151
|
Ruvalcaba-Ontiveros RI, González-Chávez SA, Carrasco-Hernández AR, López-Loeza SM, Castellanos-Ponce I, Vázquez-Olvera G, Neri-Flores MÁ, Espino-Solís GP, Duarte-Moller JA, Pacheco-Tena C, Esparza-Ponce HE. Treatment with silica-gold nanostructures decreases inflammation-related gene expression in collagen-induced arthritis. Biomater Sci 2022; 10:5216-5229. [PMID: 35903989 DOI: 10.1039/d2bm00498d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold salts have been used to treat rheumatoid arthritis (RA) since the 1940s, and, with advances in nanotechnology, the use of nanogold provides multiple options for anti-inflammatory therapies. This paper presents the synthesis and characterization of silica-gold nanostructures (SGNs) and their therapeutic effect in collagen-induced arthritis (CIA) in DBA/1 mice. At the end of the treatment, the synovial membranes, kidneys, livers, and spleens were dissected and analyzed by inductively coupled plasma mass spectroscopy (ICP) showing less than 0.0001 and 0.1% of the administered doses of Au and Si, respectively. Remains of the SGNs were visually identified in the synovial membrane by scanning electron microscopy (SEM), and the bone density of the hind paws was observed by computerized tomography (CT) indicating a reduction of porosity in the CIA-experimental group. The DNA microarray analysis carried out with RNA obtained from the hind paws showed 2628 differentially expressed genes (DEGs) by SGNs. The bioinformatic analysis showed that DEGs were significantly associated with several inflammatory signalling pathways including chemokines, cytokine-cytokine receptor interaction, PI3K-Akt, TNF, IL-17, NFκβ, MAPK, and RA. SGNs downregulated relevant inflammatory genes in the arthritic joints, including Tnf, Ifng, Il6, and Cxcl5; immunohistochemistry (IHC) confirmed the reduction of TNFα, IL-6, NFκβ, and VEGF in the joints due to the effect of SGNs. TNFα and IL-6 were also reduced in the serum of DBA/1 mice treated with SGNs.
Collapse
Affiliation(s)
- Rosa Isela Ruvalcaba-Ontiveros
- Centro de Investigación en Materiales Avanzados, S.C., Av. Miguel de Cervantes Saavedra 120, Chihuahua, Chihuahua, 31136, Mexico.
| | - Susana Aideé González-Chávez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua, Chihuahua, 31125, Mexico.
| | - Anel Rocío Carrasco-Hernández
- Centro de Investigación en Materiales Avanzados, S.C., Av. Miguel de Cervantes Saavedra 120, Chihuahua, Chihuahua, 31136, Mexico.
| | - Salma Marcela López-Loeza
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua, Chihuahua, 31125, Mexico.
| | - Ivonne Castellanos-Ponce
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua, Chihuahua, 31125, Mexico.
| | - Gregorio Vázquez-Olvera
- Centro de Investigación en Materiales Avanzados, S.C., Av. Miguel de Cervantes Saavedra 120, Chihuahua, Chihuahua, 31136, Mexico.
| | - Miguel Ángel Neri-Flores
- Centro de Investigación en Materiales Avanzados, S.C., Av. Miguel de Cervantes Saavedra 120, Chihuahua, Chihuahua, 31136, Mexico.
| | - Gerardo Pavel Espino-Solís
- Translational Research Laboratory and National Laboratory of Flow Cytometry, Autonomous University of Chihuahua, Circuito Universitario Campus II, Chihuahua, Chihuahua, 31109, Mexico.
| | - José Alberto Duarte-Moller
- División de Ciencias e Ingeniería, Universidad de Sonora, Unidad Regional Sur, Lázaro Cárdenas del Río 100. Colonia Francisco Villa, Navojoa Son. 85880, Mexico.
| | - César Pacheco-Tena
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua, Chihuahua, 31125, Mexico.
| | - Hilda Esperanza Esparza-Ponce
- Centro de Investigación en Materiales Avanzados, S.C., Av. Miguel de Cervantes Saavedra 120, Chihuahua, Chihuahua, 31136, Mexico.
| |
Collapse
|
152
|
George BP, Chota A, Sarbadhikary P, Abrahamse H. Fundamentals and applications of metal nanoparticle- enhanced singlet oxygen generation for improved cancer photodynamic therapy. Front Chem 2022; 10:964674. [PMID: 35936097 PMCID: PMC9352943 DOI: 10.3389/fchem.2022.964674] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
The introduction of nanotechnology in the field of Photodynamic Therapy (PDT) has proven to have great potential to overcome some of the challenges associated with traditional organic photosensitizers (PS) with respect to their solubility, drug delivery, distribution and site-specific targeting. Other focused areas in PDT involve high singlet oxygen production capability and excitability of PS by deep tissue penetrating light wavelengths. Owing to their very promising optical and surface plasmon resonance properties, combination of traditional PSs with plasmonic metallic nanoparticles like gold and silver nanoparticles results in remarkably high singlet oxygen production and extended excitation property from visible and near-infrared lights. This review summarizes the importance, fundamentals and applications of on plasmonic metallic nanoparticles in PDT. Lastly, we highlight the future prospects of these plasmonic nanoengineering strategies with or without PS combination, to have a significant impact in improving the therapeutic efficacy of cancer PDT.
Collapse
Affiliation(s)
- Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | | | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
153
|
Hydrothermal Synthesis of Chitosan and Tea Tree Oil on Plain and Satin Weave Cotton Fabrics. MATERIALS 2022; 15:ma15145034. [PMID: 35888500 PMCID: PMC9315746 DOI: 10.3390/ma15145034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
The paper aimed at enhancing the antimicrobial activity of chitosan by using tea tree essential oil with the purpose of durably finishing cotton fabrics for use in a hospital environment. The influence of crosslinkers and catalysts on the possibility of obtaining stable bonds using hydrothermal in situ synthesis between cellulosic material and chitosan with and without tea tree essential oil was investigated in detail. The morphology of the sample surface before and after the treatment and textile care cycle was investigated using a field emission scanning electron microscopy (FE-SEM) and indicated the presence of chitosan and a thin film on all treated samples, which showed durability of the treatment. The FTIR spectra obtained by Fourier transform infrared spectroscopy (FTIR) using attenuated total reflection measurement technique (ATR) analysis, showed that all the samples tested recorded physicochemical changes in the structure. The analysis of the samples on the goniometer proved the hydrophilicity of the materials, with a film forming on the surface of the treated samples, which is extremely beneficial given the end use of dressing samples to promote wound healing. The presence of a significant amount of bound chitosan with tea tree oil was confirmed by measuring the mass per unit area of the samples after the treatment and textile care cycles. The results of antimicrobial efficacy show that the materials treated with chitosan were resistant to bacteria and fungi in most cases, but only the samples treated in Bath I showed a zone of inhibition against the fungus Candida albicans, indicating the positive effect of tea tree essential oil.
Collapse
|
154
|
Shahzadi I, Aziz Shah SM, Shah MM, Ismail T, Fatima N, Siddique M, Waheed U, Baig A, Ayaz A. Antioxidant, Cytotoxic, and Antimicrobial Potential of Silver Nanoparticles Synthesized using Tradescantia pallida Extract. Front Bioeng Biotechnol 2022; 10:907551. [PMID: 35923574 PMCID: PMC9340775 DOI: 10.3389/fbioe.2022.907551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Silver nanoparticles have received much attention, due to their wide range of biological applications as an alternative therapy for disease conditions utilizing the nanobiotechnology domain for synthesis. The current study was performed to examine the antioxidant, anticancer, antibacterial, and antifungal potential of biosynthesized silver nanoparticles (TpAgNPs) using plant extract. The TpAgNPs were produced by reacting the Tradescantia pallida extract and AgNO3 solution in nine various concentration ratios subjected to bioactivities profiling. According to the current findings, plant extract comprising phenolics, flavonoids, and especially anthocyanins played a critical role in the production of TpAgNPs. UV–visible spectroscopy also validated the TpAgNP formation in the peak range of 401–441 nm. Further, the silver ion stabilization by phytochemicals, face-centered cubic structure, crystal size, and spherical morphology of TpAgNPs were analyzed by FTIR, XRD, and SEM. Among all TpAgNPs, the biosynthesized TpAgNP6 with a medium concentration ratio (5:10) and the plant extract had effective antioxidant potentials of 77.2 ± 1.0% and 45.1 ± 0.5% free radical scavenging activity, respectively. The cytotoxic activity of TpAgNP6 in comparison to plant extract for the rhabdomyosarcoma cell line was significantly the lowest with IC50 values of 81.5 ± 1.9 and 90.59 ± 1.6 μg/ml and cell viability % of 24.3 ± 1.62 and 27.4 ± 1.05, respectively. The antibacterial and antifungal results of TpAgNPs revealed significant improvement in comparison to plant extract, i.e., minimum inhibition concentration (MIC) 64 μg/ml against Gram-negative Pseudomonas aeruginosa while, in the case of antifungal assay, TpAgNP6 was active against Candida parapsilosis. These TpAgNPs play a crucial role in determining the therapeutic potential of T. pallida due to their biological efficacy.
Collapse
Affiliation(s)
- Irum Shahzadi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
- *Correspondence: Irum Shahzadi,
| | - Syed Munawar Aziz Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mohammad Maroof Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Nighat Fatima
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Maria Siddique
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Ummara Waheed
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Ayesha Baig
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Aisha Ayaz
- Combined Military Hospital, Abbottabad, Pakistan
| |
Collapse
|
155
|
Kamli MR, Alzahrani EA, Albukhari SM, Ahmad A, Sabir JSM, Malik MA. Combination Effect of Novel Bimetallic Ag–Ni Nanoparticles with Fluconazole against Candida albicans. J Fungi (Basel) 2022; 8:jof8070733. [PMID: 35887488 PMCID: PMC9316949 DOI: 10.3390/jof8070733] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing frequency of antifungal drug resistance among pathogenic yeast “Candida” has posed an immense global threat to the public healthcare sector. The most notable species of Candida causing most fungal infections is Candida albicans. Furthermore, recent research has revealed that transition and noble metal combinations can have synergistic antimicrobial effects. Therefore, a one-pot seedless biogenic synthesis of Ag-Ni bimetallic nanoparticles (Ag–Ni NPs) using Salvia officinalis aqueous leaf extract is described. Various techniques, such as UV–vis, FTIR, XRD, SEM, EDX, and TGA, were used to validate the production of Ag-Ni NPs. The antifungal susceptibility of Ag-Ni NPs alone and in combination with fluconazole (FLZ) was tested against FLZ-resistant C. albicans isolate. Furthermore, the impacts of these NPs on membrane integrity, drug efflux pumps, and biofilms formation were evaluated. The MIC (1.56 μg/mL) and MFC (3.12 μg/mL) results indicated potent antifungal activity of Ag-Ni NPs against FLZ-resistant C. albicans. Upon combination, synergistic interaction was observed between Ag-Ni NPs and FLZ against C. albicans 5112 with a fractional inhibitory concentration index (FICI) value of 0.31. In-depth studies revealed that Ag-Ni NPs at higher concentrations (3.12 μg/mL) have anti-biofilm properties and disrupt membrane integrity, as demonstrated by scanning electron microscopy results. In comparison, morphological transition was halted at lower concentrations (0.78 μg/mL). From the results of efflux pump assay using rhodamine 6G (R6G), it was evident that Ag-Ni NPs blocks the efflux pumps in the FLZ-resistant C. albicans 5112. Targeting biofilms and efflux pumps using novel drugs will be an alternate approach for combatting the threat of multi-drug resistant (MDR) stains of C. albicans. Therefore, this study supports the usage of Ag-Ni NPs to avert infections caused by drug resistant strains of C. albicans.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.R.K.); (J.S.M.S.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Elham A. Alzahrani
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.A.A.); (S.M.A.)
| | - Soha M. Albukhari
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.A.A.); (S.M.A.)
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Infection Control Unit, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.R.K.); (J.S.M.S.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.A.A.); (S.M.A.)
- Correspondence:
| |
Collapse
|
156
|
Dual-Modified Lignin-Assembled Multilayer Microsphere with Excellent Pb 2+ Capture. Polymers (Basel) 2022; 14:polym14142824. [PMID: 35890601 PMCID: PMC9319401 DOI: 10.3390/polym14142824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 01/27/2023] Open
Abstract
With the continuous research on lignin-based sorbents, there are still limitations in the research of spherical sorbents with a high adsorption capacity for Pb2+. In order to solve the problem of low adsorption effect, alkali lignin (AL) was modified and assembled to increase the adsorption active sites. In this work, we used dual-modified lignin (DML) as a raw material to assemble a singular lignin-based multilayer microsphere (LMM) with sodium alginate (SA) and dopamine. The prepared adsorbent had various active functional groups and spherical structures; the specific surface area was 2.14 m2/g and the average pore size was 8.32 nm. The adsorption process followed the Freundlich isotherm and the second-order kinetic model. Therefore, the LMM adsorbed Pb2+ ascribed by the electrostatic attraction and surface complexation; the adsorption capacity was 250 mg/g. The LMM showed a selective adsorption performance for Pb2+ and the adsorption capacity followed the order Pb2+ (187.4 mg/g) > Cu2+(168.0 mg/g) > Mn2+(166.5 mg/g). After three cycles, the removal efficiency of Pb2+ by the LMM was 69.34%, indicating the reproducibility of LMM.
Collapse
|
157
|
Liang S, Liao G, Zhu W, Zhang L. Manganese-based hollow nanoplatforms for MR imaging-guided cancer therapies. Biomater Res 2022; 26:32. [PMID: 35794641 PMCID: PMC9258146 DOI: 10.1186/s40824-022-00275-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
Theranostic nanoplatforms integrating diagnostic and therapeutic functions have received considerable attention in the past decade. Among them, hollow manganese (Mn)-based nanoplatforms are superior since they combine the advantages of hollow structures and the intrinsic theranostic features of Mn2+. Specifically, the hollow cavity can encapsulate a variety of small-molecule drugs, such as chemotherapeutic agents, photosensitizers and photothermal agents, for chemotherapy, photodynamic therapy (PDT) and photothermal therapy (PTT), respectively. After degradation in the tumor microenvironment (TME), the released Mn2+ is able to act simultaneously as a magnetic resonance (MR) imaging contrast agent (CA) and as a Fenton-like agent for chemodynamic therapy (CDT). More importantly, synergistic treatment outcomes can be realized by reasonable and optimized design of the hollow nanosystems. This review summarizes various Mn-based hollow nanoplatforms, including hollow MnxOy, hollow matrix-supported MnxOy, hollow Mn-doped nanoparticles, hollow Mn complex-based nanoparticles, hollow Mn-cobalt (Co)-based nanoparticles, and hollow Mn-iron (Fe)-based nanoparticles, for MR imaging-guided cancer therapies. Finally, we discuss the potential obstacles and perspectives of these hollow Mn-based nanotheranostics for translational applications. Mn-based hollow nanoplatforms such as hollow MnxOy nanoparticles, hollow matrix-supported MnxOy nanoparticles, Mn-doped hollow nanoparticles, Mn complex-based hollow nanoparticles, hollow Mn-Co-based nanoparticles and hollow Mn-Fe-based nanoparticles show great promise in cancer theranostics.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guangfu Liao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Li Zhang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| |
Collapse
|
158
|
Perumal S, Atchudan R, Rühl E, Graf C. Controlled Synthesis of Platinum and Silver Nanoparticles Using Multivalent Ligands. NANOMATERIALS 2022; 12:nano12132294. [PMID: 35808130 PMCID: PMC9268602 DOI: 10.3390/nano12132294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023]
Abstract
Here, the controlled formation of platinum nanoparticles (PtNPs) and silver nanoparticles (AgNPs) using amine-functionalized multivalent ligands are reported. The effects of reaction temperature and ligand multivalency on the growth kinetics, size, and shape of PtNPs and AgNPs were systematically studied by performing a stepwise and a one-step process. PtNPs and AgNPs were prepared in the presence of amine ligands using platinum (II) acetylacetonate and silver (I) acetylacetonate, respectively. The effects of ligands and temperature on the formation of PtNPs were studied using a transmission electron microscope (TEM). For the characterization of AgNPs, additionally, ultraviolet-visible (UV-Vis) absorption was employed. The TEM measurements revealed that PtNPs prepared at different temperatures (160–200 °C, in a stepwise process) are monodispersed and of spherical shape regardless of the ligand multivalency or reaction temperature. In the preparation of PtNPs by the one-step process, ligands affect the shape of the PtNPs, which can be explained by the affinity of the ligands. The TEM and UV-Vis absorption studies on the formation of AgNPs with mono-, di-, and trivalent ligands showed narrower size distributions, while increasing the temperature from 80 °C to 120 °C and with a trivalent ligand in a one-step process.
Collapse
Affiliation(s)
- Suguna Perumal
- Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany;
- Department of Chemistry, Sejong University, Seoul 143747, Korea
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Eckart Rühl
- Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany;
- Correspondence: (E.R.); (C.G.)
| | - Christina Graf
- Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany;
- Department of Chemistry and Biotechnology, Darmstadt University of Applied Sciences, 64295 Darmstadt, Germany
- Correspondence: (E.R.); (C.G.)
| |
Collapse
|
159
|
Saleh R, Andiane Hidayat S, Taufik A, Yin S. Removal of multiple pollutants from water using noble Ag/Au/magnetite/graphene/H2O2 system under light and ultrasound irradiation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
160
|
Khatua A, Prasad A, Behuria HG, Patel AK, Singh M, Yasasve M, Saravanan M, Meena R. Evaluation of antimicrobial, anticancer potential and Flippase induced leakage in model membrane of Centella asiatica fabricated MgONPs. BIOMATERIALS ADVANCES 2022; 138:212855. [PMID: 35913247 DOI: 10.1016/j.bioadv.2022.212855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022]
Abstract
The use of chemically synthesized nanoparticles and crude plant extracts as antimicrobial -anticancer agents have many limitations. In this study, we have used Centella asiatica extract (CaE) having relatively less explored but tremendous medicinal properties, as reducing and stabilizing agents to green synthesize magnesium oxide nanoparticles (MgONPs) using magnesium nitrate. In comparison to the bulk material, capabilities of Ca-MgONPs as an improved antibacterial, antifungal, and anticancer agent in human prostatic carcinoma cells (PC3), as well as membranolytic capability in model cell membrane, were studied. The phyto-functionalized Ca-MgONPs were characterized using UV-Visible spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM), Energy Dispersive X-Ray Spectroscopy (EDX), X-ray Diffraction (XRD), Fourier Transform Infra-Red Spectroscopy (FT-IR) and Atomic Force Microscopy (AFM). Observation of characteristic peaks by spectroscopic and microscopic analysis confirmed the synthesis of Ca-MgONPs. The Ca-MgONPs showed broad spectrum of bactericidal activity against both gram-positive and gram-negative bacteria and fungicidal activity against two species of the Candida fungus. The Ca-MgONPs also exhibited dose-dependent and selective inhibition of proliferating PC3 cells with IC50 of 123.65 ± 4.82 μg/mL at 24 h, however, without having any cytotoxicity toward non-cancerous HEK293 cells. Further studies aimed at understanding the probable mechanism of toxicity of Ca-MgONPs in PC3 cells, the results indicated a significant reduction in cell migration capacities, increment in cytosolic ROS, loss of mitochondrial transmembrane potential, DNA damage and S-phase cell cycle arrest. Ca-MgONPs also induced pore formation in a synthetic large unilamellar vesicle. Thus, Ca-MgONPs might be useful in the effective management of several human pathogens of concern and some more cancer types.
Collapse
Affiliation(s)
- Ashapurna Khatua
- Nanotoxicology Laboratory, Lab#312, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhinav Prasad
- Biochemistry and Environmental Toxicology Laboratory, Lab#103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Himadri Gourav Behuria
- Department of Biotechnology, North Orissa University, Mayurbhanj, Baripada, Odisha 757003, India
| | - Amiya Kumar Patel
- School of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Odisha 768019, India
| | - Mani Singh
- Department of Environmental Sciences, Lakshmibai College, University of Delhi, New Delhi 110052, India
| | - Madhavan Yasasve
- Department of Oral Medicine and Radiology, Faculty of Dental Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Muthupandian Saravanan
- AMR and Nanomedicine Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India.
| | - Ramovatar Meena
- Nanotoxicology Laboratory, Lab#312, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
161
|
Yadav S, Yugandhar P, Alavilli H, Raliya R, Singh A, Sahi SV, Sarkar AK, Jain A. Potassium Chloroaurate-Mediated In Vitro Synthesis of Gold Nanoparticles Improved Root Growth by Crosstalk with Sucrose and Nutrient-Dependent Auxin Homeostasis in Arabidopsis thaliana. NANOMATERIALS 2022; 12:nano12122099. [PMID: 35745438 PMCID: PMC9230854 DOI: 10.3390/nano12122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/07/2022]
Abstract
In a hydroponic system, potassium chloroaurate (KAuCl4) triggers the in vitro sucrose (Suc)-dependent formation of gold nanoparticles (AuNPs). AuNPs stimulate the growth of the root system, but their molecular mechanism has not been deciphered. The root system of Arabidopsis (Arabidopsis thaliana) exhibits developmental plasticity in response to the availability of various nutrients, Suc, and auxin. Here, we showed the roles of Suc, phosphorus (P), and nitrogen (N) in facilitating a AuNPs-mediated increase in root growth. Furthermore, the recuperating effects of KAuCl4 on the natural (IAA) auxin-mediated perturbation of the root system were demonstrated. Arabidopsis seedlings harboring the cell division marker CycB1;1::CDB-GUS provided evidence of the restoration efficacy of KAuCl4 on the IAA-mediated inhibitory effect on meristematic cell proliferation of the primary and lateral roots. Arabidopsis harboring synthetic auxin DR5rev::GFP exhibited a reinstating effect of KAuCl4 on IAA-mediated aberration in auxin subcellular localization in the root. KAuCl4 also exerted significant and differential recuperating effects on the IAA-mediated altered expression of the genes involved in auxin signaling and biosynthetic pathways in roots. Our results highlight the crosstalk between KAuCl4-mediated improved root growth and Suc and nutrient-dependent auxin homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (S.Y.); (A.S.)
| | - Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India;
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea;
| | - Ramesh Raliya
- Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (S.Y.); (A.S.)
| | - Shivendra V. Sahi
- Department of Biology, University City Campus, Saint Joseph's University, 600 S. 43rd St., Philadelphia, PA 19104, USA;
| | - Ananda K. Sarkar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
- Correspondence:
| |
Collapse
|
162
|
Sorption of Perfluorinated and Pharmaceutical Compounds in Plastics: A Molecular Simulation Study. WATER 2022. [DOI: 10.3390/w14121951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The aim of the current study is to investigate the effect of temperature and degree of polymerisation on the thermodynamic interaction of perfluorinated compounds (PFCs) into plastics. The occurrence of contaminants of emerging concern such as pharmaceutical drugs, PFCs, microplastics (MPs), etc., in sources of drinking water have posed significant health risks to aquatic life and humans in recent years. These organic pollutants can interact with MPs and pose much higher health risks; consequently, MPs become a transport vector and thus alter their migration as well as occurrence in the environment. The purpose of this paper is to examine the adsorption mechanism of perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and sulfamethazine (SMT)—relative to water—on polyethylene (PE) and polypropylene (PP) using an extended Flory–Huggins approach. The results suggest that in an aqueous environment, both PFOA and PFOS may be taken up preferentially by PP and PE, although less strongly by PE. The degree of polymerisation of PE and PP did not significantly influence the observed behaviour. In terms of sorption affinity, the observed affinity was PFOA>PFOS>SMT which was consistence for both PE and PP.
Collapse
|
163
|
Krasteva N, Georgieva M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022; 14:pharmaceutics14061213. [PMID: 35745786 PMCID: PMC9227901 DOI: 10.3390/pharmaceutics14061213] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global health problem responsible for 10% of all cancer incidences and 9.4% of all cancer deaths worldwide. The number of new cases increases per annum, whereas the lack of effective therapies highlights the need for novel therapeutic approaches. Conventional treatment methods, such as surgery, chemotherapy and radiotherapy, are widely applied in oncology practice. Their therapeutic success is little, and therefore, the search for novel technologies is ongoing. Many efforts have focused recently on the development of safe and efficient cancer nanomedicines. Nanoparticles are among them. They are uniquewith their properties on a nanoscale and hold the potential to exploit intrinsic metabolic differences between cancer and healthy cells. This feature allows them to induce high levels of toxicity in cancer cells with little damage to the surrounding healthy tissues. Graphene oxide is a promising 2D material found to play an important role in cancer treatments through several strategies: direct killing and chemosensitization, drug and gene delivery, and phototherapy. Several new treatment approaches based on nanoparticles, particularly graphene oxide, are currently under research in clinical trials, and some have already been approved. Here, we provide an update on the recent advances in nanomaterials-based CRC-targeted therapy, with special attention to graphene oxide nanomaterials. We summarise the epidemiology, carcinogenesis, stages of the CRCs, and current nanomaterials-based therapeutic approaches for its treatment.
Collapse
Affiliation(s)
- Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| |
Collapse
|
164
|
Djearamane S, Loh ZC, Lee JJ, Wong LS, Rajamani R, Luque PA, Gupta PK, Liang SXT. Remedial Aspect of Zinc Oxide Nanoparticles Against Serratia Marcescens and Enterococcus Faecalis. Front Pharmacol 2022; 13:891304. [PMID: 35747753 PMCID: PMC9209744 DOI: 10.3389/fphar.2022.891304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) have been widely used in biomedical applications due to their high biocompatibility and low toxicity to humans. The present work aimed to investigate the antibacterial effects of different concentrations of ZnO NPs on two opportunistic pathogens, Serratia marcescens and Enterococcus faecalis. The surface interaction between nanoparticles and bacterial cell wall, and the subsequent morphological alterations on the bacterial surface, were examined through Fourier transform infrared spectroscopy and scanning electron microscope. The energy dispersive X-ray analysis was used to confirm the elemental composition of ZnO NPs and the cellular accumulation of ZnO NPs in bacteria. The growth-inhibitory test demonstrated a dose-dependent growth inhibitory effect of ZnO NPs against both the test bacteria, as the higher concentration of nanoparticles caused the higher bacterial growth inhibition. The results showed that ZnO NPs caused a higher growth inhibition (63.50 ± 2.50%) on the Gram-positive bacterium E. faecalis compared to the Gram-negative bacterium S. marcescens (51.27 ± 4.56%). Fourier transform infrared spectrum revealed the possible involvement of hydroxyl, carboxyl, amides, methylene, and phosphate groups from the biomolecules of bacterial cell wall such as proteins, carbohydrates, lipids, and phospholipids in the interaction of ZnO NPs on bacterial cell surface. Energy dispersive X-ray analysis showed the higher accumulation of ZnO NPs in E. faecalis than S. marcescens analogous to the bacterial growth inhibition. Scanning electron microscopy images confirmed the antibacterial properties of ZnO NPs, showing the loss of integrity of cell membrane and distortion of bacterial cells. Hence, the potential of ZnO NP as an antibacterial agent against S. marcescens and E. faecalis has been confirmed.
Collapse
Affiliation(s)
- Sinouvassane Djearamane
- Department of Biomedical Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia
- *Correspondence: Sinouvassane Djearamane,
| | - Zhe Chi Loh
- Department of Biomedical Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia
| | - Jun Jie Lee
- Department of Biomedical Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | | | - Priscy Alfredo Luque
- Faculty of Engineering, Architecture, and Design, Autonomous University of Baja California, Mexicali, Mexico
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | | |
Collapse
|
165
|
Pandey J, Dubey R, Kate A, Prasad B, Sinha A, Mishra MS. Nanomedicines: A Focus on Nanomaterials as Drug Delivery System with
Current Trends and Future Advancement. Drug Res (Stuttg) 2022; 72:355-366. [DOI: 10.1055/a-1824-4619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe rapid advancement of nanomedicine presents novel alternatives that have the
potential to transform health care. Targeted drug delivery as well as the
synthesis of nanocarriers is a growing discipline that has been intensively
researched to reduce the complexity of present medicines in a variety of
diseases and to develop new treatment and diagnostic techniques. There are
several designed nanomaterials used as a delivery system such as liposomes,
micelles, dendrimers, polymers, carbon-based materials, and many other
substances, which deliver the drug moiety directly into its targeted body area
reducing toxic effect of conventional drug delivery, thus reducing the amount of
drug required for therapeutic efficacy and offering many more advantages.
Currently, these are used in many applications, including cancer treatment,
imaging contrast agents, and biomarker detection and so on. This review provides
a comprehensive update in the field of targeted nano-based drug delivery
systems, by conducting a thorough examination of the drug synthesis, types,
targets, and application of nanomedicines in improving the therapeutic
efficiency.
Collapse
Affiliation(s)
- Jaya Pandey
- Amity School of Applied Sciences Lucknow, Amity University Uttar
Pradesh, Lucknow Campus, India
| | - Ragini Dubey
- Amity School of Applied Sciences Lucknow, Amity University Uttar
Pradesh, Lucknow Campus, India
| | - Aditya Kate
- Amity Institute of Biotechnology, Amity University, Chhattisgarh,
India
| | - Bhairav Prasad
- Department of Biotechnology, Chandigarh College of Technology, Landran,
Mohali, India
| | - Arzoo Sinha
- Amity Institute of Biotechnology, Amity University, Chhattisgarh,
India
| | - Mohit S Mishra
- Amity Institute of Biotechnology, Amity University, Chhattisgarh,
India
| |
Collapse
|
166
|
Tong Z, Deng Q, Luo S, Li J, Liu Y. Marine Biomass-Supported Nano Zero-Valent Iron for Cr(VI) Removal: A Response Surface Methodology Study. NANOMATERIALS 2022; 12:nano12111846. [PMID: 35683701 PMCID: PMC9182078 DOI: 10.3390/nano12111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023]
Abstract
Heavy metal ions such as Cr(VI) pose great hazards to the environment, which requests materials and methods for decontamination. Nano zero-valent iron (nZVI) has emerged as a promising candidate for Cr(VI) removal. Herein, harnessing the merits of marine biomass, a heterogeneous water treatment system for the decontamination of Cr(VI) is developed based on the in situ immobilization of nZVI on the seashell powder (SP)-derived porous support. A response surface methodology (RSM) study involving three independent factors is designed and conducted to direct material synthesis and reaction design for products with optimal performances. Under optimal synthetic conditions, the nZVI-loaded seashell powder (SP@nZVI), which is characterized in detail by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), results in a 79% increase in the removal efficiency of Cr(VI) compared to free nZVI. Mechanism studies show that the removal of Cr(VI) by SP@nZVI conforms to the Langmuir adsorption model with a quasi-second order kinetic equation, in which redox reactions between nZVI and Cr(VI) occurred at the SP surface. The results of this work are expected to benefit the reuse of bioresource waste in developing environmental remediation materials.
Collapse
Affiliation(s)
| | | | | | | | - Yong Liu
- Correspondence: (S.L.); (J.L.); (Y.L.)
| |
Collapse
|
167
|
Gökşen Tosun N, Kaplan Ö, Imamoğlu R, Türkekul İ, Gökçe İ, Özgür A. Green synthesized silver nanoparticles with mushroom extracts of Paxina leucomelas and Rhizopogon luteolus induce ROS-Induced intrinsic apoptotic pathway in cancer cells. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nazan Gökşen Tosun
- Faculty of Engineering and Architecture, Department of Biomaterials and Tissue Engineering, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Özlem Kaplan
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Rizvan Imamoğlu
- Faculty of Science, Department of Molecular Biology and Genetics, Bartın University, Bartın, Turkey
| | - İbrahim Türkekul
- Faculty of Arts and Sciences, Department of Biology, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - İsa Gökçe
- Faculty of Engineering and Architecture, Department of Bioengineering, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Aykut Özgür
- Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat Gaziosmanpaşa University, Tokat, Turkey
| |
Collapse
|
168
|
Detection and Stability of Cyanogen Bromide and Cyanogen Iodide in Drinking Water. WATER 2022. [DOI: 10.3390/w14101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study systematically summarized the factors affecting the stability of CNXs, providing a reference for better control and elimination of CNXs. A method for the detection of CNBr and CNI in solution was established using a liquid–liquid extraction/gas chromatography/electron capture detector. Specifically, the method was used to investigate the stability of CNBr and CNI in drinking water, especially in the presence of chlorine and sulfite, and it showed good reproducibility (relative standard deviation <3.05%), high sensitivity (method detection limit <100 ng/L), and good recovery (91.49–107.24%). Degradation kinetic studies of cyanogen halides were conducted, and their degradation rate constants were detected for their hydrolysis, chlorination, and sulfite reduction. For hydrolysis, upon increasing pH from 9.0 to 11.0, the rate constants of CNCl, CNBr, and CNI changed from 8 to 155 × 10−5 s−1, 1.1 to 34.2 × 10−5 s−1, and 1.5 to 6.2 × 10−5 s−1, respectively. In the presence of 1.0 mg/L chlorine, upon increasing pH from 7.0 to 10.0, the rate constants of CNCl, CNBr, and CNI changed from 36 to 105 × 10−5 s−1, 15.8 to 49.0 × 10−5 s−1, and 1.2 to 24.2 × 10−5 s−1, respectively. In the presence of 3 μmol/L sulfite, CNBr and CNI degraded in two phases. In the first phase, they degraded very quickly after the addition of sulfite, whereas, in the second phase, they degraded slowly with rate constants similar to those for hydrolysis. Owing to the electron-withdrawing ability of halogen atoms and the nucleophilic ability of reactive groups such as OH− and ClO−, the rate constants of cyanogen halides increased with increasing pH, and they decreased in the order of CNCl > CNBr > CNI during hydrolysis and chlorination. The hydrolysis and chlorination results could be used to assess the stability of cyanogen halides in water storage and distribution systems. The sulfite reduction results indicate that quenching residual oxidants with excess sulfite could underestimate the levels of cyanogen halides, especially for CNBr and CNI.
Collapse
|
169
|
IAEA Contribution to Nanosized Targeted Radiopharmaceuticals for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14051060. [PMID: 35631646 PMCID: PMC9146346 DOI: 10.3390/pharmaceutics14051060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
The rapidly growing interest in the application of nanoscience in the future design of radiopharmaceuticals and the development of nanosized radiopharmaceuticals in the late 2000′s, resulted in the creation of a Coordinated Research Project (CRP) by the International Atomic Energy Agency (IAEA) in 2014. This CRP entitled ‘Nanosized delivery systems for radiopharmaceuticals’ involved a team of expert scientist from various member states. This team of scientists worked on a number of cutting-edge areas of nanoscience with a focus on developing well-defined, highly effective and site-specific delivery systems of radiopharmaceuticals. Specifically, focus areas of various teams of scientists comprised of the development of nanoparticles (NPs) based on metals, polymers, and gels, and their conjugation/encapsulation or decoration with various tumor avid ligands such as peptides, folates, and small molecule phytochemicals. The research and development efforts also comprised of developing optimum radiolabeling methods of various nano vectors using diagnostic and therapeutic radionuclides including Tc-99m, Ga-68, Lu-177 and Au-198. Concerted efforts of teams of scientists within this CRP has resulted in the development of various protocols and guidelines on delivery systems of nanoradiopharmaceuticals, training of numerous graduate students/post-doctoral fellows and publications in peer reviewed journals while establishing numerous productive scientific networks in various participating member states. Some of the innovative nanoconstructs were chosen for further preclinical applications—all aimed at ultimate clinical translation for treating human cancer patients. This review article summarizes outcomes of this major international scientific endeavor.
Collapse
|
170
|
Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
171
|
Geotrichum candidum Mediated [Cu8O7 + P2O5] Nanocomposite Bio Fabrication, Characterization, Physicochemical Properties, and its In-Vitro Biocompatibility Evaluation. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02252-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
172
|
Prismatic Silver Nanoparticles Decorated on Graphene Oxide Sheets for Superior Antibacterial Activity. Pharmaceutics 2022; 14:pharmaceutics14050924. [PMID: 35631509 PMCID: PMC9147939 DOI: 10.3390/pharmaceutics14050924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022] Open
Abstract
Spherical silver nanoparticles (Ag NPs) and silver nanoprisms (Ag NPrsms) were synthesized and decorated on graphene oxide (GO) nanosheets. The Ag contents were 29% and 23% in the GO−Ag NPs and GO−Ag NPrsms, respectively. The Ag NPrsms exhibited stronger (111) crystal signal than Ag NPs. The GO−Ag NPrsms exhibited higher Ag (I) content (75.6%) than GO-Ag NPs (69.9%). Increasing the nanomaterial concentration from 25 to 100 µg mL−1 improved the bactericidal efficiency, and the antibacterial potency was in the order: GO−Ag NPrsms > GO−Ag NPs > Ag NPrsms > Ag NPs > GO. Gram-positive Staphylococcus aureus (S. aureus) was more vulnerable than Gram-negative Escherichia coli (E. coli) upon exposure to these nanomaterials. The GO−Ag NPrsms demonstrated a complete (100%) bactericidal effect against S. aureus at a concentration of 100 µg mL−1. The GO−Ag composites outperformed those of Ag or GO due to the synergistic effect of bacteriostatic Ag particles and GO affinity toward bacteria. The levels of reactive oxygen species produced in the bacteria−nanomaterial mixtures were highly correlated to the antibacterial efficacy values. The GO−Ag NPrsms are promising as bactericidal agents to suppress biofilm formation and inhibit bacterial infection.
Collapse
|
173
|
Ulfa M, Masykur A, Nofitasari AF, Sholeha NA, Suprapto S, Bahruji H, Prasetyoko D. Controlling the Size and Porosity of Sodalite Nanoparticles from Indonesian Kaolin for Pb2+ Removal. MATERIALS 2022; 15:ma15082745. [PMID: 35454437 PMCID: PMC9024775 DOI: 10.3390/ma15082745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 01/16/2023]
Abstract
Mesoporous sodalite nanoparticles were directly synthesized from Indonesian kaolin with the addition of CTABr as a mesopore template. The studies highlighted the importance of aging time (3–12 h) and temperature (50–80 °C) on increasing surface area and mesoporosity of sodalite. Indonesian kaolin was used without pre-treatment and transformed to sodalite following the initial molar composition of 10 Na2O: 2 SiO2: Al2O3: 128 H2O. Characterization data revealed the formation of high surface area sodalite with mesoporosity at increasing aging temperatures and times. The presence of CTABr as templates produced sodalites nanoparticles with smaller aggregates than the non-template sodalite. The sodalite sample obtained at 80 °C of crystallization temperature for 9 h (S80H9) displayed the highest mesopore volume (0.07612 cm3/g) and the highest adsorption capacity of Pb2+ (212.24 mg/g). Pb2+ was suggested to adsorb via ion exchange with the Na+ counter cation and physical adsorption.
Collapse
Affiliation(s)
- Maria Ulfa
- Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Surakarta 57126, Indonesia
- Correspondence: (M.U.); or (D.P.)
| | - Abu Masykur
- Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Surakarta 57126, Indonesia
| | - Amanah Firdausa Nofitasari
- Department of Chemistry, Science Faculty, Sebelas Maret University, Jl Ir Sutami 36A, Surakarta 57126, Indonesia;
| | - Novia Amalia Sholeha
- Department of Chemistry, Science Faculty, Sebelas Maret University, Jl Ir Sutami 36A, Surakarta 57126, Indonesia;
| | - Suprapto Suprapto
- Department of Chemistry, Science Faculty, Sebelas Maret University, Jl Ir Sutami 36A, Surakarta 57126, Indonesia;
| | - Hasliza Bahruji
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Keputih, Sukolilo, Surabaya 60111, Indonesia; (A.F.N.); (N.A.S.); (S.S.)
| | - Didik Prasetyoko
- Department of Chemistry, Science Faculty, Sebelas Maret University, Jl Ir Sutami 36A, Surakarta 57126, Indonesia;
- Correspondence: (M.U.); or (D.P.)
| |
Collapse
|
174
|
Pandey M, Choudhury H, Ying JNS, Ling JFS, Ting J, Ting JSS, Zhia Hwen IK, Suen HW, Samsul Kamar HS, Gorain B, Jain N, Mohd Amin MCI. Mucoadhesive Nanocarriers as a Promising Strategy to Enhance Intracellular Delivery against Oral Cavity Carcinoma. Pharmaceutics 2022; 14:pharmaceutics14040795. [PMID: 35456629 PMCID: PMC9025168 DOI: 10.3390/pharmaceutics14040795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Oral cancer, particularly squamous cell carcinoma (SCC), has posed a grave challenge to global health due to its high incidence, metastasis, and mortality rates. Despite numerous studies and favorable improvements in the therapeutic strategies over the past few decades, the prognosis of this disease remains dismal. Moreover, several drawbacks are associated with the conventional treatment; including permanent disfigurement and physical impairment that are attributed to surgical intervention, and systemic toxicity that results from aggressive radio- or chemotherapies, which impacts patients’ prognosis and post-treatment quality of life. The highly vascularized, non-keratinized oral mucosa appears as a potential route for cytotoxic drug administration in treating oral cancer. It acts as a non-invasive portal for drug entry targeting the local oral lesions of the early stages of cancer and the systemic metastasis sites of advanced cancer. The absorption of the poorly aqueous-soluble anti-cancer drugs can be enhanced due to the increased permeability of the ulcerous mucosa lining in the disease state and by bypassing the hepatic first-pass metabolism. However, some challenges in oral transmucosal drug delivery include the drugs’ taste, the limited surface area of the membrane lining the oral cavity, and flushing and enzymatic degradation by saliva. Therefore, mucoadhesive nanocarriers have emerged as promising platforms for controlled, targeted drug delivery in the oral cavity. The surface functionalization of nanocarriers with various moieties allows for drug targeting, bioavailability enhancement, and biodistribution at the site of action, while the mucoadhesive feature prolongs the drug’s residence time for preferential accumulation to optimize the therapeutic effect and reduce systemic toxicity. This review has been focused to highlight the potential of various nanocarriers (e.g., nanoparticles, nanoemulsions, nanocapsules, and liposomes) in conferring targeting, solubility and bioavailability enhancement of actives and mucoadhesive properties as novel tumor-targeted drug delivery approaches in oral cancer treatment.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.P.); (H.C.); Tel.: +60-166-048-589 (M.P.)
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.P.); (H.C.); Tel.: +60-166-048-589 (M.P.)
| | - Jenifer Ngu Shao Ying
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Jessica Foo Sze Ling
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Jong Ting
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Jocelyn Su Szhiou Ting
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Ivory Kuek Zhia Hwen
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Ho Wan Suen
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Hazimah Syazwani Samsul Kamar
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India;
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida 201303, India;
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
175
|
Nano-AgCu Alloy on Wood Surface for Mold Resistance. NANOMATERIALS 2022; 12:nano12071192. [PMID: 35407310 PMCID: PMC9002835 DOI: 10.3390/nano12071192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023]
Abstract
The mold infection of wood reduces the quality of its surface and potentially endangers human health. One category of the most popular mold inhibitors on the market is water-soluble fungicides. However, easy leaching due to ionic forms is a problem, which reduces the effectiveness of their antimicrobial action, as well as causing environmental pollution. Interestingly, nanometer-sized sterilizing agents present strong permeability and highly fungicidal behavior, and they are not easily leached, due to the unique nanoscale effect, and they have become alternative candidates as marketable anti-mold agents for wood protection. In this study, we first designed and explored a nanoscale alloy (nano silver–copper alloy, nano-AgCu) to treat wood surfaces for mold growth resistance. The results showed that three molds, i.e., Aspergillus niger, Penicillium citrinum and Trichoderma viride, mainly grew on the surface of wood within a depth of 100 μm; and that the nano-AgCu alloy with a particle size of ~15 nm presented improved retention and anti-mold efficiency at a nanomaterial concentration on the wood surface. Its leaching rate increased non-linearly with the increase in nano-AgCu retention and then it showed a gradually decreasing trend. When the concentration reached 1000 mg/L, the nano-AgCu alloy uniformly distributed on the wood surface in a monodispersed state and exhibited a lower retention of 0.342 g/m2, with an anti-mold efficiency of more than 75% and a leaching rate of only 7.678%. Such results positioned 1000 mg/L as the toxic threshold concentration of nano-AgCu against the three molds. This study can provide a scientific basis for the analysis of the anti-mold mechanisms of nano-AgCu alloy on wood surfaces and guide the application of nano-metal alloy materials in the field of wood antimicrobials.
Collapse
|
176
|
Mohandoss S, Palanisamy S, You S, Shim JJ, Lee YR. Supramolecular nanogels based on gelatin-cyclodextrin-stabilized silver nanocomposites with antibacterial and anticancer properties. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:689-704. [PMID: 35025724 DOI: 10.1080/09205063.2021.2009184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An effective method for reducing silver ions using gelatin (Gel) and 2-hydroxypropyl-β-cyclodextrin (HPCD) hydrogels, which stabilize silver at various concentrations is described. The formation of AgNPs in solution, as well as Gel-HPCD nanogels, is confirmed by the surface plasmon resonance (SPR) band at 420-440 nm in the UV-Vis spectrum. The resulting Gel-HPCD and Gel-HPCD/AgNPs composites are characterized using various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), and thermogravimetric analysis (TGA). SEM images showed that the porous structure and the AgNPs are homogeneously dispersed throughout the Gel-HPCD/AgNP composites network. The AgNPs in the Gel-HPCD/AgNPs composite is crystalline, with spherical particles having an average size of 7.0 ± 2.5 nm, as determined by TEM. The Gel-HPCD/AgNPs composites are strongly effective against both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. The assembled antibacterial Gel-HPCD/AgNPs composites are also assessed for their cytotoxic and anticancer activities using HCT-116 cancer cells. The results suggest that Gel-HPCD/AgNPs composites could be used as effective therapeutics in the future in tissue engineering applications, as their bactericidal properties and low toxicity make them ideal for clinical use.
Collapse
Affiliation(s)
- Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Republic of Korea.,East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Republic of Korea.,East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon, Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
177
|
Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
178
|
Chavda VP, Patel AB, Mistry KJ, Suthar SF, Wu ZX, Chen ZS, Hou K. Nano-Drug Delivery Systems Entrapping Natural Bioactive Compounds for Cancer: Recent Progress and Future Challenges. Front Oncol 2022; 12:867655. [PMID: 35425710 PMCID: PMC9004605 DOI: 10.3389/fonc.2022.867655] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is a prominent cause of mortality globally, and it becomes fatal and incurable if it is delayed in diagnosis. Chemotherapy is a type of treatment that is used to eliminate, diminish, or restrict tumor progression. Chemotherapeutic medicines are available in various formulations. Some tumors require just one type of chemotherapy medication, while others may require a combination of surgery and/or radiotherapy. Treatments might last from a few minutes to many hours to several days. Each medication has potential adverse effects associated with it. Researchers have recently become interested in the use of natural bioactive compounds in anticancer therapy. Some phytochemicals have effects on cellular processes and signaling pathways with potential antitumor properties. Beneficial anticancer effects of phytochemicals were observed in both in vivo and in vitro investigations. Encapsulating natural bioactive compounds in different drug delivery methods may improve their anticancer efficacy. Greater in vivo stability and bioavailability, as well as a reduction in undesirable effects and an enhancement in target-specific activity, will increase the effectiveness of bioactive compounds. This review work focuses on a novel drug delivery system that entraps natural bioactive substances. It also provides an idea of the bioavailability of phytochemicals, challenges and limitations of standard cancer therapy. It also encompasses recent patents on nanoparticle formulations containing a natural anti-cancer molecule.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | | | - Kavya J. Mistry
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | | | - Zhuo-Xun Wu
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Kaijian Hou
- Department of Preventive Medicine,Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Afliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
179
|
Luna-Vázquez-Gómez R, Arellano-García ME, Toledano-Magaña Y, García-Ramos JC, Radilla-Chávez P, Salas-Vargas DS, Casillas-Figueroa F, Ruiz-Ruiz B, Pestryakov A, Bogdanchikova N. Bell Shape Curves of Hemolysis Induced by Silver Nanoparticles: Review and Experimental Assay. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1066. [PMID: 35407184 PMCID: PMC9000491 DOI: 10.3390/nano12071066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023]
Abstract
The hemolytic activity assay is a versatile tool for fast primary toxicity studies. This work presents a systematic study of the hemolytic properties of ArgovitTM silver nanoparticles (AgNPs) extensively studied for biomedical applications. The results revealed an unusual and unexpected bell-shaped hemolysis curve for human healthy and diabetic donor erythrocytes. With the decrease of pH from 7.4 and 6.8 to 5.6, the hemolysis profiles for AgNPs and AgNO3 changed dramatically. For AgNPs, the bell shape changed to a step shape with a subsequent sharp increase, and for AgNO3 it changed to a gradual increase. Explanations of these changes based on the aggregation of AgNPs due to the increase of proton concentration were suggested. Hemolysis of diabetic donor erythrocytes was slightly higher than that of healthy donor erythrocytes. The meta-analysis revealed that for only one AgNPs formulation (out of 48), a bell-shaped hemolysis profile was reported, but not discussed. This scarcity of data was explained by the dominant goal of studies consisting in achieving clinically significant hemolysis of 5-10%. Considering that hemolysis profiles may be bell-shaped, it is recommended to avoid extrapolations and to perform measurements in a wide concentration interval in hemolysis assays.
Collapse
Affiliation(s)
- Roberto Luna-Vázquez-Gómez
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | | | - Yanis Toledano-Magaña
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - Patricia Radilla-Chávez
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - David Sergio Salas-Vargas
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - Francisco Casillas-Figueroa
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - Balam Ruiz-Ruiz
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - Alexey Pestryakov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Nina Bogdanchikova
- Nanoscience and Nanotechnology Center (CNyN), Campus Ensenada, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| |
Collapse
|
180
|
Radziwon A, Bhangu SK, Fernandes S, Cortez-Jugo C, De Rose R, Dyett B, Wojnilowicz M, Laznickova P, Fric J, Forte G, Caruso F, Cavalieri F. Triggering the nanophase separation of albumin through multivalent binding to glycogen for drug delivery in 2D and 3D multicellular constructs. NANOSCALE 2022; 14:3452-3466. [PMID: 35179174 DOI: 10.1039/d1nr08429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Engineered nanoparticles for the encapsulation of bioactive agents hold promise to improve disease diagnosis, prevention and therapy. To advance this field and enable clinical translation, the rational design of nanoparticles with controlled functionalities and a robust understanding of nanoparticle-cell interactions in the complex biological milieu are of paramount importance. Herein, a simple platform obtained through the nanocomplexation of glycogen nanoparticles and albumin is introduced for the delivery of chemotherapeutics in complex multicellular 2D and 3D systems. We found that the dendrimer-like structure of aminated glycogen nanoparticles is key to controlling the multivalent coordination and phase separation of albumin molecules to form stable glycogen-albumin nanocomplexes. The pH-responsive glycogen scaffold conferred the nanocomplexes the ability to undergo partial endosomal escape in tumour, stromal and immune cells while albumin enabled nanocomplexes to cross endothelial cells and carry therapeutic agents. Limited interactions of nanocomplexes with T cells, B cells and natural killer cells derived from human blood were observed. The nanocomplexes can accommodate chemotherapeutic drugs and release them in multicellular 2D and 3D constructs. The drugs loaded on the nanocomplexes retained their cytotoxic activity, which is comparable with the activity of the free drugs. Cancer cells were found to be more sensitive to the drugs in the presence of stromal and immune cells. Penetration and cytotoxicity of the drug-loaded nanocomplexes in tumour mimicking tissues were validated using a 3D multicellular-collagen construct in a perfusion bioreactor. The results highlight a simple and potentially scalable strategy for engineering nanocomplexes made entirely of biological macromolecules with potential use for drug delivery.
Collapse
Affiliation(s)
- Agata Radziwon
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Sukhvir K Bhangu
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Soraia Fernandes
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Robert De Rose
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Brendan Dyett
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Marcin Wojnilowicz
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Petra Laznickova
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Jan Fric
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Francesca Cavalieri
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| |
Collapse
|
181
|
Jaiswal KK, Banerjee I, Dutta S, Verma R, Gunti L, Awasthi S, Bhushan M, Kumar V, Alajmi MF, Hussain A. Microwave-assisted polycrystalline Ag/AgO/AgCl nanocomposites synthesis using banana corm (rhizome of Musa sp.) extract: Characterization and antimicrobial studies. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
182
|
Banthia P, Gambhir L, Sharma A, Daga D, Kapoor N, Chaudhary R, Sharma G. Nano to rescue: repository of nanocarriers for targeted drug delivery to curb breast cancer. 3 Biotech 2022; 12:70. [PMID: 35223356 PMCID: PMC8841383 DOI: 10.1007/s13205-022-03121-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/16/2022] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a heterogeneous disease with different intrinsic subtypes. The conventional treatment of surgical resection, chemotherapy, immunotherapy and radiotherapy has not shown significant improvement in the survival rate of breast cancer patients. The therapeutics used cause bystander toxicities deteriorating healthy tissues. The breakthroughs of nanotechnology have been a promising feat in selective targeting of tumor site thus increasing the therapeutic gain. By the application of nanoenabled carriers, nanomedicines ensure targeted delivery, stability, enhanced cellular uptake, biocompatibility and higher apoptotic efficacy. The present review focuses on breakthrough of nanoscale intervention in targeted drug delivery as novel class of therapeutics. Nanoenabled carriers like polymeric and metallic nanoparticles, dendrimers, quantum dots, liposomes, solid lipid nanoparticles, carbon nanotubes, drug-antibody conjugates and exosomes revolutionized the targeted therapeutic delivery approach. These nanoassemblies have shown additional effect of improving the solubility of drugs such as paclitaxel, reducing the dose and toxicity. The present review provides an insight on the different drug conjugates employed/investigated to curb breast cancer using nanocarrier mediated targeted drug delivery. However, identification of appropriate biomarkers to target, clearer insight of the biological processes, batch uniformity, reproducibility, nanomaterial toxicity and stabilities are the hurdles faced by nanodrugs. The potential of nano-therapeutics delivery necessitates the agglomerated efforts of research community to bridge the route of nanodrugs for scale-up, commercialization and clinical applications.
Collapse
Affiliation(s)
- Poonam Banthia
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| | - Lokesh Gambhir
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| | - Asha Sharma
- Department of Zoology, Swargiya P. N. K. S. Govt. PG College, Dausa, Rajasthan India
| | - Dhiraj Daga
- Department of Radiation Oncology, JLN Medical College, Ajmer, Rajasthan India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| | - Rishabh Chaudhary
- Department of Emergency Medicine, Institute of Bioelectronic Medicine, Feinstein Institute of Medical Research, Northwell Health, New Hyde Park, NY USA
| | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| |
Collapse
|
183
|
Utilizing Biomass-Based Graphene Oxide-Polyaniline-Ag Electrodes in Microbial Fuel Cells to Boost Energy Generation and Heavy Metal Removal. Polymers (Basel) 2022; 14:polym14040845. [PMID: 35215758 PMCID: PMC8963014 DOI: 10.3390/polym14040845] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 01/22/2023] Open
Abstract
Although regarded as environmentally stable, bioelectrochemical fuel cells or, microbial fuel cells (MFCs) continue to face challenges with sustaining electron transport. In response, we examined the performance of two graphene composite-based anode electrodes—graphene oxide (GO) and GO–polymer–metal oxide (GO–PANI–Ag)—prepared from biomass and used in MFCs. Over 7 days of operation, GO energy efficiency peaked at 1.022 mW/m2 and GO–PANI–Ag at 2.09 mW/m2. We also tested how well the MFCs could remove heavy metal ions from synthetic wastewater, a secondary application of MFCs that offers considerable benefits. Overall, GO–PANI–Ag had a higher removal rate than GO, with 78.10% removal of Pb(II) and 80.25% removal of Cd(II). Material characterizations, electrochemical testing, and microbial testing conducted to validate the anodes performance confirmed that using new materials as electrodes in MFCs can be an attractive approach to improve the electron transportation. When used with a natural organic substrate (e.g., sugar cane juice), they also present fewer challenges. We also optimized different parameters to confirm the efficiency of the MFCs under various operating conditions. Considering those results, we discuss some lingering challenges and potential possibilities for MFCs.
Collapse
|
184
|
Shalaby MA, Anwar MM, Saeed H. Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02870-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractNanoparticles are the gateway to the new era in drug delivery of biocompatible agents. Several products have emerged from nanomaterials in quest of developing practical wound healing dressings that are nonantigenic, antishear stress, and gas-exchange permeable. Numerous studies have isolated and characterised various wound healing nanomaterials and nanoproducts. The electrospinning of natural and synthetic materials produces fine products that can be mixed with other wound healing medications and herbs. Various produced nanomaterials are highly influential in wound healing experimental models and can be used commercially as well. This article reviewed the current state-of-the-art and briefly specified the future concerns regarding the different systems of nanomaterials in wound healing (i.e., inorganic nanomaterials, organic and hybrid nanomaterials, and nanofibers). This review may be a comprehensive guidance to help health care professionals identify the proper wound healing materials to avoid the usual wound complications.
Collapse
|
185
|
Nikdouz A, Namarvari N, Ghasemi Shayan R, Hosseini A. Comprehensive comparison of theranostic nanoparticles in breast cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2022; 11:1-27. [PMID: 35350450 PMCID: PMC8938632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Breast cancer is the most frequently happening cancer and the most typical cancer death among females. Despite the crucial progress in breast cancer therapy by using Chemotherapeutic agents, most anti-tumor drugs are insufficient to destroy exactly the breast cancer cells. The noble method of drug delivery using nanoparticles presents a great promise in treating breast cancer most sufficiently and with the least harm to the patient. Nanoparticles, with their spectacular characteristics, help overcome problems of this kind. Unique features of nanoparticles such as biocompatibility, bioavailability, biodegradability, sustained release, and, most importantly, site-specific targeting enables the Chemotherapeutic agents loaded in nanocarriers to differentiate between healthy tissue and cancer cells, leading to low toxicity and fewer side effects. This review focuses on evaluating and comprehending nanoparticles utilized in breast cancer treatment, including the most recent data related to the drugs they can carry. Also, this review covers all information related to each nanocarrier, such as their significant characteristics, subtypes, advantages, disadvantages, and chemical modification methods with recently published studies. This article discusses over 21 nanoparticles used in breast cancer treatment with possible chemical ligands such as monoclonal antibodies and chemotherapeutic agents binding to these carriers. These different nanoparticles and the unique features of each nanocarrier give the researchers all the data and insight to develop and use the brand-new drug delivery system.
Collapse
Affiliation(s)
- Amin Nikdouz
- Department of Medical Laboratory, Tabriz University of Medical Sciences5166/15731 Tabriz, Iran
| | - Nima Namarvari
- Department of Medical Laboratory, Tabriz University of Medical Sciences5166/15731 Tabriz, Iran
| | - Ramin Ghasemi Shayan
- Department of Radiology, Tabriz University of Medical Sciences5166/15731 Tabriz, Iran
| | - Arezoo Hosseini
- Department of Immunology, Tabriz University of Medical Sciences5166/15731 Tabriz, Iran
| |
Collapse
|
186
|
Tarasenko V, Vinogradov N, Beloplotov D, Burachenko A, Lomaev M, Sorokin D. Influence of Nanoparticles and Metal Vapors on the Color of Laboratory and Atmospheric Discharges. NANOMATERIALS 2022; 12:nano12040652. [PMID: 35214981 PMCID: PMC8878183 DOI: 10.3390/nano12040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022]
Abstract
Currently, electrical discharges occurring at altitudes of tens to hundreds of kilometers from the Earth’s surface attract considerable attention from researchers from all over the world. A significant number of (nano)particles coming from outer space burn up at these altitudes. As a result, vapors of various substances, including metals, are formed at different altitudes. This paper deals with the influence of vapors and particles released from metal electrodes on the color and shape of pulse-periodic discharge in air, nitrogen, argon, and hydrogen. It presents the results of experimental studies. The discharge was implemented under an inhomogeneous electric field and was accompanied by the generation of runaway electrons and the formation of mini-jets. It was established that regardless of the voltage pulse polarity, the electrode material significantly affects the color of spherical- and cylindrical-shaped mini jets formed when bright spots appear on electrodes. Similar jets are observed when the discharge is transformed into a spark. It was shown that the color of the plasma of mini-jets is similar to that of atmospheric discharges (red sprites, blue jets, and ghosts) at altitudes of dozens of kilometers and differs from the color of plasma of pulsed diffuse discharges in air and nitrogen at the same pressure. It was revealed that to observe the red, blue and green mini-jets, it is necessary to use aluminum, iron, and copper electrodes, respectively.
Collapse
Affiliation(s)
- Victor Tarasenko
- Institute of High-Current Electronics SB RAS, 634055 Tomsk, Russia; (N.V.); (D.B.); (A.B.); (M.L.); (D.S.)
- Department of Quantum Electronics and Photonics, National Research Tomsk State University, 634050 Tomsk, Russia
- Correspondence: ; Tel.: +7-903-9539631
| | - Nikita Vinogradov
- Institute of High-Current Electronics SB RAS, 634055 Tomsk, Russia; (N.V.); (D.B.); (A.B.); (M.L.); (D.S.)
| | - Dmitry Beloplotov
- Institute of High-Current Electronics SB RAS, 634055 Tomsk, Russia; (N.V.); (D.B.); (A.B.); (M.L.); (D.S.)
| | - Alexander Burachenko
- Institute of High-Current Electronics SB RAS, 634055 Tomsk, Russia; (N.V.); (D.B.); (A.B.); (M.L.); (D.S.)
| | - Mikhail Lomaev
- Institute of High-Current Electronics SB RAS, 634055 Tomsk, Russia; (N.V.); (D.B.); (A.B.); (M.L.); (D.S.)
| | - Dmitry Sorokin
- Institute of High-Current Electronics SB RAS, 634055 Tomsk, Russia; (N.V.); (D.B.); (A.B.); (M.L.); (D.S.)
| |
Collapse
|
187
|
Santiago-Castillo K, Torres-Huerta AM, del Ángel-López D, Domínguez-Crespo MA, Dorantes-Rosales H, Palma-Ramírez D, Willcock H. In Situ Growth of Silver Nanoparticles on Chitosan Matrix for the Synthesis of Hybrid Electrospun Fibers: Analysis of Microstructural and Mechanical Properties. Polymers (Basel) 2022; 14:674. [PMID: 35215587 PMCID: PMC8880230 DOI: 10.3390/polym14040674] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
A viable alternative for the next generation of wound dressings is the preparation of electrospun fibers from biodegradable polymers in combination with inorganic nanoparticles. A poly(vinyl alcohol)-chitosan-silver nanoparticles (PVA-CTS-Ag NPs) system has been developed for antimicrobial and wound healing applications. Here, the preparation of PVA-CTS-Ag electrospun fibers using a two-step process is reported in order to analyze changes in the microstructural, mechanical, and antibacterial properties and confirm their potential application in the biomedical field. The Ag nanoparticles were well-dispersed into the chitosan matrix and their cubic structure after the electrospinning process was also retained. The Ag NPs displayed an average diameter of ~33 nm into the CTS matrix, while the size increased up to 213 nm in the PVA-CTS-Ag(NPs) fibers. It was observed that strong chemical interactions exist between organic (CTS) and inorganic phases through nitrogenous groups and the oxygen of the glycosidic bonds. A defect-free morphology was obtained in the PVA-CTS-Ag NPs final fibers with an important enhancement of the mechanical properties as well as of the antibacterial activity compared with pure PVA-CTS electrospun fibers. The results of antibacterial activity against E. coli and S. aureus confirmed that PVA-CTS-Ag(NPs) fibers can be potentially used as a material for biomedical applications.
Collapse
Affiliation(s)
- Karina Santiago-Castillo
- CIAMS, CICATA-Altamira, Instituto Politécnico Nacional, Km. 14.5 Carretera Tampico-Puerto Industrial Altamira, Altamira 89600, Mexico;
| | - Aidé Minerva Torres-Huerta
- Departamento de Materiales Nanoestructurados, Unidad Profesional Interdisciplinaria de Ingeniería campus Hidalgo (UPIIH), Instituto Politécnico Nacional, Km. 1 + 500, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42162, Mexico
| | - Deyanira del Ángel-López
- Escuela de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
- Área de ciencias químicas, exactas y tecnológicas, Universidad del Noreste, Prolongación Av. Hidalgo 6315 Col Nuevo Aeropuerto, Tampico 89337, Mexico
| | - Miguel Antonio Domínguez-Crespo
- Departamento de Materiales Nanoestructurados, Unidad Profesional Interdisciplinaria de Ingeniería campus Hidalgo (UPIIH), Instituto Politécnico Nacional, Km. 1 + 500, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42162, Mexico
| | - Héctor Dorantes-Rosales
- Departamento de Metalurgia, ESIQIE, Instituto Politécnico Nacional, Ciudad de México 07300, Mexico;
| | - Diana Palma-Ramírez
- Centro Mexicano para la Producción más Limpia (CMPL), Instituto Politécnico Nacional, Av. Acueducto s/n, La Laguna Ticomán, México City 07340, Mexico;
| | - Helen Willcock
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK;
| |
Collapse
|
188
|
Yan W, Fu X, Gao Y, Shi L, Liu Q, Yang W, Feng J. Synthesis, antibacterial evaluation, and safety assessment of CuS NPs against Pectobacterium carotovorum subsp. carotovorum. PEST MANAGEMENT SCIENCE 2022; 78:733-742. [PMID: 34689404 DOI: 10.1002/ps.6686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/03/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Copper agents have been widely used in crop protection because of their unique mechanism against resistant pathogenic bacteria; however, their application brings environmental pollution and biosafety problems. Therefore, environmentally friendly copper agents have attracted attention. In this study, copper sulfide nanoparticles (CuS NPs) were prepared, characterized, analyzed for antibacterial activity and safety. RESULTS Characterization results showed that the prepared pure CuS NPs have flake nanostructures, hexagonal crystal system, and size range from 40 to 60 nm. These CuS NPs exerted excellent antibacterial effects [median effective concentration (EC50 ) = 17 mg L-1 ] against Pectobacterium carotovorum subsp. carotovorum (Pcc) in vitro and can effectively delay and reduce bacterial infection in vivo. Antibacterial mechanism analysis revealed that CuS NPs can increase the levels of reactive oxygen species (ROS) and lipid peroxidation and destroy the structure of bacterial cells as observed through scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy. These NPs can also inhibit the motility of Pcc. At 7 and 14 days, the 50% lethal concentrations (LC50 ) of CuS NPs against earthworms were 1136 and 783 mg kg-1 , respectively, indicating their low acute toxicity to earthworms and environmental friendliness. Furthermore, the cells (L02) treated by CuS NPs showed relatively high cell viability (> 96%) and low apoptosis rate (only 5.2%), proving that CuS NPs had low cytotoxicity. CONCLUSION Compared with commercial dicopper chloride trihydroxide (Cu2 (OH)3 Cl), CuS NPs could be used as a highly effective, lowly toxic, and environmentally friendly antibacterial agent. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiyao Yan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuan Fu
- Medical College, Yangzhou University, Yangzhou, China
| | - Yuan Gao
- Medical College, Yangzhou University, Yangzhou, China
| | - Liyin Shi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qi Liu
- Medical College, Yangzhou University, Yangzhou, China
| | - Wenchao Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
189
|
Paluch E, Sobierajska P, Okińczyc P, Widelski J, Duda-Madej A, Krzyżanowska B, Krzyżek P, Ogórek R, Szperlik J, Chmielowiec J, Gościniak G, Wiglusz RJ. Nanoapatites Doped and Co-Doped with Noble Metal Ions as Modern Antibiofilm Materials for Biomedical Applications against Drug-Resistant Clinical Strains of Enterococcus faecalis VRE and Staphylococcus aureus MRSA. Int J Mol Sci 2022; 23:1533. [PMID: 35163457 PMCID: PMC8836119 DOI: 10.3390/ijms23031533] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
The main aim of our research was to investigate antiadhesive and antibiofilm properties of nanocrystalline apatites doped and co-doped with noble metal ions (Ag+, Au+, and Pd2+) against selected drug-resistant strains of Enterococcus faecalis and Staphylococcus aureus. The materials with the structure of apatite (hydroxyapatite, nHAp; hydroxy-chlor-apatites, OH-Cl-Ap) containing 1 mol% and 2 mol% of dopants and co-dopants were successfully obtained by the wet chemistry method. The majority of them contained an additional phase of metallic nanoparticles, in particular, AuNPs and PdNPs, which was confirmed by the XRPD, FTIR, UV-Vis, and SEM-EDS techniques. Extensive microbiological tests of the nanoapatites were carried out determining their MIC, MBC value, and FICI. The antiadhesive and antibiofilm properties of the tested nanoapatites were determined in detail with the use of fluorescence microscopy and computer image analysis. The results showed that almost all tested nanoapatites strongly inhibit adhesion and biofilm production of the tested bacterial strains. Biomaterials have not shown any significant cytotoxic effect on fibroblasts and even increased their survival when co-incubated with bacterial biofilms. Performed analyses confirmed that the nanoapatites doped and co-doped with noble metal ions are safe and excellent antiadhesive and antibiofilm biomaterials with potential use in the future in medical sectors.
Collapse
Affiliation(s)
- Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (P.S.); (J.C.)
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Jarosław Widelski
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Barbara Krzyżanowska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Rafał Ogórek
- Department of Mycology and Genetics, University of Wroclaw, Przybyszewskiego 63, 51-148 Wroclaw, Poland;
| | - Jakub Szperlik
- Faculty of Biological Sciences, Botanical Garden, University of Wroclaw, Sienkiewicza 23, 50-525 Wroclaw, Poland;
| | - Jacek Chmielowiec
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (P.S.); (J.C.)
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (P.S.); (J.C.)
| |
Collapse
|
190
|
Rameez Khan RM, Choudhary MA, Ahmad Z, Ibrahim MNM, Adnan R, Yaqoob AA, Rashid M. Copper oxide nanoparticles: a heterogeneous catalyst for synthesis of 3-(2-chlorophenyl)-2,4-pentadione. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2019276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Raja Muhammad Rameez Khan
- Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, Azad Jammu and Kashmir, Pakistan
| | - Muhammad Aziz Choudhary
- Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, Azad Jammu and Kashmir, Pakistan
| | - Zahoor Ahmad
- Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, Azad Jammu and Kashmir, Pakistan
| | - Mohamad Nasir Mohamad Ibrahim
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Rohana Adnan
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Asim Ali Yaqoob
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mohd Rashid
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
191
|
Zhang M, Song W, Tang Y, Xu X, Huang Y, Yu D. Polymer-Based Nanofiber-Nanoparticle Hybrids and Their Medical Applications. Polymers (Basel) 2022; 14:351. [PMID: 35054758 PMCID: PMC8780324 DOI: 10.3390/polym14020351] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
The search for higher-quality nanomaterials for medicinal applications continues. There are similarities between electrospun fibers and natural tissues. This property has enabled electrospun fibers to make significant progress in medical applications. However, electrospun fibers are limited to tissue scaffolding applications. When nanoparticles and nanofibers are combined, the composite material can perform more functions, such as photothermal, magnetic response, biosensing, antibacterial, drug delivery and biosensing. To prepare nanofiber and nanoparticle hybrids (NNHs), there are two primary ways. The electrospinning technology was used to produce NNHs in a single step. An alternate way is to use a self-assembly technique to create nanoparticles in fibers. This paper describes the creation of NNHs from routinely used biocompatible polymer composites. Single-step procedures and self-assembly methodologies are used to discuss the preparation of NNHs. It combines recent research discoveries to focus on the application of NNHs in drug release, antibacterial, and tissue engineering in the last two years.
Collapse
Affiliation(s)
- Mingxin Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Xizi Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Yingning Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
192
|
Ogbonna C, Kavaz D. Development of novel silver-apple pectin nanocomposite beads for antioxidant, antimicrobial and anticancer studies. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
193
|
Studies on Synthesis and Characterization of Fe3O4@SiO2@Ru Hybrid Magnetic Composites for Reusable Photocatalytic Application. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3970287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Degradation of dye pollutants by the photocatalytic process has been regarded as the most efficient green method for removal organic dyes from contaminated water. The current research work describes the synthesis of Fe3O4@SiO2@Ru hybrid magnetic composites (HMCs) and their photocatalytic degradation of two azo dye pollutants, methyl orange (MO) and methyl red (MR), under irradiation of visible light. The synthesis of Fe3O4@SiO2@Ru HMCs involves three stages, including synthesis of Fe3O4 magnetic microspheres (MMSs), followed by silica (SiO2) coating to get Fe3O4@SiO2 MMSs, and then incorporation of presynthesized Ru nanoparticles (~3 nm) onto the surface of Fe3O4@SiO2 HMCs. The synthesized HMCs were characterized by XRD, FTIR, TEM, EDS, XPS, BET analysis, UV-DRS, PL spectroscopy, and VSM to study the physical and chemical properties. Furthermore, the narrow band gap energy of the HMC photocatalyst is a significant parameter that provides high photocatalytic properties due to the high light adsorption. The photocatalytic activity of synthesized Fe3O4@SiO2@Ru HMCs was assessed by researching their ability to degrade the aqueous solution of MO and MR dyes under visible radiation, and the influence of various functional parameters on photocatalytic degradation has also been studied. The results indicate that the photocatalytic degradation of MO and MR dyes is more than 90%, and acid media favors better degradation. The probable mechanism of photodegradation of azo dyes by Fe3O4@SiO2@Ru HMC catalysts has been proposed. Furthermore, due to the strong ferromagnetic Fe3O4 core, HMCs were easily separated from the solution after the photocatalytic degradation process for reuse. Also, the photocatalytic activity after six cycles of use is greater than 90%, suggesting the stability of the synthesized Fe3O4@SiO2@Ru HMCs.
Collapse
|
194
|
Oves M, Ahmar Rauf M, Aslam M, Qari HA, Sonbol H, Ahmad I, Sarwar Zaman G, Saeed M. Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities. Saudi J Biol Sci 2022; 29:460-471. [PMID: 35002442 PMCID: PMC8716933 DOI: 10.1016/j.sjbs.2021.09.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/20/2022] Open
Abstract
Due to drug addiction and the emergence of antibiotic resistance in pathogens, the disease load and medication intake have risen worldwide. The alternative treatment for drug-resistant infections is Nano formulation-based antimicrobial agents. The plant extract of Conocarpus Lancifolius fruits was used to synthesize silver nanoparticles in the current study, and it was further employed as an antimicrobial and anticancer agent. Nanoparticles have been characterized by UV-visible spectrometer revealed the notable peak of λmax = 410-442 nm, which confirms the reduction of silver ion to elemental silver nanoparticles, and the biological moieties in the synthesis were further confirmed by FTIR analysis. The stability and crystalline nature of materials were approved by XRD analysis and expected the size of the nanomaterials of 21 to 173 nm analyzed by a nanophox particle-size analyzer. In vitro, synthesized materials act as an antibacterial agent against Streptococcus pneumonia and Staphylococcus aureus. The inhibition zones of 18 and 24 mm have been estimated to be antibacterial activity against both bacteria. The potency of up to 100% of AgNPs for bacterial strains was incubated overnight at 60 μg/ml. Based on our results, biogenic AgNPs reveal significant activity against fungal pathogen Rhizopusus stolonifera and Aspergillus flavus that cause leading infectious diseases. Additionally, nanomaterials were biocompatible and demonstrated the potential anticancer activities against MDA MB-231 cells after 24-hour exposure.
Collapse
Affiliation(s)
- Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdul Aziz University, 21589 Jeddah, Saudi Arabia
| | - Mohd Ahmar Rauf
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-Bind) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Mohammad Aslam
- Center of Excellence in Environmental Studies, King Abdul Aziz University, 21589 Jeddah, Saudi Arabia
| | - Huda A Qari
- Center of Excellence in Environmental Studies, King Abdul Aziz University, 21589 Jeddah, Saudi Arabia
- Department of Biological Science, Faculty of Science, King Abdul-Aziz University, 21589 Jeddah, Saudi Arabia
| | - Hana Sonbol
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Gaffar Sarwar Zaman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
195
|
Kannan P, Maduraiveeran G. Bimetallic Nanomaterials-Based Electrochemical Biosensor Platforms for Clinical Applications. MICROMACHINES 2021; 13:mi13010076. [PMID: 35056240 PMCID: PMC8779820 DOI: 10.3390/mi13010076] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022]
Abstract
Diabetes is a foremost health issue that results in ~4 million deaths every year and ~170 million people suffering globally. Though there is no treatment for diabetes yet, the blood glucose level of diabetic patients should be checked closely to avoid further problems. Screening glucose in blood has become a vital requirement, and thus the fabrication of advanced and sensitive blood sugar detection methodologies for clinical analysis and individual care. Bimetallic nanoparticles (BMNPs) are nanosized structures that are of rising interest in many clinical applications. Although their fabrication shares characteristics with physicochemical methodologies for the synthesis of corresponding mono-metallic counterparts, they can display several interesting new properties and applications as a significance of the synergetic effect between their two components. These applications can be as diverse as clinical diagnostics, anti-bacterial/anti-cancer treatments or biological imaging analyses, and drug delivery. However, the exploitation of BMNPs in such fields has received a small amount of attention predominantly due to the vital lack of understanding and concerns mainly on the usage of other nanostructured materials, such as stability and bio-degradability over extended-time, ability to form clusters, chemical reactivity, and biocompatibility. In this review article, a close look at bimetallic nanomaterial based glucose biosensing approaches is discussed, concentrating on their clinical applications as detection of glucose in various real sample sources, showing substantial development of their features related to corresponding monometallic counterparts and other existing used nanomaterials for clinical applications.
Collapse
Affiliation(s)
- Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
- Correspondence: (P.K.); (G.M.); Tel.: +86-19857386580 (P.K.); +91-9843911472 (G.M.)
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
- Correspondence: (P.K.); (G.M.); Tel.: +86-19857386580 (P.K.); +91-9843911472 (G.M.)
| |
Collapse
|
196
|
Chandan G, Pal S, Kashyap S, Siwal SS, Dhiman SK, Saini AK, Saini RV. Synthesis, characterization and anticancer activities of silver nanoparticles from the leaves of Datura stramonium L. NANOFABRICATION 2021. [DOI: 10.1515/nanofab-2020-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
In recent years, a wide range of studies has pointed out the role of nanoparticles as reservoirs of therapeutics for several diseases, including cancer. Nowadays, cancer research is focused on the development of novel treatment approaches to fight this dreadful disorder. Based on the evidential research and applications of nanoparticles, it is expected that green synthesized nanoparticles may show a prominent role, especially in the biomedical field. The present work is centered on the preparation and characterization of silver nanoparticles (Ag-NPs) from the aqueous (AQ) extract and non-alkaloidal (NA) fraction of Datura stramonium leaves and to evaluate their anticancer potential against mammalian cell lines. The biogenic Ag-NPs are characterized by UV-vis spectra, FTIR DLS, UV-Vis, SEM, and TEM. SEM and TEM analysis reveals the spherical morphology of NPs. The Ag-NPs exhibit cytotoxicity against various mammalian cell lines (A549, HCT-116, PANC-1, SHSY5Y, and U87), which indicate that the AQ and NA based NPs are highly potent to cause cancer cell death. To the best of our knowledge, the present report, for the first time, describes the green synthesis of Ag-NPs from the NA fraction of the D. stramonium and provides pieces of evidence for its anticancer potential.
Collapse
Affiliation(s)
- Gourav Chandan
- Central Research Cell, MM Institute of Medical Sciences and Research , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India
| | - Soumya Pal
- Central Research Cell, MM Institute of Medical Sciences and Research , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana 133207 , India ; Department of Biotechnology, Maharishi Markandeshwar Engineering College , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India
| | - Sheetal Kashyap
- Department of Biotechnology, Maharishi Markandeshwar Engineering College , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India
| | - Samarjeet Singh Siwal
- Department of Chemistry, Maharishi Markandeshwar Engineering College , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India
| | - Shakti K. Dhiman
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine , Jammu , Jammu and Kashmir , India
| | - Adesh K. Saini
- Central Research Cell, MM Institute of Medical Sciences and Research , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana 133207 , India ; Department of Biotechnology, Maharishi Markandeshwar Engineering College , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India
| | - Reena V. Saini
- Central Research Cell, MM Institute of Medical Sciences and Research , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India ; Department of Biotechnology, Maharishi Markandeshwar Engineering College , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India
| |
Collapse
|
197
|
Hemlata H, Meena PR, Singh AP, Tejavath KK. Assessment of antioxidant, cytotoxic, anti-proliferative, and anti-bacterial activities using the bioinspired silver nanoparticles via Cucumis prophetarum fruit extract. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.2020840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hemlata Hemlata
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Prem Raj Meena
- Department of Microbiology, Central University of Rajasthan, Ajmer, India
| | | | | |
Collapse
|
198
|
Conversion of Plastic Waste into Supports for Nanostructured Heterogeneous Catalysts: Application in Environmental Remediation. SURFACES 2021. [DOI: 10.3390/surfaces5010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plastics are ubiquitous in our society and are used in many industries, such as packaging, electronics, the automotive industry, and medical and health sectors, and plastic waste is among the types of waste of higher environmental concern. The increase in the amount of plastic waste produced daily has increased environmental problems, such as pollution by micro-plastics, contamination of the food chain, biodiversity degradation and economic losses. The selective and efficient conversion of plastic waste for applications in environmental remediation, such as by obtaining composites, is a strategy of the scientific community for the recovery of plastic waste. The development of polymeric supports for efficient, sustainable, and low-cost heterogeneous catalysts for the treatment of organic/inorganic contaminants is highly desirable yet still a great challenge; this will be the main focus of this work. Common commercial polymers, like polystyrene, polypropylene, polyethylene therephthalate, polyethylene and polyvinyl chloride, are addressed herein, as are their main physicochemical properties, such as molecular mass, degree of crystallinity and others. Additionally, we discuss the environmental and health risks of plastic debris and the main recycling technologies as well as their issues and environmental impact. The use of nanomaterials raises concerns about toxicity and reinforces the need to apply supports; this means that the recycling of plastics in this way may tackle two issues. Finally, we dissert about the advances in turning plastic waste into support for nanocatalysts for environmental remediation, mainly metal and metal oxide nanoparticles.
Collapse
|
199
|
Zinc-Based Metal-Organic Frameworks in Drug Delivery, Cell Imaging, and Sensing. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010100. [PMID: 35011330 PMCID: PMC8746597 DOI: 10.3390/molecules27010100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 01/19/2023]
Abstract
The design and structural frameworks for targeted drug delivery of medicinal compounds and improved cell imaging have been developed with several advantages. However, metal-organic frameworks (MOFs) are supplemented tremendously for medical uses with efficient efficacy. These MOFs are considered as an absolutely new class of porous materials, extensively used in drug delivery systems, cell imaging, and detecting the analytes, especially for cancer biomarkers, due to their excellent biocompatibility, easy functionalization, high storage capacity, and excellent biodegradability. While Zn-metal centers in MOFs have been found by enhanced efficient detection and improved drug delivery, these Zn-based MOFs have appeared to be safe as elucidated by different cytotoxicity assays for targeted drug delivery. On the other hand, the MOF-based heterogeneous catalyst is durable and can regenerate multiple times without losing activity. Therefore, as functional carriers for drug delivery, cell imaging, and chemosensory, MOFs' chemical composition and flexible porous structure allowed engineering to improve their medical formulation and functionality. This review summarizes the methodology for fabricating ultrasensitive and selective Zn-MOF-based sensors, as well as their application in early cancer diagnosis and therapy. This review also offers a systematic approach to understanding the development of MOFs as efficient drug carriers and provides new insights on their applications and limitations in utility with possible solutions.
Collapse
|
200
|
Polash SA, Khare T, Kumar V, Shukla R. Prospects of Exploring the Metal-Organic Framework for Combating Antimicrobial Resistance. ACS APPLIED BIO MATERIALS 2021; 4:8060-8079. [PMID: 35005933 DOI: 10.1021/acsabm.1c00832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infectious diseases are a major public health concern globally. Infections caused by pathogens with resistance against commonly used antimicrobial drugs or antibiotics (known as antimicrobial resistance, AMR) are becoming extremely difficult to control. AMR has thus been declared as one of the top 10 global public health threats, as it has very limited solutions. The drying pipeline of effective antibiotics has further worsened the situation. There is no absolute treatment, and the limitations of existing methods warrant further development in antimicrobials. Recent developments in the nanomaterial field present them as promising therapeutics and effective alternative to conventional antibiotics and synthetic drugs. The metal-organic framework (MOF) is a recent addition to the antimicrobial category with superior properties. The MOF exerts antimicrobial action on a wide range of species and is highly biocompatible. Additionally, their porous structures allow the incorporation of biomolecules and drugs for synergistic antimicrobial action. This review provides an inclusive summary of the molecular events responsible for resistance development and current trends in antimicrobials to combat antibiotic resistance and explores the potential role of the MOF in tackling the drug-resistant microbial species.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|