyphenols. The former interferes with tumor growth with minor or no cytotoxicity on non-tumorigenic primary cell lines. The information about the bioactivity of ligstroside aglycone are scanty, with the exception of a known antioxidant power. Hepatocellular carcinoma is a malignant tumor with high mortality rates. Systemic chemotherapy is only marginally effective and is frequently complicated by toxicity. Previous observations have shown that hepatocellular carcinoma cell lines become more sensitive to taxol when it is combined with Tumor Necrosis Factor α (TNFα). The present work aimed to assess the effects of a polyphenolic extract containing both oleocanthal and ligstroside aglycone on proliferation and/or death in three liver cancer cell lines (HepG2, Huh7 and Hep3B). The possibility to enhance such effect by the addition of TNFα was also investigated. Both cell proliferation and death were enhanced by the exposure to the polyphenolic extract. Such effect was associated with induction of autophagy and could be potentiated by TNFα. The presence of ligstroside aglycone in the extract lowered the oleocanthal concentration required for cytotoxicity. These results show for the first time that the effects of a polyphenol extract can be potentiated by TNFα and that modulation of autophagy likely account for these effects.
Collapse
Affiliation(s)
- Daniela De Stefanis
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Turin, 10125 Torino, Italy.
| | - Salvatore Scimè
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Turin, 10125 Torino, Italy.
| | - Simone Accomazzo
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Turin, 10125 Torino, Italy.
| | - Andrea Catti
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Turin, 10125 Torino, Italy.
| | - Andrea Occhipinti
- Department of Life Sciences and Systems Biology, University of Turin, 10125 Torino, Italy.
| | | | - Paola Costelli
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Turin, 10125 Torino, Italy.
| |
Collapse
|
180
|
Léveillé M, Estall JL. Mitochondrial Dysfunction in the Transition from NASH to HCC. Metabolites 2019; 9:E233. [PMID: 31623280 PMCID: PMC6836234 DOI: 10.3390/metabo9100233] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
The liver constantly adapts to meet energy requirements of the whole body. Despite its remarkable adaptative capacity, prolonged exposure of liver cells to harmful environmental cues (such as diets rich in fat, sugar, and cholesterol) results in the development of chronic liver diseases (including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)) that can progress to hepatocellular carcinoma (HCC). The pathogenesis of these diseases is extremely complex, multifactorial, and poorly understood. Emerging evidence suggests that mitochondrial dysfunction or maladaptation contributes to detrimental effects on hepatocyte bioenergetics, reactive oxygen species (ROS) homeostasis, endoplasmic reticulum (ER) stress, inflammation, and cell death leading to NASH and HCC. The present review highlights the potential contribution of altered mitochondria function to NASH-related HCC and discusses how agents targeting this organelle could provide interesting treatment strategies for these diseases.
Collapse
Affiliation(s)
- Mélissa Léveillé
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, QC H2W 1R7, Canada.
- Faculty of Medicine, University of Montreal, Montreal, Quebec, QC H3G 2M1, Canada.
| | - Jennifer L Estall
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, QC H2W 1R7, Canada.
- Faculty of Medicine, University of Montreal, Montreal, Quebec, QC H3G 2M1, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Quebec, QC H4A 3J1, Canada.
| |
Collapse
|
181
|
Zhou ZF, Peng F, Li JY, Ye YB. Intratumoral IL-12 Gene Therapy Inhibits Tumor Growth In A HCC-Hu-PBL-NOD/SCID Murine Model. Onco Targets Ther 2019; 12:7773-7784. [PMID: 31571927 PMCID: PMC6760038 DOI: 10.2147/ott.s222097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose This study aimed to evaluate the efficacy and safety of intratumoral IL-12 gene therapy in an HCC-hu-PBL-NOD/SCID mouse model. Materials and methods The HCC murine model was generated in NOD/SCID mice, and mice with grafted tumors were injected intraperitoneally with 2 × 107 human peripheral blood lymphocytes 14 days after modeling. After 4 days, mice were randomly divided into the 9597/IL-12 group, the 9597/plasmid group and the PBS group. The changes of tumor volume were measured and mouse peripheral blood was sampled post-treatment for ELISA and CBA analyses, and the grafted tumors were collected 28 days post-treatment for immunohistochemistry, ELISA, CBA and detection of cell cycle and apoptosis. Results The tumor volume was smaller in the 9597/IL-12 group than in the 9597/plasmid and PBS groups on days 7, 14, 21, and 28 post-treatment (P < 0.05). Higher IL-12 levels were detected in the peripheral blood and the supernatants of grafted tumor homogenates in the 9597/IL-12 group than in the 9597/plasmid and PBS groups 7, 14, 21 and 28 days post-treatment (P < 0.05). IHC revealed higher counts of CD3+T cells, CD4+T helper cells, IFN-γ Th1 cells+ and S-100 protein positive dentric cells and lower MVD in the 9597/IL-12 group than in the 9597/plasmid and PBS groups (P < 0.05). Flow cytometry showed a significantly higher proportion of HCC cells at the G0/G1 phase and a significantly lower proportion of HCC cells at the S phase in the 9597/IL-12 group than in the PBS group (P < 0.05) and a greater apoptotic rate of HCC cells in the 9597/IL-12 group than in the 9597/plasmid and PBS groups (P < 0.05). Conclusion Intratumoral IL-12 gene therapy may inhibit tumorigenesis with mild adverse effects in a HCC-hu-PBL-NOD/SCID murine model through inhibiting angiogenesis, arresting cells in G0/G1 phase and inducing apoptosis.
Collapse
Affiliation(s)
- Zhi-Feng Zhou
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine, Fujian Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Feng Peng
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Jie-Yu Li
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine, Fujian Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Yun-Bin Ye
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine, Fujian Cancer Hospital, Fuzhou 350014, People's Republic of China
| |
Collapse
|
182
|
Jeng KS, Jeng CJ, Jeng WJ, Sheen IS, Li SY, Leu CM, Tsay YG, Chang CF. Sonic Hedgehog signaling pathway as a potential target to inhibit the progression of hepatocellular carcinoma. Oncol Lett 2019; 18:4377-4384. [PMID: 31611946 PMCID: PMC6781692 DOI: 10.3892/ol.2019.10826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-associated mortality worldwide. Hepatocarcinogenesis involves numerous interlinked factors and processes, including the Sonic hedgehog (Shh) signaling pathway, which participates in the carcinogenesis, progression, invasiveness, recurrence and cancer stem cell maintenance of HCC. The Shh signaling pathway is activated by ligands that bind to their receptor protein, Protein patched homolog (Ptch). The process of Shh ligand binding to Ptch weakens the inhibition of smoothened homolog (SMO) and activates signal transduction via glioma-associated oncogene homolog (Gli) transcription factors. The overexpression of Shh pathway molecules, including Shh, Ptch-1, Gli and SMO has been indicated in patients with HCC. It has also been suggested that the Shh signaling pathway exhibits cross-talk between numerous other signaling pathways. The inactivation of the Shh signaling pathway reduces HCC growth, increases radio-sensitivity and increases the beneficial effect of chemotherapy in HCC treatment. Therefore, inhibition of the Shh pathway may be an effective target therapy that can be used in the treatment of HCC.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of General Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan, R.O.C.,Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan, R.O.C
| | - Chi-Juei Jeng
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei City 10617, Taiwan, R.O.C
| | - Wen-Juei Jeng
- Department of Hepato-Gastroenterology, Chang-Gung Memorial Hospital, Linkou Medical Center, Chang-Gung University, Taoyuan City 33305, Taiwan, R.O.C
| | - I-Shyan Sheen
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei City 10617, Taiwan, R.O.C
| | - Shih-Yun Li
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan, R.O.C
| | - Chuen-Miin Leu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei City 11221, Taiwan, R.O.C
| | - Yeou-Guang Tsay
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei City 11221, Taiwan, R.O.C
| | - Chiung-Fang Chang
- Department of General Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan, R.O.C.,Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan, R.O.C
| |
Collapse
|
183
|
Xu WL, Wang SH, Sun WB, Gao J, Ding XM, Kong J, Xu L, Ke S. Insufficient radiofrequency ablation-induced autophagy contributes to the rapid progression of residual hepatocellular carcinoma through the HIF-1α/BNIP3 signaling pathway. BMB Rep 2019. [PMID: 30940322 PMCID: PMC6507849 DOI: 10.5483/bmbrep.2019.52.4.263] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Currently speaking, it is noted that radiofrequency ablation (RFA) has been the most widely used treatment for hepatocellular carcinoma (HCC) occurring in patients. However, accumulating evidence has demonstrated that the incidence of insufficient RFA (IRFA) may result in the identified rapid progression of residual HCC in the patient, which can greatly hinder the effectiveness and patient reported benefits of utilizing this technique. Although many efforts have been proposed, the underlying mechanisms triggering the rapid progression of residual HCC after IRFA have not yet been fully clarified through current research literature reviews. It was shown in this study that cell proliferation, migration and invasion of residual HepG2 and SMMC7721 cells were significantly increased after the IRFA was simulated in vitro. In other words, it is noted that IRFA could do this by enhancing the image of autophagy of the residual HCC cell via the HIF-1α/BNIP3 pathway. Consequently, the down-regulation of BNIP3 may result in the inhibition of the residual HCC cell progression and autophagy after IRFA. Our present study results suggest that IRFA could promote residual HCC cell progression in vitro by enhancing autophagy via the HIF-1α/BNIP3 pathway. For this reason, it is noted that the targeting of the BNIP3 may be useful in preventing the rapid growth and metastasis of residual HCC after IRFA.
Collapse
Affiliation(s)
- Wen-Lei Xu
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Shao-Hong Wang
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Wen-Bing Sun
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Jun Gao
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Xue-Mei Ding
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Jian Kong
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Li Xu
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Shan Ke
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| |
Collapse
|
184
|
Shangguan AJ, Sun C, Wang B, Pan L, Ma Q, Hu S, Yang J, Eresen A, Velichko Y, Yaghmai V, Zhang Z. DWI and DCE-MRI approaches for differentiating reversibly electroporated penumbra from irreversibly electroporated ablation zones in a rabbit liver model. Am J Cancer Res 2019; 9:1982-1994. [PMID: 31598399 PMCID: PMC6780669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023] Open
Abstract
The purpose of our study was to investigate the hypothesis that DWI-MRI and DCE-MRI cab be used to distinguish between IRE and RE zones of IRE treatment in a rabbit liver model. 6 rabbits underwent baseline and post-procedure MR imaging with DWI and DCE-MRI as well as IRE (10 pulses, 2000 V, 10 µs/pulse, 10 ms between pulses). Rabbits were euthanized immediately after post-procedure MRI to acquire liver tissue for histology. Liver tissues were fixed and then stained with HE and TUNEL. T1w and T2w intensities in different treatment zones were calculated and normalized to paraspinal muscle signal. ADC maps were generated from DWI. AUC, PE, TTP, WIS, Ktrans, Kep, and VE were calculated from DCE-MRI. Apoptosis index was calculated from TUNEL stained tissues. P<0.05 was considered statistically significant. Entire IRE treated region was hyperintense compared with untreated tissues on T1w, with the RE zone having a higher signal intensity. On DWI, IRE treated tissue had decreased ΔADC. The IRE zone has a lower ΔADC than the RE zone within the treated region. On DCE-MRI, IRE zone demonstrated the highest TTP and the lowest PE, WIS, Ktrans, Kep, and VE, followed by the RE zone then the untreated tissue. TUNEL staining of liver tissues showed that the IRE zone had the highest apoptosis index, followed by the RE zone and then untreated tissue. In conclusion, DCE-MRI and DWI parameters allow differentiation between RE and IRE zones in a rabbit liver model.
Collapse
Affiliation(s)
- Anna J Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Medical Student Training Program, Northwestern UniversityChicago, IL, USA
| | - Chong Sun
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Department of Orthopaedics, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, China
| | - Bin Wang
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, China
| | - Liang Pan
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Department of Radiology, The Third Affiliated Hospital of Suzhou UniversityChangzhou, Jiangsu, China
| | - Quanhong Ma
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Su Hu
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Department of Radiology, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Yuri Velichko
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Vahid Yaghmai
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| |
Collapse
|
185
|
Chen L, Huang Y, Zhou L, Lian Y, Wang J, Chen D, Wei H, Huang M, Huang Y. Prognostic roles of the transcriptional expression of exportins in hepatocellular carcinoma. Biosci Rep 2019; 39:BSR20190827. [PMID: 31371628 PMCID: PMC6702357 DOI: 10.1042/bsr20190827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
Aims: A large number of studies have suggested that exportins (XPOs) play a pivotal role in human cancers. In the present study, we analyzed XPO mRNA expression in cancer tissues and explored their prognostic value in hepatocellular carcinoma (HCC).Methods: Transcriptional and survival data related to XPO expression in HCC patients were obtained through the ONCOMINE and UALCAN databases. Survival analysis plots were drawn with Gene Expression Profiling Interactive Analysis (GEPIA). Sequence alteration data for XPOs were obtained from The Cancer Genome Atlas (TCGA) database and c-BioPortal. Gene functional enrichment analyses were performed with Database for Annotation, Visualization and Integrated Discovery (DAVID).Results: Compared with normal liver tissues, significant XPO mRNA overexpression was observed in HCC cancer tissues. There was a trend of higher XPO expression in more advanced clinical stages and lower differentiated pathological grades of HCC. In HCC patients, high expression of XPO1, CSE1L, XPOT, XPO4/5/6 was related to poor overall survival (OS), and XPO1, CSE1L and XPO5/6 were correlated with poor disease-free survival (DFS). The main genetic alterations in XPOs involved mRNA up-regulation, DNA amplification and deletion. General XPO mutations were remarkably associated with worse OS and mostly affected the pathways of RNA transport and oocyte meiosis.Conclusion: High expression of XPOs was associated with a poor prognosis in HCC patients. XPOs may be exploited as good prognostic biomarkers for survival in HCC patients.
Collapse
Affiliation(s)
- Lubiao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanlin Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jialiang Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongmei Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huan Wei
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingsheng Huang
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuehua Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
186
|
Luo Y, Feng Y, Song L, He GQ, Li S, Bai SS, Huang YJ, Li SY, Almutairi MM, Shi HL, Wang Q, Hong M. A network pharmacology-based study on the anti-hepatoma effect of Radix Salviae Miltiorrhizae. Chin Med 2019; 14:27. [PMID: 31406500 PMCID: PMC6685170 DOI: 10.1186/s13020-019-0249-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Radix Salviae Miltiorrhizae (RSM), a well-known traditional Chinese medicine, has been shown to inhibit tumorigenesis in various human cancers. However, the anticancer effects of RSM on human hepatocellular carcinoma (HCC) and the underlying mechanisms of action remain to be fully elucidated. METHODS In this study, we aimed to elucidate the underlying molecular mechanisms of RSM in the treatment of HCC using a network pharmacology approach. In vivo and in vitro experiments were also performed to validate the therapeutic effects of RSM on HCC. RESULTS In total, 62 active compounds from RSM and 72 HCC-related targets were identified through network pharmacological analysis. RSM was found to play a critical role in HCC via multiple targets and pathways, especially the EGFR and PI3K/AKT signaling pathways. In addition, RSM was found to suppress HCC cell proliferation, and impair cancer cell migration and invasion in vitro. Flow cytometry analysis revealed that RSM induced cell cycle G2/M arrest and apoptosis, and western blot analysis showed that RSM up-regulated the expression of BAX and down-regulated the expression of Bcl-2 in MHCC97-H and HepG2 cells. Furthermore, RSM administration down-regulated the expression of EGFR, PI3K, and p-AKT proteins, whereas the total AKT level was not altered. Finally, the results of our in vivo experiments confirmed the therapeutic effects of RSM on HCC in nude mice. CONCLUSIONS We provide an integrative network pharmacology approach, in combination with in vitro and in vivo experiments, to illustrate the underlying therapeutic mechanisms of RSM action on HCC.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Yu Feng
- Department of Traumatology, General Hospital of Ningxia Medical University, Yinchuan, 750004 China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Song
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Gan-Qing He
- Department of Gastroenterology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 501260 China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sha-Sha Bai
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Yu-Jie Huang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Si-Ying Li
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS USA
| | | | - Hong-Lian Shi
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS USA
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| |
Collapse
|
187
|
Ren L, Yao Y, Wang Y, Wang S. MiR-505 suppressed the growth of hepatocellular carcinoma cells via targeting IGF-1R. Biosci Rep 2019; 39:BSR20182442. [PMID: 31160483 PMCID: PMC6603277 DOI: 10.1042/bsr20182442] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/14/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers globally. An increasing body of evidence has demonstrated the critical function of microRNAs (miRNAs) in the initiation and progression of human cancers. Here, we showed that miR-505 was down-regulated in HCC tissues and cell lines. Reduced expression of miR-505 was significantly correlated with the worse prognosis of HCC patients. Overexpression of miR-505 suppressed the proliferation, colony formation and induced apoptosis of both HepG2 and Huh7 cells. Further mechanism study uncovered that miR-505 bound the 3'-untranslated region (3'-UTR) of the insulin growth factor receptor (IGF-1R) and inhibited the expression of IGF-1R in HCC cells. The down-regulation of IGF-1R by miR-505 further suppressed the phosphorylation of AKT at the amino acid S473. Consistently, the abundance of glucose transporter (GLUT) 1 (GLUT1) was reduced with the overexpression of miR-505. Down-regulation of GLUT1 by miR-505 consequently attenuated the glucose uptake, lactate production and ATP generation of HCC cells. Collectively, our results demonstrated the tumor suppressive function of miR-505 possibly via inhibiting the glycolysis of HCC cells. These findings suggested miR-505 as an interesting target for designing anti-cancer strategy in HCC.
Collapse
Affiliation(s)
- Liang Ren
- Department of Ultrasound and Imaging, Yichang Yiling Hospital, Yichang city 443100, Hubei province, China
| | - Yongshan Yao
- Emergency and Trauma Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang city 443100, Hubei province, China
| | - Yang Wang
- Department of Ultrasound and Imaging, Yichang Yiling Hospital, Yichang city 443100, Hubei province, China
| | - Shengqiang Wang
- Department of Pediatrics, Yichang Yiling Hospital, No.32 of Dong Hu street, Yiling district, Yichang city 443100, Hubei province, China
| |
Collapse
|
188
|
Friedman JR, Richbart SD, Merritt JC, Perry HE, Brown KC, Akers AT, Nolan NA, Stevenson CD, Hurley JD, Miles SL, Tirona MT, Valentovic MA, Dasgupta P. Capsaicinoids enhance chemosensitivity to chemotherapeutic drugs. Adv Cancer Res 2019; 144:263-298. [PMID: 31349900 DOI: 10.1016/bs.acr.2019.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cytotoxic chemotherapy is the mainstay of cancer treatment. Conventional chemotherapeutic agents do not distinguish between normal and neoplastic cells. This leads to severe toxic side effects, which may necessitate the discontinuation of treatment in some patients. Recent research has identified key molecular events in the initiation and progression of cancer, promoting the design of targeted therapies to selectively kill tumor cells while sparing normal cells. Although, the side effects of such drugs are typically milder than conventional chemotherapies, some off-target effects still occur. Another serious challenge with all chemotherapies is the acquisition of chemoresistance upon prolonged exposure to the drug. Therefore, identifying supplementary agents that sensitize tumor cells to chemotherapy-induced apoptosis and help minimize drug resistance would be valuable for improving patient tolerance and response to chemotherapy. The use of effective supplementary agents provides a twofold advantage in combination with standard chemotherapy. First, by augmenting the activity of the chemotherapeutic drug it can lower the dose needed to kill tumor cells and decrease the incidence and severity of treatment-limiting side effects. Second, adjuvant therapies that lower the effective dose of chemotherapy may delay/prevent the development of chemoresistance in tumors. Capsaicinoids, a major class of phytochemical compounds isolated from chili peppers, have been shown to improve the efficacy of several anti-cancer drugs in cell culture and animal models. The present chapter summarizes the current knowledge about the chemosensitizing activity of capsaicinoids with conventional and targeted chemotherapeutic drugs, highlighting the potential use of capsaicinoids in novel combination therapies to improve the therapeutic indices of conventional and targeted chemotherapeutic drugs in human cancers.
Collapse
Affiliation(s)
- Jamie R Friedman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Haley E Perry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Austin T Akers
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nicholas A Nolan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Cathryn D Stevenson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - John D Hurley
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Maria T Tirona
- Department of Hematology, Oncology, Edwards Comprehensive Cancer Center, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States.
| |
Collapse
|
189
|
Qiu Y, Shan W, Yang Y, Jin M, Dai Y, Yang H, Jiao R, Xia Y, Liu Q, Ju L, Huang G, Zhang J, Yang L, Li L, Li Y. Reversal of sorafenib resistance in hepatocellular carcinoma: epigenetically regulated disruption of 14-3-3η/hypoxia-inducible factor-1α. Cell Death Discov 2019; 5:120. [PMID: 31341646 PMCID: PMC6642098 DOI: 10.1038/s41420-019-0200-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/15/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023] Open
Abstract
Sorafenib resistance is one of the main obstacles to the treatment of advanced/recurrent hepatocellular carcinoma (HCC). Here, sorafenib-resistant HCC cells and xenografts in nude mice were used as experimental models. A cohort of patients with advanced recurrent HCC who were receiving sorafenib therapy was used to assess the clinical significance of this therapy. Our data showed that 14-3-3η maintained sorafenib resistance in HCC. An analysis of the underlying molecular mechanisms revealed that 14-3-3η stabilizes hypoxia-inducible factor 1α (HIF-1α) through the inhibition of ubiquitin-dependent proteasome protein degradation, which leads to the maintenance of cancer stem cell (CSC) properties. We further found that microRNA-16 (miR-16) is a competent miRNA that reverses sorafenib resistance by targeting the 3'-UTR of 14-3-3η and thereby inhibits 14-3-3η/HIF-1α/CSC properties. In HCC patients, significant negative correlations were found between the expression of miR-16 and 14-3-3η, HIF-1α, or CSC properties. Further analysis showed that low miR-16 expression but high 14-3-3η expression can prognosticate sorafenib resistance and poor survival. Collectively, our present study indicated that miR-16/14-3-3η is involved in sorafenib resistance in HCC and that these two factors could be potential therapeutic targets and biomarkers for predicting the response to sorafenib treatment.
Collapse
Affiliation(s)
- Yongxin Qiu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Wenqi Shan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Ye Yang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Ming Jin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Yi Dai
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Hanyu Yang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Ruonan Jiao
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Yunwei Xia
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Qinqiang Liu
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Liang Ju
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Guangming Huang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Jianping Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Lihua Yang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Lei Li
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Yuan Li
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
190
|
Chen CP. Role of Radiotherapy in the Treatment of Hepatocellular Carcinoma. J Clin Transl Hepatol 2019; 7:183-190. [PMID: 31293919 PMCID: PMC6609847 DOI: 10.14218/jcth.2018.00060] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
The role of radiotherapy in the treatment of hepatocellular carcinoma (HCC) has evolved over the past few decades with the advancement of technology and improved imaging. Radiotherapy can offer high local control rates in unresectable HCC, including cases with major vascular involvement, and can provide a modality to help bridge patients to potentially curative resection or transplantation. In metastatic cases, radiotherapy can provide good palliation. This review focuses on the common radiotherapy treatment modalities used for HCC, provides outcome comparisons of these radiotherapy techniques to outcomes with other treatment modalities for HCC, and highlights the discrepancy of the role of radiotherapy in HCC amongst the current available treatment guidelines.
Collapse
Affiliation(s)
- Chien Pong Chen
- Correspondence to: Chien Pong Chen, Department of Radiation Oncology, Scripps MD Anderson Cancer Center, 10670 John Jay Hopkins Drive, San Diego, CA 92121, USA. Tel: +1-858-554-4100, E-mail:
| |
Collapse
|
191
|
Gu XF, Shi CB, Zhao W. Prognostic value of carbonic anhydrase XII (CA XII) overexpression in hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2173-2183. [PMID: 31934040 PMCID: PMC6949632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/19/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Carbonic anhydrase XII (CA XII) is a key mediator of several signaling pathways that are involved in cancer development. This study was designed to investigate the clinical significance and prognostic value of postoperative CA XII expression in patients with hepatocellular carcinoma (HCC). METHODS Immunohistochemistry (IHC) was performed on HCC tissue (n = 90), and the relationships between CA XII expression in the HCC tissue, the clinicopathologic features, and survival were further evaluated. The mRNA expression of CA XII and clinicopathologic characteristics of patients with hepatocellular carcinoma were extracted from The Cancer Genome Atlas (TCGA) database. RESULTS CA XII was overexpressed in hepatocellular carcinoma tissues compared to normal liver tissues from the TCGA database. Moreover, CA XII mRNA expression was significantly associated with several clinicopathologic factors of hepatocellular carcinoma including sex (P = 0.011) and pathologic grade (P = 0.012). For HCC tissue samples in a tissue microarray (TMA), high CA XII protein expression was closely related to age (P = 0.013), tumor size (P = 0.014), and pathological grade (P = 0.015). A Kaplan-Meier analysis showed that elevated CA XII expression was associated with short disease-free survival (DFS) (P = 0.002) and overall survival (OS) (P = 0.006). In addition, a multivariate analysis showed that high CA XII expression was an independent prognostic indicator for disease-free survival (P = 0.018), but not overall survival, in HCC patients. CONCLUSION This study showed that high CA XII expression was associated with poor prognosis in HCC patients.
Collapse
Affiliation(s)
- Xue-Feng Gu
- Medical School, Southeast University87 Dingjiaqiao Street, Nanjing, Jiangsu, China
- The Second Hospital of Nanjing, Medical School, Southeast University1-1 Zhongfu Street, Nanjing, Jiangsu, China
| | - Chuan-Bing Shi
- Department of Pathology, Pukou District Central Hospital, Pukou Branch of Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University166 Shanghe Street, Nanjing, Jiangsu, China
| | - Wei Zhao
- Medical School, Southeast University87 Dingjiaqiao Street, Nanjing, Jiangsu, China
- The Second Hospital of Nanjing, Medical School, Southeast University1-1 Zhongfu Street, Nanjing, Jiangsu, China
| |
Collapse
|
192
|
Ogunwobi OO, Harricharran T, Huaman J, Galuza A, Odumuwagun O, Tan Y, Ma GX, Nguyen MT. Mechanisms of hepatocellular carcinoma progression. World J Gastroenterol 2019; 25:2279-2293. [PMID: 31148900 PMCID: PMC6529884 DOI: 10.3748/wjg.v25.i19.2279] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver. It is the second leading cause of cancer-related deaths worldwide, with a very poor prognosis. In the United States, there has been only minimal improvement in the prognosis for HCC patients over the past 15 years. Details of the molecular mechanisms and other mechanisms of HCC progression remain unclear. Consequently, there is an urgent need for better understanding of these mechanisms. HCC is often diagnosed at advanced stages, and most patients will therefore need systemic therapy, with sorafenib being the most common at the present time. However, sorafenib therapy only minimally enhances patient survival. This review provides a summary of some of the known mechanisms that either cause HCC or contribute to its progression. Included in this review are the roles of viral hepatitis, non-viral hepatitis, chronic alcohol intake, genetic predisposition and congenital abnormalities, toxic exposures, and autoimmune diseases of the liver. Well-established molecular mechanisms of HCC progression such as epithelial-mesenchymal transition, tumor-stromal interactions and the tumor microenvironment, cancer stem cells, and senescence bypass are also discussed. Additionally, we discuss the roles of circulating tumor cells, immunomodulation, and neural regulation as potential new mechanisms of HCC progression. A better understanding of these mechanisms could have implications for the development of novel and more effective therapeutic and prognostic strategies, which are critically needed.
Collapse
Affiliation(s)
- Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, United States
- The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016, United States
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
- Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, United States
| | - Trisheena Harricharran
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, United States
- The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016, United States
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
- Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, United States
| | - Jeannette Huaman
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, United States
- The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016, United States
- Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, United States
| | - Anna Galuza
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, United States
- Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, United States
| | - Oluwatoyin Odumuwagun
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, United States
- Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, United States
| | - Yin Tan
- Center for Asian Health, School of Medicine, Temple University, Philadelphia, PA 19140, United States
| | - Grace X Ma
- Center for Asian Health, School of Medicine, Temple University, Philadelphia, PA 19140, United States
| | - Minhhuyen T Nguyen
- Department of Medicine, Fox Chase Cancer Center, Philadelphia, PA 19111, United States
| |
Collapse
|
193
|
Li W, Dong X, He C, Tan G, Li Z, Zhai B, Feng J, Jiang X, Liu C, Jiang H, Sun X. LncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and is positively regulated by miR-21 in hepatocellular carcinoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:183. [PMID: 31053148 PMCID: PMC6499991 DOI: 10.1186/s13046-019-1177-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/14/2019] [Indexed: 12/19/2022]
Abstract
Background Acquired resistance to sorafenib greatly limits its therapeutic efficiency in the treatment of hepatocellular carcinoma (HCC). Increasing evidence indicates that long noncoding RNAs (lncRNAs) play important roles in the resistance to anti-cancer drugs. The present study aims to explore the involvement of lncRNA SNHG1 (small nucleolar RNA host gene 1) in sorafenib resistance and how SNHG1 is associated with overexpressed microRNA-21 (miR-21) and the activated Akt pathway, which have been demonstrated to mediate this resistance in HCC cells. Methods Sorafenib-resistant HCC (SR-HCC) cells were generated and their sorafenib-resistant properties were confirmed by cell viability and apoptosis assays. Potential lncRNAs were screened by using multiple bioinformatics analyses and databases. The expression of genes and proteins was detected by qRT-PCR, Western blot and in situ hybridization. Gene silencing was achieved by specific siRNA or lncRNA Smart Silencer. The effects of anti-SNHG1 were evaluated in vitro and in experimental animals by using quantitative measures of cell proliferation, apoptosis and autophagy. The binding sites of miR-21 and SNHG1 were predicted by using the RNAhybrid algorithm and their interaction was verified by luciferase assays. Results The Akt pathway was highly activated by overexpressed miR-21 in SR-HCC cells compared with parental HCC cells. Among ten screened candidates, SNHG1 showed the largest folds of alteration between SR-HCC and parental cells and between vehicle- and sorafenib-treated cells. Overexpressed SNHG1 contributes to sorafenib resistance by activating the Akt pathway via regulating SLC3A2. Depletion of SNHG1 enhanced the efficacy of sorafenib to induce apoptosis and autophagy of SR-HCC cells by inhibiting the activation of Akt pathway. Sorafenib induced translocation of miR-21 to the nucleus, where it promoted the expression of SNHG1, resulting in upregulation of SLC3A2, leading to the activation of Akt pathway. In contrast, SNHG1 was shown to have little effect on the expression of miR-21, which downregulated the expression of PTEN, leading to the activation of the Akt pathway independently of SNHG1. Conclusions The present study has demonstrated that lncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and its nuclear expression is promoted by miR-21, whose nuclear translocation is induced by sorafenib. These results indicate that SNHG1 may represent a potentially valuable target for overcoming sorafenib resistance for HCC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1177-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weidong Li
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xuesong Dong
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Changjun He
- Department of Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Tan
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ziyi Li
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Bo Zhai
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jing Feng
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xian Jiang
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hongchi Jiang
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xueying Sun
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
194
|
Ma W, Shen H, Li Q, Song H, Guo Y, Li F, Zhou X, Guo X, Shi J, Cui Q, Xing J, Deng J, Yu Y, Liu W, Zhao H. MARVELD1 attenuates arsenic trioxide-induced apoptosis in liver cancer cells by inhibiting reactive oxygen species production. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:200. [PMID: 31205918 DOI: 10.21037/atm.2019.04.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Arsenic trioxide (As2O3) is widely used for the treatment of acute promyelocytic leukemia (APL), and more recently, has also been applied to solid tumors. However, there are a fraction of patients with solid tumors, such as liver cancer, who respond to As2O3 treatment poorly. The underlying mechanisms for this remain unclear. Methods We determined the suitable concentration of drugs by IC50. Cell Counting Kit-8 (CCK-8) and flow cytometry were used to analyze the apoptosis. Morphological changes of the cells were observed by laser scanning confocal microscopy. Furthermore, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were detected by flow cytometry. Quantitative polymerase chain reaction (qPCR) and Western blot tests were conducted to detect the mRNA and protein levels in different groups. Finally, a xenograft tumor assay and histopathological analysis were performed to evaluate the MARVELD1 function in cell proliferation and apoptosis. Results Here, we show that MARVELD1 enhances the therapeutic effects of epirubicin, while inducing the strong resistance of liver cancer cells to As2O3 treatment. We further demonstrate that the As2O3-induced apoptosis was inhibited by MARVELD1 overexpression (24 h Vector vs. MARVELD1 =30.58% vs. 17.41%, P<0.01; 48 h Vector vs. MARVELD1 =46.50% vs. 21.02%, P<0.01), possibly through inhibiting ROS production by enhancing TRXR1 expression. In vivo, we found a significantly increased size (Vector vs. MARVELD1 =203.90±21.92 vs. 675.70±37.84 mm3, P<0.001) and weight (Vector vs. MARVELD1 =0.19±0.02 vs. 0.58±0.05 g, P<0.001) of tumors with high expression of MARVELD1 after As2O3 treatment. Consistently, a higher expression of MARVELD1 predicted a poor prognosis for liver cancer patients. Conclusions Our data identified a unique role of MARVELD1 in As2O3-induced apoptosis and As2O3 cancer therapy resistance.
Collapse
Affiliation(s)
- Wenping Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Haiyang Shen
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Qian Li
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Hao Song
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yanyan Guo
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Fangrong Li
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xinwu Guo
- Sansure Biotech Inc., Changsha 410205, China
| | - Jingdong Shi
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qi Cui
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinhao Xing
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinhai Deng
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Youtao Yu
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Wenjie Liu
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongshan Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
195
|
Busato D, Mossenta M, Baboci L, Di Cintio F, Toffoli G, Dal Bo M. Novel immunotherapeutic approaches for hepatocellular carcinoma treatment. Expert Rev Clin Pharmacol 2019; 12:453-470. [PMID: 30907177 DOI: 10.1080/17512433.2019.1598859] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The introduction of immune checkpoint inhibitors has been lately proposed for the treatment of hepatocellular carcinoma (HCC) with respect to other cancer types. Several immunotherapeutic approaches are now under evaluation for HCC treatment including: i) antibodies acting as immune checkpoint inhibitors; ii) antibodies targeting specific tumor-associated antigens; iii) chimeric antigen receptor redirected T (CAR-T) cells targeting specific tumor-associated antigens; iv) vaccination strategies with tumor-specific epitopes. Areas covered: The review provides a wide description of the clinical trials investigating the efficacy of the main immunotherapeutic approaches proposed for the treatment of patients affected by HCC. Expert opinion: The balancing between immunostimulative and immunosuppressive factors in the context of HCC tumor microenvironment results in heterogeneous response rates to immunotherapeutic approaches such as checkpoint inhibitors, among HCC patients. In this context, it becomes crucial the identification of predictive factors determining the treatment response. A multiple approach using different biomarkers could be useful to identify the subgroup of HCC patients responsive to the treatment with a checkpoint inhibitor (as an example, nivolumab) as single agent, and to identify those patients in which other treatment regimens, such as the combination with sorafenib, or with locoregional therapies, could be more effective.
Collapse
Affiliation(s)
- Davide Busato
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy.,b Department of Life Sciences , University of Trieste , Trieste , Italy
| | - Monica Mossenta
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy.,b Department of Life Sciences , University of Trieste , Trieste , Italy
| | - Lorena Baboci
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy
| | - Federica Di Cintio
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy.,b Department of Life Sciences , University of Trieste , Trieste , Italy
| | - Giuseppe Toffoli
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy
| | - Michele Dal Bo
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy
| |
Collapse
|
196
|
Chon YE, Park H, Hyun HK, Ha Y, Kim MN, Kim BK, Lee JH, Kim SU, Kim DY, Ahn SH, Hwang SG, Han KH, Rim KS, Park JY. Development of a New Nomogram Including Neutrophil-to-Lymphocyte Ratio to Predict Survival in Patients with Hepatocellular Carcinoma Undergoing Transarterial Chemoembolization. Cancers (Basel) 2019; 11:509. [PMID: 30974843 PMCID: PMC6520830 DOI: 10.3390/cancers11040509] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
The neutrophil-to-lymphocyte ratio (NLR) has recently been reported to predict the prognosis of hepatocellular carcinoma (HCC). We explored whether NLR predicted the survival of patients with HCC undergoing transarterial chemoembolization (TACE), and developed a predictive model. In total, 1697 patients with HCC undergoing TACE as first-line therapy at two university hospitals were enrolled (derivation set n = 921, internal validation set n = 395, external validation set n = 381). The tumor size, tumor number, AFP level, vascular invasion, Child-Pugh score, objective response after TACE, and NLR, selected as predictors of overall survival (OS) via multivariate Cox's regression model, were incorporated into a 14-point risk prediction model (SNAVCORN score). The time-dependent areas under the receiver-operating characteristic curves for OS at 1, 3, and 5 years predicted by the SNAVCORN score were 0.812, 0.734, and 0.700 in the derivation set. Patients were stratified into three risk groups by SNAVCORN score (low, 0-4; intermediate, 5-9; high, 10-14). Compared with the low-risk group, the intermediate-risk (HR 3.10, p < 0.001) and high-risk (HR 7.37, p < 0.001) groups exhibited significantly greater mortality. The prognostic performance of the SNAVCORN score including NLR in patients with HCC treated with TACE was remarkable, much better than those of the conventional scores. The SNAVCORN score will guide future HCC treatment decisions.
Collapse
Affiliation(s)
- Young Eun Chon
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea.
- CHA Bundang Liver Center, CHA Bundang Hospital, Seongnam 13496, Korea.
| | - Hana Park
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea.
- CHA Bundang Liver Center, CHA Bundang Hospital, Seongnam 13496, Korea.
| | - Hye Kyung Hyun
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Yeonjung Ha
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea.
- CHA Bundang Liver Center, CHA Bundang Hospital, Seongnam 13496, Korea.
| | - Mi Na Kim
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea.
- CHA Bundang Liver Center, CHA Bundang Hospital, Seongnam 13496, Korea.
| | - Beom Kyung Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea.
- Yonsei Liver Center, Severance Hospital, Seoul 03722, Korea.
| | - Joo Ho Lee
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea.
- CHA Bundang Liver Center, CHA Bundang Hospital, Seongnam 13496, Korea.
| | - Seung Up Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea.
- Yonsei Liver Center, Severance Hospital, Seoul 03722, Korea.
| | - Do Young Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea.
- Yonsei Liver Center, Severance Hospital, Seoul 03722, Korea.
| | - Sang Hoon Ahn
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea.
- Yonsei Liver Center, Severance Hospital, Seoul 03722, Korea.
| | - Seong Gyu Hwang
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea.
- CHA Bundang Liver Center, CHA Bundang Hospital, Seongnam 13496, Korea.
| | - Kwang-Hyub Han
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea.
- Yonsei Liver Center, Severance Hospital, Seoul 03722, Korea.
| | - Kyu Sung Rim
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea.
- CHA Bundang Liver Center, CHA Bundang Hospital, Seongnam 13496, Korea.
| | - Jun Yong Park
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea.
- Yonsei Liver Center, Severance Hospital, Seoul 03722, Korea.
| |
Collapse
|
197
|
Jeon YJ, Kim S, Kim JH, Youn UJ, Suh SS. The Comprehensive Roles of ATRANORIN, A Secondary Metabolite from the Antarctic Lichen Stereocaulon caespitosum, in HCC Tumorigenesis. Molecules 2019; 24:molecules24071414. [PMID: 30974882 PMCID: PMC6480312 DOI: 10.3390/molecules24071414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly genetic diseases, but surprisingly chemotherapeutic approaches against HCC are only limited to a few targets. In particular, considering the difficulty of a chemotherapeutic drug development in terms of cost and time enforces searching for surrogates to minimize effort and maximize efficiency in anti-cancer therapy. In spite of the report that approximately one thousand lichen-derived metabolites have been isolated, the knowledge about their functions and consequences in cancer development is relatively limited. Moreover, one of the major second metabolites from lichens, Atranorin has never been studied in HCC. Regarding this, we comprehensively analyze the effect of Atranorin by employing representative HCC cell lines and experimental approaches. Cell proliferation and cell cycle analysis using the compound consistently show the inhibitory effects of Atranorin. Moreover, cell death determination using Annexin-V and (Propidium Iodide) PI staining suggests that it induces cell death through necrosis. Lastly, the metastatic potential of HCC cell lines is significantly inhibited by the drug. Taken these together, we claim a novel functional finding that Atranorin comprehensively suppresses HCC tumorigenesis and metastatic potential, which could provide an important basis for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Young-Jun Jeon
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Sanghee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea.
| | - Ji Hee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea.
| | - Ui Joung Youn
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea.
| | - Sung-Suk Suh
- Department of Bioscience, Mokpo National University, Muan 58554, Korea.
| |
Collapse
|
198
|
Wu HY, Li MW, Li QQ, Pang YY, Chen G, Lu HP, Pan SL. Elevation of miR-191-5p level and its potential signaling pathways in hepatocellular carcinoma: a study validated by microarray and in-house qRT-PCR with 1,291 clinical samples. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1439-1456. [PMID: 31933962 PMCID: PMC6947072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/21/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The miR-191-5p expression has been reported to increase in hepatocellular carcinoma (HCC), but its clinical value and exact role remain to be further clarified. Thus, a comprehensive analysis was performed in the current study to explore the underlying function of miR-191-5p in HCC. METHODS HCC-related expression data were collected to conduct a thorough analysis to determine the miR-191-5p expression and its clinical significance in HCC, including microarray data from the Gene Expression Omnibus and ArrayExpress database as well as quantitative real-time polymerase chain reaction (qRT-PCR) data of 178 matched clinical samples. The underlying relationship between miR-191-5p and HCC was also explored on the basis of a series of bioinformatics analyses. RESULTS The overall pooled meta-analysis showed an overexpression of miR-191-5p in the HCC samples (SMD=0.400, 95% CI=0.139-0.663, P=0.003), consistent with the detected result of the clinical HCC samples through the qRT-PCR analysis. Higher miR-191-5p levels were correlated with advanced TNM stages (III and IV), higher pathological grades, and metastasis. Functionally, 64 potential target genes were acquired for further mechanism analysis. Two pathways (p75 neurotrophin receptor and liver kinase B1-mediated signaling pathways), which were likely modulated by miR-191-5p, were regarded to be linked to the deterioration of HCC. Early growth response 1 and UBE2D3 were identified as the most likely targets for miR-191-5p in HCC and were commonly implied in the top enriched pathways and protein-protein network. CONCLUSIONS In summary, miR-191-5p may function as a tumor promoter miRNA of HCC, and the miR-191-5p inhibitor may contribute to the targeted HCC treatment in the future.
Collapse
Affiliation(s)
- Hua-Yu Wu
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Mei-Wei Li
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Qi-Qi Li
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yu-Yan Pang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
199
|
Treatment Strategies for Hepatocellular Carcinoma ⁻ a Multidisciplinary Approach. Int J Mol Sci 2019; 20:ijms20061465. [PMID: 30909504 PMCID: PMC6470895 DOI: 10.3390/ijms20061465] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver and its mortality is third among all solid tumors, behind carcinomas of the lung and the colon. Despite continuous advancements in the management of this disease, the prognosis for HCC remains inferior compared to other tumor entities. While orthotopic liver transplantation (OLT) and surgical resection are the only two curative treatment options, OLT remains the best treatment strategy as it not only removes the tumor but cures the underlying liver disease. As the applicability of OLT is nowadays limited by organ shortage, major liver resections—even in patients with underlying chronic liver disease—are adopted increasingly into clinical practice. Against the background of the oftentimes present chronical liver disease, locoregional therapies have also gained increasing significance. These strategies range from radiofrequency ablation and trans-arterial chemoembolization to selective internal radiation therapy and are employed in both curative and palliative intent, individually, as a bridging to transplant or in combination with liver resection. The choice of the appropriate treatment, or combination of treatments, should consider the tumor stage, the function of the remaining liver parenchyma, the future liver remnant volume and the patient’s general condition. This review aims to address the topic of multimodal treatment strategies in HCC, highlighting a multidisciplinary treatment approach to further improve outcome in these patients.
Collapse
|
200
|
Cui Y, Dong Y, Guo B, Xing C, Gao X, Su D. Effect of HIFU on endometrial receptivity and sex hormone level in uterine fibroid patients and analysis of influencing factors for its treatment rate. Exp Ther Med 2019; 17:2291-2297. [PMID: 30867713 PMCID: PMC6395971 DOI: 10.3892/etm.2019.7194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/03/2019] [Indexed: 11/05/2022] Open
Abstract
Effect of high intensity focused ultrasound (HIFU) uterine fibroid ablation on the endometrial receptivity and sex hormone level in uterine fibroid patients and the influencing factors for treatment rate were investigated. A retrospective analysis of 266 uterine fibroid patients admitted to the Department of Gynaecology in the Jining Maternity and Child Care Hospital from October 2013 to October 2016 was performed. Among them, observation group was treated with HIFU ablation (n=143), control group with myomectomy (n=123). The pulsatility index (PI) and the resistance index (RI) of the uterine arterial blood flow were measured during the luteal phase of menstruation by transvaginal ultrasonography. The serum luteinizing hormone (LH), follicle stimulating hormone (FSH) and estradiol (E2) were detected by chemical immunofluorescence. The relationship between HIFU treatment rate and clinical pathology of uterine fibroid patients was analyzed, and univariate/multivariate regression analysis was used to analyze the influencing factors for HIFU treatment rate. There was no significant difference in preoperative and postoperative PI and RI between the two groups (P>0.05); no significant difference between preoperative and postoperative PI/RI in the same group (P>0.05). There was no significant difference in preoperative and postoperative LH, FSH and E2 between the two groups (P>0.05); no significant difference between preoperative LH and postoperative LH in the same group (P>0.05), neither FSH or E2 (P>0.05). Results of multivariate analysis showed that fibroid location and ultrasound contrast intensity were independent influencing factors for HIFU treatment rate (P<0.05). Treatment of uterine fibroid with HIFU has no effect on the patient's endometrial receptivity and sex hormone level. Fibroid location and ultrasound contrast intensity are independent risk factors for HIFU treatment rate. This study provides guidance for the clinical optimization of treatment methods and is more conducive to the promotion of HIFU ablation therapy.
Collapse
Affiliation(s)
- Yongmei Cui
- Department of Ultrasonography, Jining Maternal and Child Health Family Planning Service Center, Jining, Shandong 272000, P.R. China
| | - Yanyan Dong
- Department of Ultrasonography, Jiaxiang People's Hospital, Jining, Shandong 272400, P.R. China
| | - Bingcheng Guo
- Department of Ultrasonography, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Cuihong Xing
- Department of Internal Medicine Ward, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Xiaohui Gao
- Department of Internal Medicine Ward, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Dexing Su
- Department of Cardiology, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| |
Collapse
|