151
|
[Biological mechanisms involved in the spread of traumatic brain damage]. Med Intensiva 2011; 36:37-44. [PMID: 21903299 DOI: 10.1016/j.medin.2011.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/23/2011] [Accepted: 06/25/2011] [Indexed: 01/11/2023]
Abstract
Traumatic brain injury (TBI) is a worldwide health problem that is especially prevalent in young adults. It is characterized by one or more primary injury foci, with secondary spread to initially not compromised areas via cascades of inflammatory response, excitotoxicity, energy failure conditions, and amplification of the original tissue injury by glia. In theory, such progression of injury should be amenable to management. However, all neuroprotective drug trials have failed, and specific treatments remain lacking. These negative results can be explained by a neuron centered approach, excluding the participation of other cell types and pathogenic mechanisms. To change this situation, it is necessary to secure a better understanding of the biological mechanisms determining damage progression or spread. We discuss the biological mechanisms involved in the progression of post-trauma tissue damage, including the general physiopathology of TBI and cellular mechanisms of secondary damage such as inflammation, apoptosis, cell tumefaction, excitotoxicity, and the role of glia in damage propagation. We highlight the role of glia in each cellular mechanism discussed. Therapeutic approaches related to the described mechanisms have been included. The discussion is completed with a working model showing the convergence of the main topics.
Collapse
|
152
|
Folkersma H, Foster Dingley JC, van Berckel BNM, Rozemuller A, Boellaard R, Huisman MC, Lammertsma AA, Vandertop WP, Molthoff CFM. Increased cerebral (R)-[(11)C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: a longitudinal pilot study. J Neuroinflammation 2011; 8:67. [PMID: 21672189 PMCID: PMC3132713 DOI: 10.1186/1742-2094-8-67] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 06/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of the present study was to investigate microglia activation over time following traumatic brain injury (TBI) and to relate these findings to glutamate release. PROCEDURES Sequential dynamic (R)-[(11)C]PK11195 PET scans were performed in rats 24 hours before (baseline), and one and ten days after TBI using controlled cortical impact, or a sham procedure. Extracellular fluid (ECF) glutamate concentrations were measured using cerebral microdialysis. Brains were processed for histopathology and (immuno)-histochemistry. RESULTS Ten days after TBI, (R)-[(11)C]PK11195 binding was significantly increased in TBI rats compared with both baseline values and sham controls (p < 0.05). ECF glutamate values were increased immediately after TBI (27.6 ± 14.0 μmol·L(-1)) as compared with the sham procedure (6.4 ± 3.6 μmol·L(-1)). Significant differences were found between TBI and sham for ED-1, OX-6, GFAP, Perl's, and Fluoro-Jade B. CONCLUSIONS Increased cerebral uptake of (R)-[(11)C]PK11195 ten days after TBI points to prolonged and ongoing activation of microglia. This activation followed a significant acute posttraumatic increase in ECF glutamate levels.
Collapse
Affiliation(s)
- Hedy Folkersma
- Neurosurgical Center Amsterdam, VU University Medical Center, De Boelelaan 1117, NL-1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Marino S, Ciurleo R, Bramanti P, Federico A, De Stefano N. 1H-MR spectroscopy in traumatic brain injury. Neurocrit Care 2011; 14:127-33. [PMID: 20737247 DOI: 10.1007/s12028-010-9406-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Traumatic brain injury (TBI) is a common cause of neurological damage and disability. Conventional imaging (CT scan or MRI) is highly sensitive in detecting lesions and provides important clinical information regarding the need for acute intervention. However, abnormalities detected by CT scan or conventional MRI have limited importance in the classification of the degree of clinical severity and in predicting patients' outcome. This can be explained by the widespread microscopic tissue damage occurring after trauma, which is not observable with the conventional structural imaging methods. Advances in neuroimaging over the past two decades have greatly helped in the clinical care and management of patients with TBI. The advent of newer and more sensitive imaging techniques is now being used to better characterize the nature and evolution of injury and the underlying mechanisms that lead to progressive neurodegeneration, recovery or subsequent plasticity. This review will describe the role of proton magnetic resonance spectroscopic (MRS), an advanced MRI technique as related to its use in TBI. Proton MRS is a noninvasive approach that acquires metabolite information reflecting neuronal integrity and function from multiple brain regions and allows to assess clinical severity and to predict disease outcome.
Collapse
Affiliation(s)
- Silvia Marino
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy.
| | | | | | | | | |
Collapse
|
154
|
O'Connor WT, Smyth A, Gilchrist MD. Animal models of traumatic brain injury: A critical evaluation. Pharmacol Ther 2011; 130:106-13. [DOI: 10.1016/j.pharmthera.2011.01.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 11/17/2010] [Indexed: 11/28/2022]
|
155
|
Nelson DW, Thornquist B, MacCallum RM, Nyström H, Holst A, Rudehill A, Wanecek M, Bellander BM, Weitzberg E. Analyses of cerebral microdialysis in patients with traumatic brain injury: relations to intracranial pressure, cerebral perfusion pressure and catheter placement. BMC Med 2011; 9:21. [PMID: 21366904 PMCID: PMC3056807 DOI: 10.1186/1741-7015-9-21] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/02/2011] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cerebral microdialysis (MD) is used to monitor local brain chemistry of patients with traumatic brain injury (TBI). Despite an extensive literature on cerebral MD in the clinical setting, it remains unclear how individual levels of real-time MD data are to be interpreted. Intracranial pressure (ICP) and cerebral perfusion pressure (CPP) are important continuous brain monitors in neurointensive care. They are used as surrogate monitors of cerebral blood flow and have an established relation to outcome. The purpose of this study was to investigate the relations between MD parameters and ICP and/or CPP in patients with TBI. METHODS Cerebral MD, ICP and CPP were monitored in 90 patients with TBI. Data were extensively analyzed, using over 7,350 samples of complete (hourly) MD data sets (glucose, lactate, pyruvate and glycerol) to seek representations of ICP, CPP and MD that were best correlated. MD catheter positions were located on computed tomography scans as pericontusional or nonpericontusional. MD markers were analyzed for correlations to ICP and CPP using time series regression analysis, mixed effects models and nonlinear (artificial neural networks) computer-based pattern recognition methods. RESULTS Despite much data indicating highly perturbed metabolism, MD shows weak correlations to ICP and CPP. In contrast, the autocorrelation of MD is high for all markers, even at up to 30 future hours. Consequently, subject identity alone explains 52% to 75% of MD marker variance. This indicates that the dominant metabolic processes monitored with MD are long-term, spanning days or longer. In comparison, short-term (differenced or Δ) changes of MD vs. CPP are significantly correlated in pericontusional locations, but with less than 1% explained variance. Moreover, CPP and ICP were significantly related to outcome based on Glasgow Outcome Scale scores, while no significant relations were found between outcome and MD. CONCLUSIONS The multitude of highly perturbed local chemistry seen with MD in patients with TBI predominately represents long-term metabolic patterns and is weakly correlated to ICP and CPP. This suggests that disturbances other than pressure and/or flow have a dominant influence on MD levels in patients with TBI.
Collapse
Affiliation(s)
- David W Nelson
- Neurointensive Care Unit, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Andriessen TMJC, Jacobs B, Vos PE. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med 2011; 14:2381-92. [PMID: 20738443 PMCID: PMC3823156 DOI: 10.1111/j.1582-4934.2010.01164.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) is a frequent and clinically highly heterogeneous neurological disorder with large socioeconomic consequences. TBI severity classification, based on the hospital admission Glasgow Coma Scale (GCS) score, ranges from mild (GCS 13-15) and moderate (GCS 9-12) to severe (GCS ≤ 8). The GCS reflects the risk of dying from TBI, which is low after mild (∼1%), intermediate after moderate (up to 15%) and high (up to 40%) after severe TBI. Intracranial damage can be focal, such as epidural and subdural haematomas and parenchymal contusions, or diffuse, for example traumatic axonal injury and diffuse cerebral oedema, although this distinction is somewhat arbitrary. Study of the cellular and molecular post-traumatic processes is essential for the understanding of TBI pathophysiology but even more to find therapeutic targets for the development of neuroprotective drugs to be eventually used in human beings. To date, studies in vitro and in vivo, mainly in animals but also in human beings, are unravelling the pathological TBI mechanisms at high pace. Nevertheless, TBI pathophysiology is all but completely elucidated. Neuroprotective treatment studies in human beings have been disappointing thus far and have not resulted in commonly accepted drugs. This review presents an overview on the clinical aspects and the pathophysiology of focal and diffuse TBI, and it highlights several acknowledged important events that occur on molecular and cellular level after TBI.
Collapse
|
157
|
Timofeev I, Carpenter KLH, Nortje J, Al-Rawi PG, O'Connell MT, Czosnyka M, Smielewski P, Pickard JD, Menon DK, Kirkpatrick PJ, Gupta AK, Hutchinson PJ. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 2011; 134:484-94. [PMID: 21247930 DOI: 10.1093/brain/awq353] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Secondary insults can adversely influence outcome following severe traumatic brain injury. Monitoring of cerebral extracellular chemistry with microdialysis has the potential for early detection of metabolic derangements associated with such events. The objective of this study was to determine the relationship between the fundamental biochemical markers and neurological outcome in a large cohort of patients with traumatic brain injury. Prospectively collected observational neuromonitoring data from 223 patients were analysed. Monitoring modalities included digitally recorded intracranial pressure, cerebral perfusion pressure, cerebrovascular pressure reactivity index and microdialysis markers glucose, lactate, pyruvate, glutamate, glycerol and the lactate/pyruvate ratio. Outcome was assessed using the Glasgow Outcome Scale at 6 months post-injury. Patient-averaged values of parameters were used in statistical analysis, which included univariate non-parametric methods and multivariate logistic regression. Monitoring with microdialysis commenced on median (interquartile range) Day 1 (1-2) from injury and median (interquartile range) duration of monitoring was 4 (2-7) days. Averaged over the total monitoring period levels of glutamate (P = 0.048), lactate/pyruvate ratio (P = 0.044), intracranial pressure (P = 0.006) and cerebrovascular pressure reactivity index (P = 0.01) were significantly higher in patients who died. During the initial 72 h of monitoring, median glycerol levels were also higher in the mortality group (P = 0.014) and median lactate/pyruvate ratio (P = 0.026) and lactate (P = 0.033) levels were significantly lower in patients with favourable outcome. In a multivariate logistic regression model (P < 0.0001), which employed data averaged over the whole monitoring period, significant independent positive predictors of mortality were glucose (P = 0.024), lactate/pyruvate ratio (P = 0.016), intracranial pressure (P = 0.029), cerebrovascular pressure reactivity index (P = 0.036) and age (P = 0.003), while pyruvate was a significant independent negative predictor of mortality (P = 0.004). The results of this study suggest that extracellular metabolic markers are independently associated with outcome following traumatic brain injury. Whether treatment-related improvement in biochemistry translates into better outcome remains to be established.
Collapse
Affiliation(s)
- Ivan Timofeev
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Choi SK, Lee GJ, Choi S, Kim YJ, Park HK, Park BJ. Neuroprotective effects by nimodipine treatment in the experimental global ischemic rat model : real time estimation of glutamate. J Korean Neurosurg Soc 2011; 49:1-7. [PMID: 21494355 DOI: 10.3340/jkns.2011.49.1.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/05/2010] [Accepted: 12/31/2010] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Glutamate is a key excitatory neurotransmitter in the brain, and its excessive release plays a key role in the development of neuronal injury. In order to define the effect of nimodipine on glutamate release, we monitored extracellular glutamate release in real-time in a global ischemia rat model with eleven vessel occlusion. METHODS TWELVE RATS WERE RANDOMLY DIVIDED INTO TWO GROUPS: the ischemia group and the nimodipine treatment group. The changes of extracellular glutamate level were measured using microdialysis amperometric biosensor, in coincident with cerebral blood flow (CBF) and electroencephalogram. Nimodipine (0.025 µg/100 gm/min) was infused into lateral to the CBF probe, during the ischemic period. Also, we performed Nissl staining method to assess the neuroprotective effect of nimodipine. RESULTS During the ischemic period, the mean maximum change in glutamate concentration was 133.22±2.57 µM in the ischemia group and 75.42±4.22 µM (p<0.001) in the group treated with nimodipine. The total amount of glutamate released was significantly different (p<0.001) between groups during the ischemic period. The %cell viability in hippocampus was 47.50±5.64 (p<0.005) in ischemia group, compared with sham group. But, the %cell viability in nimodipine treatment group was 95.46±6.60 in hippocampus (p<0.005). CONCLUSION From the real-time monitoring and Nissl staining results, we suggest that the nimodipine treatment is responsible for the protection of the neuronal cell death through the suppression of extracellular glutamate release in the 11-VO global ischemia model of rat.
Collapse
Affiliation(s)
- Seok Keun Choi
- Department of Neurosurgery, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
159
|
Giza CC, DiFiori JP. Pathophysiology of sports-related concussion: an update on basic science and translational research. Sports Health 2011; 3:46-51. [PMID: 23015990 PMCID: PMC3445184 DOI: 10.1177/1941738110391732] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CONTEXT Concussions that occur during participation in athletic events affect millions of individuals each year. Although our understanding of the pathophysiology of concussion has grown considerably in recent years, much remains to be elucidated. This article reviews basic science and relevant translational clinical research regarding several aspects of concussion. EVIDENCE ACQUISITION A literature search was conducted using PubMed from 1966 to 2010, with an emphasis on work published within the past 10 years. Additional articles were identified from the bibliography of recent reviews. RESULTS Basic science and clinical data both indicate that there is a period of increased vulnerability to repeated injury following a concussion and that its duration is variable. Growing evidence indicates that postinjury activity is likely to affect recovery from brain injury. Data suggest that long-term sequelae may result from prior concussion-particularly, repeated injuries. The unique aspects of cerebral development may account for differences in the effects of concussion in children and adolescents when compared with adults. CONCLUSIONS The available pathophysiologic data from basic science and clinical studies have increased the evidence base for concussion management strategies-the approaches to which may differ between young athletes and adults.
Collapse
Affiliation(s)
- Christopher C. Giza
- Brain Injury Research Center, University of California, Los Angeles, California
| | - John P. DiFiori
- Division of Sports Medicine, University of California, Los Angeles, California
| |
Collapse
|
160
|
Therapeutic targets for neuroprotection and/or enhancement of functional recovery following traumatic brain injury. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:85-131. [PMID: 21199771 DOI: 10.1016/b978-0-12-385506-0.00003-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a significant public health concern. The number of injuries that occur each year, the cost of care, and the disabilities that can lower the victim's quality of life are all driving factors for the development of therapy. However, in spite of a wealth of promising preclinical results, clinicians are still lacking a therapy. The use of preclinical models of the primary mechanical trauma have greatly advanced our knowledge of the complex biochemical sequela that follow. This cascade of molecular, cellular, and systemwide changes involves plasticity in many different neurochemical systems, which represent putative targets for remediation or attenuation of neuronal injury. The purpose of this chapter is to highlight some of the promising molecular and cellular targets that have been identified and to provide an up-to-date summary of the development of therapeutic compounds for those targets.
Collapse
|
161
|
Hinzman JM, Thomas TC, Burmeister JJ, Quintero JE, Huettl P, Pomerleau F, Gerhardt GA, Lifshitz J. Diffuse brain injury elevates tonic glutamate levels and potassium-evoked glutamate release in discrete brain regions at two days post-injury: an enzyme-based microelectrode array study. J Neurotrauma 2010; 27:889-99. [PMID: 20233041 DOI: 10.1089/neu.2009.1238] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) survivors often suffer from a wide range of post-traumatic deficits, including impairments in behavioral, cognitive, and motor function. Regulation of glutamate signaling is vital for proper neuronal excitation in the central nervous system. Without proper regulation, increases in extracellular glutamate can contribute to the pathophysiology and neurological dysfunction seen in TBI. In the present studies, enzyme-based microelectrode arrays (MEAs) that selectively measure extracellular glutamate at 2 Hz enabled the examination of tonic glutamate levels and potassium chloride (KCl)-evoked glutamate release in the prefrontal cortex, dentate gyrus, and striatum of adult male rats 2 days after mild or moderate midline fluid percussion brain injury. Moderate brain injury significantly increased tonic extracellular glutamate levels by 256% in the dentate gyrus and 178% in the dorsal striatum. In the dorsal striatum, mild brain injury significantly increased tonic glutamate levels by 200%. Tonic glutamate levels were significantly correlated with injury severity in the dentate gyrus and striatum. The amplitudes of KCl-evoked glutamate release were increased significantly only in the striatum after moderate injury, with a 249% increase seen in the dorsal striatum. Thus, with the MEAs, we measured discrete regional changes in both tonic and KCl-evoked glutamate signaling, which were dependent on injury severity. Future studies may reveal the specific mechanisms responsible for glutamate dysregulation in the post-traumatic period, and may provide novel therapeutic means to improve outcomes after TBI.
Collapse
Affiliation(s)
- Jason M Hinzman
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536-0509, USA
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Vadhanan S, Bhatoe HS. Understanding head injury: A prelude? INDIAN JOURNAL OF NEUROTRAUMA 2010. [DOI: 10.1016/s0973-0508(10)80023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
163
|
Lee SK, Goh JPS. Neuromonitoring for Traumatic Brain Injury in Neurosurgical Intensive Care. PROCEEDINGS OF SINGAPORE HEALTHCARE 2010. [DOI: 10.1177/201010581001900407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The primary aim of neuromonitoring in patients with traumatic brain injury is early detection of secondary brain insults so that timely interventions can be instituted to prevent or treat secondary brain injury. Intracranial pressure monitoring has been a stalwart in neuromonitoring and is still very much the main parameter to guide therapy in brain injured patients in many centres. Cerebral oxygenation is also established as an important parameter for monitoring: global cerebral oxygenation is reliably measured using jugular venous oxygen saturation while brain tissue oxygen tension measurement allows focal brain oxygenation to be monitored. Near-infrared spectroscopy allows a non-invasive option for monitoring of regional cerebral oxygenation. Cerebral microdialysis makes focal measurements of markers of cellular metabolism and cellular injury and death possible, and it is in transition from being a research tool to being an important clinical tool in neuromonitoring. Multimodal monitoring allows different parameters of brain physiology and function to be monitored and can improve identification and prediction of secondary cerebral insults. Multimodal monitoring can potentially improve outcomes in patients with traumatic brain injury by promoting customised treatment strategies for individual patients in place of the commonplace practice of strict adherence to achieving the same standard physiological targets for every patient.
Collapse
Affiliation(s)
- Say Kiat Lee
- Department of Anaesthesiology, Singapore General Hospital, Singapore
| | | |
Collapse
|
164
|
Ashwal S, Wycliffe ND, Holshouser BA. Advanced neuroimaging in children with nonaccidental trauma. Dev Neurosci 2010; 32:343-60. [PMID: 20938158 DOI: 10.1159/000316801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/21/2010] [Indexed: 12/24/2022] Open
Abstract
Physical abuse associated with nonaccidental trauma (NAT) affects approximately 144,000 children per year in the USA and, frequently, these injuries affect the developing brain. Most infants with suspected NAT are initially evaluated by skull X-rays and computed tomography to determine whether fractures are present, the severity of the acute injury and the need for urgent neurosurgical intervention. Increasingly, magnetic resonance imaging (MRI) is conducted as it provides additional diagnostic and prognostic information about the extent and nature of the injury. In this review, we examine 4 MRI techniques as they apply to children who present acutely after NAT. Susceptibility-weighted imaging is a 3-D high-resolution MRI technique that is more sensitive than conventional imaging in detecting hemorrhagic lesions that are often associated with diffuse axonal injury (DAI). Magnetic resonance spectroscopy acquires metabolite information reflecting neuronal integrity and function from multiple brain regions and provides a sensitive, noninvasive assessment of neurochemical alterations that offers early prognostic information regarding outcome. Diffusion-weighted imaging (DWI) is based on differences in the diffusion of water molecules within the brain and has been shown to be very sensitive in the early detection of ischemic injury. It is now being used to study the direct effects of traumatic injury as well as those due to secondary ischemia. Diffusion tensor imaging is a form of DWI and allows better evaluation of white matter fiber tracts by taking advantage of the intrinsic directionality (anisotropy) of water diffusion in the human brain. It has been shown to be useful in identifying white matter abnormalities after DAI when conventional imaging appears normal. Although these imaging methods have been studied primarily in adults and children with accidental traumatic brain injury, it is clear that they have the potential to provide additional value in the imaging and clinical evaluation of children with NAT.
Collapse
Affiliation(s)
- Stephen Ashwal
- Department of Pediatrics, Division of Child Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | | | | |
Collapse
|
165
|
Chamoun R, Suki D, Gopinath SP, Goodman JC, Robertson C. Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J Neurosurg 2010; 113:564-70. [PMID: 20113156 DOI: 10.3171/2009.12.jns09689] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Authors of several studies have implied a key role of glutamate, an excitatory amino acid, in the pathophysiology of traumatic brain injury (TBI). However, the place of glutamate measurement in clinical practice and its impact on the management of TBI has yet to be elucidated. The authors' objective in the present study was to evaluate glutamate levels in TBI, analyzing the factors affecting them and determining their prognostic value. METHODS A prospective study of patients with severe TBI was conducted with an inclusion criterion of a Glasgow Coma Scale score < or = 8 within 48 hours of injury. Invasive monitoring included intracranial pressure measurements, brain tissue PO(2), jugular venous O(2) saturation, and cerebral microdialysis. Patients received standard care including mass evacuation when indicated and treatment of elevated intracranial pressure values. Demographic data, CT findings, and outcome at 6 months of follow-up were recorded. RESULTS One hundred sixty-five patients were included in the study. Initially high glutamate values were predictive of a poor outcome. The mortality rate was 30.3% among patients with glutamate levels > 20 micromol/L, compared with 18% among those with levels < or = 20 micromol/L. Two general patterns were recognized: Pattern 1, glutamate levels tended to normalize over the monitoring period (120 hours); and Pattern 2, glutamate levels tended to increase with time or remain abnormally elevated. Patients showing Pattern 1 had a lower mortality rate (17.1 vs 39.6%) and a better 6-month functional outcome among survivors (41.2 vs 20.7%). CONCLUSIONS Glutamate levels measured by microdialysis appear to have an important role in TBI. Data in this study suggest that glutamate levels are correlated with the mortality rate and 6-month functional outcome.
Collapse
Affiliation(s)
- Roukoz Chamoun
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
166
|
Klin Y, Zlotnik A, Boyko M, Ohayon S, Shapira Y, Teichberg VI. Distribution of radiolabeled l-glutamate and d-aspartate from blood into peripheral tissues in naive rats: significance for brain neuroprotection. Biochem Biophys Res Commun 2010; 399:694-8. [PMID: 20691657 DOI: 10.1016/j.bbrc.2010.07.144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 07/30/2010] [Indexed: 11/17/2022]
Abstract
Excess l-glutamate (glutamate) levels in brain interstitial and cerebrospinal fluids (ISF and CSF, respectively) are the hallmark of several neurodegenerative conditions such as stroke, traumatic brain injury or amyotrophic lateral sclerosis. Its removal could prevent the glutamate excitotoxicity that causes long-lasting neurological deficits. As in previous studies, we have established the role of blood glutamate levels in brain neuroprotection, we have now investigated the contribution of the peripheral organs to the homeostasis of glutamate in blood. We have administered naive rats with intravenous injections of either l-[1-(14)C] Glutamic acid (l-[1-(14)C] Glu), l-[G-(3)H] Glutamic acid (l-[G-(3)H] Glu) or d-[2,3-(3)H] Aspartic acid (d-[2,3-(3)H] Asp), a non-metabolized analog of glutamate, and have followed their distribution into peripheral organs. We have observed that the decay of the radioactivity associated with l-[1-(14)C] Glu and l-[G-(3)H] Glu was faster than that associated with glutamate non-metabolized analog, d-[2,3-(3)H] Asp. l-[1-(14)C] Glu was subjected in blood to a rapid decarboxylation with the loss of (14)CO(2). The three major sequestrating organs, serving as depots for the eliminated glutamate and/or its metabolites were skeletal muscle, liver and gut, contributing together 92% or 87% of total l-[U-(14)C] Glu or d-[2,3-(3)H] Asp radioactivity capture. l-[U-(14)C] Glu and d-[2,3-(3)H] Asp showed a different organ sequestration pattern. We conclude that glutamate is rapidly eliminated from the blood into peripheral tissues, mainly in non-metabolized form. The liver plays a central role in glutamate metabolism and serves as an origin for glutamate metabolites that redistribute into skeletal muscle and gut. The findings of this study suggest now that pharmacological manipulations that reduce the liver glutamate release rate or cause a boosting of the skeletal muscle glutamate pumping rate are likely to cause brain neuroprotection.
Collapse
Affiliation(s)
- Yael Klin
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
167
|
Metabolic crisis after traumatic brain injury is associated with a novel microdialysis proteome. Neurocrit Care 2010; 12:324-36. [PMID: 20225002 DOI: 10.1007/s12028-010-9342-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND To examine if the metabolic distress after traumatic brain injury (TBI) is associated with a unique proteome. METHODS Patients with severe TBI prospectively underwent cerebral microdialysis for the initial 96 h after injury. Hourly sampling of metabolism was performed and patients were categorized as having normal or abnormal metabolism as evidenced by the lactate/pyruvate ratio (LPR) threshold of 40. The microdialysate was frozen for proteomic batch processing retrospectively. We employed two different routes of proteomic techniques utilizing mass spectrometry (MS) and categorized as diagnostic and biomarker identification approaches. The diagnostic approach was aimed at finding a signature of MS peaks which can differentiate these two groups. We did this by enriching for intact peptides followed by MALDI-MS analysis. For the biomarker identification approach, we applied classical bottom-up (trypsin digestion followed by LC-MS/MS) proteomic methodologies. RESULTS Five patients were studied, 3 of whom had abnormal metabolism and 2 who had normal metabolism. By comparison, the abnormal group had higher LPR (1609 +/- 3691 vs. 15.5 +/- 6.8, P < 0.001), higher glutamate (157 +/- 84 vs. 1.8 +/- 1.4 microM, P < 0.001), and lower glucose (0.27 +/- 0.35 vs. 1.8 +/- 1.1 mmol/l, P < 0.001). The abnormal group demonstrated 13 unique proteins as compared with the normal group in the microdialysate. These proteins consisted of cytoarchitectural proteins, as well as blood breakdown proteins, and a few mitochondrial proteins. A unique as yet to be characterized peptide was found at m/z (mass/charge) 4733.5, which may represent a novel biomarker of metabolic distress. CONCLUSION Metabolic distress after TBI is associated with a differential proteome that indicates cellular destruction during the acute phase of illness. This suggests that metabolic distress has immediate cellular consequences after TBI.
Collapse
|
168
|
Regulation of blood L-glutamate levels by stress as a possible brain defense mechanism. Exp Neurol 2010; 224:465-71. [DOI: 10.1016/j.expneurol.2010.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/02/2010] [Accepted: 05/12/2010] [Indexed: 11/21/2022]
|
169
|
Homsi S, Piaggio T, Croci N, Noble F, Plotkine M, Marchand-Leroux C, Jafarian-Tehrani M. Blockade of Acute Microglial Activation by Minocycline Promotes Neuroprotection and Reduces Locomotor Hyperactivity after Closed Head Injury in Mice: A Twelve-Week Follow-Up Study. J Neurotrauma 2010; 27:911-21. [DOI: 10.1089/neu.2009.1223] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shadi Homsi
- Laboratoire de Pharmacologie de la Circulation Cérébrale (EA 2510), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Tomaso Piaggio
- Laboratoire de Pharmacologie de la Circulation Cérébrale (EA 2510), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Nicole Croci
- Laboratoire de Pharmacologie de la Circulation Cérébrale (EA 2510), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Florence Noble
- Laboratoire de Neuropsychopharmacologie des addictions (INSERM U705, CNRS UMR 7157), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Michel Plotkine
- Laboratoire de Pharmacologie de la Circulation Cérébrale (EA 2510), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Catherine Marchand-Leroux
- Laboratoire de Pharmacologie de la Circulation Cérébrale (EA 2510), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Mehrnaz Jafarian-Tehrani
- Laboratoire de Pharmacologie de la Circulation Cérébrale (EA 2510), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| |
Collapse
|
170
|
Abstract
INTRODUCTION Cerebral microdialysis is a relatively new, minimally invasive technique that permits sampling and analyzing the chemical constituents of the extracellular fluid. Although mainly used as a research tool, it is also used in the neurointensive care, in combination with other monitoring methods, in patients with severe traumatic brain injury and subarachnoid hemorrhage. Its main clinical utility is the identification of markers of ischemia and cell damage with the ultimate goal of preventing any secondary insults to the brain by instituting early appropriate treatment measures. With few exceptions, all the available data on intracerebral microdialysis in humans comes from studies performed in adults. OBJECTIVE The purpose of this report is to provide a brief review of the intracerebral microdialysis studies performed in children. CONCLUSION Differences in trends of concentrations of structural and excitatory amino acids have been identified in children, in comparison to those observed in adults, the significance of which remains unknown at present.
Collapse
|
171
|
Sarrafzadeh AS, Nagel A, Czabanka M, Denecke T, Vajkoczy P, Plotkin M. Imaging of hypoxic-ischemic penumbra with (18)F-fluoromisonidazole PET/CT and measurement of related cerebral metabolism in aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 2010; 30:36-45. [PMID: 19773799 PMCID: PMC2949093 DOI: 10.1038/jcbfm.2009.199] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study aimed to characterize hypoxic, but salvageable, tissue imaged by (18)F-fluoromisonidazole ((18)F-FMISO), combining with perfusion-computed tomography (PCT) for regional cerebral blood flow (rCBF) measurement and metabolism by microdialysis (MD) in aneurysmal subarachnoidal hemorrhage (SAH) patients. (18)F-FMISO positron-emission tomography (PET)/CT was performed within the period of possible vasospasm (day 6.8+/-3 after SAH) in seven SAH patients. In parallel, rCBF was determined within the MD region of interest (MD-ROI) (n=5). The MD catheter was inserted into the brain parenchyma with highest risk for ischemia; extracellular levels of glutamate and energy metabolites were registered at time of PET and hourly for 10 days. Twelve-month outcome was evaluated. In asymptomatic patients (n=3) no hypoxia was detected and glutamate levels were low (<10 mmol/L), whereas symptomatic patients had higher glutamate concentrations (P<0.001). Increased (18)F-FMISO uptake within the MD-ROI (n=3) was related to higher glutamate levels, while rCBF was above the ischemic range. Hypoxia (increased (18)F-FMISO uptake) was present in symptomatic patients and associated with relevant metabolic derangement of extracellular glutamate levels, whereas energy metabolism and rCBF were preserved. This technique has the potential to improve our understanding of the role of cellular hypoxia in aneurysmal SAH.
Collapse
Affiliation(s)
- Asita S Sarrafzadeh
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
172
|
Adeleye A, Shohami E, Nachman D, Alexandrovich A, Trembovler V, Yaka R, Shoshan Y, Dhawan J, Biegon A. D-cycloserine improves functional outcome after traumatic brain injury with wide therapeutic window. Eur J Pharmacol 2009; 629:25-30. [PMID: 19958766 DOI: 10.1016/j.ejphar.2009.11.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/15/2009] [Accepted: 11/24/2009] [Indexed: 02/02/2023]
Abstract
It has been long thought that hyperactivation of N-methyl-D-aspartate (NMDA) receptors underlies neurological decline after traumatic brain injury. However, all clinical trials with NMDA receptor antagonists failed. Since NMDA receptors are down-regulated from 4h to 2weeks after brain injury, activation at 24h, rather than inhibition, of these receptors, was previously shown to be beneficial in mice. Here, we tested the therapeutic window, dose regimen and mechanism of action of the NMDA receptor partial agonist D-cycloserine (DCS) in traumatic brain injury. Male mice were subjected to trauma using a weight-drop model, and administered 10mg/kg (i.p.) DCS or vehicle once (8, 16, 24, or 72h) twice (24 and 48h) or three times (24, 48 and 72h). Functional recovery was assessed for up to 60days, using a Neurological Severity Score that measures neurobehavioral parameters. In all groups in which treatment was begun at 24 or 72h neurobehavioral function was significantly better than in the vehicle-treated groups. Additional doses, on days 2 and 3 did not further improve recovery. Mice treated at 8h or 16h post injury did not differ from the vehicle-treated controls. Co-administration of the NMDA receptor antagonist MK-801 completely blocked the protective effect of DCS given at 24h. Infarct volume measured by 2,3,5-triphenyltetrazolium chloride staining at 48h or by cresyl violet at 28days was not affected by DCS treatment. Since DCS is used clinically for other indications, the present study offers a novel approach for treating human traumatic brain injury with a therapeutic window of at least 24h.
Collapse
Affiliation(s)
- Amos Adeleye
- Department of Pharmacology, The Hebrew University School of Pharmacy, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Schlosser HG, Lindemann JN, Vajkoczy P, Clarke AH. Vestibulo-ocular monitoring as a predictor of outcome after severe traumatic brain injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R192. [PMID: 19948056 PMCID: PMC2811919 DOI: 10.1186/cc8187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 09/23/2009] [Accepted: 11/30/2009] [Indexed: 11/22/2022]
Abstract
Introduction Based on the knowledge that traumatic brainstem damage often leads to alteration in brainstem functions, including the vestibulo-ocular reflex, the present study is designed to determine whether prediction of outcome in the early phase after severe traumatic brain injury is possible by means of vestibulo-ocular monitoring. Methods Vestibulo-ocular monitoring is based on video-oculographic recording of eye movements during galvanic labyrinth polarization. The integrity of vestibulo-ocular reflex is determined from the eye movement response during vestibular galvanic labyrinth polarization stimulation. Vestibulo-ocular monitoring is performed within three days after traumatic brain injury and the oculomotor response compared to outcome after six months (Glasgow Outcome Score). Results Twenty-seven patients underwent vestibulo-ocular monitoring within three days after severe traumatic brain injury. One patient was excluded from the study. In 16 patients oculomotor response was induced, in the remaining 11 patients no oculomotor response was observed. The patients' outcome was classified as Glasgow Outcome Score 1-2 or as Glasgow Outcome Score 3 to 5. Statistical testing supported the hypothesis that those patients with oculomotor response tended to recover (exact two-sided Fisher-Test (P < 10-3)). Conclusions The results indicate that vestibulo-ocular monitoring with galvanic labyrinth polarization performed during the first days after traumatic brain injury helps to predict favourable or unfavourable outcome. As an indicator of brainstem function, vestibulo-ocular monitoring provides a useful, complementary approach to the identification of brainstem lesions by imaging techniques.
Collapse
Affiliation(s)
- Hans-Georg Schlosser
- Department of Neurosurgery, Universitätsmedizin Berlin, Charité - Campus Virchow Klinikum, Berlin 13353, Germany.
| | | | | | | |
Collapse
|
174
|
Yu Z, Morrison B. Experimental mild traumatic brain injury induces functional alteration of the developing hippocampus. J Neurophysiol 2009; 103:499-510. [PMID: 19923245 DOI: 10.1152/jn.00775.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is estimated that approximately 1.5 million Americans suffer a traumatic brain injury (TBI) every year, of which approximately 80% are considered mild injuries. Because symptoms caused by mild TBI last less than half an hour by definition and apparently resolve without treatment, the study of mild TBI is often neglected resulting in a significant knowledge gap for this wide-spread problem. In this work, we studied functional (electrophysiological) alterations of the neonatal/juvenile hippocampus after experimental mild TBI. Our previous work reported significant cell death after in vitro injury >10% biaxial deformation. Here we report that biaxial deformation as low as 5% affected neuronal function during the first week after in vitro mild injury of hippocampal slice cultures. These results suggest that even very mild mechanical events may lead to a quantifiable neuronal network dysfunction. Furthermore, our results highlight that safe limits of mechanical deformation or tolerance criteria may be specific to a particular outcome measure and that neuronal function is a more sensitive measure of injury than cell death. In addition, the age of the tissue at injury was found to be an important factor affecting posttraumatic deficits in electrophysiological function, indicating a relationship between developmental status and vulnerability to mild injury. Our findings suggest that mild pediatric TBI could result in functional deficits that are more serious than currently appreciated.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave., 351 Engineering Terrace, New York, NY 10027, USA
| | | |
Collapse
|
175
|
Nagy D, Marosi M, Kis Z, Farkas T, Rakos G, Vecsei L, Teichberg VI, Toldi J. Oxaloacetate decreases the infarct size and attenuates the reduction in evoked responses after photothrombotic focal ischemia in the rat cortex. Cell Mol Neurobiol 2009; 29:827-35. [PMID: 19259807 PMCID: PMC11506091 DOI: 10.1007/s10571-009-9364-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 02/10/2009] [Indexed: 01/10/2023]
Abstract
A traumatic brain injury or a focal brain lesion is followed by acute excitotoxicity caused by the presence of abnormally high glutamate (Glu) levels in the cerebrospinal and interstitial fluids. It has recently been demonstrated that this excess Glu in the brain can be eliminated into the blood following the intravenous administration of oxaloacetate (OxAc), which, by scavenging the blood Glu, induces an enhanced and neuroprotective brain-to-blood Glu efflux. In this study, we subjected rats to a photothrombotic lesion and treated them after the illumination with a single 30-min-long administration of OxAc (1.2 mg/100 g, i.v.). Following induction of the lesion, we measured the infarct size and the amplitudes of the somatosensory evoked potentials (SEPs) as recorded from the skull surface. The photothrombotic lesion resulted in appreciably decreased amplitudes of the evoked potentials, but OxAc administration significantly attenuated this reduction, and also the infarct size assessed histologically. We suggest that the neuroprotective effects of OxAc are due to its blood Glu-scavenging activity, which, by increasing the brain-to-blood Glu efflux, reduces the excess Glu responsible for the anatomical and functional correlates of the ischemia, as evaluated by electrophysiological evoked potential (EP) measurements.
Collapse
Affiliation(s)
- David Nagy
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Nagel A, Graetz D, Vajkoczy P, Sarrafzadeh AS. Decompressive craniectomy in aneurysmal subarachnoid hemorrhage: relation to cerebral perfusion pressure and metabolism. Neurocrit Care 2009; 11:384-94. [PMID: 19714498 DOI: 10.1007/s12028-009-9269-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 08/13/2009] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Outcome is poor in aneurysmal subarachnoid hemorrhage (SAH) patients with intracranial hypertension. As one treatment option for increased intracranial pressure (ICP), decompressive craniectomy (DC) is discussed. Its impact on cerebral metabolism and outcome in SAH patients is evaluated in this pilot study. METHODS A prospectively collected database of cerebral metabolism in SAH patients was analyzed retrospectively for individuals developing high ICP (>20 mmHg > 6 h/day, n = 18). Patients with intracranial hypertension were classified into groups with (n = 7) and without DC (n = 11). An age-matched control group was established (n = 89). Cerebral perfusion pressure (CPP) and high ICP treatment were analyzed for 7 days after SAH (or 72 h after craniectomy, respectively). Cerebral microdialysates were analyzed hourly. Twelve-month outcome was evaluated. RESULTS Groups were comparable for age, WFNS grade, and outcome. ICP was significantly reduced by DC (P < 0.01), however, in 43% of patients the effect was transient. An increase in the lactate/pyruvate ratio (P < 0.001) and glycerol levels (>200 muM) was observed before DC. In the DC group, glucose (P = 0.005) and pyruvate (P = 0.04) were higher, while glycerol levels were lower (P = 0.007) compared to the non-DC group, reflecting better aerobic glucose utilization and reduced cellular stress. CONCLUSION Outcome was poor in all SAH patients with intracranial hypertension. Although glucose utilization was improved after DC, no improvement in outcome could be shown for this small patient population. Future studies will have to demonstrate whether markers of cerebral crisis may support the decision for DC in aneurysmal SAH patients.
Collapse
Affiliation(s)
- Alexandra Nagel
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
177
|
Nagel A, Graetz D, Schink T, Frieler K, Sakowitz O, Vajkoczy P, Sarrafzadeh A. Relevance of intracranial hypertension for cerebral metabolism in aneurysmal subarachnoid hemorrhage. Clinical article. J Neurosurg 2009; 111:94-101. [PMID: 19284237 DOI: 10.3171/2009.1.jns08587] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECT Intracranial hypertension, defined as intracranial pressure (ICP) >/= 20 mm Hg, is a complication typically associated with head injury. Its impact on cerebral metabolism, ICP therapy, and outcome has rarely been studied in patients with aneurysmal subarachnoid hemorrhage (aSAH); such an assessment is the authors' goal in the present study. METHODS Cerebral metabolism was prospectively studied in 182 patients with aSAH. The database was retrospectively analyzed with respect to ICP. Patients were classified into 2 groups based on ICP. There were 164 with low ICP (<20 mm Hg) and 18 with high ICP (>or=20 mm Hg, measured>6 hours/day). Cerebral microdialysis parameters of energy metabolism, glycerol, and glutamate levels were analyzed hourly from the brain parenchyma of interest for 7 days. The 12-month outcome in these patients was evaluated. RESULTS In the high ICP group, extended ICP therapy including decompressive craniectomy was necessary in 7 patients (39%). Cerebral glycerol levels and the lactate/pyruvate ratio were pathologically increased on Days 1-7 after aSAH (p<0.001). The excitotoxic neurotransmitter glutamate and glycerol, a marker of membrane degradation, further increased on Days 5-7, probably reflecting the development of secondary brain damage. An ICP>or=20 mm Hg was shown to have a significant influence on the 12-month Glasgow Outcome Scale (GOS) score (p=0.001) and was a strong predictor of mortality (OR=24.6; p<0.001). Glutamate (p=0.012), the lactate/pyruvate ratio as a marker of anaerobic metabolism (p=0.028), age (p<0.001), and Fisher grade (p=0.001) also influenced the GOS score at 12 months. CONCLUSIONS The authors confirmed the relevance of intracranial hypertension as a severe complication in patients with aSAH. Because high ICP is associated with a severely deranged cerebral metabolism and poor outcome, future studies focusing on metabolism-guided, optimized ICP therapy could help minimize secondary brain damage and improve prognosis in patients with aSAH.
Collapse
Affiliation(s)
- Alexandra Nagel
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
178
|
The Neuroprotective Effects of Oxaloacetate in Closed Head Injury in Rats is Mediated by its Blood Glutamate Scavenging Activity. J Neurosurg Anesthesiol 2009; 21:235-41. [DOI: 10.1097/ana.0b013e3181a2bf0b] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
179
|
Scafidi S, O'Brien J, Hopkins I, Robertson C, Fiskum G, McKenna M. Delayed cerebral oxidative glucose metabolism after traumatic brain injury in young rats. J Neurochem 2009; 109 Suppl 1:189-97. [PMID: 19393027 PMCID: PMC2692097 DOI: 10.1111/j.1471-4159.2009.05896.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Traumatic brain injury (TBI) results in a cerebral metabolic crisis that contributes to poor neurologic outcome. The aim of this study was to characterize changes in oxidative glucose metabolism in early periods after injury in the brains of immature animals. At 5 h after controlled cortical impact TBI or sham surgery to the left cortex, 21-22 day old rats were injected intraperitoneally with [1,6-13C]glucose and brains removed 15, 30 and 60 min later and studied by ex vivo 13C-NMR spectroscopy. Oxidative metabolism, determined by incorporation of 13C into glutamate, glutamine and GABA over 15-60 min, was significantly delayed in both hemispheres of brain from TBI rats. The most striking delay was in labeling of the C4 position of glutamate from neuronal metabolism of glucose in the injured, ipsilateral hemisphere which peaked at 60 min, compared with the contralateral and sham-operated brains, where metabolism peaked at 30 and 15 min, respectively. Our findings indicate that (i) neuronal-specific oxidative metabolism of glucose at 5-6 h after TBI is delayed in both injured and contralateral sides compared with sham brain; (ii) labeling from metabolism of glucose via the pyruvate carboxylase pathway in astrocytes was also initially delayed in both sides of TBI brain compared with sham brain; (iii) despite this delayed incorporation, at 6 h after TBI, both sides of the brain showed apparent increased neuronal and glial metabolism, reflecting accumulation of labeled metabolites, suggesting impaired malate aspartate shuttle activity. The presence of delayed metabolism, followed by accumulation of labeled compounds is evidence of severe alterations in homeostasis that could impair mitochondrial metabolism in both ipsilateral and contralateral sides of brain after TBI. However, ongoing oxidative metabolism in mitochondria in injured brain suggests that there is a window of opportunity for therapeutic intervention up to at least 6 h after injury.
Collapse
Affiliation(s)
- Susanna Scafidi
- Department of Pediatrics, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
180
|
Besson VC. Drug targets for traumatic brain injury from poly(ADP-ribose)polymerase pathway modulation. Br J Pharmacol 2009; 157:695-704. [PMID: 19371326 DOI: 10.1111/j.1476-5381.2009.00229.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The deleterious pathophysiological cascade induced after traumatic brain injury (TBI) is initiated by an excitotoxic process triggered by excessive glutamate release. Activation of the glutamatergic N-methyl-D-aspartate receptor, by increasing calcium influx, activates nitric oxide (NO) synthases leading to a toxic production of NO. Moreover, after TBI, free radicals are highly produced and participate to a deleterious oxidative stress. Evidence has showed that the major toxic effect of NO comes from its combination with superoxide anion leading to peroxynitrite formation, a highly reactive and oxidant compound. Indeed, peroxynitrite mediates nitrosative stress and is a potent inducer of cell death through its reaction with lipids, proteins and DNA. Particularly DNA damage, caused by both oxidative and nitrosative stresses, results in activation of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme implicated in DNA repair. In response to excessive DNA damage, massive PARP activation leads to energetic depletion and finally to cell death. Since 10 years, accumulating data have showed that inactivation of PARP, either pharmacologically or using PARP null mice, induces neuroprotection in experimental models of TBI. Thus TBI generating NO, oxidative and nitrosative stresses promotes PARP activation contributing in post-traumatic motor, cognitive and histological sequelae. The mechanisms by which PARP inhibitors provide protection might not entirely be related to the preservation of cellular energy stores, but might also include other PARP-mediated mechanisms that needed to be explored in a TBI context. Ten years of experimental research provided rational basis for the development of PARP inhibitors as treatment for TBI.
Collapse
Affiliation(s)
- Valerie C Besson
- Equipe de Recherche 'Pharmacologie de la Circulation Cérébrale' (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France.
| |
Collapse
|
181
|
Alessandri B, Gugliotta M, Levasseur JE, Bullock MR. Lactate and glucose as energy substrates and their role in traumatic brain injury and therapy. FUTURE NEUROLOGY 2009. [DOI: 10.2217/14796708.4.2.209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traumatic brain injury is a leading cause of disability and mortality worldwide, but no new pharmacological treatments are clinically available. A key pathophysiological development in the understanding of traumatic brain injury is the energy crisis derived from decreased cerebral blood flow, increased energy demand and mitochondrial dysfunction. Although still controversial, new findings suggest that brain cells try to cope in these conditions by metabolizing lactate as an energy substrate ‘on-demand’ in lieu of glucose. Experimental and clinical data suggest that lactate, at least when exogenously administered, is transported from astrocytes to neurons for neuronal utilization, essentially bypassing the slow, catabolizing glycolysis process to quickly and efficiently produce ATP. Treatment strategies using systemically applied lactate have proved to be protective in various experimental traumatic brain injury studies. However, lactate has the potential to elevate oxygen consumption to high levels and, therefore, could potentially impose a danger for tissue-at-risk with low cerebral blood flow. The present review outlines the experimental basis of lactate in energy metabolism under physiological and pathophysiological conditions and presents arguments for lactate as a new therapeutical tool in human head injury.
Collapse
Affiliation(s)
- Beat Alessandri
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Marinella Gugliotta
- Department of Neurosurgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Joseph E Levasseur
- Department of Neurosurgery, VCU Medical Center, PO Box 980631, Richmond, VA 23298, USA
| | - M Ross Bullock
- Department of Neurosurgery, University of Miami Miller School of Medicine, Lois Pope LIFE Center, Room 3–20, 1095 NW 14th Terrace, Miami, FL 33136, USA
| |
Collapse
|
182
|
Veenith T, Goon SS, Burnstein RM. Molecular mechanisms of traumatic brain injury: the missing link in management. World J Emerg Surg 2009; 4:7. [PMID: 19187555 PMCID: PMC2646711 DOI: 10.1186/1749-7922-4-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Accepted: 02/02/2009] [Indexed: 11/17/2022] Open
Abstract
Head injury is common, sometimes requires intensive care unit admission, and is associated with significant mortality and morbidity. A gap still remains in the understanding of the molecular mechanism of this condition. This review is aimed at providing a general overview of the molecular mechanisms involved in traumatic brain injury to a busy clinician. It will encompass the pathophysiology in traumatic brain injury including apoptosis, the role of molecules and genes, and a brief mention of possible pharmacological therapies.
Collapse
Affiliation(s)
- Tonny Veenith
- Department of Anaesthesia and Intensive Care, Cambridge University Hospitals NHS Trust Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | | | | |
Collapse
|
183
|
Aslan A, Gurelik M, Cemek M, Goksel HM, Buyukokuroglu ME. Nimodipine can improve cerebral metabolism and outcome in patients with severe head trauma. Pharmacol Res 2009; 59:120-4. [PMID: 18996202 DOI: 10.1016/j.phrs.2008.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/09/2008] [Accepted: 10/09/2008] [Indexed: 11/28/2022]
Affiliation(s)
- Adem Aslan
- Afyon Kocatepe University, Faculty of Medicine, Department of Neurosurgery, Ali Cetinkaya Kampusu, TR-03200 Afyonkarahisar, Turkey.
| | | | | | | | | |
Collapse
|
184
|
Hutchinson PJ, O'Connell MT, Seal A, Nortje J, Timofeev I, Al-Rawi PG, Coles JP, Fryer TD, Menon DK, Pickard JD, Carpenter KLH. A combined microdialysis and FDG-PET study of glucose metabolism in head injury. Acta Neurochir (Wien) 2009; 151:51-61; discussion 61. [PMID: 19099177 DOI: 10.1007/s00701-008-0169-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 10/14/2008] [Indexed: 11/27/2022]
Abstract
BACKGROUND Microdialysis continuously monitors the chemistry of a small focal volume of the cerebral extracellular space. Positron emission tomography (PET) establishes metabolism of the whole brain but only for the scan's duration. This study's objective was to apply these techniques together, in patients with traumatic brain injury, to assess the relationship between microdialysis (extracellular glucose, lactate, pyruvate, and the lactate/pyruvate (L/P) ratio as a marker of anaerobic metabolism) and PET parameters of glucose metabolism using the glucose analogue [(18)F]-fluorodeoxyglucose (FDG). In particular, we aimed to determine the fate of glucose in terms of differential metabolism to pyruvate and lactate. MATERIALS AND METHODS Microdialysis catheters (CMA70 or CMA71) were inserted into the cerebral cortex of 17 patients with major head injury. Microdialysis was performed during FDG-PET scans with regions of interest for PET analysis defined by the location of the gold-tipped microdialysis catheter. Microdialysate analysis was performed on a CMA600 analyser. FINDINGS There was significant linear relationship between the PET-derived parameter of glucose metabolism (regional cerebral metabolic rate of glucose; CMRglc) and levels of lactate (r = 0.778, p < 0.0001) and pyruvate (r = 0.799, p < 0.0001), but not with the L/P ratio. CONCLUSION The results suggest that in this population of patients, glucose was metabolised to both lactate and pyruvate, but was not associated with an increase in the L/P ratio. This suggests an increase in glucose metabolism to both lactate and pyruvate, as opposed to a shift towards anaerobic metabolism.
Collapse
Affiliation(s)
- Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Teichberg V, Cohen-Kashi-Malina K, Cooper I, Zlotnik A. Homeostasis of glutamate in brain fluids: An accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience 2009; 158:301-8. [DOI: 10.1016/j.neuroscience.2008.02.075] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 02/26/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
|
186
|
Rodríguez-Navarro JA, Gonzalo-Gobernado R, Herranz AS, Gonźlez-Vigueras JM, Solís JM. High potassium induces taurine release by osmosensitive and osmoresistant mechanisms in the rat hippocampus in vivo. J Neurosci Res 2009; 87:208-17. [DOI: 10.1002/jnr.21818] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
187
|
Marosi M, Fuzik J, Nagy D, Rákos G, Kis Z, Vécsei L, Toldi J, Ruban-Matuzani A, Teichberg VI, Farkas T. Oxaloacetate restores the long-term potentiation impaired in rat hippocampus CA1 region by 2-vessel occlusion. Eur J Pharmacol 2008; 604:51-7. [PMID: 19135048 DOI: 10.1016/j.ejphar.2008.12.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 11/20/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
Various acute brain pathological conditions are characterized by the presence of elevated glutamate concentrations in the brain interstitial fluids. It has been established that a decrease in the blood glutamate level enhances the brain-to-blood efflux of glutamate, removal of which from the brain may prevent glutamate excitotoxicity and its contribution to the long-lasting neurological deficits seen in stroke. A decrease in blood glutamate level can be achieved by exploiting the glutamate-scavenging properties of the blood-resident enzyme glutamate-oxaloacetate transaminase, which transforms glutamate into 2-ketoglutarate in the presence of the glutamate co-substrate oxaloacetate. The present study had the aim of an evaluation of the effects of the blood glutamate scavenger oxaloacetate on the impaired long-term potentiation (LTP) induced in the 2-vessel occlusion ischaemic model in rat. Transient (30-min) incomplete forebrain ischaemia was produced 72 h before LTP induction. Although the short transient brain hypoperfusion did not induce histologically identifiable injuries in the CA1 region (Fluoro-Jade B, S-100 and cresyl violet), it resulted in an impaired LTP function in the hippocampal CA1 region without damaging the basal synaptic transmission between the Schaffer collaterals and the pyramidal neurons. This impairment could be fended off in a dose-dependent manner by the intravenous administration of oxaloacetate in saline (at doses between 1.5 mmol and 0.1 mumol) immediately after the transient hypoperfusion. Our results suggest that oxaloacetate-mediated blood and brain glutamate scavenging contributes to the restoration of the LTP after its impairment by brain ischaemia.
Collapse
Affiliation(s)
- Máté Marosi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Timaru-Kast R, Meissner A, Heimann A, Hoelper B, Kempski O, Alessandri B. Acute subdural hematoma in pigs: role of volume on multiparametric neuromonitoring and histology. J Neurotrauma 2008; 25:1107-19. [PMID: 18771396 DOI: 10.1089/neu.2008.0517] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) is often complicated by acute subdural hemorrhage (ASDH) with a high mortality rate. The pathophysiological mechanisms behind such an injury type and the contribution of blood to the extent of an injury remain poorly understood. Therefore, the goals of this study were to establish a porcine ASDH model in order to investigate pathomechanisms of ASDH and to compare effects induced by blood or sheer volume. Thus, we infused 2, 5, and 9 mL of blood (up to 15% of intracranial volume), and we compared a 5-mL blood and paraffin oil volume to separate out effects of extravasated blood on brain tissue. An extended neuromonitoring was applied that lasted up to 12 h after injury and included intracranial pressure (ICP), cerebral perfusion pressure (CPP), tissue oxygen concentration (ptiO(2)), biochemical markers (glutamate, lactate), somatosensory evoked potentials (SEP), brain water content, and histological assessment (Lesion Index [LI]). Volume-dependent changes were detected mainly during the first hours after injury. ICP increased to significant levels (p < 0.05) of 36.89 +/- 1.59, 15.52 +/- 0.48, and 11.25 +/- 0.35 mm Hg after 9, 5, and 2 mL of subdural blood, respectively (sham, 4.85 +/- 0.06 mm Hg). The ptiO(2) dropped drastically after 9 mL of subdural blood without recovery in both hemispheres to below 20% of baseline, but was affected little after 2 and 5 mL in the acute monitoring period (maximal drop to 71% of baseline). Later, 5 mL of blood led to a significant increase of ptiO(2) compared to 2 mL ipsilaterally (p < 0.05). Glutamate and lactate showed a comparable pattern with a long-lasting increase after 9 mL of blood and short-lasting changes after 2 and 5 mL. The two smaller volumes caused an increased brain swelling (2 mL, 80.60 +/- 0.34%; 5 mL, 81.20 +/- 0.66%; p < 0.05 vs. sham), a significant LI (sham, 6.4 +/- 1.4; 2 mL, 30.0 +/- 0.95; 5 mL, 32.1 +/- 1.2; p < 0.05 vs. sham), and a reduced SEP amplitude (5 mL, p < 0.05 vs. baseline) at the end of the experiment. A 9-mL led to herniation during the experiment causing dramatical brain swelling and acute histological damage. Comparison of blood volume with paraffin oil showed no significance, indicating that volume alone determines the acute pathophysiological processes leading to a rapidly developing histological damage. Additional effects due to blood contact with brain tissue (e.g., inflammation) may be detected only at later time points (>12 h).
Collapse
Affiliation(s)
- Ralph Timaru-Kast
- Institute for Neurosurgical Pathophysiology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
189
|
Mathai KI, Sasivadanan MS, Sudumbraker S, Sahoo PK. Post traumatic epilepsy. An analysis of 12 cases. INDIAN JOURNAL OF NEUROTRAUMA 2008. [DOI: 10.1016/s0973-0508(08)80007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
AbstractAn analysis of the mechanism of epilepsy and epileptogenesis after traumatic brain injury will give us an insight into neural circuitry. In a retrospective analysis of 48 cases of moderate and severe traumatic brain injury, who reported for follow up to our centre over a period of two years. Of these, 12 patients with post traumatic epilepsy were identified. The risk factors, EEG patterns and the quality of control were analyzed. The pathophysiology and paradigms of management have been discussed.
Collapse
|
190
|
Abstract
BACKGROUND Acute traumatic brain injury is a leading cause of death and disability in young adults. Numerous pharmacological and non-pharmacological tools have been investigated and considered as potential mechanisms for improving neurological outcome. Magnesium has been considered as one of these potential therapeutic tools because of its activity on NMDA-receptors, calcium channels and neuron membranes. Animal studies have indicated a beneficial effect of magnesium on outcome after brain injury, but its efficacy in humans is unknown. OBJECTIVES To quantify the effect of magnesium administration on mortality and morbidity in patients with acute traumatic brain injury. SEARCH STRATEGY We searched the Cochrane Injuries Group's specialised register, Cochrane Central Register of Controlled Trials, CENTRAL (The Cochrane Library issue 2, 2008), MEDLINE (and PubMed to 28 May, 2008: last 60 days), EMBASE, National Research Register, Current Controlled Trials, SIGLE, LILACS, and Zetoc. Searches were initially conducted in July 2005. The latest search was conducted in May 2008. SELECTION CRITERIA We included all randomized controlled trials comparing any magnesium salt with no magnesium or with placebo, in patients following acute traumatic brain injury. DATA COLLECTION AND ANALYSIS Two authors independently screened search results and assessed the full texts of potentially relevant studies for inclusion. Data were extracted and methodological quality was examined. MAIN RESULTS Four studies met the inclusion criteria; one of which is an ongoing study. Data from three studies were included in the analysis. Data on mortality were only available in one study; RR 1.48 [1.00, 2.19], Test for overall effect: Z = 1.96 (P = 0.05). Glasgow Outcome Score at six months was described in the three studies. The Mean Difference = 0.02 (95% CI -0.38 to 0.041), Test for overall effect: Z = 0.08 (P = 0.94). AUTHORS' CONCLUSIONS There is currently no evidence to support the use of magnesium salts in patients with acute traumatic brain injury.
Collapse
Affiliation(s)
- Miguel F Arango
- Department of Anesthesia and Perioperative Medicine, University of Western Ontario, University Hospital, London, Ontario, Canada.
| | | |
Collapse
|
191
|
Brain metabolic and hemodynamic effects of cyclosporin A after human severe traumatic brain injury: a microdialysis study. Acta Neurochir (Wien) 2008; 150:1019-31; discussion 1031. [PMID: 18781275 DOI: 10.1007/s00701-008-0021-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 07/18/2008] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mitochondrial dysfunction is a major limiting factor in neuronal recovery following traumatic brain injury. Cyclosporin A (CsA) has been recently proposed for use in the early phase after severe head injury, for its ability to preserve mitochondrial bioenergetic state, potentially exerting a neuroprotective effect. The aim of this study was, therefore, to evaluate the effect of CsA on brain energy metabolism, as measured by cerebral microdialysis, and on cerebral hemodynamics, in a group of severely head injured patients. METHODS Fifty adult patients with a severe head injury were enrolled in this randomized, double-blind, placebo-controlled study. Patients received 5 mg/kg of CsA over 24 h, or placebo, within 12 h of the injury. A microdialysis probe was placed in all patients, who were managed according to standard protocols for the treatment of severe head injury. FINDINGS The most robust result of this study was that, over most of the monitoring period, brain dialysate glucose was significantly higher in the CsA treated patients than in placebo. Both lactate and pyruvate were also significantly higher in the CsA group. Glutamate concentration and lactate/pyruvate ratio were significantly higher in the placebo group than in CsA treated patients, respectively 1 to 2 days, and 2 to 3 days after the end of the 24-h drug infusion. The administration of CsA was also associated with a significant increase in mean arterial pressure (MAP) and cerebral perfusion pressure (CPP). CONCLUSIONS The administration of CsA in the early phase after head injury resulted in significantly higher extracellular fluid glucose and pyruvate, which may be evidence of a beneficial effect. The early administration of CsA was also associated with a significant increase in MAP and CPP and such a potentially beneficial hemodynamic effect might contribute to a neuroprotective effect.
Collapse
|
192
|
Marcoux J, McArthur DA, Miller C, Glenn TC, Villablanca P, Martin NA, Hovda DA, Alger JR, Vespa PM. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med 2008; 36:2871-7. [PMID: 18766106 DOI: 10.1097/ccm.0b013e318186a4a0] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine whether persistent metabolic dysfunction in normal-appearing frontal lobe tissue is correlated with long-term tissue atrophy. DESIGN Prospective monitoring with retrospective data analysis. SETTING Single-center academic neurointensive care unit. PATIENTS Fifteen patients with moderate to severe traumatic brain injury (Glasgow Coma Scale score 3-12). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Hourly cerebral microdialysis was performed for the initial 96 hrs after trauma to determine extracellular levels of glucose, glutamate, glycerol, lactate, and pyruvate in normal appearing frontal lobes. Six months after injury, the anatomical outcome was assessed by measures of global and regional cerebral atrophy using volumetric brain magnetic resonance imaging. The lactate/pyruvate ratio was elevated >40 after traumatic brain injury in most patients, with a mean percent time of 32 +/- 29% of hours monitored. At 6 months after traumatic brain injury, there was a mean frontal lobe atrophy of 12 +/- 11% and global brain atrophy of 8.5 +/- 4.5%. The percentage of time of elevated lactate/pyruvate ratio correlated with the extent of frontal lobe brain atrophy (r = -.56, p < 0.01), but not global brain atrophy (r = -.31, p = 0.20). The predictive effect of lactate/pyruvate ratio was independent of patient age, Glasgow Coma Scale score, and volume of frontal lobe contusion. CONCLUSION Persistent metabolic crisis, as reflected by an elevated lactate/pyruvate ratio, in normal appearing posttraumatic frontal lobe, is predictive of the degree of tissue atrophy at 6 months.
Collapse
Affiliation(s)
- Judith Marcoux
- Department of Neurosurgery, Montreal Neurologic Institute, Montréal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Aoyama N, Lee SM, Moro N, Hovda DA, Sutton RL. Duration of ATP reduction affects extent of CA1 cell death in rat models of fluid percussion injury combined with secondary ischemia. Brain Res 2008; 1230:310-9. [PMID: 18657524 PMCID: PMC2581618 DOI: 10.1016/j.brainres.2008.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 07/02/2008] [Indexed: 11/27/2022]
Abstract
Secondary ischemia (SI) following traumatic brain injury (TBI) increases damage to the brain in both animals and humans. The current study determined if SI after TBI alters the extent or duration of reduced energy production within the first 24 h post-injury and hippocampal cell loss at one week post-injury. Adult male rats were subjected to sham injury, lateral (LFPI) or central fluid percussion injury (CFPI) only, or to combined LFPI or CFPI with SI. The SI was 8 min of bilateral forebrain ischemia combined with hemorrhagic hypotension, applied at 1 h following FPI. After LFPI alone adenosine triphosphate (ATP) levels within the ipsilateral CA1 were reduced at 2 h (p < 0.05) and subsequently recovered. After LFPI+SI the ATP reductions in CA1 ipsilateral to FPI persisted for 24 h (p < 0.01). ATP levels in the contralateral CA1 were not affected by LFPI alone or LFPI+SI. After CFPI alone CA1 ATP levels were depressed bilaterally only at 2 h (p < 0.05). Similar to the LFPI paradigm, CFPI+SI reduced ATP levels for 24 h (p < 0.01), with bilateral ATP reductions seen after CFPI+SI. Cell counts in the CA1 region at 7 days post-injury revealed no significant neuronal cell loss after LFPI or CFPI alone. Significant neuronal cell loss was present only within the ipsilateral (p < 0.001) CA1 after LFPI+SI, but cell loss was bilateral (p < 0.001) after CFPI+SI. Thus, SI prolongs ATP reductions induced by LFPI and CFPI within the CA1 region and this SI-induced energy reduction appears to adversely affect regional neuronal viability.
Collapse
Affiliation(s)
- Naoki Aoyama
- UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California at Los Angeles
- Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles
| | - Stefan M. Lee
- UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California at Los Angeles
- Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles
| | - Nobuhiro Moro
- UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California at Los Angeles
- Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles
| | - David A. Hovda
- UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California at Los Angeles
- Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles
| | - Richard L. Sutton
- UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California at Los Angeles
- Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles
| |
Collapse
|
194
|
Turkoglu OF, Eroglu H, Okutan O, Gurcan O, Bodur E, Sargon MF, Oner L, Beskonakl i E. Atorvastatin efficiency after traumatic brain injury in rats. ACTA ACUST UNITED AC 2008; 72:146-52; discussion 152. [PMID: 18786717 DOI: 10.1016/j.surneu.2008.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 07/07/2008] [Indexed: 11/17/2022]
Abstract
BACKGROUND The neuroprotective effects of statins possibly depend on their pleiotropic effect such as antioxidative and anti-inflammatory properties. In this study, we have evaluated the efficiency of atorvastatin on brain edema, lipid peroxidation, and ultrastructural changes in TBI animal model. METHODS Modified Feeney method has been used for the trauma model in rats. Only craniectomy for group A and trauma after craniectomy for group B was the procedure for animals. For the trauma, rods weighing 24 g were dropped on a foot plate just over the dura. Atorvastatin (1 mg/kg, IP) was administered to the animals in group C after craniectomy and trauma; but on the other hand, animals in group D received only 0.5 mL PEG as the vehicle. Brains were harvested 24 hours after the trauma for the assays of wet-dry weight, lipid peroxidation level, and ultrastructural investigations. Lipid peroxidation levels, TEM, and UNGS were the investigated parameters. The statistical comparisons between the groups were investigated by 1-way ANOVA and post hoc analysis by Duncan and Dunnett T3 test within the groups at the significance level P = .05. RESULTS Trauma increased water contents of the brain tissues and lipid peroxidation levels in groups B and D. When compared with the results of group B (brain edema, 84.694% +/- 1.510%; lipid peroxidation, 74.932 +/- 2.491 nmol/g tissue), atorvastatin (1 mg/kg) significantly decreased brain edema (77.362% +/- 1.448%), lipid peroxidation level (58.335 +/- 3.980 nmol/g tissue), and UNGS scores in group C (P < 0.05). CONCLUSION In this descriptive study, the remarkable improvements of atorvastatin on brain edema, lipid peroxidation, and ultrastructural investigations encouraged us for a further dose optimization study.
Collapse
Affiliation(s)
- Omer Faruk Turkoglu
- Department of Neurological Surgery, Ankara Ataturk Research and Education Hospital, Bilkent, 06800 Ankara, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Beauchamp K, Mutlak H, Smith WR, Shohami E, Stahel PF. Pharmacology of traumatic brain injury: where is the "golden bullet"? Mol Med 2008; 14:731-40. [PMID: 18769636 DOI: 10.2119/2008-00050.beauchamp] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 08/18/2008] [Indexed: 01/17/2023] Open
Abstract
Traumatic brain injury (TBI) represents a major health care problem and a significant socioeconomic challenge worldwide. In the United States alone, approximately 1.5 million patients are affected each year, and the mortality of severe TBI remains as high as 35%-40%. These statistics underline the urgent need for efficient treatment modalities to improve posttraumatic morbidity and mortality. Despite advances in basic and clinical research as well as improved neurological intensive care in recent years, no specific pharmacological therapy for TBI is available that would improve the outcome of these patients. Understanding of the cellular and molecular mechanisms underlying the pathophysiological events after TBI has resulted in the identification of new potential therapeutic targets. Nevertheless, the extrapolation from basic research data to clinical application in TBI patients has invariably failed, and results from prospective clinical trials are disappointing. We review the published prospective clinical trials on pharmacological treatment modalities for TBI patients and outline future promising therapeutic avenues in the field.
Collapse
Affiliation(s)
- Kathryn Beauchamp
- Division of Neurosurgery, Department of Surgery, Denver Health Medical Center, University of Colorado School of Medicine, Denver, Colorado 80204, USA
| | | | | | | | | |
Collapse
|
196
|
Abstract
BACKGROUND Microdialysis is a technique to monitor extracellular changes in living tissue. Substances present in the extracellular space, such as neurotransmitters and metabolites transported between cells and capillaries in the extracellular fluid (ECF), are major object. RESULTS Since its introduction to the research of the nervous system, microdialysis has become a popular method for the measurements of brain chemistry and greatly affected in the fields of neuropharmacology, neuroanatomy and neurophysiology. Most of published papers using microdialysis have focused on the area of neuroscience, recently more biomedical application. CONCLUSION In this review, we focused on cerebral microdialysis as a monitoring tool for physiologic and pathophysiologic changes in chemical processes in the brain. Then we presented the principle and various applications of cerebral microdialysis.
Collapse
Affiliation(s)
- Gi Ja Lee
- Department of Biomedical Engineering, College of Medicine, Healthcare Industry Research Institute, Kyung Hee University, No. 1 Hoeki-dong, Dongdaemun-gu, Seoul 130-702, Korea
| | | | | |
Collapse
|
197
|
Ho CL, Wang CM, Lee KK, Ng I, Ang BT. Cerebral oxygenation, vascular reactivity, and neurochemistry following decompressive craniectomy for severe traumatic brain injury. J Neurosurg 2008; 108:943-9. [PMID: 18447711 DOI: 10.3171/jns/2008/108/5/0943] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECT This study addresses the changes in brain oxygenation, cerebrovascular reactivity, and cerebral neurochemistry in patients following decompressive craniectomy for the control of elevated intracranial pressure (ICP) after severe traumatic brain injury (TBI). METHODS Sixteen consecutive patients with isolated TBI and elevated ICP, who were refractory to maximal medical therapy, underwent decompressive craniectomy over a 1-year period. Thirteen patients were male and 3 were female. The mean age of the patients was 38 years and the median Glasgow Coma Scale score on admission was 5. RESULTS Six months following TBI, 11 patients had a poor outcome (Group 1, Glasgow Outcome Scale [GOS] Score 1-3), whereas the remaining 5 patients had a favorable outcome (Group 2, GOS Score 4 or 5). Decompressive craniectomy resulted in a significant reduction (p < 0.001) in the mean ICP and cerebrovascular pressure reactivity index to autoregulatory values (< 0.3) in both groups of patients. There was a significant improvement in brain tissue oxygenation (PbtO(2)) in Group 2 patients from 3 to 17 mm Hg and an 85% reduction in episodes of cerebral ischemia. In addition, the durations of abnormal PbtO(2) and biochemical indices were significantly reduced in Group 2 patients after decompressive craniectomy, but there was no improvement in the biochemical indices in Group 1 patients despite surgery. CONCLUSIONS Decompressive craniectomy, when used appropriately in protocol-driven intensive care regimens for the treatment of recalcitrant elevated ICP, is associated with a return of abnormal metabolic parameters to normal values in patients with eventually favorable outcomes.
Collapse
Affiliation(s)
- Chi Long Ho
- Department of Neurosurgery, National Neuroscience Institute, Singapore
| | | | | | | | | |
Collapse
|
198
|
Ho CL, Ang CB, Lee KK, Ng IH. Effects of glycaemic control on cerebral neurochemistry in primary intracerebral haemorrhage. J Clin Neurosci 2008; 15:428-33. [DOI: 10.1016/j.jocn.2006.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 07/18/2006] [Accepted: 08/02/2006] [Indexed: 11/29/2022]
|
199
|
Li AL, Zhi DS, Wang Q, Huang HL. Extracellular glycerol in patients with severe traumatic brain injury. Chin J Traumatol 2008; 11:84-8. [PMID: 18377710 DOI: 10.1016/s1008-1275(08)60018-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To study the factors affecting extracellular glycerol (Gly) in patients with severe traumatic brain injury (STBI). METHODS Perilesional extracellular Gly and cerebral blood flow (CBF) in 53 patients with STBI were consecutively monitored. Simultaneously, the intracranial pressure (ICP) and cerebral perfusion pressure (CCP) were monitored. The hourly minimum of CCP and CBF and the hourly maximum of ICP levels were matched with the hourly Gly. Gly values were divided into several groups according to regional ICP (less than 15 mm Hg or larger than 15 mm Hg), CCP (less than 70 mm Hg or larger than 70 mm Hg), CBF (less than 50 AU or 50-150 AU) and the outcomes (death or persistent vegetative state group, severe or moderate disability group, and good recovery group). RESULTS In comparison with the severe or moderate disability group, the Gly concentration of the death or persistent vegetative state group increased significantly, but CBF and CCP decreased significantly. In comparison with the good recovery group, the Gly concentration of the severe or moderate disability group increased significantly, but CBF and CCP decreased significantly. The Gly concentrations in patients with ICP larger than 15 mm Hg, CCP less than 70 mm Hg and CBF less than 50 AU were respectively higher than those of patients with ICP less than 15 mm Hg, CCP larger than 70 mm Hg and 50 AU less than CBF less than 150 AU. In patients with diffuse axial injury, the mean Gly concentration was (201.17+/-55.00) micromol/L, which was significantly higher than that of the patients with epidural hematoma (n equal to 7, 73.26+/-8.37, P less than 0.05) or subdural hematoma (n equal to 9, 114.67+/-62.88, P less than 0.05), but it did not increase significantly when compared with those in patients with contusion(n equal to 24, 167.48+/-52.63). CONCLUSION Gly can be taken as a marker for degradation of membrane phospholipids and ischemia, which reflects the severity of primary or secondary insult.
Collapse
Affiliation(s)
- Ai-lin Li
- Department of Neurosurgery, Huanhu Hospital, Tianjin 300060, China
| | | | | | | |
Collapse
|
200
|
McAdoo DJ, Wu P. Microdialysis in central nervous system disorders and their treatment. Pharmacol Biochem Behav 2008; 90:282-96. [PMID: 18436292 DOI: 10.1016/j.pbb.2008.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 02/27/2008] [Accepted: 03/05/2008] [Indexed: 01/17/2023]
Abstract
Central nervous system (CNS) insults elevate endogenous toxins and alter levels of indicators of metabolic disorder. These contribute to neurotrauma, neurodegenerative diseases and chronic pain and are possible targets for pharmaceutical treatment. Microdialysis samples substances in the extracellular space for chemical analysis. It has demonstrated that toxic levels of glutamate are released and that toxic levels of the reactive species O(2)(-), H(2)O(2), HO. NO and HOONO are generated upon CNS injury. Agent administration by microdialysis can also help elucidate mechanisms of damage and protection, and to identify targets for clinical application. Microdialysis sampling indicates that circuits descending from the brain to the spinal cord transmit and modulate pain signals by releasing neurotransmitter amines and amino acids. Efforts are under way to develop microdialysis into a technique for intensive care monitoring and predicting outcomes of brain insults. Finally, microdialysis sampling has demonstrated in vivo elevation of glial cell line-derived neurotrophic factor following grafting of primed fetal human neural stem cells into brain-injured rats, the first in vivo demonstration of the release of a neurotrophic factor by grafted stem cells. This increased release correlated with significantly improved spatial learning and memory.
Collapse
Affiliation(s)
- David J McAdoo
- Department of Neurosciences and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, United States.
| | | |
Collapse
|