151
|
Arjunan SP, Siddiqi A, Swaminathan R, Kumar DK. Implementation and experimental validation of surface electromyogram and force model of Tibialis Anterior muscle for examining muscular factors. Proc Inst Mech Eng H 2020; 234:200-209. [DOI: 10.1177/0954411919890150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study reports a surface electromyogram and force of contraction model. The objective was to investigate the effect of changes in the size, type and number of motor units in the Tibialis Anterior muscle to surface electromyogram and force of dorsiflexion. A computational model to simulate surface electromyogram and associated force of contraction by the Tibialis Anterior muscle was developed. This model was simulated for isometric dorsiflexion, and comparative experiments were conducted for validation. Repeated simulations were performed to investigate the different parameters and evaluate inter-experimental variability. An equivalence statistical test and the Bland–Altman method were used to observe the significance between the simulated and experimental data. Simulated and experimentally recorded data had high similarity for the three measures: maximal power of power spectral density ( p < 0.0001), root mean square of surface electromyogram ( p < 0.0001) and force recorded at the footplate ( p < 0.03). Inter-subject variability in the experimental results was in-line with the variability in the repeated simulation results. This experimentally validated computational model for the surface electromyogram and force of the Tibialis Anterior muscle is significant as it allows the examination of three important muscular factors associated with ageing and disease: size, fibre type and number of motor units.
Collapse
Affiliation(s)
| | - Ariba Siddiqi
- Biosignals Lab, School of Engineering, RMIT University, Melbourne, VIC, Australia
| | | | | |
Collapse
|
152
|
Mohamed AA, Jan YK. Effect of Adding Proprioceptive Exercise to Balance Training in Older Adults with Diabetes: A Systematic Review. Curr Diabetes Rev 2020; 16:327-339. [PMID: 31526352 DOI: 10.2174/1573399815666190712200147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Accidental fall is a serious problem in older adults. The incidence of accidental fall increases by any dysfunction in the proprioceptive system. The function of the proprioceptive system usually is much affected in people with Diabetes Mellitus (DM), particularly in older ages. However, proprioceptive exercise significantly improves the balance control in older adults, no systematic review demonstrated its effectiveness in improving the balance control in older adults with DM. Thus, this systematic review was conducted to examine the effectiveness of adding proprioceptive exercise to any balance training in older adults with DM. METHODS A systematic search was performed in five major databases. The inclusion criteria of this search included older adults with DM, peripheral neuropathy, randomized control trial, and proprioceptive dysfunction. The exclusion criterion of this search included any study where participants had a history of a disease that might affect the balance control such as ataxia, stroke, and Parkinsonism. The outcome of interest was the importance of including proprioceptive exercise in increasing the effectiveness of balance training in older adults with DM. RESULTS Nine RCTs met the inclusion criteria for this systematic review. Seven studies of these nine studies included randomization details. Only two studies included the blindness, and only one of them included double blindness. The description of the withdrawal of participants was shown in eight studies. All the included studies used a control group and accomplished the homogeny between subjects in the both groups. CONCLUSION This systematic review showed that proprioceptive exercise is a vital component that should be included in any balance training to gain short-term improvement in the balance control in older adults with DM.
Collapse
Affiliation(s)
- Ayman A Mohamed
- Department of Physiotherapy and Rehabilitation, School of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey
| | - Yih-Kuen Jan
- Department Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
153
|
Pratt J, Boreham C, Ennis S, Ryan AW, De Vito G. Genetic Associations with Aging Muscle: A Systematic Review. Cells 2019; 9:E12. [PMID: 31861518 PMCID: PMC7016601 DOI: 10.3390/cells9010012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
The age-related decline in skeletal muscle mass, strength and function known as 'sarcopenia' is associated with multiple adverse health outcomes, including cardiovascular disease, stroke, functional disability and mortality. While skeletal muscle properties are known to be highly heritable, evidence regarding the specific genes underpinning this heritability is currently inconclusive. This review aimed to identify genetic variants known to be associated with muscle phenotypes relevant to sarcopenia. PubMed, Embase and Web of Science were systematically searched (from January 2004 to March 2019) using pre-defined search terms such as "aging", "sarcopenia", "skeletal muscle", "muscle strength" and "genetic association". Candidate gene association studies and genome wide association studies that examined the genetic association with muscle phenotypes in non-institutionalised adults aged ≥50 years were included. Fifty-four studies were included in the final analysis. Twenty-six genes and 88 DNA polymorphisms were analysed across the 54 studies. The ACTN3, ACE and VDR genes were the most frequently studied, although the IGF1/IGFBP3, TNFα, APOE, CNTF/R and UCP2/3 genes were also shown to be significantly associated with muscle phenotypes in two or more studies. Ten DNA polymorphisms (rs154410, rs2228570, rs1800169, rs3093059, rs1800629, rs1815739, rs1799752, rs7412, rs429358 and 192 bp allele) were significantly associated with muscle phenotypes in two or more studies. Through the identification of key gene variants, this review furthers the elucidation of genetic associations with muscle phenotypes associated with sarcopenia.
Collapse
Affiliation(s)
- Jedd Pratt
- Institute for Sport and Health, University College Dublin, Dublin, Ireland; (C.B.); (G.D.V.)
- Genomics Medicine Ireland, Dublin, Ireland; (S.E.); (A.W.R.)
| | - Colin Boreham
- Institute for Sport and Health, University College Dublin, Dublin, Ireland; (C.B.); (G.D.V.)
| | - Sean Ennis
- Genomics Medicine Ireland, Dublin, Ireland; (S.E.); (A.W.R.)
- UCD ACoRD, Academic Centre on Rare Diseases, University College Dublin, Dublin, Ireland
| | - Anthony W. Ryan
- Genomics Medicine Ireland, Dublin, Ireland; (S.E.); (A.W.R.)
| | - Giuseppe De Vito
- Institute for Sport and Health, University College Dublin, Dublin, Ireland; (C.B.); (G.D.V.)
- Department of Biomedical Sciences, University of Padova, Via F. Marzolo 3, 35131 Padova, Italy
| |
Collapse
|
154
|
The effects of same-session combined exercise training on cardiorespiratory and functional fitness in older adults: a systematic review and meta-analysis. Aging Clin Exp Res 2019; 31:1701-1717. [PMID: 30661187 PMCID: PMC6825647 DOI: 10.1007/s40520-019-01124-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/08/2019] [Indexed: 11/30/2022]
Abstract
Endurance and strength training are effective strategies for counteracting age-associated reductions in physical performance in older adults, with a combination of both exercise modes recommended to maximise potential fitness benefits. This meta-analysis sought to quantify the effects of same-session combined endurance and strength training on fitness in adults aged over 50 years. Five electronic databases were searched with studies required to include one of the following outcome measures: VO2peak, 6-min walk test (6MWT), 8-ft timed up-and-go (TUG), and 30-s chair stand. Separate random-effects meta-analyses compared combined training with (1) no-exercise control, (2) endurance training, and (3) strength training with probabilistic magnitude-based inferences subsequently applied. Twenty-seven studies involving 1346 subjects with a mean age of 68.8 years (range 54–85 years) were included in the analysis. The meta-analysed effect on VO2peak was a moderately beneficial effect for the combined training compared to no-exercise controls (3.6 mL kg−1 min−1; ± 95% confidence limits 0.8 mL kg−1 min−1) with additional increases for studies with greater proportions of female participants and shorter training interventions. Combined training also had small-to-moderately beneficial effects on VO2peak when compared to endurance training (0.8 mL kg−1 min−1; ± 1.0 mL kg−1 min−1), 30-s chair stand when compared with strength training (1.1 repetitions; ± 0.5 repetitions) and on TUG (0.8 s; ± 0.7 s), 30-s chair stand (2.8 repetitions; ± 1.7 repetitions), and 6MWT (31.5 m; ± 22.4 m) when compared to no-exercise controls. All other comparisons were unclear. Same-session combined training can induce clinically relevant fitness improvements in older adults.
Collapse
|
155
|
Gharahdaghi N, Rudrappa S, Brook MS, Idris I, Crossland H, Hamrock C, Abdul Aziz MH, Kadi F, Tarum J, Greenhaff PL, Constantin-Teodosiu D, Cegielski J, Phillips BE, Wilkinson DJ, Szewczyk NJ, Smith K, Atherton PJ. Testosterone therapy induces molecular programming augmenting physiological adaptations to resistance exercise in older men. J Cachexia Sarcopenia Muscle 2019; 10:1276-1294. [PMID: 31568675 PMCID: PMC6903447 DOI: 10.1002/jcsm.12472] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/14/2019] [Accepted: 06/12/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The andropause is associated with declines in serum testosterone (T), loss of muscle mass (sarcopenia), and frailty. Two major interventions purported to offset sarcopenia are anabolic steroid therapies and resistance exercise training (RET). Nonetheless, the efficacy and physiological and molecular impacts of T therapy adjuvant to short-term RET remain poorly defined. METHODS Eighteen non-hypogonadal healthy older men, 65-75 years, were assigned in a random double-blinded fashion to receive, biweekly, either placebo (P, saline, n = 9) or T (Sustanon 250 mg, n = 9) injections over 6 week whole-body RET (three sets of 8-10 repetitions at 80% one-repetition maximum). Subjects underwent dual-energy X-ray absorptiometry, ultrasound of vastus lateralis (VL) muscle architecture, and knee extensor isometric muscle force tests; VL muscle biopsies were taken to quantify myogenic/anabolic gene expression, anabolic signalling, muscle protein synthesis (D2 O), and breakdown (extrapolated). RESULTS Testosterone adjuvant to RET augmented total fat-free mass (P=0.007), legs fat-free mass (P=0.02), and appendicular fat-free mass (P=0.001) gains while decreasing total fat mass (P=0.02). Augmentations in VL muscle thickness, fascicle length, and quadriceps cross-section area with RET occured to a greater extent in T (P < 0.05). Sum strength (P=0.0009) and maximal voluntary contract (e.g. knee extension at 70°) (P=0.002) increased significantly more in the T group. Mechanistically, both muscle protein synthesis rates (T: 2.13 ± 0.21%·day-1 vs. P: 1.34 ± 0.13%·day-1 , P=0.0009) and absolute breakdown rates (T: 140.2 ± 15.8 g·day-1 vs. P: 90.2 ± 11.7 g·day-1 , P=0.02) were elevated with T therapy, which led to higher net turnover and protein accretion in the T group (T: 8.3 ± 1.4 g·day-1 vs. P: 1.9 ± 1.2 g·day-1 , P=0.004). Increases in ribosomal biogenesis (RNA:DNA ratio); mRNA expression relating to T metabolism (androgen receptor: 1.4-fold; Srd5a1: 1.6-fold; AKR1C3: 2.1-fold; and HSD17β3: two-fold); insulin-like growth factor (IGF)-1 signalling [IGF-1Ea (3.5-fold) and IGF-1Ec (three-fold)] and myogenic regulatory factors; and the activity of anabolic signalling (e.g. mTOR, AKT, and RPS6; P < 0.05) were all up-regulated with T therapy. Only T up-regulated mitochondrial citrate synthase activity (P=0.03) and transcription factor A (1.41 ± 0.2-fold, P=0.0002), in addition to peroxisome proliferator-activated receptor-γ co-activator 1-α mRNA (1.19 ± 0.21-fold, P=0.037). CONCLUSIONS Administration of T adjuvant to RET enhanced skeletal muscle mass and performance, while up-regulating myogenic gene programming, myocellular translational efficiency and capacity, collectively resulting in higher protein turnover, and net protein accretion. T coupled with RET is an effective short-term intervention to improve muscle mass/function in older non-hypogonadal men.
Collapse
Affiliation(s)
- Nima Gharahdaghi
- MRC-ARUK Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Supreeth Rudrappa
- MRC-ARUK Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Matthew S Brook
- MRC-ARUK Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Iskandar Idris
- MRC-ARUK Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Hannah Crossland
- MRC-ARUK Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Claire Hamrock
- Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | - Muhammad Hariz Abdul Aziz
- MRC-ARUK Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Fawzi Kadi
- Division of Sports Sciences, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Janelle Tarum
- Division of Sports Sciences, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Paul L Greenhaff
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Nottingham, Nottingham, UK
| | - Dumitru Constantin-Teodosiu
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Nottingham, Nottingham, UK
| | - Jessica Cegielski
- MRC-ARUK Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Bethan E Phillips
- MRC-ARUK Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Daniel J Wilkinson
- MRC-ARUK Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Nathaniel J Szewczyk
- MRC-ARUK Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Kenneth Smith
- MRC-ARUK Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Philip J Atherton
- MRC-ARUK Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| |
Collapse
|
156
|
Wahlen BM, Mekkodathil A, Al-Thani H, El-Menyar A. Impact of sarcopenia in trauma and surgical patient population: A literature review. Asian J Surg 2019; 43:647-653. [PMID: 31796260 DOI: 10.1016/j.asjsur.2019.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia refers to the progressive and generalised loss of skeletal muscle mass and strength with a risk of adverse outcomes such as physical disability, poor quality of life and mortality. The present review explored the impact, diagnosis, prevention and management of sarcopenia in surgical and trauma patients. Recent evidence suggests that there are many factors contributing to its development other than age. Pathophysiology of sarcopenia is complex which makes its diagnosis difficult and there is no universal approach. It is a predictor of poor outcomes including post-operative complications, length of hospital stay and mortality in trauma and surgery patients. Sedentary lifestyle, age-dependent hormone and cytokine imbalance, decreased protein synthesis and regeneration, and motor unit remodelling are some of the main risk factors for sarcopenia. Dual energy X-ray absorptiometry, bio-electrical impedance analysis and computed tomography are frequently utilized for its diagnosis. Management of sarcopenia involves appropriate management of comorbidities, interventions to facilitate physical activities, nutrition interventions and pharmacotherapy.
Collapse
Affiliation(s)
- Bianca M Wahlen
- Department of Anaesthesia, Hamad General Hospital, Doha, Qatar
| | - Ahammed Mekkodathil
- Clinical Research, Trauma & Vascular Surgery Section, Hamad Medical Corporation, Doha, Qatar
| | - Hassan Al-Thani
- Department of Surgery, Trauma &Vascular Surgery Section, Hamad Medical Corporation, Doha, Qatar
| | - Ayman El-Menyar
- Clinical Research, Trauma & Vascular Surgery Section, Hamad Medical Corporation, Doha, Qatar; Clinical Medicine, Weill Cornell Medical College, Doha, Qatar.
| |
Collapse
|
157
|
Tey SR, Robertson S, Lynch E, Suzuki M. Coding Cell Identity of Human Skeletal Muscle Progenitor Cells Using Cell Surface Markers: Current Status and Remaining Challenges for Characterization and Isolation. Front Cell Dev Biol 2019; 7:284. [PMID: 31828070 PMCID: PMC6890603 DOI: 10.3389/fcell.2019.00284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle progenitor cells (SMPCs), also called myogenic progenitors, have been studied extensively in recent years because of their promising therapeutic potential to preserve and recover skeletal muscle mass and function in patients with cachexia, sarcopenia, and neuromuscular diseases. SMPCs can be utilized to investigate the mechanisms of natural and pathological myogenesis via in vitro modeling and in vivo experimentation. While various types of SMPCs are currently available from several sources, human pluripotent stem cells (PSCs) offer an efficient and cost-effective method to derive SMPCs. As human PSC-derived cells often display varying heterogeneity in cell types, cell enrichment using cell surface markers remains a critical step in current procedures to establish a pure population of SMPCs. Here we summarize the cell surface markers currently being used to detect human SMPCs, describing their potential application for characterizing, identifying and isolating human PSC-derived SMPCs. To date, several positive and negative markers have been used to enrich human SMPCs from differentiated PSCs by cell sorting. A careful analysis of current findings can broaden our understanding and reveal potential uses for these surface markers with SMPCs.
Collapse
Affiliation(s)
- Sin-Ruow Tey
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Eileen Lynch
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
158
|
Leite Schetino LP, Fonseca M, Magalhães Gomes MPS, Costa Valadão PA, Camargo WL, Rodrigues HA, Andrade JN, Arantes‐Costa FM, Naves LA, Prado CM, Prado VF, Prado MAM, Guatimosim C. Evaluation of the neuromuscular junction in a middle‐aged mouse model of congenital myasthenic syndrome. Muscle Nerve 2019; 60:790-800. [DOI: 10.1002/mus.26710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
| | - Matheus Fonseca
- Laboratório Nacional de BiociênciasCentro Nacional de Pesquisa em Energia e Materiais Campinas São Paulo Brazil
| | | | | | - Wallace Lucio Camargo
- Departamento de Fisiologia e BiofísicaUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Hermann Alecsandro Rodrigues
- Departamento de Ciências Básicas da Vida, Instituto de Ciências da VidaUniversidade Federal de Juiz de Fora Campus Governador Valadares Minas Gerais Brazil
| | - Jéssica Neves Andrade
- Departamento de MorfologiaUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | | | - Lígia Araujo Naves
- Departamento de Fisiologia e BiofísicaUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Carla Máximo Prado
- Departmento de BiociênciasUniversidade Federal de São Paulo, Campus Baixada Santista São Paulo Brazil
| | - Vânia Ferreira Prado
- Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell BiologyUniversity of Western Ontario London Ontario Canada
| | - Marco Antônio Máximo Prado
- Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell BiologyUniversity of Western Ontario London Ontario Canada
| | - Cristina Guatimosim
- Departamento de MorfologiaUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
159
|
Thalacker-Mercer A, Riddle E, Barre L. Protein and amino acids for skeletal muscle health in aging. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:29-64. [PMID: 32035599 DOI: 10.1016/bs.afnr.2019.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins and its building blocks, amino acids, have many physiological roles in the body. While some amino acids can be synthesized endogenously, exogenous protein and amino acids are necessary to maintain homeostasis. Because skeletal muscle contains a large portion of endogenous protein and plays important roles in movement, regulation, and metabolism, imbalanced protein and amino acid availability may result in clinical conditions including skeletal muscle atrophy, impaired muscle growth or regrowth, and functional decline. Aging is associated with changes in protein metabolism and multiple physiological and functional alterations in the skeletal muscle that are accentuated by decreased dietary protein intake and impaired anabolic responses to stimuli. Inactivity and chronically elevated inflammation of the skeletal muscle can initiate and/or augment pathological remodeling of the tissue (i.e., increase of fat and fibrotic tissues and atrophy of the muscle). Defining an adequate amount of dietary protein that is appropriate to maintain the availability of amino acids for biological needs is necessary but is still widely debated for older adults. This chapter will provide (i) an overview of dietary protein and amino acids and their role in skeletal muscle health; (ii) an overview of skeletal muscle structure and function and the deterioration of muscle that occurs with advancing age; (iii) a discussion of the relationship between protein/amino acid metabolism and skeletal muscle decline with aging; and (iv) a brief discussion of optimal protein intakes for older adults to maintain skeletal muscle health in aging.
Collapse
Affiliation(s)
| | | | - Laura Barre
- Cornell University, Ithaca, NY, United States
| |
Collapse
|
160
|
Chusyd DE, Brown JL, Golzarri-Arroyo L, Dickinson SL, Johnson MS, Allison DB, Nagy TR. Fat mass compared to four body condition scoring systems in the Asian elephant (Elephas maximus). Zoo Biol 2019; 38:424-433. [PMID: 31361060 PMCID: PMC6786925 DOI: 10.1002/zoo.21508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 06/06/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022]
Abstract
Captive elephant populations are not self-sustaining due to health concerns possibly related to obesity. Categorizing obesity relies on qualitative analyses like body condition scores (BCS). However, elephant indices have not been validated against measured body composition. The objective was to compare BCS systems to body composition determined by deuterium dilution in 28 zoo-kept Asian elephants. Elephants were weighed and given deuterated water orally (0.05 ml/kg). Blood was collected at ~0, 24, 120, 240, 360, and 480 hr after dosing. Photographs were taken to score the elephant based on four BCS systems (BCSWemmer [0 to 11 scoring], BCSMorfeld [1 to 5 scoring], BCSFernando [0 to 10 scoring], BCSWijeyamohan [1 to 10 scoring]). Based on regression analysis, relative fat ranged from -305 kg to 515 kg, where negative values indicate less and positive values indicate more fat than expected for the elephant's mass in this population. BCSFernando was associated with relative fat (p = .020, R2 = 0.194). Relative fat, adjusted for sex and age in the statistical model, was associated with BCSWemmer (p = .027, R2 = 0.389), BCSFernando (p = .002, R2 = 0.502), and BCSWijeyamohan (p = .011, R2 = 0.426). Inclusion of zoo and familial relatedness resulted in all BCS systems associated with relative fat (p ≤ .015). Only BCSFernando predicted relative fat, unadjusted, suggesting it is the most capable system for practical use. Compared to absolute fat, relative fat may be more biologically relevant as greater fat relative to body mass is more likely to lead to health issues.
Collapse
Affiliation(s)
- Daniella E. Chusyd
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Janine L. Brown
- Department of Reproductive Sciences, Conservation & Research Center, National Zoological Park, Smithsonian Institution, Front Royal, VA, USA
| | | | | | - Maria S. Johnson
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David B. Allison
- School of Public Health, Indiana University-Bloomington, Bloomington, IN, USA
| | - Tim R. Nagy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
161
|
Jimenez AG, O'Connor ES, Elliott KH. Muscle myonuclear domain, but not oxidative stress, decreases with age in a long-lived seabird with high activity costs. ACTA ACUST UNITED AC 2019; 222:jeb.211185. [PMID: 31488626 DOI: 10.1242/jeb.211185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022]
Abstract
In birds, many physiological parameters appear to remain constant with increasing age, showing no deterioration until 'catastrophic' mortality sets in. Given their high whole-organism metabolic rate and the importance of flight in foraging and predator avoidance, flight muscle deterioration and accumulated oxidative stress and tissue deterioration may be an important contributor to physiological senescence in wild birds. As a by-product of aerobic respiration, reactive oxygen species are produced and can cause structural damage within cells. The anti-oxidant system deters oxidative damage to macromolecules. We examined oxidative stress and muscle ultrastructure in thick-billed murres aged 8 to 37 years (N=50) in pectoralis muscle biopsies. When considered in general linear models with body mass, body size and sex, no oxidative stress parameter varied with age. In contrast, there was a decrease in myonuclear domain similar to that seen in human muscle aging. We conclude that for wild birds with very high flight activity levels, muscle ultrastructural changes may be an important contributor to demographic senescence. Such gradual, linear declines in muscle morphology may eventually contribute to 'catastrophic' failure in foraging or predator avoidance abilities, leading to demographic senescence.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Erin S O'Connor
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Kyle H Elliott
- McGill University, Department of Natural Resources Sciences, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada, H9X 3L9
| |
Collapse
|
162
|
Valenzuela PL, Castillo-García A, Morales JS, Izquierdo M, Serra-Rexach JA, Santos-Lozano A, Lucia A. Physical Exercise in the Oldest Old. Compr Physiol 2019; 9:1281-1304. [PMID: 31688965 DOI: 10.1002/cphy.c190002] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Societies are progressively aging, with the oldest old (i.e., those aged >80-85 years) being the most rapidly expanding population segment. However, advanced aging comes at a price, as it is associated with an increased incidence of the so-called age-related conditions, including a greater risk for loss of functional independence. How to combat sarcopenia, frailty, and overall intrinsic capacity decline in the elderly is a major challenge for modern medicine, and exercise appears to be a potential solution. In this article, we first summarize the physiological mechanisms underlying the age-related deterioration in intrinsic capacity, particularly regarding those phenotypes related to functional decline. The main methods available for the physical assessment of the oldest old are then described, and finally the multisystem benefits that exercise (or "exercise mimetics" in those situations in which volitional exercise is not feasible) can provide to this population segment are reviewed. In summary, lifetime physical exercise can help to attenuate the loss of many of the properties affected by aging, especially when the latter is accompanied by an inactive lifestyle and benefits can also be obtained in frail individuals who start exercising at an advanced age. Multicomponent programs combining mainly aerobic and resistance training should be included in the oldest old, particularly during disuse situations such as hospitalization. However, evidence is still needed to support the effectiveness of passive physical strategies including neuromuscular electrical stimulation or vibration for the prevention of disuse-induced negative adaptations in those oldest old people who are unable to do physical exercise. © 2019 American Physiological Society. Compr Physiol 9:1281-1304, 2019.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Department of Systems Biology, University of Alcalá, Madrid, Spain
- Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain
| | | | - Javier S Morales
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Mikel Izquierdo
- Biomedical Research Networking Center on Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Health Sciences, Public University of Navarra, Navarrabiomed, Idisna, Pamplona, Spain
| | - José A Serra-Rexach
- Biomedical Research Networking Center on Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Geriatric, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alejandro Santos-Lozano
- i+HeALTH, European University Miguel de Cervantes, Valladolid, Spain and Research Institute Hospital 12 de Octubre (ì+12'), Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Biomedical Research Networking Center on Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
163
|
Lee HS, Koh IH, Kim HS, Kwon YJ. Platelet and white blood cell count are independently associated with sarcopenia: A nationwide population-based study. Thromb Res 2019; 183:36-44. [PMID: 31614293 DOI: 10.1016/j.thromres.2019.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/20/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Sarcopenia is attracting increasing attention due to its harmful impacts on health. Chronic inflammation is proposed to be a major cause of sarcopenia. Here, we aimed to identify whether white blood cell (WBC) and platelet count have independent roles in sarcopenia occurrence. METHOD AND MATERIALS This cross-sectional study analyzed 10,092 adults (4293 men and 5799 women) from the 2008-2011 Korea National Health and Nutrition Survey. Cut-off values for sarcopenia were defined as a skeletal muscle mass index <0.789 for men and <0.512 for women. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) using multiple logistic regression analysis after adjusting for confounding variables. ROC curve analysis was used to evaluate the ability of platelet count and white blood cell count to discriminate the presence of sarcopenia. RESULTS After adjusting for possible confounders, the OR (95% CI) for sarcopenia occurrence according to platelet counts was 1.62 (1.20-2.19) for the T3 group in men and 1.72 (1.28-2.31) for the T3 group in women, relative to the lowest platelet count tertile. After adjusting for same confounders, the ORs (95% CI) for sarcopenia occurrence according to WBC counts was 1.86 (1.35-2.57) for the T3 group in men, and 2.36 (1.77-3.13) for the T3 group in women, relative to the lowest WBC count tertile. We also found independent significant associations between platelet count, WBC count, and sarcopenia. CONCLUSIONS Higher platelet and WBC counts within the normal range are each independently associated with sarcopenia in Korean men and women. The inclusion of platelet, WBC, or combined platelet and WBC counts significantly improved the power to discriminate sarcopenia.
Collapse
Affiliation(s)
- Hye Sun Lee
- Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Il-Hyun Koh
- Department of Orthopaedic Surgery, Yong-In Severance Hospital, Yonsei University College of Medicine, Gyeonggi, Republic of Korea.
| | - Hyoung-Sik Kim
- Department of Orthopaedic Surgery, Yong-In Severance Hospital, Yonsei University College of Medicine, Gyeonggi, Republic of Korea.
| | - Yu-Jin Kwon
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Family Medicine, Yong-In Severance Hospital, Yonsei University College of Medicine, Gyeonggi, Republic of Korea; Department of Medicine, Graduate School of Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
164
|
Vitale JA, Bonato M, La Torre A, Banfi G. The Role of the Molecular Clock in Promoting Skeletal Muscle Growth and Protecting against Sarcopenia. Int J Mol Sci 2019; 20:ijms20174318. [PMID: 31484440 PMCID: PMC6747101 DOI: 10.3390/ijms20174318] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022] Open
Abstract
The circadian clock has a critical role in many physiological functions of skeletal muscle and is essential to fully understand the precise underlying mechanisms involved in these complex interactions. The importance of circadian expression for structure, function and metabolism of skeletal muscle is clear when observing the muscle phenotype in models of molecular clock disruption. Presently, the maintenance of circadian rhythms is emerging as an important new factor in human health, with disruptions linked to ageing, as well as to the development of many chronic diseases, including sarcopenia. Therefore, the aim of this review is to present the latest findings demonstrating how circadian rhythms in skeletal muscle are important for maintenance of the cellular physiology, metabolism and function of skeletal muscle. Moreover, we will present the current knowledge about the tissue-specific functions of the molecular clock in skeletal muscle.
Collapse
Affiliation(s)
- Jacopo A Vitale
- IRCCS Istituto Ortopedico Galeazzi, LaMSS-Laboratory of Movement and Sport Science, Via Giuseppe Galeazzi 4, 20161 Milano, Italy
| | - Matteo Bonato
- IRCCS Istituto Ortopedico Galeazzi, LaMSS-Laboratory of Movement and Sport Science, Via Giuseppe Galeazzi 4, 20161 Milano, Italy.
| | - Antonio La Torre
- IRCCS Istituto Ortopedico Galeazzi, LaMSS-Laboratory of Movement and Sport Science, Via Giuseppe Galeazzi 4, 20161 Milano, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, LaMSS-Laboratory of Movement and Sport Science, Via Giuseppe Galeazzi 4, 20161 Milano, Italy
- Vita-Salute San Raffaele University, via Olgettina 58, 20132 Milano, Italy
| |
Collapse
|
165
|
Sessle BJ. Can you be too old for oral implants? An update on ageing and plasticity in the oro‐facial sensorimotor system. J Oral Rehabil 2019; 46:936-951. [DOI: 10.1111/joor.12830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/06/2019] [Accepted: 05/26/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Barry J. Sessle
- Faculty of Dentistry University of Toronto Toronto Ontario Canada
- Department of Physiology, Faculty of Medicine University of Toronto Toronto Ontario Canada
| |
Collapse
|
166
|
Zhou J, Liao Z, Jia J, Chen JL, Xiao Q. The effects of resveratrol feeding and exercise training on the skeletal muscle function and transcriptome of aged rats. PeerJ 2019; 7:e7199. [PMID: 31304063 PMCID: PMC6610545 DOI: 10.7717/peerj.7199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/27/2019] [Indexed: 02/05/2023] Open
Abstract
This study investigated the effects of resveratrol feeding and exercise training on the skeletal muscle function and transcriptome of aged rats. Male SD rats (25 months old) were divided into the control group (Old), the daily exercise training group (Trained), and the resveratrol feeding group (Resveratrol). After 6 weeks of intervention, the body mass, grip strength, and gastrocnemius muscle mass were determined, and the muscle samples were analyzed by transcriptome sequencing. The differentially expressed genes were analyzed followed by GO enrichment analysis and KEGG analysis. The Old group showed positive increases in body mass, while both the Trained and Resveratrol groups showed negative growth. No significant differences in the gastrocnemius muscle index and absolute grip strength were found among the three groups. However, the relative grip strength was higher in the Trained group than in the Old group. Only 21 differentially expressed genes were identified in the Trained group vs. the Old group, and 12 differentially expressed genes were identified in the Resveratrol group vs. the Old group. The most enriched GO terms in the Trained group vs. the Old group were mainly associated with RNA metabolic processes and transmembrane transporters, and the significantly upregulated KEGG pathways included mucin-type O-glycan biosynthesis, drug metabolism, and pyrimidine metabolism. The most enriched GO terms in the Resveratrol group vs. the Old group were primarily associated with neurotransmitter transport and synaptic vesicle, and the upregulated KEGG pathways included synaptic vesicle cycle, nicotine addiction, retinol metabolism, insulin secretion, retrograde endocannabinoid signaling, and glutamatergic synapse. Neither exercise training nor resveratrol feeding has a notable effect on skeletal muscle function and related gene expression in aged rats. However, both exercise training and resveratrol feeding have strong effects on weight loss, which is beneficial for reducing the exercise loads of the elderly.
Collapse
Affiliation(s)
- Jing Zhou
- Chongqing Medical and Pharmaceutical College, Chongqing, China.,Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyin Liao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Jia
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jin-Liang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
167
|
Jimenez AG, O'Connor ES, Brown KJ, Briggs CW. Seasonal muscle ultrastructure plasticity and resistance of muscle structural changes during temperature increases in resident black-capped chickadees and rock pigeons. ACTA ACUST UNITED AC 2019; 222:jeb.201855. [PMID: 31171604 DOI: 10.1242/jeb.201855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/31/2019] [Indexed: 01/18/2023]
Abstract
Resident birds in temperate zones respond to seasonally fluctuating temperatures by adjusting their physiology, such as changes in basal metabolic rate or peak metabolic rate during cold exposure, or altering their organ sizes, so as to match the thermogenic requirements of their current environment. Climate change is predicted to cause increases in the frequency of heat and cold wave events, which could increase the likelihood that birds will face an environmental mismatch. Here, we examined seasonality and the effects of acute and chronic heat shock to 33°C and subsequent recovery from heat shock on the ultrastructure of the superficial pectoralis muscle fiber diameter, myonuclear domain (MND) and capillary density in two temperate bird species of differing body mass, the black-capped chickadee (Poecile atricapillus) and the rock pigeon (Columba livia). We found that muscle fiber ultrastructure did not change with heat treatment. However, in black-capped chickadees, there was a significant increase in fiber diameter in spring phenotype birds compared with summer phenotype birds. In rock pigeons, we saw no differences in fiber diameter across seasons. Capillary density did not change as a function of fiber diameter in black-capped chickadees, but did change seasonally, as did MND. Across seasons, as fiber diameter decreased, capillary density increased in the pectoralis muscle of rock pigeons. For both species in this study, we found that as fiber diameter increased, so did MND. Our findings imply that these two temperate birds employ different muscular growth strategies that may be metabolically beneficial to each.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Erin S O'Connor
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Karl J Brown
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Christopher W Briggs
- Hamilton College, Department of Biology, 198 College Hill Road, Clinton, NY 13323, USA
| |
Collapse
|
168
|
Abstract
Sarcopenia is the progressive loss of skeletal mass and strength, particularly in older adults, with consequent reduction in function and independence. Changing population demographics, have resulted in increased prevalence of sarcopenia and this is associated with a considerable economic burden. Whilst simple, effective, non-intrusive management of this condition exists, no routine diagnosis takes place either in the UK or in many other countries, partly due to an absence of pragmatic clinical diagnostic tools to support the early identification of the syndrome. This position paper aims to provide a short overview proposing the potential case for developing ultrasound as a new and alternative diagnostic tool for identifying sarcopenia.
Collapse
Affiliation(s)
- H J Stringer
- Howard Stringer, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT,
| | | |
Collapse
|
169
|
Choi W, Joo Y, Lee S. Pilates exercise focused on ankle movements for improving gait ability in older women. J Women Aging 2019; 33:30-40. [PMID: 31122161 DOI: 10.1080/08952841.2019.1618129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pilates exercise is a structured physical activity that has been demonstrated to improve physical functions in older adults. The aim of this study was to determine whether Pilates exercise can improve gait, muscle strength, and mobility in community-dwelling older women. Twenty-two participants were recruited (mean 75.68 years old) to perform Pilates exercise for 30 minutes, twice a week for 10 weeks. After 10 weeks, significant improvements were observed in the spatial gait parameters, muscle strength, and range of motion of ankle (P < .05). Pilates exercise is beneficial exercise to improve gait, muscle strength, and mobility in community-dwelling older women.
Collapse
Affiliation(s)
- Wonjae Choi
- Institute of SMART Rehabilitation, Sahmyook University , Seoul, Korea
| | - Younglan Joo
- Department of Physical Therapy, The Graduate School of Sahmyook University , Seoul, Korea
| | - Seungwon Lee
- Institute of SMART Rehabilitation, Sahmyook University , Seoul, Korea.,Department of Physical Therapy, Sahmyook University , Seoul, Korea
| |
Collapse
|
170
|
Brown K, Jimenez AG, Whelan S, Lalla K, Hatch SA, Elliott KH. Muscle fiber structure in an aging long-lived seabird, the black-legged kittiwake (Rissa tridactyla). J Morphol 2019; 280:1061-1070. [PMID: 31077454 DOI: 10.1002/jmor.21001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022]
Abstract
Many long-lived animals do not appear to show classic signs of aging, perhaps because they show negligible senescence until dying from "catastrophic" mortality. Muscle senescence is seldom examined in wild animals, yet decline in muscle function is one of the first signs of aging in many lab animals and humans. Seabirds are an excellent study system for physiological implications of aging because they are long-lived animals that actively forage and reproduce in the wild. Here, we examined linkages between pectoralis muscle fiber structure and age in black-legged kittiwakes (Rissa tridactyla). Pectoralis muscle is the largest organ complex in birds, and responsible for flight and shivering. We obtained and fixed biopsies from wild black-legged kittiwakes of known age. We then measured muscle fiber diameter, myonuclear domain and capillaries per fiber area among birds of differing ages. All muscle parameters were independent of age. Number of nuclei per mm of fiber showed a positive correlation with muscle fiber cross-sectional area, and myonuclear domain increased with muscle fiber diameter. Thus, as muscle fibers increased in size, they may not have recruited satellite cells, increasing the protein turnover load per nuclei. We conclude that senescence in a long-lived bird with an active lifestyle, does not entail mammalian-like changes in muscle structure.
Collapse
Affiliation(s)
- Karl Brown
- Department of Biology, Colgate University, Hamilton, New York
| | | | - Shannon Whelan
- Department of Natural Resources Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec
| | - Kristen Lalla
- Department of Natural Resources Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec
| | - Scott A Hatch
- Institute for Seabird Research and Conservation, Mountain Place, Anchorage, Alaska
| | - Kyle H Elliott
- Department of Natural Resources Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec
| |
Collapse
|
171
|
Ranger TA, Cicuttini FM, Jensen TS, Heritier S, Urquhart DM. Paraspinal muscle cross-sectional area predicts low back disability but not pain intensity. Spine J 2019; 19:862-868. [PMID: 30529786 DOI: 10.1016/j.spinee.2018.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND CONTEXT The lumbar paraspinal muscles, including the erector spinae and multifidus, play an important role in movement and control of the spine. However, our understanding of their contribution to low back pain and disability is unclear. Systematic reviews have reported conflicting evidence for an association between paraspinal muscle size and low back pain, and a paucity of data examining muscle cross-sectional area (CSA) and low back disability. PURPOSE To investigate the relationship between paraspinal muscle CSA and both low back pain intensity and disability. STUDY DESIGN/SETTING One-year longitudinal cohort study. PATIENT SAMPLE Participants were selected from the SpineData Registry (Denmark), which enrolls people with low back pain of 2 to 12 months duration without radiculopathy and a satisfactory response to primary intervention. OUTCOME MEASURES Current, typical, and worst pain in the prior 2 weeks were assessed by 11-point numeric rating scales and an average pain score was calculated, and disability was measured using the 23-item Roland-Morris Disability Questionnaire. CSA (cm2) of the lumbar paraspinal muscles was measured at levels L3-L5 from magnetic resonance images. METHODS Participants completed the study questionnaires and underwent the lumbar spine magnetic resonance images at baseline and were followed up 12 months later to repeat the questionnaires. Statistical analyses involved multivariable linear regression (cross-sectional analysis) and linear mixed-models (longitudinal analysis) with adjustment for confounders. Multiple imputation was conducted to account for missing data. RESULTS A total of 962 participants were included and 588 (65.8%) were followed up at 12-months. Multivariable analysis showed that greater paraspinal muscle CSA was associated with lower levels of disability, after adjusting for confounders (right mean CSA: baseline beta -0.16, 95% CI -0.26 to -0.06, p<.01; longitudinal beta -0.11, 95% CI -0.21 to -0.01, p=.03). This was evident at all levels, except L5 which was marginal at baseline (beta -0.08, 95% CI -0.15 to -0.001, p=.045) and not significant longitudinally (beta -0.05, 95% CI -0.12 to 0.02, p=.18). However, there were no associations between muscle CSA and pain intensity (baseline beta -0.02, 95% CI -0.06 to 0.02, p=.29; longitudinal beta -0.02, 95% CI -0.06 to 0.02, p=.34). Results were similar for both complete case and multiple imputation analyses. CONCLUSIONS This study found an inverse relationship between lumbar paraspinal muscle CSA and low back disability, but not pain intensity. While further investigation is needed, these findings suggest that treatment strategies directed at increasing paraspinal muscle size may be effective in reducing low back disability.
Collapse
Affiliation(s)
- Tom A Ranger
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC 3004, Australia.
| | - Flavia M Cicuttini
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Tue Secher Jensen
- Research Department, Spine Centre of Southern Denmark, Hospital Lillebaelt, Middelfart, Denmark; Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark; Nordic Institute of Chiropractic and Clinical Biomechanics, Odense, Denmark
| | - Stephane Heritier
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Donna M Urquhart
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
172
|
Fat-free mass and glucose homeostasis: is greater fat-free mass an independent predictor of insulin resistance? Aging Clin Exp Res 2019; 31:447-454. [PMID: 29992495 DOI: 10.1007/s40520-018-0993-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND A greater fat-free mass (FFM) is purported to be associated with protective effects on insulin resistance (IR). However, recent studies suggested negative associations between FFM and IR. OBJECTIVES (1) To explore the direction of the association between FFM and IR in a large heterogeneous sample after controlling for confounding factors. (2) To determine cut off values of FFM associated with an increased risk of IR. METHODS Outcome variables were measured in 7044 individuals (48.6% women, 20-79 years; NHANES, 1999-2006): body composition [fat mass (FM), FFM and appendicular FFM (aFFM); DXA], FFM index [FFMI: FFM/height (kg/m2)], appendicular FFMI [aFFM/height (kg/m2)] and insulin resistance (HOMA-IR). Multivariate regression analyses were performed to determine the independent predictors of HOMA-IR in younger (20-49 years) and older (50-79 years) men and women. ROC analyses were used to determine FFM cut-offs to identify a higher risk of insulin resistance (HOMA-IR > 75th percentile). RESULTS aFFMI was an independent predictor of IR in younger (men: β = 0.21; women: β = 0.31; all p ≤ 0.001) and older (men: β = 0.11; women: β = 0.37; all p ≤ 0.001) individuals. Thresholds for aFFMI at which the risk of IR was significantly increased were 8.96 and 8.39 kg/m2 in younger and older men, and 7.22 and 6.64 kg/m2 in younger and older women, respectively. CONCLUSION Independently of age, a greater aFFMI was an independent predictor of IR. These results suggest revisiting how we envision the link between FFM and IR and explore potential mechanisms.
Collapse
|
173
|
Kelly OJ, Gilman JC, Boschiero D, Ilich JZ. Osteosarcopenic Obesity: Current Knowledge, Revised Identification Criteria and Treatment Principles. Nutrients 2019; 11:E747. [PMID: 30935031 PMCID: PMC6520721 DOI: 10.3390/nu11040747] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Osteosarcopenic obesity (OSO) syndrome describes the simultaneous deterioration of bone, muscle and excess fat, resulting in reduced functionality and systemic metabolic dysregulation. The key component contributing to this may be ectopic fat in the viscera, bone and muscle. OSO research to date is summarized, and the revised criteria for its identification for research purposes are reviewed and proposed, including new criteria to assess visceral fat in males and females. Finally, nutritional and physical activity recommendations are consolidated into a treatment algorithm, which can be validated in future studies and which may also be applied to preventative management.
Collapse
Affiliation(s)
| | | | | | - Jasminka Z Ilich
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
174
|
Yoshihara T, Ozaki H, Nakagata T, Natsume T, Kitada T, Ishihara Y, Sawada S, Ishibashi M, Kobayashi H, Machida S, Naito H. Association between locomotive syndrome and blood parameters in Japanese middle-aged and elderly individuals: a cross-sectional study. BMC Musculoskelet Disord 2019; 20:104. [PMID: 30871499 PMCID: PMC6417127 DOI: 10.1186/s12891-019-2480-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Background Locomotive syndrome (LS) is associated with weakness and loss of function in the musculoskeletal organs. We aimed to determine the association between LS components and blood parameters in middle-aged and elderly individuals. Methods We included 223 middle-aged and elderly individuals in this study (104 men and 119 women; age: 40–85 years). All participants were asked to fast for at least 3 h before the venous blood samples were obtained and the hemoglobin, total protein, glycated hemoglobin (HbA1c), growth hormone, albumin and lipid profile were measured. Three functional tests, the stand-up test, the two-step test, and the 25-question geriatric locomotive function scale (GLFS) were used to assess the risk of LS. Walking speed was assessed by the 10-m walking test. Maximal isometric muscle strengths of the knee extensors were examined, and the weight bearing index (knee extension strength/body weight) was calculated. To assess an independent association between blood parameters and LS, the area under the receiver operating characteristic curve analysis (area under the curve, sensitivity, and specificity) and a binary logistic regression analysis were performed with adjustment for age. Results Of the 223 subjects, 119 (53.3%) fulfilled the diagnostic criteria for LS (including a two-step test score < 1.3, difficulty with one-leg standing from 40 cm in the stand-up test, and a 25-question GLFS score ≥ 7). Increased levels of HbA1c were significant risk factors for LS with an OR of 2.62 (OR95%CI = 1.43–4.80), as determined by a logistic regression analysis. Additionally, dehydroepiandrosterone-sulfate (DHEA-S) levels were significant only in the male subjects (OR = 0.992 [OR95%CI = 0.986–0.998]), at a threshold of 88 (AUC; 0.70, sensitivity; 79.6%, specificity; 49.1%). Moreover, 101 of 223 participants (41 men, 60 women) were analyzed for serum albumin levels, with a prevalence of LS at 55.4%, indicating that low levels of albumin were significant risk factors for LS (OR = 0.148 [OR95%CI = 0.023–0.954], p = 0.0445). Conclusions These results suggest that higher HbA1c and lower albumin are associated with the prevalence of LS in Japanese middle-aged and elderly individuals. Furthermore, low DHEA-S levels may be useful screening tools for LS in men.
Collapse
Affiliation(s)
- Toshinori Yoshihara
- COI Project Center, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hayao Ozaki
- School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.,Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Takashi Nakagata
- School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Toshiharu Natsume
- Institute of Health and Sports Science & Medicine, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Tomoharu Kitada
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Yoshihiko Ishihara
- Institute of Health and Sports Science & Medicine, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Shuji Sawada
- COI Project Center, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masayoshi Ishibashi
- COI Project Center, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroyuki Kobayashi
- Mito Medical Center, Tsukuba University Hospital, 1-1-1 Tennodai, Tsukuba, Ibaraki, 310-0015, Japan
| | - Shuichi Machida
- COI Project Center, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan. .,School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan. .,Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan. .,Institute of Health and Sports Science & Medicine, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
| | - Hisashi Naito
- COI Project Center, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.,Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.,Institute of Health and Sports Science & Medicine, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| |
Collapse
|
175
|
Warner MB, Wilson DA, Herrington L, Dixon S, Power C, Jones R, Heller MO, Carden P, Lewis CL. A systematic review of the discriminating biomechanical parameters during the single leg squat. Phys Ther Sport 2019; 36:78-91. [DOI: 10.1016/j.ptsp.2019.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
|
176
|
Leduc-Gaudet JP, Reynaud O, Hussain SN, Gouspillou G. Parkin overexpression protects from ageing-related loss of muscle mass and strength. J Physiol 2019; 597:1975-1991. [PMID: 30614532 DOI: 10.1113/jp277157] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Recent evidence suggests that impaired mitophagy, a process in charge of removing damaged/dysfunctional mitochondria and in part regulated by Parkin, could contribute to the ageing-related loss of muscle mass and function. In the present study, we show that Parkin overexpression attenuates ageing-related loss of muscle mass and strength and unexpectedly causes hypertrophy in adult skeletal muscles. We also show that Parkin overexpression leads to increases in mitochondrial content and enzymatic activities. Finally, our results show that Parkin overexpression protects from ageing-related increases in markers of oxidative stress, fibrosis and apoptosis. Our findings place Parkin as a potential therapeutic target to attenuate sarcopenia and improve skeletal muscle health and performance. ABSTRACT The ageing-related loss of muscle mass and strength, a process called sarcopenia, is one of the most deleterious hallmarks of ageing. Solid experimental evidence indicates that mitochondrial dysfunctions accumulate with ageing and are critical in the sarcopenic process. Recent findings suggest that mitophagy, the process in charge of the removal of damaged/dysfunctional mitochondria, is altered in aged muscle. Impaired mitophagy represents an attractive mechanism that could contribute to the accumulation of mitochondrial dysfunctions and sarcopenia. To test this hypothesis, we investigated the impact of Parkin overexpression in skeletal muscles of young and old mice. Parkin was overexpressed for 4 months in muscles of young (3 months) and late middle-aged (18 months) mice using i.m. injections of adeno-associated viruses. We show that Parkin overexpression increased muscle mass, fibre size and mitochondrial enzyme activities in both young and old muscles. In old mice, Parkin overexpression increased muscle strength, peroxisome proliferator‐activated receptor gamma coactivator 1‐alpha (PGC‐1α) and mitochondrial density. Parkin overexpression also attenuated the ageing-related increase in 4-hydroxynonenal content (a marker of oxidative stress) and type I collagen content (a marker of fibrosis), as well as the number of terminal deoxynucleotidyl transferase dUTP nick-end labelling-positive myonuclei (a marker of apoptosis). Overall, our results indicate that Parkin overexpression attenuates sarcopenia and unexpectedly causes hypertrophy in adult muscles. They also show that Parkin overexpression leads to increases in mitochondrial content and enzymatic activities. Finally, our results show that Parkin overexpression protects against oxidative stress, fibrosis and apoptosis. These findings highlight that Parkin may be an attractive therapeutic target with respect to attenuating sarcopenia and improving skeletal muscle health and performance.
Collapse
Affiliation(s)
- Jean-Philippe Leduc-Gaudet
- Département des sciences de l'activité physique, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada.,Groupe de recherche en activité physique adaptée, Université du Québec à Montréal, Montréal, QC, Canada.,Department of Critical Care, McGill University Health Centre and Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC, Canada
| | - Olivier Reynaud
- Département des sciences de l'activité physique, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada.,Groupe de recherche en activité physique adaptée, Université du Québec à Montréal, Montréal, QC, Canada
| | - Sabah N Hussain
- Department of Critical Care, McGill University Health Centre and Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC, Canada
| | - Gilles Gouspillou
- Département des sciences de l'activité physique, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada.,Groupe de recherche en activité physique adaptée, Université du Québec à Montréal, Montréal, QC, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
177
|
Chami J, Candow DG. Effect of Creatine Supplementation Dosing Strategies on Aging Muscle Performance. J Nutr Health Aging 2019; 23:281-285. [PMID: 30820517 DOI: 10.1007/s12603-018-1148-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE This study compared the effects of different creatine supplementation dosages, independent of resistance training, on aging muscle performance and functionality. DESIGN AND PARTICIPANTS Using a double-blind, repeated measures design, participants were randomized to one of three groups: Creatine-High (CR-H; n=11; 0.3 g/kg/day of creatine + 0.1 g/kg/day of maltodextrin), Creatine-Moderate (CR-M: n=11; 0.1 g/kg/day of creatine + 0.3 g/kg/day of maltodextrin) or Placebo (PLA; n=11; 0.4 g/kg/day of maltodextrin) for 10 consecutive days. MEASUREMENTS The primary dependent variables measured at baseline and after supplementation included muscle strength (1-repetition maximum leg press, chest press, hand-grip), muscle endurance (leg press and chest press; maximal number of repetitions performed for 1 set at 80% and 70% baseline 1-repetition maximum respectively), and physical performance (dynamic balance). RESULTS There was a significant increase over time for muscle strength (Leg press: CR-H pre 161.5 ± 55.1 kg, post 169.2 ± 59.2 kg; CR-M pre 145.2 ± 47.7 kg, post 151.7 ± 45.0 kg; PLA pre 163.7 ± 51.5 kg, post 178.2 ± 65.6 kg, p = 0.001; Chest press: CR-H pre 57.0 ± 26.2 kg, post 58.8 ± 28.0 kg; CR-M pre 54.5 ± 27.9 kg, post 56.8 ± 30.1 kg; PLA pre 55.1 ± 26.9 kg, post 58.5 ± 30.1 kg, p = 0.001) and endurance (Leg press: CR-H pre 17.1 ± 6.0 reps, post 21.0 ± 7.2 reps; CR-M pre 24.1 ± 11.6 reps, post 29.1 ± 17.0 reps; PLA pre 23.8 ± 9.7 reps, post 29.5 ± 11.9 reps, p = 0. 001; Chest press: CR-H pre 15.6 ± 2.7 reps, post 18.9 ± 2.7 reps; CR-M pre 18.0 ± 5.0 reps, post 19.9 ± 7.1 reps; PLA pre 20.5 ± 6.2 reps, post 21.6 ± 5.5 reps, p = 0. 001), with no other differences. CONCLUSION Short-term creatine supplementation, independent of dosage and resistance training, has no effect on aging muscle performance.
Collapse
Affiliation(s)
- J Chami
- Darren G. Candow, PhD, Professor and Associate Dean-Graduate Studies and Research, Faculty of Kinesiology and Health Studies, 3737 Wascana Parkway, University of Regina, Regina SK Canada, S4S 0A2,
| | | |
Collapse
|
178
|
Alota Ignacio Pereira V, Augusto Barbieri F, Moura Zagatto A, Cezar Rocha Dos Santos P, Simieli L, Augusto Barbieri R, Pivetta Carpes F, Teresa Bucken Gobbi L. Muscle Fatigue Does Not Change the Effects on Lower Limbs Strength Caused by Aging and Parkinson's Disease. Aging Dis 2018; 9:988-998. [PMID: 30574412 PMCID: PMC6284767 DOI: 10.14336/ad.2018.0203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/03/2018] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to determine the impact of aging and Parkinson’s disease (PD) on lower limb muscle strength before and after muscle fatigue. One hundred thirty-five individuals were distributed over seven groups according to their age (20, 30, 40, 50, 60, 70 years old) and disease. Participants performed maximum voluntary isometric contractions (MVIC) in a leg press device followed by the muscle fatigue protocol (repeated sit-to-stand task). Immediately after muscle fatigue (less than 2 min), the MVIC were repeated. The peak force, peak rate of force development (first 50, 100, 200 ms), and root mean square and peak values of the vastus lateralis and vastus medialis muscle activity during MVIC were calculated before and after muscle fatigue. We found more pronounced reductions in lower limb muscle strength parameters (lower limb force, RFD-100 and RFD-200 - p<0.05) in individuals over 50 years of age and with PD. In addition, there was an inverse relation between aging and lower limb muscle strength parameters. The main findings were the lack of changes in peak force, RFDs and muscle activity of the vastus lateralis and vastus medialis after muscle fatigue according to aging and PD, and similar lower limb muscle strength parameters (before and after muscle fatigue) and effect of muscle fatigue in PD compared to the aged groups (60 and 70 years old groups).
Collapse
Affiliation(s)
- Vinicius Alota Ignacio Pereira
- 1Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Sao Paulo State University (Unesp), Bauru, Brazil
| | - Fabio Augusto Barbieri
- 1Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Sao Paulo State University (Unesp), Bauru, Brazil
| | - Alessandro Moura Zagatto
- 1Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Sao Paulo State University (Unesp), Bauru, Brazil
| | - Paulo Cezar Rocha Dos Santos
- 2Posture and Gait Studies Laboratory (LEPLO), Department of Physical Education, Sao Paulo State University (Unesp), Rio Claro, Brazil
| | - Lucas Simieli
- 1Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Sao Paulo State University (Unesp), Bauru, Brazil
| | - Ricardo Augusto Barbieri
- 3Graduate Program in Physical Education and Sport at School of Physical Education and Sport of Ribeirao Preto (EEFERP), University of Sao Paulo, Centro Universitário Estacio de Ribeirao Preto, Brazil
| | - Felipe Pivetta Carpes
- 4Applied Neuromechanics Group, Laboratory of Neuromechanics, Federal University of Pampa, Uruguaiana, Brazil
| | - Lilian Teresa Bucken Gobbi
- 2Posture and Gait Studies Laboratory (LEPLO), Department of Physical Education, Sao Paulo State University (Unesp), Rio Claro, Brazil
| |
Collapse
|
179
|
Watanabe K, Holobar A, Mita Y, Kouzaki M, Ogawa M, Akima H, Moritani T. Effect of Resistance Training and Fish Protein Intake on Motor Unit Firing Pattern and Motor Function of Elderly. Front Physiol 2018; 9:1733. [PMID: 30564141 PMCID: PMC6288440 DOI: 10.3389/fphys.2018.01733] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022] Open
Abstract
We investigated the effect of resistance training and fish protein intake on the motor unit firing pattern and motor function in elderly. Fifty healthy elderly males and females (69.2 ± 4.7 years) underwent 6 weeks of intervention. We applied the leg-press exercise as resistance training and fish protein including Alaska pollack protein (APP) as nutritional supplementation. Subjects were divided into four groups: fish protein intake without resistance training (APP-CN, n = 13), placebo intake without resistance training (PLA-CN, n = 12), fish protein intake with resistance training (APP-RT, n = 12), and placebo intake with resistance training (PLA-RT, n = 13). Motor unit firing rates were calculated from multi-channel surface electromyography by the Convolution Kernel. For the chair-stand test, while significant increases were observed at 6 weeks compared with 0 week in all groups (p < 0.05), significant increases from 0 to 3 weeks and 6 weeks were observed in APP-RT (18.2 ± 1.9 at 0 week to 19.8 ± 2.2 at 3 weeks and 21.2 ± 1.9 at 6 weeks) (p < 0.05). Increase and/or decrease in the motor unit firing rate were mainly noted within motor units with a low-recruitment threshold in APP-RT and PLA-RT at 3 and 6 weeks (12.3 pps at 0 week to 13.6 pps at 3 weeks and 12.1 pps at 6 weeks for APP-RT and 12.9 pps at 0 week to 13.9 pps at 3 weeks and 14.1 pps at 6 weeks for PLA-RT at 50% of MVC) (p < 0.05), but not in APP-CN or PLA-CN (p > 0.05). Time courses of changes in the results of the chair-stand test and motor unit firing rate were different between APP-RT and PLA-RT. These findings suggest that, in the elderly, the effect of resistance training on the motor unit firing rate is observed in motor units with a low-recruitment threshold, and additional fish protein intake modifies these adaptations in motor unit firing patterns and the motor function following resistance training.
Collapse
Affiliation(s)
- Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of International Liberal Studies, Chukyo University, Nagoya, Japan
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Yukiko Mita
- Department of Human Nutrition, School of Life Studies, Sugiyama Jogakuen University, Nagoya, Japan
| | - Motoki Kouzaki
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Madoka Ogawa
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Hiroshi Akima
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.,Graduate School of Education and Human Development, Nagoya University, Nagoya, Japan
| | | |
Collapse
|
180
|
Karakostis FA, Vlachodimitropoulos D, Piagkou M, Scherf H, Harvati K, Moraitis K. Is Bone Elevation in Hand Muscle Attachments Associated with Biomechanical Stress? A Histological Approach to an Anthropological Question. Anat Rec (Hoboken) 2018; 302:1093-1103. [DOI: 10.1002/ar.23984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/09/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Fotios Alexandros Karakostis
- Paleoanthropology, Senckenberg Centre for Human Evolution and Paleoenvironment; University of Tübingen; Tübingen Germany
| | - Dimitrios Vlachodimitropoulos
- Department of Forensic Medicine and Toxicology, School of Medicine; National and Kapodistrian University of Athens; Athens Greece
| | - Maria Piagkou
- Department of Anatomy, School of Medicine; National and Kapodistrian University of Athens; Athens Greece
| | - Heike Scherf
- Paleoanthropology, Senckenberg Centre for Human Evolution and Paleoenvironment; University of Tübingen; Tübingen Germany
| | - Katerina Harvati
- Paleoanthropology, Senckenberg Centre for Human Evolution and Paleoenvironment; University of Tübingen; Tübingen Germany
- DFG Centre for Advanced Studies “Words, Bones, Genes, Tools: Tracking linguistic, cultural and biological trajectories of the human past”; University of Tübingen; Tübingen Germany
| | - Konstantinos Moraitis
- Department of Forensic Medicine and Toxicology, School of Medicine; National and Kapodistrian University of Athens; Athens Greece
| |
Collapse
|
181
|
Öztürk ZA, Kul S, Türkbeyler İH, Sayıner ZA, Abiyev A. Is increased neutrophil lymphocyte ratio remarking the inflammation in sarcopenia? Exp Gerontol 2018; 110:223-229. [DOI: 10.1016/j.exger.2018.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 10/28/2022]
|
182
|
Wone BWM, Pathak J, Davidowitz G. Flight duration and flight muscle ultrastructure of unfed hawk moths. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:457-464. [PMID: 29782921 DOI: 10.1016/j.asd.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Flight muscle breakdown has been reported for many orders of insects, but the basis of this breakdown in insects with lifelong dependence on flight is less clear. Lepidopterans show such muscle changes across their lifespans, yet how this change affects the ability of these insects to complete their life cycles is not well documented. We investigated the changes in muscle function and ultrastructure of unfed aging adult hawk moths (Manduca sexta). Flight duration was examined in young, middle-aged, and advanced-aged unfed moths. After measurement of flight duration, the main flight muscle (dorsolongitudinal muscle) was collected and histologically prepared for transmission electron microscopy to compare several measurements of muscle ultrastructure among moths of different ages. Muscle function assays revealed significant positive correlations between muscle ultrastructure and flight distance that were greatest in middle-aged moths and least in young moths. In addition, changes in flight muscle ultrastructure were detected across treatment groups. The number of mitochondria in muscle cells peaked in middle-aged moths. Many wild M. sexta do not feed as adults; thus, understanding the changes in flight capacity and muscle ultrastructure in unfed moths provides a more complete understanding of the ecophysiology and resource allocation strategies of this species.
Collapse
Affiliation(s)
- Bernard W M Wone
- Department of Entomology, University of Arizona, Tucson, AZ, USA; Department of Biology, University of South Dakota, Vermillion, SD, USA.
| | - Jaika Pathak
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Goggy Davidowitz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
183
|
Tallis J, James RS, Seebacher F. The effects of obesity on skeletal muscle contractile function. ACTA ACUST UNITED AC 2018; 221:221/13/jeb163840. [PMID: 29980597 DOI: 10.1242/jeb.163840] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity can cause a decline in contractile function of skeletal muscle, thereby reducing mobility and promoting obesity-associated health risks. We reviewed the literature to establish the current state-of-knowledge of how obesity affects skeletal muscle contraction and relaxation. At a cellular level, the dominant effects of obesity are disrupted calcium signalling and 5'-adenosine monophosphate-activated protein kinase (AMPK) activity. As a result, there is a shift from slow to fast muscle fibre types. Decreased AMPK activity promotes the class II histone deacetylase (HDAC)-mediated inhibition of the myocyte enhancer factor 2 (MEF2). MEF2 promotes slow fibre type expression, and its activity is stimulated by the calcium-dependent phosphatase calcineurin. Obesity-induced attenuation of calcium signalling via its effects on calcineurin, as well as on adiponectin and actinin affects excitation-contraction coupling and excitation-transcription coupling in the myocyte. These molecular changes affect muscle contractile function and phenotype, and thereby in vivo and in vitro muscle performance. In vivo, obesity can increase the absolute force and power produced by increasing the demand on weight-supporting muscle. However, when normalised to body mass, muscle performance of obese individuals is reduced. Isolated muscle preparations show that obesity often leads to a decrease in force produced per muscle cross-sectional area, and power produced per muscle mass. Obesity and ageing have similar physiological consequences. The synergistic effects of obesity and ageing on muscle function may exacerbate morbidity and mortality. Important future research directions include determining: the relationship between time course of weight gain and changes in muscle function; the relative effects of weight gain and high-fat diet feeding per se; the effects of obesity on muscle function during ageing; and if the effects of obesity on muscle function are reversible.
Collapse
Affiliation(s)
- Jason Tallis
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Rob S James
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences, Heydon Laurence Building A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
184
|
Patel HP, Dawson A, Westbury LD, Hasnaoui G, Syddall HE, Shaw S, Sayer AA, Cooper C, Dennison EM. Muscle Mass, Muscle Morphology and Bone Health Among Community-Dwelling Older Men: Findings from the Hertfordshire Sarcopenia Study (HSS). Calcif Tissue Int 2018; 103:35-43. [PMID: 29372275 PMCID: PMC6010484 DOI: 10.1007/s00223-018-0388-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022]
Abstract
Sarcopenia and osteoporosis are associated with poor health outcomes in older people. Relationships between muscle and bone have typically been reported at a functional or macroscopic level. The aims of this study were to describe the relationships between muscle morphology and bone health among participants of the Hertfordshire Sarcopenia Study (HSS). 105 older men, mean age 72.5 (SD 2.5) years, were recruited into the HSS. Whole body lean mass as well as appendicular lean mass, lumbar spine and femoral neck bone mineral content (BMC) and bone mineral density (BMD) were obtained through dual-energy X-ray absorptiometry scanning. Percutaneous biopsy of the vastus lateralis was performed successfully in 99 participants. Image analysis was used to determine the muscle morphology variables of slow-twitch (type I) and fast-twitch (type II) myofibre area, myofibre density, capillary and satellite cell (SC) density. There were strong relationships between whole and appendicular lean body mass in relation to femoral neck BMC and BMD (r ≥ 0.43, p < 0.001). Type II fibre area was associated with both femoral neck BMC (r = 0.27, p = 0.01) and BMD (r = 0.26, p = 0.01) with relationships robust to adjustment for age and height. In unadjusted analysis, SC density was associated with whole body area (r = 0.30, p = 0.011) and both BMC (r = 0.26, p = 0.031) and area (r = 0.29, p = 0.017) of the femoral neck. We have demonstrated associations between BMC and changes in muscle at a cellular level predominantly involving type II myofibres. Interventions targeted at improving muscle mass, function and quality may improve overall musculoskeletal health. Larger studies that include women are needed to explore these relationships further.
Collapse
Affiliation(s)
- H. P. Patel
- 0000 0004 1936 9297grid.5491.9MRC Lifecourse Epidemiology Unit, University Hospital Southampton, University of Southampton, Tremona Road, Mail point 95, Southampton, SO16 6YD UK
- 0000 0004 1936 9297grid.5491.9Academic Geriatric Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
- grid.430506.4National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD UK
| | - A. Dawson
- 0000 0004 1936 9297grid.5491.9MRC Lifecourse Epidemiology Unit, University Hospital Southampton, University of Southampton, Tremona Road, Mail point 95, Southampton, SO16 6YD UK
| | - L. D. Westbury
- 0000 0004 1936 9297grid.5491.9MRC Lifecourse Epidemiology Unit, University Hospital Southampton, University of Southampton, Tremona Road, Mail point 95, Southampton, SO16 6YD UK
| | - G. Hasnaoui
- 0000 0004 1936 9297grid.5491.9Academic Geriatric Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| | - H. E. Syddall
- 0000 0004 1936 9297grid.5491.9MRC Lifecourse Epidemiology Unit, University Hospital Southampton, University of Southampton, Tremona Road, Mail point 95, Southampton, SO16 6YD UK
| | - S. Shaw
- 0000 0004 1936 9297grid.5491.9MRC Lifecourse Epidemiology Unit, University Hospital Southampton, University of Southampton, Tremona Road, Mail point 95, Southampton, SO16 6YD UK
| | - A. A. Sayer
- 0000 0004 1936 9297grid.5491.9Academic Geriatric Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
- AGE Research Group, Institute of Neuroscience, Newcastle, UK
- 0000 0001 0462 7212grid.1006.7NIHR Newcastle Biomedical Research Centre, Newcastle upon-Tyne NHS Foundation Trust and Newcastle University, Newcastle, UK
| | - C. Cooper
- 0000 0004 1936 9297grid.5491.9MRC Lifecourse Epidemiology Unit, University Hospital Southampton, University of Southampton, Tremona Road, Mail point 95, Southampton, SO16 6YD UK
- 0000 0004 1936 8948grid.4991.5National Institute for Health Research Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - E. M. Dennison
- 0000 0004 1936 9297grid.5491.9MRC Lifecourse Epidemiology Unit, University Hospital Southampton, University of Southampton, Tremona Road, Mail point 95, Southampton, SO16 6YD UK
| |
Collapse
|
185
|
The use of neuromuscular electrical stimulation (NMES) for managing the complications of ageing related to reduced exercise participation. Maturitas 2018; 113:13-20. [DOI: 10.1016/j.maturitas.2018.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022]
|
186
|
Impact of Aging on Endurance and Neuromuscular Physical Performance: The Role of Vascular Senescence. Sports Med 2018; 47:583-598. [PMID: 27459861 DOI: 10.1007/s40279-016-0596-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The portion of society aged ≥60 years is the fastest growing population in the Western hemisphere. Aging is associated with numerous changes to systemic physiology that affect physical function and performance. We present a narrative review of the literature aimed at discussing the age-related changes in various metrics of physical performance (exercise economy, anaerobic threshold, peak oxygen uptake, muscle strength, and power). It also explores aging exercise physiology as it relates to global physical performance. Finally, this review examines the vascular contributions to aging exercise physiology. Numerous studies have shown that older adults exhibit substantial reductions in physical performance. The process of decline in endurance capacity is particularly insidious over the age of 60 years and varies considerably as a function of sex, task specificity, and individual training status. Starting at the age of 50 years, aging also implicates an impressive deterioration of neuromuscular function, affecting muscle strength and power. Muscle atrophy, together with minor deficits in the structure and function of the nervous system and/or impairments in intrinsic muscle quality, plays an important role in the development of neuromotor senescence. Large artery stiffness increases as a function of age, thus triggering subsequent changes in pulsatile hemodynamics and systemic endothelial dysfunction. For this reason, we propose that vascular senescence has a negative impact on cerebral, cardiac, and neuromuscular structure and function, detrimentally affecting physical performance.
Collapse
|
187
|
Age-related differences in muscle activity patterns during walking in healthy individuals. J Electromyogr Kinesiol 2018; 41:124-131. [PMID: 29879694 DOI: 10.1016/j.jelekin.2018.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/03/2018] [Accepted: 05/25/2018] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To examine how muscle activity over the entire gait cycle changes with increasing age. METHODS Electromyography data of the erector spinae, rectus femoris, vastus lateralis, biceps femoris, tibialis anterior and gastrocnemius muscles were collected by an instrumented gait analysis during over ground walking in healthy adults aged between 20 and 89 years. Participants were categorized per decade (n = 105, 15 per decade, decades 3-9). Normalized integrated linear envelopes of the electromyographic signal were calculated for one stride. A one way ANOVA using spm1d statistics explored the differences between age groups, followed by a post hoc analysis. RESULTS While initiation of decline commenced at the age of 60 for erector spinae and tibialis anterior, age-related changes are most pronounced after the age of 80. Concerning timing of muscle activity, subjects in decade 7-9 had prolonged activity and/or early activity of the erector spinae, vastus lateralis, biceps femoris, tibialis anterior and gastrocnemius compared to other decades. Regarding amplitude of muscle activity, decreased peak amplitudes of the erector spinae, rectus femoris, vastus lateralis and gastrocnemius were observed in decades 7-9 compared to other decades. CONCLUSION Both timing and amplitude of muscle activation patterns need to be considered to understand the aging process. Regarding the erector spinae, tibialis anterior and vastus lateralis, a decrease in muscle activation coincides with prolonged activity, compared to the gastrocnemius where decreased muscle activation is associated with early activation.
Collapse
|
188
|
Gimigliano F, Moretti A, de Sire A, Calafiore D, Iolascon G. The combination of vitamin D deficiency and overweight affects muscle mass and function in older post-menopausal women. Aging Clin Exp Res 2018; 30:625-631. [PMID: 29488185 DOI: 10.1007/s40520-018-0921-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/19/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND It has been suggested that overweight and obese individuals have an increased risk to develop vitamin D deficiency, commonly associated with poor muscle performance. The relationship among fat mass, vitamin D status, and skeletal muscle is still debated. AIMS To evaluate the effects of the combination of hypovitaminosis D and overweight on muscle mass and strength, and physical performance in post-menopausal women. METHODS In this cross-sectional study, we recruited post-menopausal women referring to a physiatric outpatient service for the management of osteoporosis over a 36-month period. We compared four groups: (1) normal weight with hypovitaminosis D; (2) overweight with normal serum 25(OH)D3; (3) overweight with hypovitaminosis D; and (4) normal weight with normal serum 25(OH)D3 (control group). Outcome measures were: appendicular lean mass-to-BMI ratio; hand grip strength; and short physical performance battery. RESULTS We analysed 368 women (mean aged 67.2 ± 7.8 years): 95 normal weight with hypovitaminosis D, 90 overweight with normal levels of 25(OH)D3, 96 overweight with hypovitaminosis D, and 87 normal weight with normal levels of 25(OH)D3. Overweight women with hypovitaminosis D had a significant risk of reduced muscle mass (OR 5.70; p < 0.001), strength (OR 12.05; p < 0.001), and performance (OR 5.84; p < 0.001) compared to controls. Normal weight women with hypovitaminosis D had only a greater risk of an impairment of muscle strength (OR 7.30; p < 0.001) and performance (OR 3.16; p < 0.001). DISCUSSION According to our findings, both hypovitaminosis D and overweight should be investigated in post-menopausal women because of their negative effects on skeletal muscle mass and function. CONCLUSIONS This study demonstrated that hypovitaminosis D is associated to impaired muscle function and its combination with overweight might lead also to muscle wasting in a cohort of post-menopausal women.
Collapse
Affiliation(s)
- Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", Via De Crecchio, 4, 80138, Naples, Italy
| | - Alessandro de Sire
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", Via De Crecchio, 4, 80138, Naples, Italy
| | - Dario Calafiore
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", Via De Crecchio, 4, 80138, Naples, Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", Via De Crecchio, 4, 80138, Naples, Italy.
| |
Collapse
|
189
|
Amaro-Gahete FJ, De-la-O A, Jurado-Fasoli L, Espuch-Oliver A, Robles-Gonzalez L, Navarro-Lomas G, de Haro T, Femia P, Castillo MJ, Gutierrez A. Exercise training as S-Klotho protein stimulator in sedentary healthy adults: Rationale, design, and methodology. Contemp Clin Trials Commun 2018; 11:10-19. [PMID: 30023455 PMCID: PMC6022251 DOI: 10.1016/j.conctc.2018.05.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/02/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
Aims The secreted form of the α-Klotho gene (S-Klotho), which is considered a powerful biomarker of longevity, makes it an attractive target as an anti-ageing therapy against functional decline, sarcopenic obesity, metabolic and cardiovascular diseases, osteoporosis, and neurodegenerative disorders. The S-Klotho plasma levels could be related to physical exercise inasmuch physical exercise is involved in physiological pathways that regulate the S-Klotho plasma levels. FIT-AGEING will determine the effect of different training modalities on the S-Klotho plasma levels (primary outcome) in sedentary healthy adults. FIT-AGEING will also investigate the physiological consequences of activating the klotho gene (secondary outcomes). Methods FIT-AGEING will recruit 80 sedentary, healthy adults (50% women) aged 45–65 years old. Eligible participants will be randomly assigned to a non-exercise group, i.e. the control group, (n = 20), a physical activity recommendation from World Health Organization group (n = 20), a high intensity interval training group (n = 20), and a whole-body electromyostimulation group (n = 20). The laboratory measurements will be taken at the baseline and 12 weeks later including the S-Klotho plasma levels, physical fitness (cardiorespiratory fitness, muscular strength), body composition, basal metabolic rate, heart rate variability, maximal fat oxidation, health blood biomarkers, free-living physical activity, sleep habits, reaction time, cognitive variables, and health-related questionnaires. We will also obtain dietary habits data and cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Francisco J Amaro-Gahete
- Department of Medical Physiology, School of Medicine, University of Granada, Spain.,PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain
| | - Alejandro De-la-O
- Department of Medical Physiology, School of Medicine, University of Granada, Spain
| | - Lucas Jurado-Fasoli
- Department of Medical Physiology, School of Medicine, University of Granada, Spain
| | - Andrea Espuch-Oliver
- Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital, H.U. Virgen de Las Nieves, Ibs.Granada, Complejo Hospitalario de Granada, 18016, Granada, Spain
| | | | - Ginés Navarro-Lomas
- Department of Medical Physiology, School of Medicine, University of Granada, Spain
| | - Tomás de Haro
- Unidad de Gestión Clínica de Laboratorios Clínicos, H.U San Cecilio, Ibs.Granada, Complejo Hospitalario de Granada, 18016, Granada, Spain
| | - Pedro Femia
- Department of Statistics, Faculty of Medicine at the University of Granada, Granada, Spain
| | - Manuel J Castillo
- Department of Medical Physiology, School of Medicine, University of Granada, Spain
| | - Angel Gutierrez
- Department of Medical Physiology, School of Medicine, University of Granada, Spain
| |
Collapse
|
190
|
Shin MJ, Jeon YK, Kim IJ. Testosterone and Sarcopenia. World J Mens Health 2018; 36:192-198. [PMID: 29756416 PMCID: PMC6119844 DOI: 10.5534/wjmh.180001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 01/06/2023] Open
Abstract
Aging affects metabolism, leading to physiological and functional impairments, and is also related to changes in body composition, including reduced skeletal muscle mass and increased body fat. These changes are correlated with the pathophysiology of sarcopenia, which is defined as age-related loss of skeletal muscle mass and strength. Low testosterone levels are associated with unfavorable body composition changes, and sex hormones decrease with aging. Androgen deficiency, along with lack of exercise and poor nutrition, may be among the modifiable contributors to sarcopenia. Testosterone treatment has been reported to have beneficial effects on muscle mass and function, but the results have been inconsistent. Here, we discuss the correlation between testosterone and muscle mass and function, the impact of testosterone on sarcopenia, and the probable mechanisms underlying these effects.
Collapse
Affiliation(s)
- Myung Jun Shin
- Department of Rehabilitation Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea.,Medical Research Institute, Pusan National University, Busan, Korea
| | - Yun Kyung Jeon
- Division of Endocrinology, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea.,Medical Research Institute, Pusan National University, Busan, Korea.
| | - In Joo Kim
- Division of Endocrinology, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea.,Medical Research Institute, Pusan National University, Busan, Korea
| |
Collapse
|
191
|
Bailey CA, Corona F, Pilloni G, Porta M, Fastame MC, Hitchcott PK, Penna MP, Pau M, Côté JN. Sex-dependent and sex-independent muscle activation patterns in adult gait as a function of age. Exp Gerontol 2018; 110:1-8. [PMID: 29751090 DOI: 10.1016/j.exger.2018.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Aging leads to poorer neuromuscular control that may impact mobility. However, the specific decades when these changes occur, and whether these time-based changes are sex-specific, are unclear. METHODS Adults aged 20-82 years (N = 93, 51 females) walked six gait trials at their preferred speed over a 10-m platform. Electromyography (EMG) of the rectus femoris (RF), tibialis anterior (TA), and gastrocnemius lateralis (GL) were measured using wireless surface sensors. Root mean square (RMS) and within-cycle coefficient of variation (CV) values were calculated for several phases of gait. Mixed effect models were conducted to test for Age, Sex, Muscle, and interaction effects, covarying for gait speed and stride length. RESULTS A significant Age × Sex × Muscle interaction on RMS at the mid-swing phase was found (p = .036), showing 4.2% higher RF RMS for males (β = 0.42, p = .008) and 3.3% higher GL RMS for females (β = 0.33, p = .038) with each of the three decades investigated. Significant Age × Muscle interactions on GL RMS were found at loading, mid-stance, and over the full gait cycle (ps < .05), with 2.0-4.3% higher values per decade (β = 0.20-0.43, ps < .05). There was generally higher CV with higher age at mid-swing and over the full gait cycle (significant Age effects, ps < .05). Females showed higher CV at loading, mid-stance, and terminal stance (significant Age × Sex effects, ps < .05). DISCUSSION/CONCLUSION Results suggest sex-dependent influences of age on muscle recruitment during a few specific phases of gait, and sex-independent influences of age on the recruitment of the ankle musculature, and on the overall gait cycle. These influences may help explain overall increased instability and fall risk in older adults.
Collapse
Affiliation(s)
- Christopher A Bailey
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, H2W 1S4 Montreal, Canada.
| | - Federica Corona
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Giuseppina Pilloni
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Micaela Porta
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Maria Chiara Fastame
- Department of Pedagogy, Psychology and Philosophy, University of Cagliari, Cagliari, Italy
| | - Paul Kenneth Hitchcott
- Department of Pedagogy, Psychology and Philosophy, University of Cagliari, Cagliari, Italy
| | | | - Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Julie N Côté
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, H2W 1S4 Montreal, Canada
| |
Collapse
|
192
|
Gillon A, Nielsen K, Steel C, Cornwall J, Sheard P. Exercise attenuates age-associated changes in motoneuron number, nucleocytoplasmic transport proteins and neuromuscular health. GeroScience 2018; 40:177-192. [PMID: 29736782 DOI: 10.1007/s11357-018-0020-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/17/2018] [Indexed: 12/31/2022] Open
Abstract
Life expectancy continues to extend, although frailty caused by loss of skeletal muscle mass continues unimpeded. Muscle atrophy caused by withdrawal of motor nerves is a feature of old age, as it is in amyotrophic lateral sclerosis (ALS) in which skeletal muscle denervation results from motoneuron death. In ALS, direct links have been established between motoneuron death and altered nucleocytoplasmic transport, so we ask whether similar defects accompany motoneuron death in normal ageing. We used immunohistochemistry on mouse tissues to explore potential links between neuromuscular junction (NMJ) degeneration, motoneuron death and nucleocytoplasmic transport regulatory proteins. Old age brought neuromuscular degeneration, motoneuron loss and reductions in immunodetectable levels of key nucleocytoplasmic transport proteins in lumbar motoneurons. We then asked whether exercise inhibited these changes and found that active elderly mice experienced less motoneuron death, improved neuromuscular junction morphology and retention of key nucleocytoplasmic transport proteins in lumbar motoneurons. Our results suggest that emergent defects in nucleocytoplasmic transport may contribute to motoneuron death and age-related loss of skeletal muscle mass, and that these defects may be reduced by exercise.
Collapse
Affiliation(s)
- Ashley Gillon
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| | - Kathrine Nielsen
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Charlotte Steel
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Jon Cornwall
- Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Philip Sheard
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| |
Collapse
|
193
|
Murgia M, Toniolo L, Nagaraj N, Ciciliot S, Vindigni V, Schiaffino S, Reggiani C, Mann M. Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging. Cell Rep 2018; 19:2396-2409. [PMID: 28614723 DOI: 10.1016/j.celrep.2017.05.054] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/10/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle is a key tissue in human aging, which affects different muscle fiber types unequally. We developed a highly sensitive single muscle fiber proteomics workflow to study human aging and show that the senescence of slow and fast muscle fibers is characterized by diverging metabolic and protein quality control adaptations. Whereas mitochondrial content declines with aging in both fiber types, glycolysis and glycogen metabolism are upregulated in slow but downregulated in fast muscle fibers. Aging mitochondria decrease expression of the redox enzyme monoamine oxidase A. Slow fibers upregulate a subset of actin and myosin chaperones, whereas an opposite change happens in fast fibers. These changes in metabolism and sarcomere quality control may be related to the ability of slow, but not fast, muscle fibers to maintain their mass during aging. We conclude that single muscle fiber analysis by proteomics can elucidate pathophysiology in a sub-type-specific manner.
Collapse
Affiliation(s)
- Marta Murgia
- Max-Planck-Institute of Biochemistry, Martinsried 82152, Germany; Department of Biomedical Science, University of Padova, Padua 35121, Italy.
| | - Luana Toniolo
- Department of Biomedical Science, University of Padova, Padua 35121, Italy
| | | | - Stefano Ciciliot
- Venetian Institute of Molecular Medicine, Padua 35129, Italy; Department of Medicine, University of Padua, Padua 35128, Italy
| | - Vincenzo Vindigni
- Department of Neurosciences, University of Padova, Padua 35128, Italy
| | | | - Carlo Reggiani
- Department of Biomedical Science, University of Padova, Padua 35121, Italy
| | - Matthias Mann
- Max-Planck-Institute of Biochemistry, Martinsried 82152, Germany.
| |
Collapse
|
194
|
Bocardi DAS, Pereira-Baldon VS, Ferreira CHJ, Avila MA, Beleza ACS, Driusso P. Pelvic floor muscle function and EMG in nulliparous women of different ages: a cross-sectional study. Climacteric 2018; 21:462-466. [DOI: 10.1080/13697137.2018.1453493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- D. A. S. Bocardi
- Physical Therapy Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - V. S. Pereira-Baldon
- Faculty of Physical Education and Physiotherapy, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - C. H. J. Ferreira
- Physical Therapy Department, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - M. A. Avila
- Physical Therapy Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Post-Graduate Program on Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | - A. C. S. Beleza
- Physical Therapy Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - P. Driusso
- Physical Therapy Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Post-Graduate Program on Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
195
|
Watanabe K, Kouzaki M, Ogawa M, Akima H, Moritani T. Relationships between muscle strength and multi-channel surface EMG parameters in eighty-eight elderly. Eur Rev Aging Phys Act 2018; 15:3. [PMID: 29682086 PMCID: PMC5894231 DOI: 10.1186/s11556-018-0192-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/02/2018] [Indexed: 11/10/2022] Open
Abstract
Background Since age-related muscle strength loss cannot be explained solely by muscle atrophy, other determinants would also contribute to muscle strength in elderly. The present study aimed to clarify contribution of neuromuscular activation pattern to muscle strength in elderly group. From 88 elderlies (age: 61~ 83 years), multi-channel surface electromyography (EMG) of the vastus lateralis muscle was recorded with two-dimensional 64 electrodes during isometric submaximal ramp-up knee extension to assess neuromuscular activation pattern. Correlation analysis and stepwise regression analysis were performed between muscle strength and the parameters for signal amplitude and spatial distribution pattern, i.e., root mean square (RMS), correlation coefficient, and modified entropy of multi-channel surface EMG. Results There was a significant correlation between muscle strength and RMS (r = 0.361, p = 0.001) in the elderly. Muscle thickness (r = 0.519, p < 0.001), RMS (r = 0.288, p = 0.001), and normalized RMS (r = 0.177, p = 0.047) were selected as major determinants of muscle strength in stepwise regression analysis (r = 0.664 in the selected model). Conclusion These results suggest that inter-individual difference in muscle strength in elderly can be partly explained by surface EMG amplitude. We concluded that neuromuscular activation pattern is also major determinants of muscle strength on elderly in addition to indicator of muscle volume.
Collapse
Affiliation(s)
- Kohei Watanabe
- 1Laboratory of Neuromuscular Biomechanics, School of International Liberal Studies, Chukyo University, Yagotohonmachi, Showa-ku, Nagoya, 466-8666 Japan
| | - Motoki Kouzaki
- 2Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Madoka Ogawa
- 3Graduate School of Education and Human Development, Nagoya University, Nagoya, Japan.,4Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hiroshi Akima
- 3Graduate School of Education and Human Development, Nagoya University, Nagoya, Japan.,5Research Center of Health, Physical Fitness & Sports, Nagoya University, Japan raduate School of Education and Human Development, Nagoya University, Nagoya, Japan
| | - Toshio Moritani
- 6Faculty of Sociology, Kyoto Sangyo University, Kyoto, Japan.,7School of Health and Sports Sciences, Chukyo University, Nagoya, Japan
| |
Collapse
|
196
|
Hundza SR, Gaur A, Brodie R, Commandeur D, Klimstra MD. Age-related erosion of obstacle avoidance reflexes evoked with electrical stimulation of tibial nerve during walking. J Neurophysiol 2018; 119:1528-1537. [PMID: 29357472 PMCID: PMC5966742 DOI: 10.1152/jn.00979.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 12/03/2017] [Accepted: 12/18/2017] [Indexed: 11/22/2022] Open
Abstract
In young healthy adults, characteristic obstacle avoidance reflexes have been demonstrated in response to electrical stimulation of cutaneous afferents of the foot during walking. It is unknown whether there is an age-related erosion of this obstacle avoidance reflex evoked with stimulation to the tibial nerve innervating the sole of the foot. The purpose of this study was to identify age-dependent differences in obstacle avoidance reflexes evoked with electrical stimulation of the tibial nerve at the ankle during walking in healthy young and older (70 yr and older) adults with no history of falls. Toe clearance, ankle and knee joint displacement and angular velocity, and electromyograms (EMG) of the tibialis anterior, medial gastrocnemius, biceps femoris, and vastus lateralis were measured. A significant erosion of kinematic and EMG obstacle avoidance reflexes was seen in the older adults compared with the young. Specifically, during swing phase, there was reduced toe clearance, ankle dorsiflexion, and knee flexion angular displacement in older adults compared with the young as well as changes in muscle activation. These degraded reflexes were superimposed on altered kinematics seen during unperturbed walking in the older adults including reduced toe clearance and knee flexion and increased ankle dorsiflexion compared with the young. Notably, during mid-swing the toe clearance was reduced in the older adults compared with the young by 2 cm overall, resulting from a combination of 1-cm reduced reflex response in the older adults superimposed on 1-cm less toe clearance during unperturbed walking. Together, these age-related differences could represent the prodromal phase of fall risk. NEW & NOTEWORTHY This study demonstrated age-dependent erosion of obstacle avoidance reflexes evoked with electrical stimulation of the tibial nerve at the ankle during walking. There was significant reduction in toe clearance, ankle dorsiflexion, and knee flexion reflexes as well as changes in muscle activation during swing phase in older adults with no history of falls compared with the young. These degraded reflexes, superimposed on altered kinematics seen during unperturbed walking, likely represent the prodromal phase of fall risk.
Collapse
Affiliation(s)
- Sandra R Hundza
- Motion and Mobility Rehabilitation Laboratory, University of Victoria , Victoria, British Columbia , Canada
- School of Exercise Science, Physical and Health Education, University of Victoria , Victoria, British Columbia , Canada
| | - Amit Gaur
- Motion and Mobility Rehabilitation Laboratory, University of Victoria , Victoria, British Columbia , Canada
- School of Exercise Science, Physical and Health Education, University of Victoria , Victoria, British Columbia , Canada
| | - Ryan Brodie
- Motion and Mobility Rehabilitation Laboratory, University of Victoria , Victoria, British Columbia , Canada
- School of Exercise Science, Physical and Health Education, University of Victoria , Victoria, British Columbia , Canada
| | - Drew Commandeur
- Motion and Mobility Rehabilitation Laboratory, University of Victoria , Victoria, British Columbia , Canada
- School of Exercise Science, Physical and Health Education, University of Victoria , Victoria, British Columbia , Canada
| | - Marc D Klimstra
- Motion and Mobility Rehabilitation Laboratory, University of Victoria , Victoria, British Columbia , Canada
- School of Exercise Science, Physical and Health Education, University of Victoria , Victoria, British Columbia , Canada
| |
Collapse
|
197
|
Hendrickse P, Galinska M, Hodson-Tole E, Degens H. An evaluation of common markers of muscle denervation in denervated young-adult and old rat gastrocnemius muscle. Exp Gerontol 2018. [PMID: 29524469 DOI: 10.1016/j.exger.2018.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A large part of age-related muscle wasting is due to incomplete reinnervation of fibres that have become denervated following motoneuron loss. Neural cell adhesion molecule (NCAM) and sodium channel NaV1.5 are considered markers for denervation, but the time course of changes in their expression following denervation has never been systematically evaluated in young-adult and old muscle. To assess the time course of denervation-induced changes in their expression, the left gastrocnemius muscle in 15 young-adult (5-month) and 10 old (25-month) male Wistar rats was denervated for 1, 2 or 4 weeks, while the right muscle served as an internal control. Sections were stained for α-bungarotoxin, to visualise the neuromuscular junctions, combined with NCAM, polysialylated NCAM (PSA-NCAM) or NaV1.5. In young-adult animals, denervation induced a transient decrease in junctional and cytoplasmic NCAM expression, while in the old NCAM expression was increased after 2 weeks. Cytoplasmic PSA-NCAM was increased in both young-adult and old fibres after 2 weeks denervation with a further increase after 4 weeks in the young only. The junctional PSA-NCAM was transiently increased or decreased in the young and old muscles, respectively. NaV1.5 expression decreased after 1 and 2 weeks of denervation in NaV1.5 in young muscle fibres before returning to control levels, whereas old muscle fibres displayed a transient increase after 1 week followed by a decrease and a return to control levels after 2 and 4 weeks respectively. In conclusion, NCAM and NaV1.5 are not unequivocally elevated with denervation and consequently are not adequate markers of fibre denervation.
Collapse
Affiliation(s)
- Paul Hendrickse
- School of Healthcare Science, Manchester Metropolitan University, UK; Institute of Sport Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania.
| | | | - Emma Hodson-Tole
- School of Healthcare Science, Manchester Metropolitan University, UK
| | - Hans Degens
- School of Healthcare Science, Manchester Metropolitan University, UK; Institute of Sport Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania.
| |
Collapse
|
198
|
D'Souza RF, Zeng N, Figueiredo VC, Markworth JF, Durainayagam BR, Mitchell SM, Fanning AC, Poppitt SD, Cameron-Smith D, Mitchell CJ. Dairy Protein Supplementation Modulates the Human Skeletal Muscle microRNA Response to Lower Limb Immobilization. Mol Nutr Food Res 2018; 62:e1701028. [DOI: 10.1002/mnfr.201701028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/11/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Nina Zeng
- Liggins Institute; University of Auckland; Auckland New Zealand
| | - Vandre C. Figueiredo
- Liggins Institute; University of Auckland; Auckland New Zealand
- College of Health Sciences; University of Kentucky; Lexington KY USA
| | | | | | | | - Aaron C. Fanning
- Fonterra Research and Development Centre; Palmerston North New Zealand
| | - Sally D. Poppitt
- School of Biological Sciences; University of Auckland; Auckland New Zealand
- Centre of Research Excellence (CoRE); Riddet Institute,; Palmerston North New Zealand
| | - David Cameron-Smith
- Liggins Institute; University of Auckland; Auckland New Zealand
- Food & Bio-based Products Group; AgResearch; Palmerston North New Zealand
- Centre for Research Excellence (CoRE); Riddet Insitute; Palmerston North New Zealand
| | | |
Collapse
|
199
|
|
200
|
Coelho-Junior HJ, Rodrigues B, Gonçalves IDO, Asano RY, Uchida MC, Marzetti E. The physical capabilities underlying timed "Up and Go" test are time-dependent in community-dwelling older women. Exp Gerontol 2018; 104:138-146. [PMID: 29410234 DOI: 10.1016/j.exger.2018.01.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/11/2017] [Accepted: 01/25/2018] [Indexed: 10/18/2022]
Abstract
Timed 'Up and Go' (TUG) has been widely used in research and clinical practice to evaluate physical function and mobility in older adults. However, the physical capabilities underlying TUG performance are not well elucidated. Therefore, the present study aimed at investigating a selection of physical capacities underlying TUG performance in community-dwelling older women. Four hundred and sixty-eight apparently healthy older women independent to perform the activities of daily living (mean age: 65.8 ± 6.0 years) were recruited from two specialized healthcare centers for older adults to participate in the study. Volunteers had their medical books reviewed and underwent evaluations of anthropometric data as well as physical and functional capacities. Pearson's correlation results indicate that TUG performance was significantly associated with upper (i.e., handgrip strength) and lower (i.e., sit-to-stand) limb muscle strength, balance (i.e., one-leg stand), lower limb muscle power (i.e., countermovement jump), aerobic capacity (i.e., 6-minute walk test), and mobility (i.e., usual and maximal walking speeds). When the analyses were performed based on TUG quartiles, a larger number of physical capabilities were associated with TUG >75% in comparison with TUG <25%. Multiple linear regression results indicate that the variability in TUG (~20%) was explained by lower limb muscle strength (13%) and power (1%), balance (4%), mobility (2%), and aerobic capacity (<1%), even after adjusted by age and age plus body mass index (BMI). However, when TUG results were added as quartiles, a decrease in the impact of physical capacities on TUG performance was determined. As a whole, our findings indicate that the contribution of physical capabilities to TUG performance is altered according to the time taken to perform the test, so that older women in the lower quartiles - indicating a higher performance - have an important contribution of lower limb muscle strength, while volunteers in the highest quartile demonstrate a decreased dependence on lower limb muscle strength and an increased contribution of other physical capabilities, such as lower limb muscle power and balance.
Collapse
Affiliation(s)
- Hélio José Coelho-Junior
- Applied Kinesiology Laboratory-LCA, School of Physical Education, University of Campinas, Av. Érico Veríssimo, 701, Cidade Universitária "Zeferino Vaz", Barão Geraldo, CEP: 13.083-851 Campinas, SP, Brazil; Center of Health Sciences, University of Mogi das Cruzes, Av. Dr. Cândido Xavier de Almeida Souza, 200, CEP 08780-911 Centro Cívico, Mogi das Cruzes, Brazil.
| | - Bruno Rodrigues
- Applied Kinesiology Laboratory-LCA, School of Physical Education, University of Campinas, Av. Érico Veríssimo, 701, Cidade Universitária "Zeferino Vaz", Barão Geraldo, CEP: 13.083-851 Campinas, SP, Brazil
| | - Ivan de Oliveira Gonçalves
- Center of Health Sciences, University of Mogi das Cruzes, Av. Dr. Cândido Xavier de Almeida Souza, 200, CEP 08780-911 Centro Cívico, Mogi das Cruzes, Brazil; Community Center for Older People of Poá, Poá, Brazil
| | - Ricardo Yukio Asano
- Center of Health Sciences, University of Mogi das Cruzes, Av. Dr. Cândido Xavier de Almeida Souza, 200, CEP 08780-911 Centro Cívico, Mogi das Cruzes, Brazil; School of Arts, Sciences and Humanities, University of São Paulo, Rua Arlindo Béttio, 1000 - Ermelino Matarazzo, São Paulo, SP, 03828-000, Brazil
| | - Marco Carlos Uchida
- Applied Kinesiology Laboratory-LCA, School of Physical Education, University of Campinas, Av. Érico Veríssimo, 701, Cidade Universitária "Zeferino Vaz", Barão Geraldo, CEP: 13.083-851 Campinas, SP, Brazil
| | - Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|