151
|
Nock BA, Kanellopoulos P, Joosten L, Mansi R, Maina T. Peptide Radioligands in Cancer Theranostics: Agonists and Antagonists. Pharmaceuticals (Basel) 2023; 16:ph16050674. [PMID: 37242457 DOI: 10.3390/ph16050674] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The clinical success of radiolabeled somatostatin analogs in the diagnosis and therapy-"theranostics"-of tumors expressing the somatostatin subtype 2 receptor (SST2R) has paved the way for the development of a broader panel of peptide radioligands targeting different human tumors. This approach relies on the overexpression of other receptor-targets in different cancer types. In recent years, a shift in paradigm from internalizing agonists to antagonists has occurred. Thus, SST2R-antagonist radioligands were first shown to accumulate more efficiently in tumor lesions and clear faster from the background in animal models and patients. The switch to receptor antagonists was soon adopted in the field of radiolabeled bombesin (BBN). Unlike the stable cyclic octapeptides used in the case of somatostatin, BBN-like peptides are linear, fast to biodegradable and elicit adverse effects in the body. Thus, the advent of BBN-like antagonists provided an elegant way to obtain effective and safe radiotheranostics. Likewise, the pursuit of gastrin and exendin antagonist-based radioligands is advancing with exciting new outcomes on the horizon. In the present review, we discuss these developments with a focus on clinical results, commenting on challenges and opportunities for personalized treatment of cancer patients by means of state-of-the-art antagonist-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Berthold A Nock
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15310 Athens, Greece
| | | | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15310 Athens, Greece
| |
Collapse
|
152
|
Triumbari EKA, Rufini V, Mingels C, Rominger A, Alavi A, Fanfani F, Badawi RD, Nardo L. Long Axial Field-of-View PET/CT Could Answer Unmet Needs in Gynecological Cancers. Cancers (Basel) 2023; 15:2407. [PMID: 37173874 PMCID: PMC10177015 DOI: 10.3390/cancers15092407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Gynecological malignancies currently affect about 3.5 million women all over the world. Imaging of uterine, cervical, vaginal, ovarian, and vulvar cancer still presents several unmet needs when using conventional modalities such as ultrasound, computed tomography (CT), magnetic resonance, and standard positron emission tomography (PET)/CT. Some of the current diagnostic limitations are represented by differential diagnosis between inflammatory and cancerous findings, detection of peritoneal carcinomatosis and metastases <1 cm, detection of cancer-associated vascular complications, effective assessment of post-therapy changes, as well as bone metabolism and osteoporosis assessment. As a result of recent advances in PET/CT instrumentation, new systems now offer a long-axial field-of-view (LAFOV) to image between 106 cm and 194 cm (i.e., total-body PET) of the patient's body simultaneously and feature higher physical sensitivity and spatial resolution compared to standard PET/CT systems. LAFOV PET could overcome the forementioned limitations of conventional imaging and provide valuable global disease assessment, allowing for improved patient-tailored care. This article provides a comprehensive overview of these and other potential applications of LAFOV PET/CT imaging for patients with gynecological malignancies.
Collapse
Affiliation(s)
- Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, G-STeP Radiopharmacy Research Core Facility, Department of Radiology, Radiotherapy and Haematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Vittoria Rufini
- Nuclear Medicine Unit, Department of Radiology, Radiotherapy and Haematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
- Section of Nuclear Medicine, Department of Radiological Sciences, Radiotherapy and Haematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesco Fanfani
- Woman, Child and Public Health Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Section of Obstetrics and Gynaecology, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Ramsey D. Badawi
- Department of Radiology, University of California Davis, Sacramento, CA 95819, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA 95819, USA
| |
Collapse
|
153
|
Sharma S, Baran J, Chug N, Curceanu C, Czerwiński E, Dadgar M, Dulski K, Eliyan K, Gajos A, Gupta-Sharma N, Hiesmayr BC, Kacprzak K, Kapłon Ł, Klimaszewski K, Konieczka P, Korcyl G, Kozik T, Krzemień W, Kumar D, Niedźwiecki S, Panek D, Parzych S, Del Rio EP, Raczyński L, Choudhary S, Shopa RY, Skurzok M, Stępień EŁ, Tayefi F, Tayefi K, Wiślicki W, Moskal P. Efficiency determination of J-PET: first plastic scintillators-based PET scanner. EJNMMI Phys 2023; 10:28. [PMID: 37029849 PMCID: PMC10082891 DOI: 10.1186/s40658-023-00546-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND The Jagiellonian Positron Emission Tomograph is the 3-layer prototype of the first scanner based on plastic scintillators, consisting of 192 half-metre-long strips with readouts at both ends. Compared to crystal-based detectors, plastic scintillators are several times cheaper and could be considered as a more economical alternative to crystal scintillators in future PETs. JPET is also a first multi-photon PET prototype. For the development of multi-photon detection, with photon characterized by the continuous energy spectrum, it is important to estimate the efficiency of J-PET as a function of energy deposition. The aim of this work is to determine the registration efficiency of the J-PET tomograph as a function of energy deposition by incident photons and the intrinsic efficiency of the J-PET scanner in detecting photons of different incident energies. In this study, 3-hit events are investigated, where 2-hits are caused by 511 keV photons emitted in [Formula: see text] annihilations, while the third hit is caused by one of the scattered photons. The scattered photon is used to accurately measure the scattering angle and thus the energy deposition. Two hits by a primary and a scattered photon are sufficient to calculate the scattering angle of a photon, while the third hit ensures the precise labeling of the 511 keV photons. RESULTS By comparing experimental and simulated energy distribution spectra, the registration efficiency of the J-PET scanner was determined in the energy deposition range of 70-270 keV, where it varies between 20 and 100[Formula: see text]. In addition, the intrinsic efficiency of the J-PET was also determined as a function of the energy of the incident photons. CONCLUSION A method for determining registration efficiency as a function of energy deposition and intrinsic efficiency as a function of incident photon energy of the J-PET scanner was demonstrated. This study is crucial for evaluating the performance of the scanner based on plastic scintillators and its applications as a standard and multi-photon PET systems. The method may be also used in the calibration of Compton-cameras developed for the ion-beam therapy monitoring and simultaneous multi-radionuclide imaging in nuclear medicine.
Collapse
Affiliation(s)
- S Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland.
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland.
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland.
| | - J Baran
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - N Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - C Curceanu
- INFN, Laboratori Nazionali di Frascati, 00044, Frascati, Italy
| | - E Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - M Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - K Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - K Eliyan
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - A Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - N Gupta-Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
| | - B C Hiesmayr
- Faculty of Physics, University of Vienna, 1090, Vienna, Austria
| | - K Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - Ł Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - K Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - P Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - G Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
| | - T Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
| | - W Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - D Kumar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - Sz Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - D Panek
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - S Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - E Perez Del Rio
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - L Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - Shivani Choudhary
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - R Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - M Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - E Ł Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - F Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - K Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - W Wiślicki
- High Energy Physics Division, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - P Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| |
Collapse
|
154
|
Wang H, Wu Y, Huang Z, Li Z, Zhang N, Fu F, Meng N, Wang H, Zhou Y, Yang Y, Liu X, Liang D, Zheng H, Mok GSP, Wang M, Hu Z. Deep learning-based dynamic PET parametric K i image generation from lung static PET. Eur Radiol 2023; 33:2676-2685. [PMID: 36399164 DOI: 10.1007/s00330-022-09237-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES PET/CT is a first-line tool for the diagnosis of lung cancer. The accuracy of quantification may suffer from various factors throughout the acquisition process. The dynamic PET parametric Ki provides better quantification and improve specificity for cancer detection. However, parametric imaging is difficult to implement clinically due to the long acquisition time (~ 1 h). We propose a dynamic parametric imaging method based on conventional static PET using deep learning. METHODS Based on the imaging data of 203 participants, an improved cycle generative adversarial network incorporated with squeeze-and-excitation attention block was introduced to learn the potential mapping relationship between static PET and Ki parametric images. The image quality of the synthesized images was qualitatively and quantitatively evaluated by using several physical and clinical metrics. Statistical analysis of correlation and consistency was also performed on the synthetic images. RESULTS Compared with those of other networks, the images synthesized by our proposed network exhibited superior performance in both qualitative and quantitative evaluation, statistical analysis, and clinical scoring. Our synthesized Ki images had significant correlation (Pearson correlation coefficient, 0.93), consistency, and excellent quantitative evaluation results with the Ki images obtained in standard dynamic PET practice. CONCLUSIONS Our proposed deep learning method can be used to synthesize highly correlated and consistent dynamic parametric images obtained from static lung PET. KEY POINTS • Compared with conventional static PET, dynamic PET parametric Ki imaging has been shown to provide better quantification and improved specificity for cancer detection. • The purpose of this work was to develop a dynamic parametric imaging method based on static PET images using deep learning. • Our proposed network can synthesize highly correlated and consistent dynamic parametric images, providing an additional quantitative diagnostic reference for clinicians.
Collapse
Affiliation(s)
- Haiyan Wang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Macau, 999078, SAR, China
| | - Yaping Wu
- Department of Medical Imaging, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Zhenxing Huang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhicheng Li
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Na Zhang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fangfang Fu
- Department of Medical Imaging, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Nan Meng
- Department of Medical Imaging, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Haining Wang
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, 518045, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group, Shanghai, 201807, China
| | - Yongfeng Yang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xin Liu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hairong Zheng
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Macau, 999078, SAR, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
155
|
Dixon JT, DiFilippo FP, Renapurkar RD, Huang SS. Novel Depiction of Collateral Flow in Chronic Thromboembolic Pulmonary Hypertension Using 4D Dynamic 82 Rb PET/CT. Clin Nucl Med 2023; 48:356-358. [PMID: 36727861 DOI: 10.1097/rlu.0000000000004567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT CT pulmonary angiogram and ventilation-perfusion scintigraphy are the 2 primary imaging modalities for evaluating patients with CTEPH (chronic thromboembolic pulmonary hypertension). PET/CT and MRI currently have a limited role in the evaluation of acute or chronic pulmonary embolism. We present incidentally captured dynamic pulmonary perfusion images in a patient with history of CTEPH who underwent 82 Rb myocardial perfusion PET/CT for evaluation of chest pain. Analysis of the PET data revealed delayed perfusion of the affected lobes suggesting collateralization, highlighting a potentially new imaging paradigm for assessment of pulmonary perfusion.
Collapse
Affiliation(s)
- James T Dixon
- From the Imaging Institute, Cleveland Clinic, Cleveland, OH
| | | | | | | |
Collapse
|
156
|
Griffin MT, Werner TJ, Alavi A, Revheim ME. The value of FDG-PET/CT imaging in the assessment, monitoring, and management of COVID-19. EUROPEAN PHYSICAL JOURNAL PLUS 2023; 138:283. [PMID: 37008755 PMCID: PMC10040919 DOI: 10.1140/epjp/s13360-023-03797-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 02/11/2023] [Indexed: 06/19/2023]
Abstract
The pathogenesis of Coronavirus Disease 2019 (COVID-19) involves cytokine-driven recruitment and accumulation of inflammatory cells at sites of infection. These activated neutrophils, monocytes, and effector T cells are highly glycolytic and thus appear as [18]F-labeled fluorodeoxyglucose (FDG) avid sites on positron emission tomography (PET) imaging. FDG-PET-computed tomography (FDG-PET/CT) is a highly sensitive modality for the detection, monitoring, and assessing response related to COVID-19 disease activity that holds significant clinical relevance. To date, concerns over cost, access, and undue radiation exposure have limited the use of FDG-PET/CT in COVID-19 to a small number of individuals where PET-based interventions were already indicated. In this review, we summarize the existing literature on the use of FDG-PET in the detection and monitoring of COVID-19 with particular focus on several areas of clinical relevance that warrant future research: (1) incidental early detection of subclinical COVID-19 in patients who have undergone FDG-PET for other underlying diseases, (2) standardized quantitative assessment of COVID-19 disease burden at specific points in time, and (3) analysis of FDG-PET/CT data leading to better characterization of COVID-19 pathogenesis. Employing FDG-PET/CT for these purposes may allow for the earliest detection of COVID-19-associated venous thromboembolism (VTE), standardized monitoring of disease progression and response to treatment, and better characterization of the acute and chronic complications of this disease.
Collapse
Affiliation(s)
- Matthew T. Griffin
- Drexel University College of Medicine, Philadelphia, PA USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| | - Thomas J. Werner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Postbox 4950, 0424 Nydalen, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Postbox 1078, 0316 Blindern, Oslo, Norway
- The Intervention Center, Division of Technology and Innovation, Oslo University Hospital, Postbox 4950, 0424 Oslo, Norway
| |
Collapse
|
157
|
Moskal P, Kubicz E, Grudzień G, Czerwiński E, Dulski K, Leszczyński B, Niedźwiecki S, Stępień EŁ. Developing a novel positronium biomarker for cardiac myxoma imaging. EJNMMI Phys 2023; 10:22. [PMID: 36959477 PMCID: PMC10036702 DOI: 10.1186/s40658-023-00543-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/10/2023] [Indexed: 03/25/2023] Open
Abstract
PURPOSE Cardiac myxoma (CM), the most common cardiac tumor in adults, accounts for 50-75% of benign cardiac tumors. The diagnosis of CM is often elusive, especially in young stroke survivors and transthoracic echocardiography (TTE) is the initial technique for the differential diagnostics of CM. Less invasive cardiac computed tomography (CT) and magnetic resonance imaging (MRI) are not available for the majority of cardiac patients. Here, a robust imaging approach, ortho-Positronium (o-Ps) imaging, is presented to determine cardiac myxoma extracted from patients undergoing urgent cardiac surgery due to unexpected atrial masses. We aimed to assess if the o-Ps atom, produced copiously in intramolecular voids during the PET imaging, serves as a biomarker for CM diagnosing. METHODS Six perioperative CM and normal (adipose) tissue samples from patients, with primary diagnosis confirmed by the histopathology examination, were examined using positron annihilation lifetime spectroscopy (PALS) and micro-CT. Additionally, cell cultures and confocal microscopy techniques were used to picture cell morphology and origin. RESULTS We observed significant shortening in the mean o-Ps lifetime in tumor with compare to normal tissues: an average value of 1.92(02) ns and 2.72(05) ns for CM and the adipose tissue, respectively. Microscopic differences between tumor samples, confirmed in histopathology examination and micro-CT, did not influenced the major positronium imaging results. CONCLUSIONS Our findings, combined with o-Ps lifetime analysis, revealed the novel emerging positronium imaging marker (o-PS) for cardiovascular imaging. This method opens the new perspective to facilitate the quantitative in vivo assessment of intracardiac masses on a molecular (nanoscale) level.
Collapse
Affiliation(s)
- Paweł Moskal
- Department of Experimental Particle Physics and Applications, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
- Center for Theranostics, Jagiellonian University, Kraków, Poland.
| | - Ewelina Kubicz
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
- Center for Theranostics, Jagiellonian University, Kraków, Poland.
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
| | - Grzegorz Grudzień
- Department of Cardiovascular Surgery and Transplantology, John Paul II Hospital, Kraków, Poland
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University Medical College, Kraków, Poland
| | - Eryk Czerwiński
- Department of Experimental Particle Physics and Applications, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Department of Experimental Particle Physics and Applications, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Bartosz Leszczyński
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Szymon Niedźwiecki
- Department of Experimental Particle Physics and Applications, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Ewa Ł Stępień
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
- Center for Theranostics, Jagiellonian University, Kraków, Poland.
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
| |
Collapse
|
158
|
Alberts I, Sari H, Mingels C, Afshar-Oromieh A, Pyka T, Shi K, Rominger A. Long-axial field-of-view PET/CT: perspectives and review of a revolutionary development in nuclear medicine based on clinical experience in over 7000 patients. Cancer Imaging 2023; 23:28. [PMID: 36934273 PMCID: PMC10024603 DOI: 10.1186/s40644-023-00540-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/25/2023] [Indexed: 03/20/2023] Open
Abstract
Recently introduced long-axial field-of-view (LAFOV) PET/CT systems represent one of the most significant advancements in nuclear medicine since the advent of multi-modality PET/CT imaging. The higher sensitivity exhibited by such systems allow for reductions in applied activity and short duration scans. However, we consider this to be just one small part of the story: Instead, the ability to image the body in its entirety in a single FOV affords insights which standard FOV systems cannot provide. For example, we now have the ability to capture a wider dynamic range of a tracer by imaging it over multiple half-lives without detrimental image noise, to leverage lower radiopharmaceutical doses by using dual-tracer techniques and with improved quantification. The potential for quantitative dynamic whole-body imaging using abbreviated protocols potentially makes these techniques viable for routine clinical use, transforming PET-reporting from a subjective analysis of semi-quantitative maps of radiopharmaceutical uptake at a single time-point to an accurate and quantitative, non-invasive tool to determine human function and physiology and to explore organ interactions and to perform whole-body systems analysis. This article will share the insights obtained from 2 years' of clinical operation of the first Biograph Vision Quadra (Siemens Healthineers) LAFOV system. It will also survey the current state-of-the-art in PET technology. Several technologies are poised to furnish systems with even greater sensitivity and resolution than current systems, potentially with orders of magnitude higher sensitivity. Current barriers which remain to be surmounted, such as data pipelines, patient throughput and the hindrances to implementing kinetic analysis for routine patient care will also be discussed.
Collapse
Affiliation(s)
- Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Thomas Pyka
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland.
| |
Collapse
|
159
|
Liu Z, Mungai S, Niu M, Kuang Z, Ren N, Wang X, Sang Z, Yang Y. Edge effect reduction of high-resolution PET detectors using LYSO and GAGG phoswich crystals. Phys Med Biol 2023; 68. [PMID: 36808920 DOI: 10.1088/1361-6560/acbde1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/21/2023] [Indexed: 02/23/2023]
Abstract
Objective. Small-animal positron emission tomography (PET) is a powerful preclinical imaging tool in animal model studies. The spatial resolution and sensitivity of current PET scanners developed for small-animal imaging need to be improved to increase the quantitative accuracy of preclinical animal studies. This study aimed to improve the identification capability of edge scintillator crystals of a PET detector which will enable to apply a crystal array with the same cross-section area as the active area of a photodetector for improving the detection area and thus reducing or eliminating the inter-detector gaps.Approach. PET detectors using crystal arrays with mixed lutetium yttrium orthosilicate (LYSO) and gadolinium aluminum gallium garnet (GAGG) crystals were developed and evaluated. The crystal arrays consisted of 31 × 31 array of 0.49 × 0.49 × 20 mm3crystals; they were read out by two silicon photomultiplier arrays with pixel sizes of 2 × 2 mm2that were placed at both ends of the crystal arrays. The second or first outermost layer of the LYSO crystals was replaced by GAGG crystals in the two crystal arrays. The two crystal types were identified using a pulse-shape discrimination technique to provide better edge crystal identification.Main results. Using the pulse shape discrimination technique, almost all (except for a few edge) crystals were resolved in the two detectors; high sensitivity was achieved by using the scintillator array and the photodetector with the same areas and achieved high resolution by using crystals with sizes equal to 0.49 × 0.49 × 20 mm3. Energy resolutions of 19.3 ± 1.8% and 18.9 ± 1.5%, depth-of-interaction resolutions of 2.02 ± 0.17 mm and 2.04 ± 0.18 mm, and timing resolutions of 1.6 ± 0.2 ns and 1.5 ± 0.2 ns were achieved by the two detectors, respectively.Significance. In summary, novel three-dimensional high-resolution PET detectors consisting of a mixture of LYSO and GAGG crystals were developed. The detectors significantly improve the detection area with the same photodetectors and thus improve the detection efficiency.
Collapse
Affiliation(s)
- Zheng Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Samuel Mungai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Ming Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Ning Ren
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xiaohui Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Ziru Sang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
160
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
161
|
Lyu Q, Neph R, Sheng K. Tomographic detection of photon pairs produced from high-energy X-rays for the monitoring of radiotherapy dosing. Nat Biomed Eng 2023; 7:323-334. [PMID: 36280738 PMCID: PMC10038801 DOI: 10.1038/s41551-022-00953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
Measuring the radiation dose reaching a patient's body is difficult. Here we report a technique for the tomographic reconstruction of the location of photon pairs originating from the annihilation of positron-electron pairs produced by high-energy X-rays travelling through tissue. We used Monte Carlo simulations on pre-recorded data from tissue-mimicking phantoms and from a patient with a brain tumour to show the feasibility of this imaging modality, which we named 'pair-production tomography', for the monitoring of radiotherapy dosing. We simulated three image-reconstruction methods, one applicable to a pencil X-ray beam scanning through a region of interest, and two applicable to the excitation of tissue volumes via broad beams (with temporal resolution sufficient to identify coincident photon pairs via filtered back projection, or with higher temporal resolution sufficient for the estimation of a photon's time-of-flight). In addition to the monitoring of radiotherapy dosing, we show that image contrast resulting from pair-production tomography is highly proportional to the material's atomic number. The technique may thus also allow for element mapping and for soft-tissue differentiation.
Collapse
Affiliation(s)
- Qihui Lyu
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ryan Neph
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
162
|
Significant CT dose reduction of 2-[ 18F]FDG PET/CT in pretreatment pediatric lymphoma without compromising the diagnostic and staging efficacy. Eur Radiol 2023; 33:2248-2257. [PMID: 36166086 DOI: 10.1007/s00330-022-09145-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To compare the diagnostic and staging efficacy of PET/diagnostic-level CT (PET/DxCT) and PET/low-dose CT (PET/LDCT) in pretreatment pediatric lymphoma patients and to estimate the reduction of the CT effective dose in the PET/CT scan. METHODS One hundred and five pediatric patients who underwent total-body PET/CT examination were enrolled and divided into the DxCT group (n = 47) and LDCT group (n = 58) according to their dose levels. The sensitivity, specificity, PPV, and NPV of PET/DxCT and PET/LDCT for detecting the involvement of lymph node, spleen, bone marrow, and other extranodal organs in pretreatment lymphoma were compared. ROC analysis was performed to evaluate the integral efficiency. The staging accuracies based on PET/DxCT and PET/LDCT were also evaluated. Dosimetry was calculated for DxCT and LDCT, and the reduction in the effective dose was estimated. RESULTS In the diagnosis of nodal, splenic, bone marrow, and other extranodal involvement, the differences in sensitivity, specificity, PPV, and NPV between PET/LDCT and PET/DxCT were not significant (all p values ∈ [0.332, 1.000]). Both modalities had accuracies above 90% and the ROC analysis indicated good or high efficiency in diagnosing all patterns of lymphoma involvement. PET/LDCT and PET/DxCT each had a staging accuracy of 89.7% and 89.4%, respectively. LDCT had a comparable image quality score with DxCT, with a significant increase in noise (p < 0.001) and a 66.1% reduction in effective dose. CONCLUSIONS PET/LDCT allowed for a 66.1% CT effective dose reduction compared to PET/DxCT in pediatric lymphoma patients without compromising the diagnostic and staging efficacy. KEY POINTS • Pediatric lymphoma patients can benefit from a reduced effective dose of PET/CT. • This retrospective study showed that the diagnostic and staging efficacies of PET/low-dose CT are comparable to those of PET/diagnostic-level CT, both with satisfactory efficiency in diagnosing all patterns of lymphoma involvement. • PET/low-dose CT allowed for a 66.1% CT effective dose reduction compared to PET/diagnostic-level CT.
Collapse
|
163
|
Bundschuh RA, Lütje S, Bundschuh L, Lapa C, Higuchi T, Hartrampf PE, Gorin MA, Kosmala A, Buck AK, Pomper MG, Rowe SP, Essler M, Sheikh GT, Werner RA. High Interobserver Agreement on PSMA PET/CT Even in the Absence of Clinical Data. Clin Nucl Med 2023; 48:207-212. [PMID: 36723879 PMCID: PMC9907678 DOI: 10.1097/rlu.0000000000004524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Recommended by current guidelines, prostate-specific membrane antigen (PSMA)-directed PET/CT is increasingly used in men with prostate cancer (PC). We aimed to provide concordance rates using the PSMA reporting and data system (RADS) for scan interpretation and also determine whether such agreement rates are affected by available patient characteristics at time of scan. PATIENTS AND METHODS Sixty men with PC, who all underwent 68Ga-PSMA-11 PET/CT, were included. Three independent, experienced readers indicated general scan parameters (including overall scan result, organ or lymph node [LN] involvement, and appropriateness of radioligand therapy). Applying PSMA-RADS 1.0, observers also had to conduct RADS scoring on a target lesion (TL) and overall scan level. During the first read, observers were masked to all relevant clinical information, whereas on a second read, relevant patient characteristics were displayed, thereby allowing for determination of impact of available clinical information for scan interpretation. We used intraclass correlation coefficients (ICCs; with 95% confidence intervals [CIs]), which were then rated according to Cicchetti (0.4-0.59 fair, 0.6-0.74 good, and 0.75-1 excellent agreement). RESULTS For general parameters, agreement rates were excellent, including an overall scan result (ICC, 0.85; 95% CI, 0.76-0.90), LN metastases (ICC, 0.89; 95% CI, 0.83-0.93), organ involvement (ICC, 0.82; 95% CI, 0.72-0.89), and indication for radioligand therapy (ICC, 0.94; 95% CI, 0.90-0.96). Overall RADS scoring was also excellent with an ICC of 0.91 (95% CI, 0.96-09.4). On a TL-based level, 251 different lesions were selected by the 3 observers (with 73 chosen by all 3 readers). RADS-based concordance rates were fair to excellent: all lesions, ICC of 0.78 (95% CI, 0.67-0.85); LN, ICC of 0.81 (95% CI, 0.63-0.92); skeleton, ICC of 0.55 (95% CI, 0-0.84); and prostate, ICC of 0.48 (95% CI, 0.17-0.78). When performing a second read displaying patient's characteristics, there were only minor modifications to the previously applied RADS scoring on a TL-based level (overall, n = 8): each reader 1 and 2 in 3/60 (5%) instances, and reader 3 in 2/60 (3.3%) instances. The main reason for recategorization (mainly upstaging) was provided information on PSA levels (4/8, 50%). CONCLUSIONS Applying PSMA-RADS, concordance rates were fair to excellent, whereas relevant modifications were rarely observed after providing clinical data. As such, even in the absence of patient information, standardized frameworks still provide guidance for reading PSMA PETs. Those findings may have implications for a high throughput in a busy PET practice, where patient details cannot always be retrieved at time of scan interpretation or in the context of clinical trials or central reviews in which readers may be blinded to clinical data.
Collapse
Affiliation(s)
- Ralph A. Bundschuh
- From the Medical Faculty, Department of Nuclear Medicine, University Hospital Augsburg, Augsburg, Germany
| | - Susanne Lütje
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Lena Bundschuh
- From the Medical Faculty, Department of Nuclear Medicine, University Hospital Augsburg, Augsburg, Germany
| | - Constantin Lapa
- From the Medical Faculty, Department of Nuclear Medicine, University Hospital Augsburg, Augsburg, Germany
| | - Takahiro Higuchi
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | | | - Michael A. Gorin
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aleksander Kosmala
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Martin G. Pomper
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Steven P. Rowe
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Gabriel T. Sheikh
- Department of Nuclear Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rudolf A. Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
164
|
Saatchi K, Bénard F, Hundal N, Grimes J, Shcherbinin S, Pourghiasian M, Brooks DE, Celler A, Häfeli UO. Preclinical PET Imaging and Toxicity Study of a 68Ga-Functionalized Polymeric Cardiac Blood Pool Agent. Pharmaceutics 2023; 15:pharmaceutics15030767. [PMID: 36986628 PMCID: PMC10052923 DOI: 10.3390/pharmaceutics15030767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Cardiac blood pool imaging is currently performed almost exclusively with 99mTc-based compounds and SPECT/CT imaging. Using a generator-based PET radioisotope has a few advantages, including not needing nuclear reactors to produce it, obtaining better resolution in humans, and potentially reducing the radiation dose to the patient. When the shortlived radioisotope 68Ga is used, it can be applied repeatedly on the same day—for example, for the detection of bleeding. Our objective was to prepare and evaluate a long-circulating polymer functionalized with gallium for its biodistribution, toxicity, and dosimetric properties. A 500 kDa hyperbranched polyglycerol was conjugated to the chelator NOTA and radiolabeled rapidly at room temperature with 68Ga. It was then injected intravenously into a rat, and gated imaging allowed us to easily observe wall motion and cardiac contractility, confirming the suitability of this radiopharmaceutical for cardiac blood pool imaging. Internal radiation dose calculations showed that the radiation doses that patients would receive from the PET agent would be 2.5× lower than those from the 99mTc agent. A complete 14-day toxicology study in rats concluded that there were no gross pathology findings, changes in body or organ weights, or histopathological events. This radioactive-metal-functionalized polymer might be a suitable non-toxic agent to advance for clinical application.
Collapse
Affiliation(s)
- Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence: (K.S.); (U.O.H.)
| | - François Bénard
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | | | - Joshua Grimes
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Sergey Shcherbinin
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | | | - Donald E. Brooks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Anna Celler
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Urs O. Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence: (K.S.); (U.O.H.)
| |
Collapse
|
165
|
Zhou D, Chu W, Xu J, Schwarz S, Katzenellenbogen JA. [ 18F]Tosyl fluoride as a versatile [ 18F]fluoride source for the preparation of 18F-labeled radiopharmaceuticals. Sci Rep 2023; 13:3182. [PMID: 36823435 PMCID: PMC9950486 DOI: 10.1038/s41598-023-30200-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Positron emission tomography (PET) is an in vivo imaging technology that utilizes positron-emitting radioisotope-labeled compounds as PET radiotracers that are commonly used in clinic and in various research areas, including oncology, cardiology, and neurology. Fluorine-18 is the most widely used PET-radionuclide and commonly produced by proton bombardment of 18O-enriched water in a cyclotron. The [18F]fluoride thus obtained generally requires processing by azeotropic drying in order to completely remove H2O before it can be used for nucleophilic radiofluorination. In general, the drying step is important in facilitating the radiofluorination reactions and the preparation of 18F-labeled PET radiotracers. In this communication, we have demonstrated the feasibility of using [18F]tosyl fluoride ([18F]TsF) as a versatile [18F]fluoride source for radiofluorination to bypass the azeotropic drying step, and we have developed a continuous flow solid-phase radiosynthesis strategy to generate [18F]TsF in a form that is excellent for radiofluorination. [18F]TsF shows high reactivity in radiofluorination and provides the features suitable for preparing PET radiotracers on a small scale and exploring novel radiolabeling technologies. Thus, using [18F]TsF as a [18F]fluoride source is a promising strategy that facilitates radiofluorination and provides a convenient and efficient solution for the preparation of 18F-labeled radiopharmaceuticals that is well matched to the emerging trends in PET imaging technologies.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Radiology, School of Medicine, Washington University in Saint Louis, 510 S. Kingshighway Blvd, Saint Louis, MO, 63110, USA.
| | - Wenhua Chu
- Department of Radiology, School of Medicine, Washington University in Saint Louis, 510 S. Kingshighway Blvd, Saint Louis, MO, 63110, USA
| | - Jinbin Xu
- Department of Radiology, School of Medicine, Washington University in Saint Louis, 510 S. Kingshighway Blvd, Saint Louis, MO, 63110, USA
| | - Sally Schwarz
- Department of Radiology, School of Medicine, Washington University in Saint Louis, 510 S. Kingshighway Blvd, Saint Louis, MO, 63110, USA
| | - John A Katzenellenbogen
- Department of Chemistry and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| |
Collapse
|
166
|
Huang Y, Wang M, Jiang L, Wang L, Chen L, Wang Q, Feng J, Wang J, Xu W, Wu H, Han Y. Optimal clinical protocols for total-body 18F-FDG PET/CT examination under different activity administration plans. EJNMMI Phys 2023; 10:14. [PMID: 36808378 PMCID: PMC9938848 DOI: 10.1186/s40658-023-00533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/10/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Highly sensitive digital total-body PET/CT scanners (uEXPLORER) have great potential for clinical applications and fundamental research. Given their increasing sensitivity, low-dose scanning or snapshot imaging is now possible in clinics. However, a standardized total-body 18F-FDG PET/CT protocol is still lacking. Establishing a standard clinical protocol for total-body 18F-FDG PET/CT examination under different activity administration plans can help provide a theoretical reference for nuclear radiologists. METHODS The NEMA image quality (IQ) phantom was used to evaluate the biases of various total-body 18F-FDG PET/CT protocols related to the administered activity, scan duration, and iterations. Several objective metrics, including contrast recovery (CR), background variability (BV), and contrast-to-noise ratio (CNR), were measured from different protocols. In line with the European Association of Nuclear Medicine Research Ltd. (EARL) guidelines, optimized protocols were suggested and evaluated for total-body 18F-FDG PET/CT imaging for three different injected activities. RESULTS Our NEMA IQ phantom evaluation resulted in total-body PET/CT images with excellent contrast and low noise, suggesting great potential for reducing administered activity or shortening the scan duration. Different to the iteration number, prolonging the scan duration was the first choice for achieving higher image quality regardless of the activity administered. In light of image quality, tolerance of oncological patients, and the risk of ionizing radiation damage, the 3-min acquisition and 2-iteration (CNR = 7.54), 10-min acquisition and 3-iteration (CNR = 7.01), and 10-min acquisition and 2-iteration (CNR = 5.49) protocols were recommended for full-dose (3.70 MBq/kg), half-dose (1.95 MBq/kg), and quarter-dose (0.98 MBq/kg) activity injection schemes, respectively. Those protocols were applied in clinical practices, and no significant differences were observed for the SUVmax of large/small lesions or the SUVmean of different healthy organs/tissues. CONCLUSION These findings support that digital total-body PET/CT scanners can generate PET images with a high CNR and low-noise background, even with a short acquisition time and low administered activity. The proposed protocols for different administered activities were determined to be valid for clinical examination and can maximize the value of this imaging type.
Collapse
Affiliation(s)
- Yanchao Huang
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Wang
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Jiang
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Wang
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Chen
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiaoyu Wang
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiatai Feng
- grid.497849.fCentral Research Institute, United Imaging Healthcare, Shanghai, China
| | - Jingyi Wang
- grid.497849.fCentral Research Institute, United Imaging Healthcare, Shanghai, China
| | - Wanbang Xu
- grid.506955.aDepartment of Traditional Chinese Medicine, Guangdong Institute for Drug Control, Guangzhou, China
| | - Hubing Wu
- grid.284723.80000 0000 8877 7471Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjiang Han
- Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
167
|
Caron J, Gonzalez G, Pandey PK, Wang S, Prather K, Ahmad S, Xiang L, Chen Y. Single pulse protoacoustic range verification using a clinical synchrocyclotron. Phys Med Biol 2023; 68:10.1088/1361-6560/acb2ae. [PMID: 36634371 PMCID: PMC10567060 DOI: 10.1088/1361-6560/acb2ae] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Objective.Proton therapy as the next generation radiation-based cancer therapy offers dominant advantages over conventional radiation therapy due to the utilization of the Bragg peak; however, range uncertainty in beam delivery substantially mitigates the advantages of proton therapy. This work reports using protoacoustic measurements to determine the location of proton Bragg peak deposition within a water phantom in real time during beam delivery.Approach.In protoacoustics, proton beams have a definitive range, depositing a majority of the dose at the Bragg peak; this dose is then converted to heat. The resulting thermoelastic expansion generates a 3D acoustic wave, which can be detected by acoustic detectors to localize the Bragg peak.Main results.Protoacoustic measurements were performed with a synchrocyclotron proton machine over the exhaustive energy range from 45.5 to 227.15 MeV in clinic. It was found that the amplitude of the acoustic waves is proportional to proton dose deposition, and therefore encodes dosimetric information. With the guidance of protoacoustics, each individual proton beam (7 pC/pulse) can be directly visualized with sub-millimeter (<0.7 mm) resolution using single beam pulse for the first time.Significance.The ability to localize the Bragg peak in real-time and obtain acoustic signals proportional to dose within tumors could enable precision proton therapy and hope to progress towardsin vivomeasurements.
Collapse
Affiliation(s)
- Joseph Caron
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - Gilberto Gonzalez
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - Prabodh Kumar Pandey
- Department of Radiological Sciences, University of California at Irvine, Irvine, CA 92697, United States of America
| | - Siqi Wang
- The Department of Biomedical Engineering, University of California, Irvine, CA 92617, United States of America
| | - Kiana Prather
- University of Oklahoma College of Medicine, Oklahoma City, OK, 73104, United States of America
| | - Salahuddin Ahmad
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - Liangzhong Xiang
- Department of Radiological Sciences, University of California at Irvine, Irvine, CA 92697, United States of America
- The Department of Biomedical Engineering, University of California, Irvine, CA 92617, United States of America
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, CA 92612, United States of America
| | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| |
Collapse
|
168
|
Li Y, Hu J, Sari H, Xue S, Ma R, Kandarpa S, Visvikis D, Rominger A, Liu H, Shi K. A deep neural network for parametric image reconstruction on a large axial field-of-view PET. Eur J Nucl Med Mol Imaging 2023; 50:701-714. [PMID: 36326869 DOI: 10.1007/s00259-022-06003-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE The PET scanners with long axial field of view (AFOV) having ~ 20 times higher sensitivity than conventional scanners provide new opportunities for enhanced parametric imaging but suffer from the dramatically increased volume and complexity of dynamic data. This study reconstructed a high-quality direct Patlak Ki image from five-frame sinograms without input function by a deep learning framework based on DeepPET to explore the potential of artificial intelligence reducing the acquisition time and the dependence of input function in parametric imaging. METHODS This study was implemented on a large AFOV PET/CT scanner (Biograph Vision Quadra) and twenty patients were recruited with 18F-fluorodeoxyglucose (18F-FDG) dynamic scans. During training and testing of the proposed deep learning framework, the last five-frame (25 min, 40-65 min post-injection) sinograms were set as input and the reconstructed Patlak Ki images by a nested EM algorithm on the vendor were set as ground truth. To evaluate the image quality of predicted Ki images, mean square error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM) were calculated. Meanwhile, a linear regression process was applied between predicted and true Ki means on avid malignant lesions and tumor volume of interests (VOIs). RESULTS In the testing phase, the proposed method achieved excellent MSE of less than 0.03%, high SSIM, and PSNR of ~ 0.98 and ~ 38 dB, respectively. Moreover, there was a high correlation (DeepPET: [Formula: see text]= 0.73, self-attention DeepPET: [Formula: see text]=0.82) between predicted Ki and traditionally reconstructed Patlak Ki means over eleven lesions. CONCLUSIONS The results show that the deep learning-based method produced high-quality parametric images from small frames of projection data without input function. It has much potential to address the dilemma of the long scan time and dependency on input function that still hamper the clinical translation of dynamic PET.
Collapse
Affiliation(s)
- Y Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China.,College of Optical Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - J Hu
- Department of Nuclear Medicine, Inselpital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - H Sari
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - S Xue
- Department of Nuclear Medicine, Inselpital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - R Ma
- Department of Nuclear Medicine, Inselpital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Engineering Physics, Tsinghua University, Beijing, China
| | - S Kandarpa
- LaTIM, INSERM, UMR 1101, University of Brest, Brest, France
| | - D Visvikis
- LaTIM, INSERM, UMR 1101, University of Brest, Brest, France
| | - A Rominger
- Department of Nuclear Medicine, Inselpital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - H Liu
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China.
| | - K Shi
- Department of Nuclear Medicine, Inselpital, Bern University Hospital, University of Bern, Bern, Switzerland.,Computer Aided Medical Procedures and Augmented Reality, Institute of Informatics I16, Technical University of Munich, Munich, Germany
| |
Collapse
|
169
|
Sriraman SK, Davies CW, Gill H, Kiefer JR, Yin J, Ogasawara A, Urrutia A, Javinal V, Lin Z, Seshasayee D, Abraham R, Haas P, Koth C, Marik J, Koerber JT, Williams SP. Development of an 18F-labeled anti-human CD8 VHH for same-day immunoPET imaging. Eur J Nucl Med Mol Imaging 2023; 50:679-691. [PMID: 36346438 DOI: 10.1007/s00259-022-05998-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/09/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Cancer immunotherapies (CITs) have revolutionized the treatment of certain cancers, but many patients fail to respond or relapse from current therapies, prompting the need for new CIT agents. CD8+ T cells play a central role in the activity of many CITs, and thus, the rapid imaging of CD8+ cells could provide a critical biomarker for new CIT agents. However, existing 89Zr-labeled CD8 PET imaging reagents exhibit a long circulatory half-life and high radiation burden that limit potential applications such as same-day and longitudinal imaging. METHODS To this end, we discovered and developed a 13-kDa single-domain antibody (VHH5v2) against human CD8 to enable high-quality, same-day imaging with a reduced radiation burden. To enable sensitive and rapid imaging, we employed a site-specific conjugation strategy to introduce an 18F radiolabel to the VHH. RESULTS The anti-CD8 VHH, VHH5v2, demonstrated binding to a membrane distal epitope of human CD8 with a binding affinity (KD) of 500 pM. Subsequent imaging experiments in several xenografts that express varying levels of CD8 demonstrated rapid tumor uptake and fast clearance from the blood. High-quality images were obtained within 1 h post-injection and could quantitatively differentiate the tumor models based on CD8 expression level. CONCLUSION Our work reveals the potential of this anti-human CD8 VHH [18F]F-VHH5v2 to enable rapid and specific imaging of CD8+ cells in the clinic.
Collapse
Affiliation(s)
- Shravan Kumar Sriraman
- Department of Biomedical Imaging, Genentech, Inc, 1 DNA Way, South San Francisco, Genetech, CA, 94080, USA
| | - Christopher W Davies
- Department of Antibody Engineering, Genentech, Inc, 1 DNA Way, South San Francisco, Genetech, CA, 94080, USA
| | - Herman Gill
- Department of Biomedical Imaging, Genentech, Inc, 1 DNA Way, South San Francisco, Genetech, CA, 94080, USA
| | - James R Kiefer
- Department of Structural Biology, Genentech, Inc, 1 DNA Way, South San Francisco, Genetech, CA, 94080, USA
| | - Jianping Yin
- Department of Structural Biology, Genentech, Inc, 1 DNA Way, South San Francisco, Genetech, CA, 94080, USA
| | - Annie Ogasawara
- Department of Biomedical Imaging, Genentech, Inc, 1 DNA Way, South San Francisco, Genetech, CA, 94080, USA
| | - Alejandra Urrutia
- Department of Cancer Immunology, Genentech, Inc, 1 DNA Way, South San Francisco, Genetech, CA, 94080, USA
| | - Vincent Javinal
- Department of In Vivo Pharmacology, Genentech, Inc, 1 DNA Way, South San Francisco, Genetech, CA, 94080, USA
| | - Zhonghua Lin
- Department of Antibody Engineering, Genentech, Inc, 1 DNA Way, South San Francisco, Genetech, CA, 94080, USA
| | - Dhaya Seshasayee
- Department of Antibody Engineering, Genentech, Inc, 1 DNA Way, South San Francisco, Genetech, CA, 94080, USA
| | - Ryan Abraham
- Department of Protein Chemistry, Genentech, Inc, 1 DNA Way, South San Francisco, Genetech, CA, 94080, USA
| | - Phil Haas
- Department of Protein Chemistry, Genentech, Inc, 1 DNA Way, South San Francisco, Genetech, CA, 94080, USA
| | - Christopher Koth
- Department of Structural Biology, Genentech, Inc, 1 DNA Way, South San Francisco, Genetech, CA, 94080, USA
| | - Jan Marik
- Department of Biomedical Imaging, Genentech, Inc, 1 DNA Way, South San Francisco, Genetech, CA, 94080, USA
| | - James T Koerber
- Department of Antibody Engineering, Genentech, Inc, 1 DNA Way, South San Francisco, Genetech, CA, 94080, USA.
| | - Simon Peter Williams
- Department of Biomedical Imaging, Genentech, Inc, 1 DNA Way, South San Francisco, Genetech, CA, 94080, USA.
| |
Collapse
|
170
|
Tan H, Qi C, Cao Y, Cai D, Mao W, Yu H, Sui X, Liu G, Shi H. Ultralow-dose [ 18F]FDG PET/CT imaging: demonstration of feasibility in dynamic and static images. Eur Radiol 2023:10.1007/s00330-023-09389-3. [PMID: 36688971 DOI: 10.1007/s00330-023-09389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Validation of [18F]FDG PET/CT at ultralow-dose (0.37 MBq/kg) and compared to imaging at half-dose (1.85 MBq/kg). METHODS This prospective head-to-head intraindividual study compared dynamic and static parameters of ultralow-dose with half-dose [18F]FDG total-body PET/CT. In static imaging, the ultralow-dose groups of PET images were denoted ULD5, 60-65 min; ULD8, 60-68 min; ULD10, 60-70 min; and ULD15, 60-75 min. The half-dose group images were reconstructed to 60-61, 60-62, 60-63, and 60-75 min, defined as LD1, LD2, LD3, and LD15, respectively. A 5-point Likert scale was used to subjectively evaluate the quality of static PET images, with a score greater than 3 considered to meet the requirements for clinical diagnosis. RESULTS Thirty participants were included in this study, and in terms of kinetic indicators, no special differences were found between the two groups of normal organs and lesions. In static images, those in groups ULD8 and LD2 achieved scores of [Formula: see text] 3.0, meeting the requirements for clinical diagnosis. In static imaging, four lesions were missed in the LD1 group with a lesion detectability of 89.7% (35/39). In the meantime, lesions were not missed in the whole ultra-low dose group (ULD5, ULD8, ULD10, and ULD15) and half-dose groups (LD2 and LD3). CONCLUSIONS Compared with half-dose imaging, ultralow-dose [18F]FDG total-body PET/CT imaging is clinically feasible, and there was no meaningful difference between the two groups of quantitative and qualitative analysis either dynamic or static images. Total-body PET/CT with ultralow-dose activity, the corresponding acquisition time of 8 min provides acceptable image quality and lesion detection. TRIAL REGISTRATION ClinicalTrials.gov identifier: ChiCTR2000036487 KEY POINTS: • A prospective single-center study showed that the total-body PET scanner allows ultralow-dose [18F]FDG imaging with acceptable image quality and lesion detectability. • For the participant, radiation exposure can be reduced with ultralow-dose [18F]FDG total-body PET/CT imaging.
Collapse
Affiliation(s)
- Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chi Qi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanyan Cao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Danjie Cai
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiuli Sui
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, China. .,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Medical Imaging, Shanghai, 200032, China. .,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
171
|
Du J, Jones T. Technical opportunities and challenges in developing total-body PET scanners for mice and rats. EJNMMI Phys 2023; 10:2. [PMID: 36592266 PMCID: PMC9807733 DOI: 10.1186/s40658-022-00523-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
Positron emission tomography (PET) is the most sensitive in vivo molecular imaging technique available. Small animal PET has been widely used in studying pharmaceutical biodistribution and disease progression over time by imaging a wide range of biological processes. However, it remains true that almost all small animal PET studies using mouse or rat as preclinical models are either limited by the spatial resolution or the sensitivity (especially for dynamic studies), or both, reducing the quantitative accuracy and quantitative precision of the results. Total-body small animal PET scanners, which have axial lengths longer than the nose-to-anus length of the mouse/rat and can provide high sensitivity across the entire body of mouse/rat, can realize new opportunities for small animal PET. This article aims to discuss the technical opportunities and challenges in developing total-body small animal PET scanners for mice and rats.
Collapse
Affiliation(s)
- Junwei Du
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616 USA
| | - Terry Jones
- grid.27860.3b0000 0004 1936 9684Department of Radiology, University of California at Davis, Davis, CA 95616 USA
| |
Collapse
|
172
|
Application of the long axial field-of-view PET/CT with low-dose [ 18F]FDG in melanoma. Eur J Nucl Med Mol Imaging 2023; 50:1158-1167. [PMID: 36474125 PMCID: PMC9931831 DOI: 10.1007/s00259-022-06070-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
AIM The recent introduction of long axial field-of-view (LAFOV) PET/CT scanners has yielded very promising results regarding image quality and sensitivity in oncological patients. We, herein, aim to determine an appropriate acquisition time range for the new long axial field of view Biograph Vision Quadra PET/CT (Siemens Healthcare) using low dose [18F]FDG activity in a group of melanoma patients. METHODOLOGY Forty-nine melanoma patients were enrolled in the study. All patients underwent total body PET/CT from the top of the head through the feet in two bed positions (field-of-view 106 cm) after i.v. injection of 2.0 MBq/kg [18F]FDG. The PET images of the first bed position (head to upper thigh; PET-10) were reconstructed and further split into 8-min (PET-8), 6-min (PET-6), 5-min (PET-5), 4-min (PET-4), and 2-min (PET-2) duration groups. Comparisons were performed between the different reconstructed scan times with regard to the visual evaluation of the PET/CT scans using the PET-10 images as reference and by calculating the 95%-CI for the differences between different time acquisitions. Moreover, objective evaluation of PET/CT image quality was performed based on SUV calculations of tumor lesions and background, leading to calculation of liver signal-to-noise ratio (SNR), and tumor-to-background ratio (TBR). RESULTS A total of 60 scans were evaluated. Concerning visual analysis, 49/60 (81.7%) PET-10 scans were pathological, while the respective frequencies were 49/60 (81.7%) for PET-8 (95%-CI: - 0.0602-0.0602), 49/60 (81.7%) for PET-6 (95%-CI: - 0.0602-0.0602), 48/60 (80%) for PET-5 (95%-CI: - 0.0445-0.0886), 46/60 (76.7%) for PET-4 (95%-CI: - 0.0132-0.1370), and 45/60 (75%) for PET-2 (95%-CI: 0.0025-0.1593). In 18 PET-10 scans, the extent of metastatic involvement was very large, rendering the accurate calculation of [18F]FDG-avid tumor lesions very complicated. In the remaining 42 PET-10 scans, for which the exact calculation of tumor lesions was feasible, a total of 119 tumor lesions were counted, and the respective lesion detection rates for shorter acquisitions were as follows: 97.5% (116/119) for PET-8 (95%-CI: 0-1), 95.0% (113/119) for PET-6 (95%-CI: 0-1), 89.9% (107/119) for PET-5 (95%-CI: 0-2), 83.2% (99/119) for PET-4 (95%-CI: 1-2), and 73.9% (88/119) for PET-2 (95%-CI: 2-4). With regard to objective image quality evaluations, as a general trend, the reduction of acquisition time was associated with a decrease of liver SNR and a decrease of TBR, although in lesion-based analysis the change in TBR and tumor SUVmean values was non-significant up to 6 and 5 min acquisitions, respectively. CONCLUSIONS In melanoma, low-dose LAFOV PET/CT imaging is feasible and can reduce the total scan time from head to upper thigh up to 5 min providing comparable diagnostic data to standard lengths of acquisition. This may have significant implications for the diagnostic work-up of patients with melanoma, given the need for true whole-body imaging in this type of cancer.
Collapse
|
173
|
Gelderman SJ, Faber C, Kampinga GA, Jutte PC, Ploegmakers JJW, Glaudemans AWJM, Wouthuyzen-Bakker M. A high prevalence of Cutibacterium acnes infections in scoliosis revision surgery, a diagnostic and therapeutic dilemma. Spine Deform 2023; 11:319-327. [PMID: 36282416 PMCID: PMC9970938 DOI: 10.1007/s43390-022-00599-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/01/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE To investigate if serum inflammatory markers or nuclear imaging can accurately diagnose a chronic spinal instrumentation infection (SII) prior to surgery. METHODS All patients who underwent revision of spinal instrumentation after a scoliosis correction between 2017 and 2019, were retrospectively evaluated. The diagnostic accuracy of serum C-reactive protein (CRP) and Erythrocyte Sedimentation Rate (ESR), 18F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDG-PET/CT) and Technetium-99m-methylene diphosphonate (99mTc-MDP) 3-phase bone scintigraphy (TPBS) to diagnose infection were studied. Patients with an acute infection or inadequate culture sampling were excluded. SII was diagnosed if ≥ 2 of the same microorganism(s) were isolated from intra-operative tissue cultures. RESULTS 30 patients were included. The indication for revision surgery was pseudoarthrosis in the majority of patients (n = 15). 22 patients (73%) were diagnosed with SII. In all infected cases, Cutibacterium acnes was isolated, including 5 cases with a polymicrobial infection. The majority of patients had low inflammatory parameters preoperatively. For CRP > 10.0 mg/L, the sensitivity was 9.1% and specificity 100%; for ESR > 30 mm/h, the sensitivity was 9.1% and specificity 100%. The diagnostic accuracy for nuclear imaging was 64% for the FDG-PET/CT and 67% for the TPBS to diagnose infection. CONCLUSIONS The prevalence of SII in patients undergoing revision spinal surgery is high, with Cutibacterium acnes as the main pathogen. No diagnostic tests could be identified that could accurately diagnose or exclude SII prior to surgery. Future studies should aim to find more sensitive diagnostic modalities to detect low-grade inflammation.
Collapse
Affiliation(s)
- Stefan J. Gelderman
- Department of Orthopaedic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christhoper Faber
- Department of Orthopaedic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Greetje A. Kampinga
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul C. Jutte
- Department of Orthopaedic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joris J. W. Ploegmakers
- Department of Orthopaedic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andor W. J. M. Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjan Wouthuyzen-Bakker
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
174
|
SALLEH ELYNAMIELA, LEE YEONGYEH, ZAKARIA ANDEEDZULKARNAEN, JALIL NURASYILLACHE, MUSA MARAHAINI. Cancer-associated fibroblasts of colorectal cancer: Translational prospects in liquid biopsy and targeted therapy. BIOCELL 2023; 47:2233-2244. [DOI: 10.32604/biocell.2023.030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 10/21/2024]
|
175
|
Combined [68 Ga]Ga-PSMA-11 and low-dose 2-[18F]FDG PET/CT using a long-axial field of view scanner for patients referred for [177Lu]-PSMA-radioligand therapy. Eur J Nucl Med Mol Imaging 2023; 50:951-956. [PMID: 36136102 PMCID: PMC9852199 DOI: 10.1007/s00259-022-05961-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/01/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Performing 2-[18F]FDG PET/CT in addition to a PSMA-ligand PET/CT can assist in the detection of lesions with low PSMA expression and may help in prognostication and identification of patients who likely benefit from PSMA-radioligand therapy (PSMA-RLT). However, the cost and time needed for a separate PET/CT examination might hinder its routine implementation. In this communication, we present our initial experiences with additional low-dose 2-[18F]FDG PET/CT as part of a dual-tracer and same-day imaging protocol which exploits the higher sensitivity exhibited by long-axial field-of-view (LAFOV) and total-body PET/CT systems and demonstrates its feasibility. METHODS Fourteen patients referred for evaluation for PSMA-RLT received [68 Ga]Ga-PSMA-11 PET/CT at 1 h p.i. with a standard activity of 150 MBq and an additional low-dose 2-[18F]FDG PET/CT with 40 MBq 1 h thereafter using a long-axial field-of-view PET/CT system in a single sitting and as per institutional protocol. Scans were scrutinized by two experienced nuclear medicine physicians for mismatch findings. RESULTS The combined protocol identified additional lesions with low or absent PSMA-expression but high FDG-avidity in 1/14 (7%) patients. The protocol was easily implemented and well tolerated by all patients. CONCLUSION Additional low-dose 2-[18F]FDG-PET/CT is feasible as part of a same-day imaging protocol and can help reveal lesions of low PSMA avidity as part of therapy assessment for [177Lu]-PSMA radioligand therapy and demonstrates higher sensitivity compared to [68 Ga]Ga-PSMA-11 PET/CT alone in some patients.
Collapse
|
176
|
Did medical doctors who order abdominal CT scans during on-call hours truly become worse at clinical reasoning? Yes, they did. Eur Radiol 2023; 33:1015-1021. [PMID: 36070089 PMCID: PMC9889453 DOI: 10.1007/s00330-022-09121-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/25/2022] [Accepted: 08/18/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate temporal changes in clinical reasoning quality of physicians who requested abdominal CT scans at a tertiary care center during on-call hours within a 15-year period. METHODS This retrospective study included 531 patients who underwent abdominal CT at a tertiary care center during on-call hours on 36 randomly sampled unique calendar days in each of the years between 2005 and 2019. Clinical reasoning quality was expressed as a percentage (0-100%), taking into account the degree by which the differential diagnoses on the CT request form matched the CT diagnosis. Temporal changes in the quality of clinical reasoning and number of CT scans were assessed using Mann-Kendall tests. Associations between the quality of clinical reasoning with patient age and gender, requesting department, and time of CT scanning were determined with linear regression analyses. RESULTS The median annual clinical reasoning score was 0.4% (interquartile range: 0.3 to 0.6%; range: 0.1 to 1.9%). The quality of clinical reasoning significantly decreased between 2005 and 2019 (Mann-Kendall Tau of -0.829, p < 0.001), while the number of abdominal CT scans significantly increased (Mann-Kendall tau of 0.790, p < 0.001). There was a significant association between the quality of clinical reasoning and patient age (β coefficient of 0.210, p = 0.002). The quality of clinical reasoning was not significantly associated with patient gender, requesting department, or time of CT scanning. CONCLUSION The clinical reasoning quality of physicians who request abdominal CT scans during on-call hours has deteriorated over time. Clinical reasoning appears to be worse in younger patients. KEY POINTS • In patients with suspected acute abdominal pathology who are scheduled to undergo CT scanning, referring physicians generally have difficulties in making an accurate pretest (differential) diagnosis. • Clinical reasoning quality of physicians who request acute abdominal CT scans has deteriorated over the years, while the number of CT scans has shown a significant increase. • Clinical reasoning quality appears to be worse in younger patients in this setting.
Collapse
|
177
|
Saxena T, Sie C, Lin K, Ye D, Saatchi K, Häfeli UO. Potential of Nuclear Imaging Techniques to Study the Oral Delivery of Peptides. Pharmaceutics 2022; 14:2809. [PMID: 36559303 PMCID: PMC9780892 DOI: 10.3390/pharmaceutics14122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Peptides are small biomolecules known to stimulate or inhibit important functions in the human body. The clinical use of peptides by oral delivery, however, is very limited due to their sensitive structure and physiological barriers present in the gastrointestinal tract. These barriers can be overcome with chemical and mechanical approaches protease inhibitors, permeation enhancers, and polymeric encapsulation. Studying the success of these approaches pre-clinically with imaging techniques such as fluorescence imaging (IVIS) and optical microscopy is difficult due to the lack of in-depth penetration. In comparison, nuclear imaging provides a better platform to observe the gastrointestinal transit and quantitative distribution of radiolabeled peptides. This review provides a brief background on the oral delivery of peptides and states examples from the literature on how nuclear imaging can help to observe and analyze the gastrointestinal transit of oral peptides. The review connects the fields of peptide delivery and nuclear medicine in an interdisciplinary way to potentially overcome the challenges faced during the study of oral peptide formulations.
Collapse
Affiliation(s)
- Tanya Saxena
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Claire Sie
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Kristine Lin
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Daisy Ye
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Urs O. Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T1Z3, Canada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
178
|
Rausch I, Mannheim JG, Kupferschläger J, la Fougère C, Schmidt FP. Image quality assessment along the one metre axial field-of-view of the total-body Biograph Vision Quadra PET/CT system for 18F-FDG. EJNMMI Phys 2022; 9:87. [PMID: 36513949 PMCID: PMC9747988 DOI: 10.1186/s40658-022-00516-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
AIM Recently, total-body PET/CT systems with an extended axial field-of-view (aFOV) became commercially available which allow acquiring physiologic information of multiple organs simultaneously. However, the nominal aFOV may clinically not be used effectively due to the inherently reduced sensitivity at the distal ends of the aFOV. The aim of this study was to assess the extent of the useful aFOV of the Biograph Vision Quadra PET/CT system. METHODS A NEMA image quality (IQ) phantom mimicking a standard [18F]FDG examination was used. Image contrast and noise were assessed across the 106 cm aFOV of the Biograph Vision Quadra PET/CT system (Siemens Healthineers). Phantom acquisitions were performed at different axial positions. PET data were rebinned to simulate different acquisition times for a standard injected activity and reconstructed using different filter settings to evaluate the noise and images along the axial direction. RESULTS Image noise and contrast were stable within the central 80 cm of the aFOV. Outside this central area, image contrast variability as well as image noise increased. This degradation of IQ was in particular evident for short acquisition times of less than 30 s. At 10 min acquisition time and in the absence of post-reconstruction filtering, the useful aFOV was 100 cm. For a 2 min acquisition time, a useful aFOV with image noise below 15% was only achievable using Gaussian filtering with axial extents of between 83 and 103 cm when going from 2 to 6 mm full-width-half-maximum, respectively. CONCLUSION Image noise increases substantially towards the ends of the aFOV. However, good IQ in compliance with generally accepted benchmarks is achievable for an aFOV of > 90 cm. When accepting higher image noise or using dedicated protocol settings such as stronger filtering a useful aFOV of around 1 m can be achieved for a 2 min acquisition time.
Collapse
Affiliation(s)
- Ivo Rausch
- grid.22937.3d0000 0000 9259 8492QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20/4L, 1090 Vienna, Austria
| | - Julia G. Mannheim
- grid.10392.390000 0001 2190 1447Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tübingen, Germany
| | - Jürgen Kupferschläger
- grid.411544.10000 0001 0196 8249Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Otfried-Mueller-Strasse 14, 72076 Tübingen, Germany
| | - Christian la Fougère
- grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tübingen, Germany ,grid.411544.10000 0001 0196 8249Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Otfried-Mueller-Strasse 14, 72076 Tübingen, Germany
| | - Fabian P. Schmidt
- grid.10392.390000 0001 2190 1447Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, Tübingen, Germany ,grid.411544.10000 0001 0196 8249Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Otfried-Mueller-Strasse 14, 72076 Tübingen, Germany
| |
Collapse
|
179
|
Freire M, Barrio J, Cucarella N, Valladares C, Gonzalez-Montoro A, de Alfonso C, Benlloch JM, Gonzalez AJ. Position estimation using neural networks in semi-monolithic PET detectors. Phys Med Biol 2022; 67. [PMID: 36384047 DOI: 10.1088/1361-6560/aca389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Objective. The goal of this work is to experimentally compare the 3D spatial and energy resolution of a semi-monolithic detector suitable for total-body positron emission tomography (TB-PET) scanners using different surface crystal treatments and silicon photomultiplier (SiPM) models.Approach. An array of 1 × 8 lutetium yttrium oxyorthosilicate (LYSO) slabs of 25.8 × 3.1 × 20 mm3separated with Enhanced Specular Reflector (ESR) was coupled to an array of 8 × 8 SiPMs. Three different treatments for the crystal were evaluated: ESR + RR + B,with lateral faces black (B) painted and a retroreflector (RR) layer added to the top face; ESR +RR, with lateral faces covered with ESR and a RR layer on the top face and; All ESR, with lateral and top sides with ESR. Additionally, two SiPM array models from Hamamatsu Photonics belonging to the series S13361-3050AE-08 (S13) and S14161-3050AS-08 (S14) have been compared. Coincidence data was experimentally acquired using a22Na point source, a pinhole collimator, a reference detector and moving the detector under study in 1 mm steps in thex- andDOI- directions. The spatial performance was evaluated by implementing a neural network (NN) technique for the impact position estimation in thex- (monolithic) andDOIdirections.Results. Energy resolution values of 16 ± 1%, 11 ± 1%, 16 ± 1%, 15 ± 1%, and 13 ± 1% were obtained for theS13-ESR + B + RR,S13-AllESR,S14-ESR + B + RR,S14-ESR + RR,andS14-AllESR, respectively. Regarding positioning accuracy, mean average error of 1.1 ± 0.5, 1.3 ± 0.5 and 1.3 ± 0.5 were estimated for thex- direction and 1.7 ± 0.8, 2.0 ± 0.9 and 2.2 ± 1.0 for theDOI- direction, for the ESR + B + RR, ESR + RR and All ESR cases, respectively, regardless of the SiPM model.Significance. Overall, the obtained results show that the proposed semi-monolithic detectors are good candidates for building TB-PET scanners.
Collapse
Affiliation(s)
- M Freire
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| | - J Barrio
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| | - N Cucarella
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| | - C Valladares
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| | - A Gonzalez-Montoro
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| | - C de Alfonso
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| | - J M Benlloch
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| | - A J Gonzalez
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| |
Collapse
|
180
|
[11C]glyburide PET imaging for quantitative determination of the importance of Organic Anion-Transporting Polypeptide transporter function in the human liver and whole-body. Biomed Pharmacother 2022; 156:113994. [DOI: 10.1016/j.biopha.2022.113994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
|
181
|
Sun H, Jiang Y, Yuan J, Wang H, Liang D, Fan W, Hu Z, Zhang N. High-quality PET image synthesis from ultra-low-dose PET/MRI using bi-task deep learning. Quant Imaging Med Surg 2022; 12:5326-5342. [PMID: 36465830 PMCID: PMC9703111 DOI: 10.21037/qims-22-116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/04/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Lowering the dose for positron emission tomography (PET) imaging reduces patients' radiation burden but decreases the image quality by increasing noise and reducing imaging detail and quantifications. This paper introduces a method for acquiring high-quality PET images from an ultra-low-dose state to achieve both high-quality images and a low radiation burden. METHODS We developed a two-task-based end-to-end generative adversarial network, named bi-c-GAN, that incorporated the advantages of PET and magnetic resonance imaging (MRI) modalities to synthesize high-quality PET images from an ultra-low-dose input. Moreover, a combined loss, including the mean absolute error, structural loss, and bias loss, was created to improve the trained model's performance. Real integrated PET/MRI data from 67 patients' axial heads (each with 161 slices) were used for training and validation purposes. Synthesized images were quantified by the peak signal-to-noise ratio (PSNR), normalized mean square error (NMSE), structural similarity (SSIM), and contrast noise ratio (CNR). The improvement ratios of these four selected quantitative metrics were used to compare the images produced by bi-c-GAN with other methods. RESULTS In the four-fold cross-validation, the proposed bi-c-GAN outperformed the other three selected methods (U-net, c-GAN, and multiple input c-GAN). With the bi-c-GAN, in a 5% low-dose PET, the image quality was higher than that of the other three methods by at least 6.7% in the PSNR, 0.6% in the SSIM, 1.3% in the NMSE, and 8% in the CNR. In the hold-out validation, bi-c-GAN improved the image quality compared to U-net and c-GAN in both 2.5% and 10% low-dose PET. For example, the PSNR using bi-C-GAN was at least 4.46% in the 2.5% low-dose PET and at most 14.88% in the 10% low-dose PET. Visual examples also showed a higher quality of images generated from the proposed method, demonstrating the denoising and improving ability of bi-c-GAN. CONCLUSIONS By taking advantage of integrated PET/MR images and multitask deep learning (MDL), the proposed bi-c-GAN can efficiently improve the image quality of ultra-low-dose PET and reduce radiation exposure.
Collapse
Affiliation(s)
- Hanyu Sun
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yongluo Jiang
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianmin Yuan
- Central Research Institute, Shanghai United Imaging Healthcare, Shanghai, China
| | - Haining Wang
- United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
| | - Dong Liang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Fan
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China;,United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
| | - Na Zhang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China;,United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
| |
Collapse
|
182
|
Parry R, Majeed K, Pixley F, Hillis GS, Francis RJ, Schultz CJ. Unravelling the role of macrophages in cardiovascular inflammation through imaging: a state-of-the-art review. Eur Heart J Cardiovasc Imaging 2022; 23:e504-e525. [PMID: 35993316 PMCID: PMC9671294 DOI: 10.1093/ehjci/jeac167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death and disability for patients across the world. Our understanding of atherosclerosis as a primary cholesterol issue has diversified, with a significant dysregulated inflammatory component that largely remains untreated and continues to drive persistent cardiovascular risk. Macrophages are central to atherosclerotic inflammation, and they exist along a functional spectrum between pro-inflammatory and anti-inflammatory extremes. Recent clinical trials have demonstrated a reduction in major cardiovascular events with some, but not all, anti-inflammatory therapies. The recent addition of colchicine to societal guidelines for the prevention of recurrent cardiovascular events in high-risk patients with chronic coronary syndromes highlights the real-world utility of this class of therapies. A highly targeted approach to modification of interleukin-1-dependent pathways shows promise with several novel agents in development, although excessive immunosuppression and resulting serious infection have proven a barrier to implementation into clinical practice. Current risk stratification tools to identify high-risk patients for secondary prevention are either inadequately robust or prohibitively expensive and invasive. A non-invasive and relatively inexpensive method to identify patients who will benefit most from novel anti-inflammatory therapies is required, a role likely to be fulfilled by functional imaging methods. This review article outlines our current understanding of the inflammatory biology of atherosclerosis, upcoming therapies and recent landmark clinical trials, imaging modalities (both invasive and non-invasive) and the current landscape surrounding functional imaging including through targeted nuclear and nanobody tracer development and their application.
Collapse
Affiliation(s)
- Reece Parry
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| | - Kamran Majeed
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Waikato District Health Board, Hamilton 3204, New Zealand
| | - Fiona Pixley
- School of Biomedical Sciences, Pharmacology and Toxicology, University of Western Australia, Perth 6009, Australia
| | - Graham Scott Hillis
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| | - Roslyn Jane Francis
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth 6009, Australia
| | - Carl Johann Schultz
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| |
Collapse
|
183
|
Siafaka PI, Okur ME, Erim PD, Çağlar EŞ, Özgenç E, Gündoğdu E, Köprülü REP, Karantas ID, Üstündağ Okur N. Protein and Gene Delivery Systems for Neurodegenerative Disorders: Where Do We Stand Today? Pharmaceutics 2022; 14:2425. [PMID: 36365243 PMCID: PMC9698227 DOI: 10.3390/pharmaceutics14112425] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2023] Open
Abstract
It has been estimated that every year, millions of people are affected by neurodegenerative disorders, which complicate their lives and their caregivers' lives. To date, there has not been an approved pharmacological approach to provide the complete treatment of neurodegenerative disorders. The only available drugs may only relieve the symptoms or slow down the progression of the disease. The absence of any treatment is quite rational given that neurodegeneration occurs by the progressive loss of the function or structure of the nerve cells of the brain or the peripheral nervous system, which eventually leads to their death either by apoptosis or necrotic cell death. According to a recent study, even though adult brain cells are injured, they can revert to an embryonic state, which may help to restore their function. These interesting findings might open a new path for the development of more efficient therapeutic strategies to combat devastating neurodegenerative disorders. Gene and protein therapies have emerged as a rapidly growing field for various disorders, especially neurodegenerative diseases. Despite these promising therapies, the complete treatment of neurodegenerative disorders has not yet been achieved. Therefore, the aim of this review is to address the most up-to-date data for neurodegenerative diseases, but most importantly, to summarize the available delivery systems incorporating proteins, peptides, and genes that can potentially target such diseases and pass into the blood-brain barrier. The authors highlight the advancements, at present, on delivery based on the carrier, i.e., lipid, polymeric, and inorganic, as well as the recent studies on radiopharmaceutical theranostics.
Collapse
Affiliation(s)
| | - Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| | - Pelin Dilsiz Erim
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul 34810, Turkey
- Faculty of Pharmacy, Altınbaş University, Istanbul 34217, Turkey
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| | - Emre Özgenç
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Evren Gündoğdu
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Rabia Edibe Parlar Köprülü
- Department of Medical Pharmacology, Institute of Health Sciences, İstanbul Medipol University, Istanbul 34810, Turkey
| | | | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| |
Collapse
|
184
|
Metastatic prostate adenocarcinoma with neuroendocrine differentiation on 18F-FDG PET/CT, 68Ga-PSMA PET/CT and 68Ga-DOTA TATE PET/CT with injected ultra-low-activity. MÉDECINE NUCLÉAIRE 2022. [DOI: 10.1016/j.mednuc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
185
|
Van De Stadt E, Yaqub M, Jahangir AA, Hendrikse H, Bahce I. Radiolabeled EGFR TKI as predictive imaging biomarkers in NSCLC patients – an overview. Front Oncol 2022; 12:900450. [PMID: 36313723 PMCID: PMC9597357 DOI: 10.3389/fonc.2022.900450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has one of the highest cancer-related mortality rates worldwide. In a subgroup of NSCLC, tumor growth is driven by epidermal growth factor receptors (EGFR) that harbor an activating mutation. These patients are best treated with EGFR tyrosine kinase inhibitors (EGFR TKI). Identifying the EGFR mutational status on a tumor biopsy or a liquid biopsy using tumor DNA sequencing techniques is the current approach to predict tumor response on EGFR TKI therapy. However, due to difficulty in reaching tumor sites, and varying inter- and intralesional tumor heterogeneity, biopsies are not always possible or representative of all tumor lesions, highlighting the need for alternative biomarkers that predict tumor response. Positron emission tomography (PET) studies using EGFR TKI-based tracers have shown that EGFR mutational status could be identified, and that tracer uptake could potentially be used as a biomarker for tumor response. However, despite their likely predictive and monitoring value, the EGFR TKI-PET biomarkers are not yet qualified to be used in the routine clinical practice. In this review, we will discuss the currently investigated EGFR-directed PET biomarkers, elaborate on the typical biomarker development process, and describe how the advances, challenges, and opportunities of EGFR PET biomarkers relate to this process on their way to qualification for routine clinical practice.
Collapse
Affiliation(s)
- Eveline Van De Stadt
- Department of Pulmonology, Amsterdam University Medical Centers (UMC), VU University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
- *Correspondence: Eveline Van De Stadt,
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), VU University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| | - A. A. Jahangir
- Department of Pulmonology, Amsterdam University Medical Centers (UMC), VU University Medical Center, Amsterdam, Netherlands
| | - Harry Hendrikse
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), VU University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| | - Idris Bahce
- Department of Pulmonology, Amsterdam University Medical Centers (UMC), VU University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| |
Collapse
|
186
|
Rutherford H, Saha Turai R, Chacon A, Franklin DR, Mohammadi A, Tashima H, Yamaya T, Parodi K, Rosenfeld AB, Guatelli S, Safavi-Naeini M. An inception network for positron emission tomography based dose estimation in carbon ion therapy. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac88b2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/10/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. We aim to evaluate a method for estimating 1D physical dose deposition profiles in carbon ion therapy via analysis of dynamic PET images using a deep residual learning convolutional neural network (CNN). The method is validated using Monte Carlo simulations of 12C ion spread-out Bragg peak (SOBP) profiles, and demonstrated with an experimental PET image. Approach. A set of dose deposition and positron annihilation profiles for monoenergetic 12C ion pencil beams in PMMA are first generated using Monte Carlo simulations. From these, a set of random polyenergetic dose and positron annihilation profiles are synthesised and used to train the CNN. Performance is evaluated by generating a second set of simulated 12C ion SOBP profiles (one 116 mm SOBP profile and ten 60 mm SOBP profiles), and using the trained neural network to estimate the dose profile deposited by each beam and the position of the distal edge of the SOBP. Next, the same methods are used to evaluate the network using an experimental PET image, obtained after irradiating a PMMA phantom with a 12C ion beam at QST’s Heavy Ion Medical Accelerator in Chiba facility in Chiba, Japan. The performance of the CNN is compared to that of a recently published iterative technique using the same simulated and experimental 12C SOBP profiles. Main results. The CNN estimated the simulated dose profiles with a mean relative error (MRE) of 0.7% ± 1.0% and the distal edge position with an accuracy of 0.1 mm ± 0.2 mm, and estimate the dose delivered by the experimental 12C ion beam with a MRE of 3.7%, and the distal edge with an accuracy of 1.7 mm. Significance. The CNN was able to produce estimates of the dose distribution with comparable or improved accuracy and computational efficiency compared to the iterative method and other similar PET-based direct dose quantification techniques.
Collapse
|
187
|
Cates JW, Choong WS. Low power implementation of high frequency SiPM readout for Cherenkov and scintillation detectors in TOF-PET. Phys Med Biol 2022; 67:195009. [PMID: 35961297 PMCID: PMC9829384 DOI: 10.1088/1361-6560/ac8963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 01/25/2023]
Abstract
State-of-the-art (SoA) electronic readout for silicon photomultiplier (SiPM)-based scintillation detectors that demonstrate experimental limits in achievable coincidence time resolution (CTR) leverage low noise, high frequency signal processing to facilitate a single photon time response that is near the limit of the SiPMs architecture. This readout strategy can optimally exploit fast luminescence and prompt photon populations, and promising measurements show detector concepts employing this readout can greatly advance PET detector CTR, relative to SoA in clinical systems. However, the technique employs power hungry components which make the electronics chain impractical for channel-dense time-of-flight (TOF)-PET detectors. We have developed and tested a low noise and high frequency readout circuit which is performant at low power and consists of discrete elements with small footprints, making it feasible for integration into TOF-PET detector prototypes. A 3 × 3 mm2Broadcom SiPM with this readout chain exhibited sub-100 ps single photon time resolution at 10 mW of power consumption, with a relatively minor performance degradation to 120 ± 2 ps FWHM at 5 mW. CTR measurements with 3 × 3 × 20 mm3LYSO and fast LGSO scintillators demonstrated 127 ± 3 ps and 113 ± 2 ps FWHM at optimal power operation and 133 ± 2 ps and 121 ± 3 ps CTR at 5 mW. BGO crystals 3 × 3 × 20 mm3in size show 271 ± 5 ps FWHM CTR (1174 ± 14 ps full-width-at-tenth-maximum (FWTM)) at optimal power dissipation and 289 ± 8 ps (1296 ± 33 ps FWTM) at 5 mW. The compact and low power readout topology that achieves this performance thereby offers a platform to greatly advance PET system CTR and also opportunities to provide high performance TOF-PET at reduced material cost.
Collapse
Affiliation(s)
- Joshua W Cates
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Woon-Seng Choong
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| |
Collapse
|
188
|
Hu B, Jin H, Li X, Wu X, Xu J, Gao Y. The predictive value of total-body PET/CT in non-small cell lung cancer for the PD-L1 high expression. Front Oncol 2022; 12:943933. [PMID: 36212409 PMCID: PMC9538674 DOI: 10.3389/fonc.2022.943933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Total-body positron emission tomography/computed tomography (PET/CT) provides faster scanning speed, higher image quality, and lower injected dose. To compensate for the shortcomings of the maximum standard uptake value (SUVmax), we aimed to normalize the values of PET parameters using liver and blood pool SUV (SUR-L and SUR-BP) to predict programmed cell death-ligand 1 (PD-L1) expression in non-small cell lung cancer (NSCLC) patients. Materials and methods A total of 138 (104 adenocarcinoma and 34 squamous cell carcinoma) primary diagnosed NSCLC patients who underwent 18F-FDG-PET/CT imaging were analyzed retrospectively. Immunohistochemistry (IHC) analysis was performed for PD-L1 expression on tumor cells and tumor-infiltrating immune cells with 22C3 antibody. Positive PD-L1 expression was defined as tumor cells no less than 50% or tumor-infiltrating immune cells no less than 10%. The relationships between PD-L1 expression and PET parameters (SUVmax, SUR-L, and SUR-BP) and clinical variables were analyzed. Statistical analysis included χ2 test, receiver operating characteristic (ROC), and binary logistic regression. Results There were 36 patients (26%) expressing PD-L1 positively. Gender, smoking history, Ki-67, and histologic subtype were related factors. SUVmax, SUR-L, and SUR-BP were significantly higher in the positive subset than those in the negative subset. Among them, the area under the curve (AUC) of SUR-L on the ROC curve was the biggest one. In NSCLC patients, the best cutoff value of SUR-L for PD-L1-positive expression was 4.84 (AUC = 0.702, P = 0.000, sensitivity = 83.3%, specificity = 54.9%). Multivariate analysis confirmed that age and SUR-L were correlated factors in adenocarcinoma (ADC) patients. Conclusion SUVmax, SUR-L, and SUR-BP had utility in predicting PD-L1 high expression, and SUR-L was the most reliable parameter. PET/CT can offer reference to screen patients for first-line atezolizumab therapy.
Collapse
Affiliation(s)
| | | | | | | | - Junling Xu
- *Correspondence: Junling Xu, ; Yongju Gao,
| | - Yongju Gao
- *Correspondence: Junling Xu, ; Yongju Gao,
| |
Collapse
|
189
|
Gao W, Wang C, Li Q, Zhang X, Yuan J, Li D, Sun Y, Chen Z, Gu Z. Application of medical imaging methods and artificial intelligence in tissue engineering and organ-on-a-chip. Front Bioeng Biotechnol 2022; 10:985692. [PMID: 36172022 PMCID: PMC9511994 DOI: 10.3389/fbioe.2022.985692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Organ-on-a-chip (OOC) is a new type of biochip technology. Various types of OOC systems have been developed rapidly in the past decade and found important applications in drug screening and precision medicine. However, due to the complexity in the structure of both the chip-body itself and the engineered-tissue inside, the imaging and analysis of OOC have still been a big challenge for biomedical researchers. Considering that medical imaging is moving towards higher spatial and temporal resolution and has more applications in tissue engineering, this paper aims to review medical imaging methods, including CT, micro-CT, MRI, small animal MRI, and OCT, and introduces the application of 3D printing in tissue engineering and OOC in which medical imaging plays an important role. The achievements of medical imaging assisted tissue engineering are reviewed, and the potential applications of medical imaging in organoids and OOC are discussed. Moreover, artificial intelligence - especially deep learning - has demonstrated its excellence in the analysis of medical imaging; we will also present the application of artificial intelligence in the image analysis of 3D tissues, especially for organoids developed in novel OOC systems.
Collapse
Affiliation(s)
- Wanying Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Science Researching and Training Center, Beijing, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xijing Zhang
- Central Research Institute, United Imaging Group, Shanghai, China
| | - Jianmin Yuan
- Central Research Institute, United Imaging Group, Shanghai, China
| | - Dianfu Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- International Children’s Medical Imaging Research Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
190
|
Hicks RJ, Van den Abbeele AD. Will ultra-extended field-of-view scanners be an expensive folly or the next clinical standard for PET/CT? Cancer Imaging 2022; 22:49. [PMID: 36068626 PMCID: PMC9450327 DOI: 10.1186/s40644-022-00486-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Annick D Van den Abbeele
- Dana-Farber Cancer Institute and Mass General Brigham Hospitals, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
191
|
Geng Y, Jin L, Tang G, Zhao Z, Gu Y, Yang D. LiqBioer: a manually curated database of cancer biomarkers in body fluid. Database (Oxford) 2022; 2022:6687198. [PMID: 36053554 PMCID: PMC9438745 DOI: 10.1093/database/baac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 11/14/2022]
Abstract
Cancer biomarkers are measurable indicators that play vital roles in clinical applications. Biomarkers in body fluids have gained considerable attention since the development of liquid biopsy, and their data volume is rapidly increasing. Nevertheless, current research lacks the compilation of published cancer body fluid biomarkers into a centralized and sustainable repository for researchers and clinicians, despite a handful of small-scale and specific data resources. To fulfill this purpose, we developed liquid biomarker (LiqBioer) containing 6231 manually curated records from 3447 studies, covering 3056 biomarkers and 74 types of cancer in 22 tissues. LiqBioer allows users to browse and download comprehensive information on body liquid biomarkers, including cancer types, source studies and clinical usage. As a comprehensive resource for body fluid biomarkers of cancer, LiqBioer is a powerful tool for researchers and clinicians to query and retrieve biomarkers in liquid biopsy.
Collapse
Affiliation(s)
- Yiding Geng
- Department of Biochemistry and Molecular Biology, Harbin Medical University , 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Lu Jin
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University , 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Guangjue Tang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University , 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Zhangxiang Zhao
- The Sino-Russian Medical Research Centre, The Institute of Chronic Disease, The First Affiliated Hospital, Jinan University , Guangzhou, Guangdong 510630, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University , 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Dan Yang
- Department of Biochemistry and Molecular Biology, Harbin Medical University , 157 Baojian Road, Nangang District, Harbin 150081, China
| |
Collapse
|
192
|
Yin X, Liao H, Yun H, Lin N, Li S, Xiang Y, Ma X. Artificial intelligence-based prediction of clinical outcome in immunotherapy and targeted therapy of lung cancer. Semin Cancer Biol 2022; 86:146-159. [PMID: 35963564 DOI: 10.1016/j.semcancer.2022.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
Lung cancer accounts for the main proportion of malignancy-related deaths and most patients are diagnosed at an advanced stage. Immunotherapy and targeted therapy have great advances in application in clinics to treat lung cancer patients, yet the efficacy is unstable. The response rate of these therapies varies among patients. Some biomarkers have been proposed to predict the outcomes of immunotherapy and targeted therapy, including programmed cell death-ligand 1 (PD-L1) expression and oncogene mutations. Nevertheless, the detection tests are invasive, time-consuming, and have high demands on tumor tissue. The predictive performance of conventional biomarkers is also unsatisfactory. Therefore, novel biomarkers are needed to effectively predict the outcomes of immunotherapy and targeted therapy. The application of artificial intelligence (AI) can be a possible solution, as it has several advantages. AI can help identify features that are unable to be used by humans and perform repetitive tasks. By combining AI methods with radiomics, pathology, genomics, transcriptomics, proteomics, and clinical data, the integrated model has shown predictive value in immunotherapy and targeted therapy, which significantly improves the precision treatment of lung cancer patients. Herein, we reviewed the application of AI in predicting the outcomes of immunotherapy and targeted therapy in lung cancer patients, and discussed the challenges and future directions in this field.
Collapse
Affiliation(s)
- Xiaomeng Yin
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Hu Liao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Hong Yun
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Nan Lin
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Shen Li
- West China School of Medicine, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Yu Xiang
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Xuelei Ma
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| |
Collapse
|
193
|
Wang G, Nardo L, Parikh M, Abdelhafez YG, Li E, Spencer BA, Qi J, Jones T, Cherry SR, Badawi RD. Total-Body PET Multiparametric Imaging of Cancer Using a Voxelwise Strategy of Compartmental Modeling. J Nucl Med 2022; 63:1274-1281. [PMID: 34795014 PMCID: PMC9364337 DOI: 10.2967/jnumed.121.262668] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023] Open
Abstract
Quantitative dynamic PET with compartmental modeling has the potential to enable multiparametric imaging and more accurate quantification than static PET imaging. Conventional methods for parametric imaging commonly use a single kinetic model for all image voxels and neglect the heterogeneity of physiologic models, which can work well for single-organ parametric imaging but may significantly compromise total-body parametric imaging on a scanner with a long axial field of view. In this paper, we evaluate the necessity of voxelwise compartmental modeling strategies, including time delay correction (TDC) and model selection, for total-body multiparametric imaging. Methods: Ten subjects (5 patients with metastatic cancer and 5 healthy volunteers) were scanned on a total-body PET/CT system after injection of 370 MBq of 18F-FDG. Dynamic data were acquired for 60 min. Total-body parametric imaging was performed using 2 approaches. One was the conventional method that uses a single irreversible 2-tissue-compartment model with and without TDC. The second approach selects the best kinetic model from 3 candidate models for individual voxels. The differences between the 2 approaches were evaluated for parametric imaging of microkinetic parameters and the 18F-FDG net influx rate, KiResults: TDC had a nonnegligible effect on kinetic quantification of various organs and lesions. The effect was larger in lesions with a higher blood volume. Parametric imaging of Ki with the standard 2-tissue-compartment model introduced vascular-region artifacts, which were overcome by the voxelwise model selection strategy. Conclusion: The time delay and appropriate kinetic model vary in different organs and lesions. Modeling of the time delay of the blood input function and model selection improved total-body multiparametric imaging.
Collapse
Affiliation(s)
- Guobao Wang
- Department of Radiology, University of California Davis Medical Center, Sacramento, California;
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
| | - Mamta Parikh
- UC Davis Comprehensive Cancer Center, Sacramento, California; and
| | - Yasser G Abdelhafez
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
| | - Elizabeth Li
- Department of Biomedical Engineering, University of California at Davis, Davis, California
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
- Department of Biomedical Engineering, University of California at Davis, Davis, California
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California at Davis, Davis, California
| | - Terry Jones
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
| | - Simon R Cherry
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
- Department of Biomedical Engineering, University of California at Davis, Davis, California
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
- Department of Biomedical Engineering, University of California at Davis, Davis, California
| |
Collapse
|
194
|
Tan H, Mao W, Cao Y, Cai D, Sui X, Qi C, Yu H, Zhang Y, Shi H. Half-dose versus full-dose 18 F-FDG total-body PET/CT in patients with colorectal cancer. Nucl Med Commun 2022; 43:928-936. [PMID: 35634804 DOI: 10.1097/mnm.0000000000001589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to investigate image quality and lesion detectability of half-dose (1.85 MBq/kg) 18 F-fluorodeoxyglucose (FDG) total-body positron emission tomography/computed tomography (PET/CT) for colorectal cancer, full-dose (3.7 MBq/kg) 18 F-FDG serving as a reference. METHODS Fifty patients confirmed to have colorectal cancer who underwent total-body PET/CT with half-dose 18 F-FDG were included. Another 50 colorectal cancer patients with 3.70 MBq/kg 18 F-FDG activity were selected for the full-dose group. PET images in the half-dose group were scanned for 15 min and split into 1-, 2-, 3-, 4- and 10-min duration groups, denoted G1, G2, G3, G4 and G10, respectively. In the full-dose group, PET scanning was performed for 5 min, reconstructed with the first 0.5, 1, 2 and 5 min intervals, defined as G0.5', G1', G2' and G5', respectively. Subjective image quality was assessed with 5-point Likert scales. Objective image quality parameters included maximum standardized uptake values (SUV max) , mean standardized uptake values (SUV mean )and signal-to-noise ratio (SNR) of the liver, blood pool and muscle and SUV max and tumor-to-background ratio (TBR) of lesions. RESULTS In the two groups, the G3 and G2' images met clinical diagnosis requirements in terms of subjective image quality, with scores ≥3. There were no differences in terms of subjective and objective image quality between the groups (G1 and G0.5', G2 and G1', G4 and G2' and G10 and G5'). In the half-dose group, 56 colorectal lesions in 50 patients confirmed by surgical pathology were clearly visible in all groups. The number of FDG-avid lymph nodes was 37 in G1, 38 in G2 and 39 in the remaining half-dose groups. The number of missed metastatic liver lesions was 1 both in G1 and G2. CONCLUSIONS Total-body PET/CT with half-dose was feasible for diagnosing and staging colorectal cancer compared with full-dose 18 F-FDG PET/CT. Moreover, for half-dose total-body PET/CT, a 3-min scan duration could maintain image quality and lesion detectability.
Collapse
Affiliation(s)
- Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University
- Nuclear Medicine Institute of Fudan University
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University
- Nuclear Medicine Institute of Fudan University
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Yanyan Cao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University
- Nuclear Medicine Institute of Fudan University
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Danjie Cai
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University
- Nuclear Medicine Institute of Fudan University
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Xiuli Sui
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University
- Nuclear Medicine Institute of Fudan University
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Chi Qi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University
- Nuclear Medicine Institute of Fudan University
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University
- Nuclear Medicine Institute of Fudan University
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University
- Nuclear Medicine Institute of Fudan University
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University
- Nuclear Medicine Institute of Fudan University
- Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
195
|
Gonzalez-Montoro A, Ullah MN, Levin CS. Advances in Detector Instrumentation for PET. J Nucl Med 2022; 63:1138-1144. [PMID: 35914819 PMCID: PMC9364348 DOI: 10.2967/jnumed.121.262509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/22/2022] [Indexed: 02/03/2023] Open
Abstract
During the last 3 decades, PET has become a standard-of-care imaging technique used in the management of cancer and in the characterization of neurologic disorders and cardiovascular disease. It has also emerged as a prominent molecular imaging method to study the basic biologic pathways of disease in rodent models. This review describes the basics of PET detectors, including a detailed description of indirect and direct 511-keV photon detection methods. We will also cover key detector performance parameters and describe detector instrumentation advances during the last decade.
Collapse
Affiliation(s)
- Andrea Gonzalez-Montoro
- Department of Radiology, Molecular Imaging Program at Stanford University, Stanford, California
| | - Muhammad Nasir Ullah
- Department of Radiology, Molecular Imaging Program at Stanford University, Stanford, California
| | - Craig S. Levin
- Department of Radiology, Molecular Imaging Program at Stanford University, Stanford, California;,Department of Physics, Stanford University, Stanford, California;,Department of Electrical Engineering, Stanford University, Stanford, California; and,Department of Bioengineering, Stanford University, Stanford, California
| |
Collapse
|
196
|
Fiz F, Piccardo A, Morbelli S, Bottoni G, Piana M, Cabria M, Bagnasco M, Sambuceti G. Longitudinal analysis of atherosclerotic plaques evolution: an 18F-NaF PET/CT study. J Nucl Cardiol 2022; 29:1713-1723. [PMID: 33630243 DOI: 10.1007/s12350-021-02556-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE 18F-NaF-PET/CT can detect mineral metabolism within atherosclerotic plaques. To ascertain whether their 18F-NaF uptake purports progression, this index was compared with subsequent morphologic evolution. METHODS 71 patients underwent two consecutive 18F-NaF-PET/CTs (PET1/PET2). In PET1, non-calcified 18F-NaF hot spots were identified in the abdominal aorta. Their mean/max HU was compared with those of a non-calcified control region (CR) and with corresponding areas in PET2. A target-to-background ratio (TBR), mean density (HU), and calcium score (CS) were calculated on calcified atherosclerotic plaques in PET1 and compared with those in PET2. A VOI including the entire abdominal aorta was drawn; mean TBR and total CS were calculated on PET1 and compared with those PET2. RESULTS Hot spots in PET1 (N = 179) had a greater HU than CR (48 ± 8 vs 37 ± 9, P < .01). Mean hot spots HU increased to 59 ± 12 in PET2 (P < .001). New calcifications appeared at the hot spots site in 73 cases (41%). Baseline atherosclerotic plaque's (N = 375) TBR was proportional to percent HU and CS increase (P < .01 for both). Aortic CS increased (P < .001); the whole-aorta TBR in PET1 correlated with the CS increase between the baseline and the second PET/CT (R = .63, P < .01). CONCLUSIONS 18F-NaF-PET/CT depicts the early stages of plaques development and tracks their evolution over time.
Collapse
Affiliation(s)
- Francesco Fiz
- Nuclear Medicine Unit, IRCCS Humanitas Research Hospital, Via Manzoni, 56, Rozzano, 20089, Milan, Italy.
| | - Arnoldo Piccardo
- Nuclear Medicine Unit, E. O. Ospedali Galliera, Mura delle Cappuccine, 14, 16128, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Via Antonio Pastore, 1, 16132, Genoa, Italy
| | - Gianluca Bottoni
- Nuclear Medicine Unit, E. O. Ospedali Galliera, Mura delle Cappuccine, 14, 16128, Genoa, Italy
| | - Michele Piana
- Department of Mathematics, University of Genoa, Via Dodecaneso, 35, 16146, Genoa, Italy
| | - Manlio Cabria
- Nuclear Medicine Unit, E. O. Ospedali Galliera, Mura delle Cappuccine, 14, 16128, Genoa, Italy
| | - Marcello Bagnasco
- Department of Internal Medicine and Medical specialties, University of Genoa, Viale Benedetto XV, 10, 16132, Genoa, Italy
| | - Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Via Antonio Pastore, 1, 16132, Genoa, Italy
| |
Collapse
|
197
|
The feasibility of ultralow-activity 18F-FDG dynamic PET imaging in lung adenocarcinoma patients through total-body PET/CT scanner. Ann Nucl Med 2022; 36:887-896. [PMID: 35857172 DOI: 10.1007/s12149-022-01772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/03/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE To explore the feasibility of ultralow-activity 18F-FDG total-body dynamic PET imaging for clinical practice in patients with lung adenocarcinoma. METHODS Eight of 18 patients were randomly injected with 18F-FDG with full activity (3.7 MBq/kg) for total-body dynamic PET imaging, while 10 received one-tenth activity (0.37 MBq/kg). The generated time-to-activity curves (TACs) according to the regions of interest (ROIs) were processed by PMOD through standard FDG two-tissue compartment model fitting. The kinetic constant rates (K1, K2, K3, and Ki), radiation dose, prompt counts, and data storage size were analysed between the full- and ultralow-activity groups. The SUVmax-Tumour/SUVmax-Liver and SUVmax-Tumour/SUVmax-Muscle on static PET images were also assessed. RESULTS Each of the fitted models has a satisfactory goodness-of-fit with R2 greater than 0.9 except 3 (3/234) in ultralow-activity group, where one in pancreas (R2 = 0.851), another one in muscle (R2 = 0.868), and the third one in bone marrow (R2 = 0.895). All the fitted models in the full-activity group had a better goodness-of-fit than those in the ultralow-activity group. However, no significant differences were found in any of the kinetic metrics or image quality between the two groups except in the reduction of radiation dose and data storage size. CONCLUSIONS The 10 × reduction of injected 18F-FDG could achieve comparable kinetic metrics and T/N ratios by total-body dynamic PET imaging in lung adenocarcinoma patients. Ultralow-activity total-body PET imaging is feasible for clinical practice in oncological patients without obesity, especially in dynamic PET scanning.
Collapse
|
198
|
Wang D, Zhang X, Liu H, Qiu B, Liu S, Zheng C, Fu J, Mo Y, Chen N, Zhou R, Chu C, Liu F, Guo J, Zhou Y, Zhou Y, Fan W, Liu H. Assessing dynamic metabolic heterogeneity in non-small cell lung cancer patients via ultra-high sensitivity total-body [ 18F]FDG PET/CT imaging: quantitative analysis of [ 18F]FDG uptake in primary tumors and metastatic lymph nodes. Eur J Nucl Med Mol Imaging 2022; 49:4692-4704. [PMID: 35819498 DOI: 10.1007/s00259-022-05904-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/03/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE This study aimed to quantitatively assess [18F]FDG uptake in primary tumor (PT) and metastatic lymph node (mLN) in newly diagnosed non-small cell lung cancer (NSCLC) using the total-body [18F]FDG PET/CT and to characterize the dynamic metabolic heterogeneity of NSCLC. METHODS The 60-min dynamic total-body [18F]FDG PET/CT was performed before treatment. The PTs and mLNs were manually delineated. An unsupervised K-means classification method was used to cluster patients based on the imaging features of PTs. The metabolic features, including Patlak-Ki, Patlak-Intercept, SUVmean, metabolic tumor volume (MTV), total lesion glycolysis (TLG), and textural features, were extracted from PTs and mLNs. The targeted next-generation sequencing of tumor-associated genes was performed. The expression of Ki67, CD3, CD8, CD34, CD68, and CD163 in PTs was determined by immunohistochemistry. RESULTS A total of 30 patients with stage IIIA-IV NSCLC were enrolled. Patients were divided into fast dynamic FDG metabolic group (F-DFM) and slow dynamic FDG metabolic group (S-DFM) by the unsupervised K-means classification of PTs. The F-DFM group showed significantly higher Patlak-Ki (P < 0.001) and SUVmean (P < 0.001) of PTs compared with the S-DFM group, while no significant difference was observed in Patlak-Ki and SUVmean of mLNs between the two groups. The texture analysis indicated that PTs in the S-DFM group were more heterogeneous in FDG uptake than those in the F-DFM group. Higher T cells (CD3+/CD8+) and macrophages (CD68+/CD163+) infiltration in the PTs were observed in the F-DFM group. No significant difference was observed in tumor mutational burden between the two groups. CONCLUSION The dynamic total-body [18F]FDG PET/CT stratified NSCLC patients into the F-DFM and S-DFM groups, based on Patlak-Ki and SUVmean of PTs. PTs in the F-DFM group seemed to be more homogenous in terms of [18F]FDG uptake than those in the S-DFM group. The higher infiltrations of T cells and macrophages were observed in the F-DFM group, which suggested a potential benefit from immunotherapy.
Collapse
Affiliation(s)
- DaQuan Wang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xu Zhang
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hui Liu
- United Imaging Healthcare, Shanghai, China
| | - Bo Qiu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - SongRan Liu
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | | | - Jia Fu
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - YiWen Mo
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - NaiBin Chen
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Rui Zhou
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Chu Chu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - FangJie Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - JinYu Guo
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yin Zhou
- SuZhou TongDiao Company, Suzhou, China
| | - Yun Zhou
- United Imaging Healthcare, Shanghai, China
| | - Wei Fan
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Hui Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
199
|
Ma R, Hu J, Sari H, Xue S, Mingels C, Viscione M, Kandarpa VSS, Li WB, Visvikis D, Qiu R, Rominger A, Li J, Shi K. An encoder-decoder network for direct image reconstruction on sinograms of a long axial field of view PET. Eur J Nucl Med Mol Imaging 2022; 49:4464-4477. [PMID: 35819497 DOI: 10.1007/s00259-022-05861-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/02/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Deep learning is an emerging reconstruction method for positron emission tomography (PET), which can tackle complex PET corrections in an integrated procedure. This paper optimizes the direct PET reconstruction from sinogram on a long axial field of view (LAFOV) PET. METHODS This paper proposes a novel deep learning architecture to reduce the biases during direct reconstruction from sinograms to images. This architecture is based on an encoder-decoder network, where the perceptual loss is used with pre-trained convolutional layers. It is trained and tested on data of 80 patients acquired from recent Siemens Biograph Vision Quadra long axial FOV (LAFOV) PET/CT. The patients are randomly split into a training dataset of 60 patients, a validation dataset of 10 patients, and a test dataset of 10 patients. The 3D sinograms are converted into 2D sinogram slices and used as input to the network. In addition, the vendor reconstructed images are considered as ground truths. Finally, the proposed method is compared with DeepPET, a benchmark deep learning method for PET reconstruction. RESULTS Compared with DeepPET, the proposed network significantly reduces the root-mean-squared error (NRMSE) from 0.63 to 0.6 (p < 0.01) and increases the structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) from 0.93 to 0.95 (p < 0.01) and from 82.02 to 82.36 (p < 0.01), respectively. The reconstruction time is approximately 10 s per patient, which is shortened by 23 times compared with the conventional method. The errors of mean standardized uptake values (SUVmean) for lesions between ground truth and the predicted result are reduced from 33.5 to 18.7% (p = 0.03). In addition, the error of max SUV is reduced from 32.7 to 21.8% (p = 0.02). CONCLUSION The results demonstrate the feasibility of using deep learning to reconstruct images with acceptable image quality and short reconstruction time. It is shown that the proposed method can improve the quality of deep learning-based reconstructed images without additional CT images for attenuation and scattering corrections. This study demonstrated the feasibility of deep learning to rapidly reconstruct images without additional CT images for complex corrections from actual clinical measurements on LAFOV PET. Despite improving the current development, AI-based reconstruction does not work appropriately for untrained scenarios due to limited extrapolation capability and cannot completely replace conventional reconstruction currently.
Collapse
Affiliation(s)
- Ruiyao Ma
- Department of Engineering Physics, Tsinghua University, and Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, 100084, China.,Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Radiation Medicine, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Bavaria, Neuherberg, Germany
| | - Jiaxi Hu
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Song Xue
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marco Viscione
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Wei Bo Li
- Institute of Radiation Medicine, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Bavaria, Neuherberg, Germany
| | | | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, and Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, 100084, China.
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Junli Li
- Department of Engineering Physics, Tsinghua University, and Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, 100084, China.
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
200
|
He Y, Gu Y, Yu H, Wu B, Wang S, Tan H, Cao Y, Chen S, Sui X, Zhang Y, Shi H. Optimizing acquisition times for total-body positron emission tomography/computed tomography with half-dose 18F-fluorodeoxyglucose in oncology patients. EJNMMI Phys 2022; 9:45. [PMID: 35802280 PMCID: PMC9270529 DOI: 10.1186/s40658-022-00474-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Background The present study aimed to explore the boundary of acquisition time and propose an optimized acquisition time range for total-body positron emission tomography (PET)/computed tomography (CT) oncological imaging using half-dose (1.85 MBq/kg) 18F-fluorodeoxyglucose activity based on diagnostic needs. Methods In this retrospective study based on a total-body PET system (uEXPLORER), an exploration cohort (October 2019–December 2019) of 46 oncology patients was first studied. The acquisition time for all patients was 15 min, and the acquired images were reconstructed and further split into 15-, 8-, 5-, 3-, 2-, and 1-min duration groups (abbreviated as G15, G8, G5, G3, G2, and G1). The image quality and lesion detectability of reconstructed PET images with different acquisition times were evaluated subjectively (5-point scale, lesion detection rate) and objectively (standardized uptake values, tumor-to-background ratio). In the same way, the initial optimized acquisition times were further validated in a cohort of 147 oncology patients (December 2019–June 2021) by using the Gs images (the images obtained using the 15- and 10-min acquisition times) as controls. Results In the exploration cohort, the subjective scores for G1, G2, G3, G5, and G8 images were 2.0 ± 0.2, 2.9 ± 0.3, 3.0 ± 0.0, 3.9 ± 0.2, and 4.2 ± 0.4, respectively. Two cases in G1 were rated as 1 point. No significant difference in scores was observed between G5 and G8 (p > 0.99). In general, groups with a longer acquisition time showed lower background uptake and lesion conspicuity. Compared with G15, lesion detection rate significantly reduced to 85.3% in G1 (p < 0.05). In the validation cohort, the subjective score was 3.0 ± 0.2 for G2, 3.0 ± 0.1 for G3, 3.6 ± 0.5 for G5, 4.0 ± 0.3 for G8, and 4.4 ± 0.5 for Gs. Only the scores between G2 and G3 were not significantly different (p > 0.99). The detection rates (204 lesions) significantly reduced to 94.1–90.2% in G3 and G2 (all p < 0.05). Conclusion A 2-min acquisition time provided acceptable performance in certain groups and specific medical situations. And protocols with acquisition times ≥ 5 min could provide comparable lesion detectability as regular protocols, showing better compatibility and feasibility with clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00474-y.
Collapse
Affiliation(s)
- Yibo He
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Yushen Gu
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Haojun Yu
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Bing Wu
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Siyang Wang
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Hui Tan
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Yanyan Cao
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Shuguang Chen
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Xiuli Sui
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Yiqiu Zhang
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China. .,Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China.
| | - Hongcheng Shi
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China. .,Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China.
| |
Collapse
|