151
|
Song Y, Baxter SS, Dai L, Sanders C, Burkett S, Baugher RN, Mellott SD, Young TB, Lawhorn HE, Difilippantonio S, Karim B, Kadariya Y, Pinto LA, Testa JR, Shoemaker RH. Mesothelioma Mouse Models with Mixed Genomic States of Chromosome and Microsatellite Instability. Cancers (Basel) 2022; 14:3108. [PMID: 35804881 PMCID: PMC9264972 DOI: 10.3390/cancers14133108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Malignant mesothelioma (MMe) is a rare malignancy originating from the linings of the pleural, peritoneal and pericardial cavities. The best-defined risk factor is exposure to carcinogenic mineral fibers (e.g., asbestos). Genomic studies have revealed that the most frequent genetic lesions in human MMe are mutations in tumor suppressor genes. Several genetically engineered mouse models have been generated by introducing the same genetic lesions found in human MMe. However, most of these models require specialized breeding facilities and long-term exposure of mice to asbestos for MMe development. Thus, an alternative model with high tumor penetrance without asbestos is urgently needed. We characterized an orthotopic model using MMe cells derived from Cdkn2a+/-;Nf2+/- mice chronically injected with asbestos. These MMe cells were tumorigenic upon intraperitoneal injection. Moreover, MMe cells showed mixed chromosome and microsatellite instability, supporting the notion that genomic instability is relevant in MMe pathogenesis. In addition, microsatellite markers were detectable in the plasma of tumor-bearing mice, indicating a potential use for early cancer detection and monitoring the effects of interventions. This orthotopic model with rapid development of MMe without asbestos exposure represents genomic instability and specific molecular targets for therapeutic or preventive interventions to enable preclinical proof of concept for the intervention in an immunocompetent setting.
Collapse
Affiliation(s)
- Yurong Song
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (S.S.B.); (L.D.); (L.A.P.)
| | - Shaneen S. Baxter
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (S.S.B.); (L.D.); (L.A.P.)
| | - Lisheng Dai
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (S.S.B.); (L.D.); (L.A.P.)
| | - Chelsea Sanders
- Animal Research Technical Support of Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (C.S.); (S.D.)
| | - Sandra Burkett
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702, USA;
| | - Ryan N. Baugher
- CLIA Molecular Diagnostics Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (R.N.B.); (S.D.M.); (T.B.Y.); (H.E.L.)
| | - Stephanie D. Mellott
- CLIA Molecular Diagnostics Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (R.N.B.); (S.D.M.); (T.B.Y.); (H.E.L.)
| | - Todd B. Young
- CLIA Molecular Diagnostics Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (R.N.B.); (S.D.M.); (T.B.Y.); (H.E.L.)
| | - Heidi E. Lawhorn
- CLIA Molecular Diagnostics Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (R.N.B.); (S.D.M.); (T.B.Y.); (H.E.L.)
| | - Simone Difilippantonio
- Animal Research Technical Support of Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (C.S.); (S.D.)
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Yuwaraj Kadariya
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (Y.K.); (J.R.T.)
| | - Ligia A. Pinto
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (S.S.B.); (L.D.); (L.A.P.)
| | - Joseph R. Testa
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (Y.K.); (J.R.T.)
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
152
|
Assante G, Chandrasekaran S, Ng S, Tourna A, Chung CH, Isse KA, Banks JL, Soffientini U, Filippi C, Dhawan A, Liu M, Rozen SG, Hoare M, Campbell P, Ballard JWO, Turner N, Morris MJ, Chokshi S, Youngson NA. Acetyl-CoA metabolism drives epigenome change and contributes to carcinogenesis risk in fatty liver disease. Genome Med 2022; 14:67. [PMID: 35739588 PMCID: PMC9219160 DOI: 10.1186/s13073-022-01071-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of non-alcoholic fatty liver disease (NAFLD)-associated hepatocellular carcinoma (HCC) is increasing worldwide, but the steps in precancerous hepatocytes which lead to HCC driver mutations are not well understood. Here we provide evidence that metabolically driven histone hyperacetylation in steatotic hepatocytes can increase DNA damage to initiate carcinogenesis. METHODS Global epigenetic state was assessed in liver samples from high-fat diet or high-fructose diet rodent models, as well as in cultured immortalized human hepatocytes (IHH cells). The mechanisms linking steatosis, histone acetylation and DNA damage were investigated by computational metabolic modelling as well as through manipulation of IHH cells with metabolic and epigenetic inhibitors. Chromatin immunoprecipitation and next-generation sequencing (ChIP-seq) and transcriptome (RNA-seq) analyses were performed on IHH cells. Mutation locations and patterns were compared between the IHH cell model and genome sequence data from preneoplastic fatty liver samples from patients with alcohol-related liver disease and NAFLD. RESULTS Genome-wide histone acetylation was increased in steatotic livers of rodents fed high-fructose or high-fat diet. In vitro, steatosis relaxed chromatin and increased DNA damage marker γH2AX, which was reversed by inhibiting acetyl-CoA production. Steatosis-associated acetylation and γH2AX were enriched at gene clusters in telomere-proximal regions which contained HCC tumour suppressors in hepatocytes and human fatty livers. Regions of metabolically driven epigenetic change also had increased levels of DNA mutation in non-cancerous tissue from NAFLD and alcohol-related liver disease patients. Finally, genome-scale network modelling indicated that redox balance could be a key contributor to this mechanism. CONCLUSIONS Abnormal histone hyperacetylation facilitates DNA damage in steatotic hepatocytes and is a potential initiating event in hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Gabriella Assante
- Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Sriram Chandrasekaran
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Stanley Ng
- Wellcome Trust Sanger Institute, Cambridge, UK
| | - Aikaterini Tourna
- Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Carolina H Chung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kowsar A Isse
- Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Jasmine L Banks
- UNSW Sydney, Sydney, Australia
- Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Ugo Soffientini
- Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Celine Filippi
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Anil Dhawan
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Mo Liu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Steven G Rozen
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Matthew Hoare
- CRUK Cambridge Institute, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | - J William O Ballard
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia
| | - Nigel Turner
- UNSW Sydney, Sydney, Australia
- Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | | | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Neil A Youngson
- Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK.
- King's College London, Faculty of Life Sciences and Medicine, London, UK.
- UNSW Sydney, Sydney, Australia.
| |
Collapse
|
153
|
Yang F, Zhang Y. Apoptosis-related genes-based prognostic signature for osteosarcoma. Aging (Albany NY) 2022; 14:3813-3825. [PMID: 35504036 PMCID: PMC9134960 DOI: 10.18632/aging.204042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Osteosarcoma (OS) is a common malignant primary tumor of skeleton, especially in children and adolescents, characterized by high lung metastasis rate. Apoptosis has been studied in various tumors, while the prognostic role of apoptosis-related genes in OS has been seldom studied. Three OS related datasets were downloaded from Gene Expression Omnibus (GEO) database. Univariate Cox and LASSO Cox regression analysis identified optimal genes, which were used for building prognostic Risk score. Subsequent multivariate Cox regression analysis and Kaplan-Meier survival analysis determined the independent prognostic factors for OS. The immune cell infiltration was analyzed in CIBERSORT. Basing on 680 apoptosis-related genes, the OS patients could be divided into 2 clusters with significantly different overall survival. Among which, 6 optimal genes were identified to construct Risk score. In both training set (GSE21257) and validation set (meta-GEO dataset), high risk OS patients had significantly worse overall survival compared with the low risk patients. Besides, high Risk score was an independent poor prognostic factor for OS with various ages or genders. Three immune cells were differentially infiltrated between high and low risk OS patients. In conclusion, a six-gene (TERT, TRAP1, DNM1L, BAG5, PLEKHF1 and PPP3CB) based prognostic Risk score signature is probably conducive to distinguish different prognosis of OS patients.
Collapse
Affiliation(s)
- Fei Yang
- Department of Orthopaedics, Zibo Central Hospital, Zibo 255036, Shandong, China
| | - Yi Zhang
- Department of Orthopaedics, Zibo Central Hospital, Zibo 255036, Shandong, China
| |
Collapse
|
154
|
Gul Mohammad A, Li D, He R, Lei X, Mao L, Zhang B, Zhong X, Yin Z, Cao W, Zhang W, Hei R, Zheng Q, Zhang Y. Integrated analyses of an RNA binding protein-based signature related to tumor immune microenvironment and candidate drugs in osteosarcoma. Am J Transl Res 2022; 14:2501-2526. [PMID: 35559393 PMCID: PMC9091083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Osteosarcoma is the most frequent primary bone malignancy, associated with frequent recurrence and lung metastasis. RNA-binding proteins (RBPs) are pivotal in regulating several aspects of cancer biology. Nonetheless, interaction between RBPs and the osteosarcoma immune microenvironment is poorly understood. We investigated whether RBPs can predict prognosis and immunotherapy response in osteosarcoma patients. METHODS We constructed an RBP-related prognostic signature (RRPS) by univariate coupled with multivariate analyses and verified the independent prognostic efficacy of the signature. Single-sample Gene Set Enrichment Analysis (ssGSEA) along with ESTIMATE analysis were carried out to investigate the variations in immune characteristics between subgroups with various RRPS-scores. Furthermore, we investigatedpossible small molecule drugs using the connectivity map database and validated the expression of hub RBPs by qRT-PCR. RESULTS The RRPS, consisting of seven hub RBPs, was an independent prognostic factor compared to traditional clinical features. The RRPS could distinguish immune functions, immune score, stromal score, tumor purity and tumor infiltration by immune cells in different osteosarcoma subjects. Additionally, patients with high RRPS-scores had lower expression of immune checkpoint genes than patients with low RRPS-scores. We finally identified six small molecule drugs that may improve prognosis in osteosarcoma patients and substantiated notable differences in the contents of these RBPs. CONCLUSION We evaluated the prognostic value and clinical application of an RBPs-based prognostic signature and identified promising biomarkers to predict immune cell infiltration and immunotherapy response in osteosarcoma.
Collapse
Affiliation(s)
- Abdulraheem Gul Mohammad
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Dapeng Li
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Rong He
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu UniversityZhenjiang 212000, Jiangsu, China
| | - Xuan Lei
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Lianghao Mao
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Bing Zhang
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Xinyu Zhong
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Zhengyu Yin
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Wenbing Cao
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Wenchao Zhang
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Ruoxuan Hei
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212000, Jiangsu, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212000, Jiangsu, China
- Shenzhen Academy of Peptide Targeting Technology at Pingshan, and Shenzhen Tyercan Bio-Pharm Co., Ltd.Shenzhen 518118, Guangdong, China
| | - Yiming Zhang
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| |
Collapse
|
155
|
Li J, Liu HT, Zhao J, Chen HJ. Telomerase reverse transcriptase (TERT) promotes neurogenesis after hypoxic-ischemic brain damage in neonatal rats. Neurol Res 2022; 44:819-829. [PMID: 35400306 DOI: 10.1080/01616412.2022.2056339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jiao Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Ting Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Hong-Ju Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
156
|
Elsayed I, Elsayed N, Feng Q, Sheahan K, Moran B, Wang X. Multi-OMICs data analysis identifies molecular features correlating with tumor immunity in colon cancer. Cancer Biomark 2022; 33:261-271. [PMID: 35213358 DOI: 10.3233/cbm-210222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND There is a current need for new markers with higher sensitivity and specificity to predict immune status and optimize immunotherapy use in colon cancer. OBJECTIVE We aimed to investigate the multi-OMICs features associated with colon cancer immunity and response to immunotherapy. METHODS We evaluated the association of multi-OMICs data from three colon cancer datasets (TCGA, CPTAC2, and Samstein) with antitumor immune signatures (CD8+ T cell infiltration, immune cytolytic activity, and PD-L1 expression). Using the log-rank test and hierarchical clustering, we explored the association of various OMICs features with survival and immune status in colon cancer. RESULTS Two gene mutations (TERT and ERBB4) correlated with antitumor cytolytic activity found also correlated with improved survival in immunotherapy-treated colon cancers. Moreover, the expression of numerous genes was associated with antitumor immunity, including GBP1, GBP4, GBP5, NKG7, APOL3, IDO1, CCL5, and CXCL9. We clustered colon cancer samples into four immuno-distinct clusters based on the expression levels of 82 genes. We have also identified two proteins (PREX1 and RAD50), ten miRNAs (hsa-miR-140, 146, 150, 155, 342, 59, 342, 511, 592 and 1977), and five oncogenic pathways (CYCLIN, BCAT, CAMP, RB, NRL, EIF4E, and VEGF signaling pathways) significantly correlated with antitumor immune signatures. CONCLUSION These molecular features are potential markers of tumor immune status and response to immunotherapy.
Collapse
Affiliation(s)
- Inas Elsayed
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Pharmacology, Faculty of Pharmacy, University of Gezira, Wad Madani, Sudan
| | - Nazik Elsayed
- Department of Statistics, Faculty of Mathematics and Computer Sciences, University of Gezira, Wad Madani, Sudan
| | - Qiushi Feng
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Kieran Sheahan
- Centre for Colorectal Disease, St. Vincent's University Hospital, Elm Park, Ireland.,School of Medicine and Medical Sciences, University College Dublin, Belfield, Ireland
| | - Bruce Moran
- Department of Pathology, St. Vincent's University Hospital, Elm Park, Ireland
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
157
|
Macek P, Wieckiewicz M, Poreba R, Gac P, Bogunia-Kubik K, Dratwa M, Wojakowska A, Mazur G, Martynowicz H. Assessment of Telomerase Reverse Transcriptase Single Nucleotide Polymorphism in Sleep Bruxism. J Clin Med 2022; 11:jcm11030525. [PMID: 35159976 PMCID: PMC8836512 DOI: 10.3390/jcm11030525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction: Sleep bruxism (SB) is a widespread masticatory muscle activity during sleep and affects approximately 13.2% of the general population. Telomerase reverse transcriptase (TERT) plays a role in preventing the shortening of the telomere. This prospective, observational study aimed to investigate the relationship between single nucleotide polymorphism (SNP) of TERT and the severity of SB and to identify the independent risk factors for SB. Methods: A total of 112 patients were diagnosed by performing one-night polysomnography based on the guidelines of the American Academy of Sleep Medicine. TERT SNP was detected by real-time quantitative polymerase chain reaction (qPCR). Results: Statistical analysis showed the lack of relationship between the rs2853669 polymorphism of TERT and severity of SB (p > 0.05). However, the study showed that patients with allele T in the 2736100 polymorphism of TERT had a lower score on the phasic bruxism episode index (BEI). Based on the receiver operating characteristic (ROC) curve, the value of phasic BEI was 0.8 for the differential prediction for the presence of allele T in the locus. The sensitivity and specificity were 0.328 and 0.893, respectively. The regression analysis showed that lack of TERT rs2736100 T allele, male gender, and arterial hypertension are the risk factors for the higher value of phasic BEI. Conclusion: The SNP of the TERT gene affects phasic SB intensity. The absence of TERT rs2736100 T allele, male sex, and arterial hypertension are independent risk factors for phasic SB.
Collapse
Affiliation(s)
- Piotr Macek
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.M.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Mieszko Wieckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland
- Correspondence:
| | - Rafal Poreba
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.M.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Pawel Gac
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland;
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (K.B.-K.); (M.D.)
| | - Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (K.B.-K.); (M.D.)
| | - Anna Wojakowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.M.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.M.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Helena Martynowicz
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.M.); (R.P.); (A.W.); (G.M.); (H.M.)
| |
Collapse
|
158
|
Nery MF, Rennó M, Picorelli A, Ramos E. A phylogenetic review of cancer resistance highlights evolutionary solutions to Peto’s Paradox. Genet Mol Biol 2022; 45:e20220133. [DOI: 10.1590/1678-4685-gmb-2022-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
|
159
|
Yang Z, Bai H, Hu L, Kong D, Li G, Zhao C, Feng L, Cheng S, Shou J, Zhang W, Zhang K. Improving the diagnosis of prostate cancer by telomerase-positive circulating tumor cells: A prospective pilot study. EClinicalMedicine 2022; 43:101161. [PMID: 35128360 PMCID: PMC8808177 DOI: 10.1016/j.eclinm.2021.101161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Prostate-specific antigen (PSA) testing is limited in identifying prostate cancer (PCa) with modestly elevated PSA levels. Therefore, a robust method for the diagnosis of PCa is urgently needed. METHODS A total of 203 men with a PSA level of ≥4 ng/ml were eligible for enrollment in this study from July 2018 to May 2021, and randomly divided into a training set (n=78) and a validation set (n=125). Circulating tumor cells (CTCs) were detected using telomerase-based CTC detection (TBCD), and the diagnostic ability was evaluated using receiver operating characteristic (ROC) and logistic regression analyses. FINDINGS In the training set, the area under the curve (AUC) of CTCs was 0.842 with a sensitivity of 80.33% and specificity of 82.35%. In the validation set, the AUC of CTCs was 0.789, with a sensitivity of 79.31% and specificity of 81.58%. There was no significant difference between CTCs (AUC=0.793) and PSA (AUC=0.697) in the range of 4-50 ng/ml. In the ranges of 4-20 ng/ml and 4-10 ng/ml, the AUC of CTCs were 0.811 and 0.825, respectively, which were superior to the AUC of PSA (0.588 and 0.541). The sensitivity and specificity of CTCs in the three PSA groups were higher than 80%. Moreover, we further established a CTC+PSA combined model, which could significantly improve the diagnostic ability of a PSA level of '4-10 ng/ml'. INTERPRETATION TBCD could be a valuable method for distinguishing PCa and benign prostatic disease, especially in the PSA diagnostic gray area of '4-10 ng/ml'.
Collapse
Affiliation(s)
- Zhenrong Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongsong Bai
- Department of Urology, Cancer Hospital of Huanxing Chaoyang District Beijing, Beijing 100122, China
| | - Linjun Hu
- Department of Urology, Cancer Hospital of Huanxing Chaoyang District Beijing, Beijing 100122, China
| | - Defeng Kong
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guoliang Li
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Changyun Zhao
- Chongqing Diatech Biotechnological Limited Company, Chongqing 400020, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianzhong Shou
- Department of Urology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: Kaitai Zhang, State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. Tel: +86-10-87787644.
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: Kaitai Zhang, State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. Tel: +86-10-87787644.
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: Kaitai Zhang, State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. Tel: +86-10-87787644.
| |
Collapse
|
160
|
Hossain SMM, Khatun L, Ray S, Mukhopadhyay A. Pan-cancer classification by regularized multi-task learning. Sci Rep 2021; 11:24252. [PMID: 34930937 PMCID: PMC8688544 DOI: 10.1038/s41598-021-03554-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023] Open
Abstract
Classifying pan-cancer samples using gene expression patterns is a crucial challenge for the accurate diagnosis and treatment of cancer patients. Machine learning algorithms have been considered proven tools to perform downstream analysis and capture the deviations in gene expression patterns across diversified diseases. In our present work, we have developed PC-RMTL, a pan-cancer classification model using regularized multi-task learning (RMTL) for classifying 21 cancer types and adjacent normal samples using RNASeq data obtained from TCGA. PC-RMTL is observed to outperform when compared with five state-of-the-art classification algorithms, viz. SVM with the linear kernel (SVM-Lin), SVM with radial basis function kernel (SVM-RBF), random forest (RF), k-nearest neighbours (kNN), and decision trees (DT). The PC-RMTL achieves 96.07% accuracy and 95.80% MCC score for a completely unknown independent test set. The only method that appears as the real competitor is SVM-Lin, which nearly equalizes the accuracy in prediction of PC-RMTL but only when complete feature sets are provided for training; otherwise, PC-RMTL outperformed all other classification models. To the best of our knowledge, this is a significant improvement over all the existing works in pan-cancer classification as they have failed to classify many cancer types from one another reliably. We have also compared gene expression patterns of the top discriminating genes across the cancers and performed their functional enrichment analysis that uncovers several interesting facts in distinguishing pan-cancer samples.
Collapse
Affiliation(s)
| | - Lutfunnesa Khatun
- Computer Science and Engineering, University of Kalyani, Kalyani, 741235, India
| | - Sumanta Ray
- Computer Science and Engineering, Aliah University, Kolkata, 700160, India.
| | - Anirban Mukhopadhyay
- Computer Science and Engineering, University of Kalyani, Kalyani, 741235, India.
| |
Collapse
|
161
|
Fu Y, Bu G, Kanekiyo T, Zhao J. Counteracting Alzheimer's disease via somatic TERT activation. NATURE AGING 2021; 1:1081-1082. [PMID: 37117526 DOI: 10.1038/s43587-021-00145-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Yuan Fu
- Department of Neurology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroregeneration Laboratory, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroregeneration Laboratory, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Neuroregeneration Laboratory, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
162
|
Etiologies of Melanoma Development and Prevention Measures: A Review of the Current Evidence. Cancers (Basel) 2021; 13:cancers13194914. [PMID: 34638397 PMCID: PMC8508267 DOI: 10.3390/cancers13194914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Melanoma constitutes a major public health risk, with the rates of diagnosis increasing on a yearly basis. Monitoring for risk factors and preventing dangerous behaviors that increase melanoma risk, such as tanning, are important measures for melanoma prevention. Additionally, assessing the effectiveness of various methods to prevent sun exposure and sunburns—which can lead to melanoma—is important to help identify ways to reduce the development of melanoma. We summarize the recent evidence regarding the heritable and behavioral risks underlying melanoma, as well as the current methods used to reduce the risk of developing melanoma and to improve the diagnosis of this disease. Abstract (1) Melanoma is the most aggressive dermatologic malignancy, with an estimated 106,110 new cases to be diagnosed in 2021. The annual incidence rates continue to climb, which underscores the critical importance of improving the methods to prevent this disease. The interventions to assist with melanoma prevention vary and typically include measures such as UV avoidance and the use of protective clothing, sunscreen, and other chemopreventive agents. However, the evidence is mixed surrounding the use of these and other interventions. This review discusses the heritable etiologies underlying melanoma development before delving into the data surrounding the preventive methods highlighted above. (2) A comprehensive literature review was performed to identify the clinical trials, observational studies, and meta-analyses pertinent to melanoma prevention and incidence. Online resources were queried to identify epidemiologic and clinical trial information. (3) Evidence exists to support population-wide screening programs, the proper use of sunscreen, and community-targeted measures in the prevention of melanoma. Clinical evidence for the majority of the proposed preventive chemotherapeutics is presently minimal but continues to evolve. (4) Further study of these chemotherapeutics, as well as improvement of techniques in artificial intelligence and imaging techniques for melanoma screening, is warranted for continued improvement of melanoma prevention.
Collapse
|
163
|
Arakawa F, Miyoshi H, Yoshida N, Nakashima K, Watatani Y, Furuta T, Yamada K, Moritsubo M, Takeuchi M, Yanagida E, Shimasaki Y, Kohno K, Kataoka K, Ohshima K. Expression of telomerase reverse transcriptase in peripheral T-cell lymphoma. Cancer Med 2021; 10:6786-6794. [PMID: 34477310 PMCID: PMC8495278 DOI: 10.1002/cam4.4200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/17/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022] Open
Abstract
Telomere length is maintained by the activation of telomerase, which causes continuous cell division and proliferation in many carcinomas. A catalytic reverse transcriptase protein (TERT) encoded by the TERT gene plays a critical role in the activation of telomerase. We performed a molecular and pathological analysis of the TERT against three different peripheral T‐cell lymphoma (PTCL) subtypes: PTCL, not otherwise specified (PTCL‐NOS), angioimmunoblastic T‐cell lymphoma (AITL), and adult T‐cell leukemia/lymphoma (ATLL). Immunohistochemical analysis demonstrated TERT expression in 31% of AITL, 11% of PTCL‐NOS, and 5% of ATLL. Among them, AITL frequently showed high TERT expression with statistical significance. TERT promoter mutation analysis and genomic copy number evaluation were performed. TERT promoter mutation was observed in two cases of PTCL‐NOS (2/40) and not in other PTCLs. Genome copy number amplification was detected in 33% of PTCL‐NOS, 33% of AITL, and 50% of ATLL cases. We evaluated the relationship between the analyzed TERT genomic abnormalities and protein expression; however, no apparent relationship was observed. Furthermore, immunostaining showed TERT expression in the PTCL cytoplasm, suggesting the existence of mechanisms other than the maintenance of telomere length. Statistical analysis of the effect of TERT expression on the prognosis in PTCL cases revealed that TERT expression tended to have a poor prognosis in PTCL‐NOS. Since TERT expression was not an independent factor in multivariate analysis, further research will be needed to clarify the poor prognosis of PTCL‐NOS in TERT expression.
Collapse
Affiliation(s)
- Fumiko Arakawa
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Noriaki Yoshida
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan.,Department of Clinical Studies, Radiation Effects Research Foundation Hiroshima Laboratory, Hiroshima, Japan
| | - Kazutaka Nakashima
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Yosaku Watatani
- Departments of Hematology and Rheumatology, Faculty of Medicine, Kindai University Hospital, Osaka, Japan
| | - Takuya Furuta
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Kyohei Yamada
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Mayuko Moritsubo
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Mai Takeuchi
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Eriko Yanagida
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Yasumasa Shimasaki
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Kei Kohno
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Keisuke Kataoka
- Division of Hematology Department of Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| |
Collapse
|
164
|
Wei RL, Wei XT. Advanced Diagnosis of Glioma by Using Emerging Magnetic Resonance Sequences. Front Oncol 2021; 11:694498. [PMID: 34422648 PMCID: PMC8374052 DOI: 10.3389/fonc.2021.694498] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma, the most common primary brain tumor in adults, can be difficult to discern radiologically from other brain lesions, which affects surgical planning and follow-up treatment. Recent advances in MRI demonstrate that preoperative diagnosis of glioma has stepped into molecular and algorithm-assisted levels. Specifically, the histology-based glioma classification is composed of multiple different molecular subtypes with distinct behavior, prognosis, and response to therapy, and now each aspect can be assessed by corresponding emerging MR sequences like amide proton transfer-weighted MRI, inflow-based vascular-space-occupancy MRI, and radiomics algorithm. As a result of this novel progress, the clinical practice of glioma has been updated. Accurate diagnosis of glioma at the molecular level can be achieved ahead of the operation to formulate a thorough plan including surgery radical level, shortened length of stay, flexible follow-up plan, timely therapy response feedback, and eventually benefit patients individually.
Collapse
Affiliation(s)
- Ruo-Lun Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Ting Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
165
|
Human chromosome 3p21.3 carries TERT transcriptional regulators in pancreatic cancer. Sci Rep 2021; 11:15355. [PMID: 34321527 PMCID: PMC8319171 DOI: 10.1038/s41598-021-94711-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022] Open
Abstract
Frequent loss of heterozygosity (LOH) on the short arm of human chromosome 3 (3p) region has been found in pancreatic cancer (PC), which suggests the likely presence of tumor suppressor genes in this region. However, the functional significance of LOH in this region in the development of PC has not been clearly defined. The human telomerase reverse transcriptase gene (hTERT) contributes to unlimited proliferative and tumorigenicity of malignant tumors. We previously demonstrated that hTERT expression was suppressed by the introduction of human chromosome 3 in several cancer cell lines. To examine the functional role of putative TERT suppressor genes on chromosome 3 in PC, we introduced an intact human chromosome 3 into the human PK9 and murine LTPA PC cell lines using microcell-mediated chromosome transfer. PK9 microcell hybrids with an introduced human chromosome 3 showed significant morphological changes and rapid growth arrest. Intriguingly, microcell hybrid clones of LTPA cells with an introduced human chromosome 3 (LTPA#3) showed suppression of mTert transcription, cell proliferation, and invasion compared with LTPA#4 cells containing human chromosome 4 and parental LTPA cells. Additionally, the promoter activity of mTert was downregulated in LTPA#3. Furthermore, we confirmed that TERT regulatory gene(s) are present in the 3p21.3 region by transfer of truncated chromosomes at arbitrary regions. These results provide important information on the functional significance of the LOH at 3p for development and progression of PC.
Collapse
|
166
|
Zhang W, Duan X, Zhang Z, Yang Z, Zhao C, Liang C, Liu Z, Cheng S, Zhang K. Combination of CT and telomerase+ circulating tumor cells improves diagnosis of small pulmonary nodules. JCI Insight 2021; 6:148182. [PMID: 33905377 PMCID: PMC8262359 DOI: 10.1172/jci.insight.148182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Early diagnosis and treatment are key to the long-term survival of lung cancer patients. Although CT has significantly contributed to the early diagnosis of lung cancer, there are still consequences of excessive or delayed treatment. By improving the sensitivity and specificity of circulating tumor cell (CTC) detection, a solution was proposed for differentiating benign from malignant pulmonary nodules. METHODS In this study, we used telomerase reverse transcriptase–based (TERT-based) CTC detection (TBCD) to distinguish benign from malignant pulmonary nodules < 2 cm and compared this method with the pathological diagnosis as the gold standard. FlowSight and FISH were used to confirm the CTCs detected by TBCD. RESULTS Our results suggest that CTCs based on TBCD can be used as independent biomarkers to distinguish benign from malignant nodules and are significantly superior to serum tumor markers. When the detection threshold was 1, the detection sensitivity and specificity of CTC diagnosis were 0.854 and 0.839, respectively. For pulmonary nodules ≤ 1 cm and 1–2 cm, the sensitivity and specificity of CTCs were both higher than 77%. Additionally, the diagnostic ability of CTC-assisted CT was compared by CT detection. The results show that CT combined with CTCs could significantly improve the differentiation ability of benign and malignant nodules in lung nodules < 2 cm and that the sensitivity and specificity could reach 0.899 and 0.839, respectively. CONCLUSION TBCD can effectively diagnose pulmonary nodules and be used as an effective auxiliary diagnostic scheme for CT diagnosis. FUNDING National Key Research and Development Project grant nos. 2019YFC1315700 and 2017YFC1308702, CAMS Initiative for Innovative Medicine grant no. 2017-I2M-1-005, and National Natural Science Foundation of China grant no. 81472013.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinchun Duan
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenrong Zhang
- Department of General Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhenrong Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changyun Zhao
- Chongqing Deepexam Biotechnology Co. Ltd., Chongqing, China
| | | | - Zhidong Liu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
167
|
van Poppelen NM, van Ipenburg JA, van den Bosch Q, Vaarwater J, Brands T, Eussen B, Magielsen F, Dubbink HJ, Paridaens D, Brosens E, Naus N, de Klein A, Kiliç E, Verdijk RM. Molecular Genetics of Conjunctival Melanoma and Prognostic Value of TERT Promoter Mutation Analysis. Int J Mol Sci 2021; 22:ijms22115784. [PMID: 34071371 PMCID: PMC8198138 DOI: 10.3390/ijms22115784] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was exploration of the genetic background of conjunctival melanoma (CM) and correlation with recurrent and metastatic disease. Twenty-eight CM from the Rotterdam Ocular Melanoma Study group were collected and DNA was isolated from the formalin-fixed paraffin embedded tissue. Targeted next-generation sequencing was performed using a panel covering GNAQ, GNA11, EIF1AX, BAP1, BRAF, NRAS, c-KIT, PTEN, SF3B1, and TERT genes. Recurrences and metastasis were present in eight (29%) and nine (32%) CM cases, respectively. TERT promoter mutations were most common (54%), but BRAF (46%), NRAS (21%), BAP1 (18%), PTEN (14%), c-KIT (7%), and SF3B1 (4%) mutations were also observed. No mutations in GNAQ, GNA11, and EIF1AX were found. None of the mutations was significantly associated with recurrent disease. Presence of a TERT promoter mutation was associated with metastatic disease (p-value = 0.008). Based on our molecular findings, CM comprises a separate entity within melanoma, although there are overlapping molecular features with uveal melanoma, such as the presence of BAP1 and SF3B1 mutations. This warrants careful interpretation of molecular data, in the light of clinical findings. About three quarter of CM contain drug-targetable mutations, and TERT promoter mutations are correlated to metastatic disease in CM.
Collapse
Affiliation(s)
- Natasha M. van Poppelen
- Department of Ophthalmology, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (N.M.v.P.); (J.V.); (T.B.); (B.E.); (D.P.); (N.N.); (E.K.)
- Department of Clinical Genetics, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (F.M.); (E.B.); (A.d.K.)
| | - Jolique A. van Ipenburg
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (J.A.v.I.); (Q.v.d.B.); (H.J.D.)
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Quincy van den Bosch
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (J.A.v.I.); (Q.v.d.B.); (H.J.D.)
| | - Jolanda Vaarwater
- Department of Ophthalmology, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (N.M.v.P.); (J.V.); (T.B.); (B.E.); (D.P.); (N.N.); (E.K.)
- Department of Clinical Genetics, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (F.M.); (E.B.); (A.d.K.)
| | - Tom Brands
- Department of Ophthalmology, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (N.M.v.P.); (J.V.); (T.B.); (B.E.); (D.P.); (N.N.); (E.K.)
- Department of Clinical Genetics, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (F.M.); (E.B.); (A.d.K.)
| | - Bert Eussen
- Department of Ophthalmology, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (N.M.v.P.); (J.V.); (T.B.); (B.E.); (D.P.); (N.N.); (E.K.)
- Department of Clinical Genetics, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (F.M.); (E.B.); (A.d.K.)
| | - Frank Magielsen
- Department of Clinical Genetics, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (F.M.); (E.B.); (A.d.K.)
| | - Hendrikus J. Dubbink
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (J.A.v.I.); (Q.v.d.B.); (H.J.D.)
| | - Dion Paridaens
- Department of Ophthalmology, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (N.M.v.P.); (J.V.); (T.B.); (B.E.); (D.P.); (N.N.); (E.K.)
- Department of Ocular Oncology, The Rotterdam Eye Hospital, Schiedamse Vest 180, 3011 BH Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (F.M.); (E.B.); (A.d.K.)
| | - Nicole Naus
- Department of Ophthalmology, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (N.M.v.P.); (J.V.); (T.B.); (B.E.); (D.P.); (N.N.); (E.K.)
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (F.M.); (E.B.); (A.d.K.)
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (N.M.v.P.); (J.V.); (T.B.); (B.E.); (D.P.); (N.N.); (E.K.)
| | - Robert M. Verdijk
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (J.A.v.I.); (Q.v.d.B.); (H.J.D.)
- Department of Ocular Oncology, The Rotterdam Eye Hospital, Schiedamse Vest 180, 3011 BH Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
168
|
Lim SA, Moon Y, Shin MH, Kim TJ, Chae S, Yee C, Hwang D, Park H, Lee KM. Hypoxia-Driven HIF-1α Activation Reprograms Pre-Activated NK Cells towards Highly Potent Effector Phenotypes via ERK/STAT3 Pathways. Cancers (Basel) 2021; 13:cancers13081904. [PMID: 33920906 PMCID: PMC8071270 DOI: 10.3390/cancers13081904] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary In patients with advanced cancer, hypoxic stress shapes NK cells toward tumor-resistant and immunosuppressive phenotypes. Therefore, a strategy to restore NK cell function within hypoxia would be crucial for successful tumor immunotherapy. By manipulating pO2 exposure to naïve vs. pre-activated NK cells, we found that HIF-1α-dependent metabolic reprogramming of NK cells is the key to overcoming hypoxia-mediated NK cell impairment. Exposure of pre-activated NK cells to hypoxia with 1.5% pO2 initiated metabolic shift from oxidative phosphorylation to glycolysis and reduction of p21/p53-dependent apoptotic pathways, with concomitant upregulation of cell cycle-promoting genes and downregulation of cell cycle-arrest genes via HIF-1a/ERK/STAT3 activation. Furthermore, upregulation of NKp44 activating receptor in hypoxia-exposed pre-activated NK cells elevated cytotoxicity of K562, CEM, and A375 tumor cells, in both in-vitro and in-vivo tumor-clearance assays. Therefore, HIF-1α-mediated metabolic reprogramming of NK cells could reverse their impaired phenotype, generating functionally robust NK cells for adoptive therapy and clinical evaluation. Abstract NK cells are the predominant innate lymphocyte subsets specialized to kill malignant tumor cells. In patients with advanced cancer, hypoxic stress shapes NK cells toward tumor-resistant and immunosuppressive phenotypes, hence a strategy to restore NK function is critical for successful tumor immunotherapy. Here, we present evidence that pre-activation and subsequent HIF-1α-dependent metabolic shift of NK cells from oxidative phosphorylation into glycolysis are keys to overcome hypoxia-mediated impairment in NK cell survival, proliferation, and tumor cytotoxicity. Specifically, exposing NK cells to 7–9 days of normoxic culture followed by a pO2 of 1.5% hypoxia led to a highly potent effector phenotype via HIF-1α stabilization and upregulation of its target genes, BNIP3, PDK1, VEGF, PKM2, and LDHA. RNA sequencing and network analyses revealed that concomitant reduction of p21/p53 apoptotic pathways along with upregulation of cell cycle-promoting genes, CCNE1, CDC6, CDC20, and downregulation of cell cycle-arrest genes, CDKN1A, GADD45A, and MDM2 were accountable for superior expansion of NK cells via ERK/STAT3 activation. Furthermore, HIF-1α-dependent upregulation of the NKp44 receptor in hypoxia-exposed NK cells resulted in increased killing against K562, CEM, and A375 tumor targets both in-vitro and in-vivo tumor clearance assays. Therefore, hypoxic exposure on pre-activated proliferating NK cells triggered HIF-1α-dependent pathways to initiate coordinated regulation of cell cycle, apoptosis, and cytotoxicity at the global gene transcription level. Our results uncover a previously unidentified role of HIF-1α-mediated metabolic reprogramming that can reverse impaired NK effector phenotypes to generate requisite numbers of functionally robust NK cells for adoptive cellular therapy for clinical evaluation.
Collapse
Affiliation(s)
- Seon Ah Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea; (S.A.L.); (M.H.S.); (T.-J.K.)
| | - Yunwon Moon
- Department of Life Science, University of Seoul, Seoul 02504, Korea;
| | - Min Hwa Shin
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea; (S.A.L.); (M.H.S.); (T.-J.K.)
| | - Tae-Jin Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea; (S.A.L.); (M.H.S.); (T.-J.K.)
| | - Sehyun Chae
- Korea Brain Bank, Korea Brain Research Institute, Daegu 41068, Korea;
| | - Cassian Yee
- Departments of Melanoma Medical Oncology and Immunology, MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea;
| | - Hyunsung Park
- Department of Life Science, University of Seoul, Seoul 02504, Korea;
- Correspondence: (H.P.); (K.-M.L.); Tel.: +82-2-6490-2670 (H.P.); +82-2-920-6251 (K-M.L.)
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea; (S.A.L.); (M.H.S.); (T.-J.K.)
- Department of Biomedical Engineering, Center for Bio-Integrated Electronics, Simpson Querrey Institute, Northwestern University, Evanston, IL 60208, USA
- Correspondence: (H.P.); (K.-M.L.); Tel.: +82-2-6490-2670 (H.P.); +82-2-920-6251 (K-M.L.)
| |
Collapse
|