151
|
Espinosa-Cueto P, Magallanes-Puebla A, Mancilla R. Phosphate starvation enhances phagocytosis of Mycobacterium bovis/BCG by macrophages. BMC Immunol 2020; 21:34. [PMID: 32517651 PMCID: PMC7282091 DOI: 10.1186/s12865-020-00364-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/04/2020] [Indexed: 01/07/2023] Open
Abstract
Background Tuberculosis is an important health problem worldwide. The only available vaccine is M. bovis/BCG, an attenuated mycobacterium that activates the innate and the acquired immune system after being phagocytosed by macrophages and dendritic cells. Vaccination fails to prevent adult pulmonary tuberculosis although it may have a protective effect in childhood infection. Understanding how BCG interacts with macrophages and other immunocompetent cells is crucial to develop new vaccines. Results In this study we showed that macrophages phagocytose M. bovis/BCG bacilli with higher efficiency when they are cultured without phosphate. We isolated mycobacterial membranes to search for mycobacterial molecules that could be involved in these processes; by immunoblot, it was found that the plasma membranes of phosphate-deprived bacilli express the adhesins PstS-1, LpqH, LprG, and the APA antigen. These proteins are not detected in membranes of bacilli grown with usual amounts of phosphate. Conclusions The interest of our observations is to show that under the metabolic stress implied in phosphate deprivation, mycobacteria respond upregulating adhesins that could improve their capacity to infect macrophages. These observations are relevant to understand how M. bovis/BCG induces protective immunity.
Collapse
Affiliation(s)
- Patricia Espinosa-Cueto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, 04510, México City, Mexico
| | - Alejandro Magallanes-Puebla
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, 04510, México City, Mexico
| | - Raul Mancilla
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, 04510, México City, Mexico.
| |
Collapse
|
152
|
Millan-Oropeza A, Henry C, Lejeune C, David M, Virolle MJ. Expression of genes of the Pho regulon is altered in Streptomyces coelicolor. Sci Rep 2020; 10:8492. [PMID: 32444655 PMCID: PMC7244524 DOI: 10.1038/s41598-020-65087-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
Most currently used antibiotics originate from Streptomycetes and phosphate limitation is an important trigger of their biosynthesis. Understanding the molecular processes underpinning such regulation is of crucial importance to exploit the great metabolic diversity of these bacteria and get a better understanding of the role of these molecules in the physiology of the producing bacteria. To contribute to this field, a comparative proteomic analysis of two closely related model strains, Streptomyces lividans and Streptomyces coelicolor was carried out. These strains possess identical biosynthetic pathways directing the synthesis of three well-characterized antibiotics (CDA, RED and ACT) but only S. coelicolor expresses them at a high level. Previous studies established that the antibiotic producer, S. coelicolor, is characterized by an oxidative metabolism and a reduced triacylglycerol content compared to the none producer, S. lividans, characterized by a glycolytic metabolism. Our proteomic data support these findings and reveal that these drastically different metabolic features could, at least in part, due to the weaker abundance of proteins of the two component system PhoR/PhoP in S. coelicolor compared to S. lividans. In condition of phosphate limitation, PhoR/PhoP is known to control positively and negatively, respectively, phosphate and nitrogen assimilation and our study revealed that it might also control the expression of some genes of central carbon metabolism. The tuning down of the regulatory role of PhoR/PhoP in S. coelicolor is thus expected to be correlated with low and high phosphate and nitrogen availability, respectively and with changes in central carbon metabolic features. These changes are likely to be responsible for the observed differences between S. coelicolor and S. lividans concerning energetic metabolism, triacylglycerol biosynthesis and antibiotic production. Furthermore, a novel view of the contribution of the bio-active molecules produced in this context, to the regulation of the energetic metabolism of the producing bacteria, is proposed and discussed.
Collapse
Affiliation(s)
- Aaron Millan-Oropeza
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Céline Henry
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clara Lejeune
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Michelle David
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Marie-Joelle Virolle
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
153
|
Disruption of Phosphate Homeostasis Sensitizes Staphylococcus aureus to Nutritional Immunity. Infect Immun 2020; 88:IAI.00102-20. [PMID: 32205403 DOI: 10.1128/iai.00102-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
To control infection, mammals actively withhold essential nutrients, including the transition metal manganese, by a process termed nutritional immunity. A critical component of this host response is the manganese-chelating protein calprotectin. While many bacterial mechanisms for overcoming nutritional immunity have been identified, the intersection between metal starvation and other essential inorganic nutrients has not been investigated. Here, we report that overexpression of an operon encoding a highly conserved inorganic phosphate importer, PstSCAB, increases the sensitivity of Staphylococcus aureus to calprotectin-mediated manganese sequestration. Further analysis revealed that overexpression of pstSCAB does not disrupt manganese acquisition or result in overaccumulation of phosphate by S. aureus However, it does reduce the ability of S. aureus to grow in phosphate-replete defined medium. Overexpression of pstSCAB does not aberrantly activate the phosphate-responsive two-component system PhoPR, nor was this two-component system required for sensitivity to manganese starvation. In a mouse model of systemic staphylococcal disease, a pstSCAB-overexpressing strain is significantly attenuated compared to wild-type S. aureus This defect is partially reversed in a calprotectin-deficient mouse, in which manganese is more readily available. Given that expression of pstSCAB is regulated by PhoPR, these findings suggest that overactivation of PhoPR would diminish the ability of S. aureus to resist nutritional immunity and cause infection. As PhoPR is also necessary for bacterial virulence, these findings imply that phosphate homeostasis represents a critical regulatory node whose activity must be precisely controlled in order for S. aureus and other pathogens to cause infection.
Collapse
|
154
|
Abstract
Phosphate is an essential nutrient for life and is a critical component of bone formation, a major signaling molecule, and structural component of cell walls. Phosphate is also a component of high-energy compounds (i.e., AMP, ADP, and ATP) and essential for nucleic acid helical structure (i.e., RNA and DNA). Phosphate plays a central role in the process of mineralization, normal serum levels being associated with appropriate bone mineralization, while high and low serum levels are associated with soft tissue calcification. The serum concentration of phosphate and the total body content of phosphate are highly regulated, a process that is accomplished by the coordinated effort of two families of sodium-dependent transporter proteins. The three isoforms of the SLC34 family (SLC34A1-A3) show very restricted tissue expression and regulate intestinal absorption and renal excretion of phosphate. SLC34A2 also regulates the phosphate concentration in multiple lumen fluids including milk, saliva, pancreatic fluid, and surfactant. Both isoforms of the SLC20 family exhibit ubiquitous expression (with some variation as to which one or both are expressed), are regulated by ambient phosphate, and likely serve the phosphate needs of the individual cell. These proteins exhibit similarities to phosphate transporters in nonmammalian organisms. The proteins are nonredundant as mutations in each yield unique clinical presentations. Further research is essential to understand the function, regulation, and coordination of the various phosphate transporters, both the ones described in this review and the phosphate transporters involved in intracellular transport.
Collapse
Affiliation(s)
- Nati Hernando
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Kenneth Gagnon
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Eleanor Lederer
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
155
|
Phosphate in Virulence of Candida albicans and Candida glabrata. J Fungi (Basel) 2020; 6:jof6020040. [PMID: 32224872 PMCID: PMC7344514 DOI: 10.3390/jof6020040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/22/2022] Open
Abstract
Candida species are the most commonly isolated invasive human fungal pathogens. A role for phosphate acquisition in their growth, resistance against host immune cells, and tolerance of important antifungal medications is becoming apparent. Phosphorus is an essential element in vital components of the cell, including chromosomes and ribosomes. Producing the energy currency of the cell, ATP, requires abundant inorganic phosphate. A comparison of the network of regulators and effectors that controls phosphate acquisition and intracellular distribution, the PHO regulon, between the model yeast Saccharomyces cerevisiae, a plant saprobe, its evolutionarily close relative C. glabrata, and the more distantly related C. albicans, highlights the need to coordinate phosphate homeostasis with adenylate biosynthesis for ATP production. It also suggests that fungi that cope with phosphate starvation as they invade host tissues, may link phosphate acquisition to stress responses as an efficient mechanism of anticipatory regulation. Recent work indicates that connections among the PHO regulon, Target of Rapamycin Complex 1 signaling, oxidative stress management, and cell wall construction are based both in direct signaling links, and in the provision of phosphate for sufficient metabolic intermediates that are substrates in these processes. Fundamental differences in fungal and human phosphate homeostasis may offer novel drug targets.
Collapse
|
156
|
Li J, Mara P, Schubotz F, Sylvan JB, Burgaud G, Klein F, Beaudoin D, Wee SY, Dick HJB, Lott S, Cox R, Meyer LAE, Quémener M, Blackman DK, Edgcomb VP. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature 2020; 579:250-255. [DOI: 10.1038/s41586-020-2075-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/10/2020] [Indexed: 01/08/2023]
|
157
|
Zhang Y, Liu H, Gu D, Lu X, Zhou X, Xia X. Transcriptomic analysis of PhoR reveals its role in regulation of swarming motility and T3SS expression in Vibrio parahaemolyticus. Microbiol Res 2020; 235:126448. [PMID: 32114363 DOI: 10.1016/j.micres.2020.126448] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 01/14/2023]
Abstract
Vibrio parahaemolyticus is a common foodborne pathogen in seafood and represents a major threat to human health worldwide. In this study, we identified that PhoR, a histidine kinase, is involved in the regulation of swarming and flagella assembly. RNA sequencing analysis showed that 1122 genes were differentially expressed in PhoR mutant, including 394 upregulated and 728 downregulated genes. KEGG enrichment and heatmap analysis demonstrated that the bacterial secretion system, flagella assembly and chemotaxis pathways were significantly downregulated in PhoR mutant, while the microbial metabolism in diverse environments and carbon metabolism pathways were upregulated in PhoR mutant. qRT-PCR further confirmed that genes responsible for the type III secretion system (T3SS), swarming and the thermostable direct hemolysin were positively regulated by PhoR. Phosphorylation assays suggested that PhoR was highly activated in BHI medium compared to LB medium. Taken together, these data suggested that activated PhoR contributes to the expression of swarming motility and secretion system genes in Vibrio parahaemolyticus.
Collapse
Affiliation(s)
- Yibei Zhang
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269-3089, USA
| | - Huanhuan Liu
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xingxu Lu
- Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269-3089, USA.
| | - Xiaodong Xia
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Yangling, Shaanxi, 712100, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, 1 Qinggongyuan, Ganjingzi District, Dalian, Liaoning, 116034 China.
| |
Collapse
|
158
|
Marie-Joelle Virolle. Antibiotics (Basel) 2020; 9:antibiotics9020083. [PMID: 32069930 PMCID: PMC7168255 DOI: 10.3390/antibiotics9020083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Antibiotics are often considered as weapons conferring a competitive advantage to their producers in their ecological niche. However, since these molecules are produced in specific environmental conditions, notably phosphate limitation that triggers a specific metabolic state, they are likely to play important roles in the physiology of the producing bacteria that have been overlooked. Our recent experimental data as well as careful analysis of the scientific literature led us to propose that, in conditions of moderate to severe phosphate limitation—conditions known to generate energetic stress—antibiotics play crucial roles in the regulation of the energetic metabolism of the producing bacteria. A novel classification of antibiotics into types I, II, and III, based on the nature of the targets of these molecules and on their impact on the cellular physiology, is proposed. Type I antibiotics are known to target cellular membranes, inducing energy spilling and cell lysis of a fraction of the population to provide nutrients, and especially phosphate, to the surviving population. Type II antibiotics inhibit respiration through different strategies, to reduce ATP generation in conditions of low phosphate availability. Lastly, Type III antibiotics that are known to inhibit ATP consuming anabolic processes contribute to ATP saving in conditions of phosphate starvation.
Collapse
|
159
|
Lipa P, Janczarek M. Phosphorylation systems in symbiotic nitrogen-fixing bacteria and their role in bacterial adaptation to various environmental stresses. PeerJ 2020; 8:e8466. [PMID: 32095335 PMCID: PMC7020829 DOI: 10.7717/peerj.8466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022] Open
Abstract
Symbiotic bacteria, commonly called rhizobia, lead a saprophytic lifestyle in the soil and form nitrogen-fixing nodules on legume roots. During their lifecycle, rhizobia have to adapt to different conditions prevailing in the soils and within host plants. To survive under these conditions, rhizobia fine-tune the regulatory machinery to respond rapidly and adequately to environmental changes. Symbiotic bacteria play an essential role in the soil environment from both ecological and economical point of view, since these bacteria provide Fabaceae plants (legumes) with large amounts of accessible nitrogen as a result of symbiotic interactions (i.e., rhizobia present within the nodule reduce atmospheric dinitrogen (N2) to ammonia, which can be utilized by plants). Because of its restricted availability in the soil, nitrogen is one of the most limiting factors for plant growth. In spite of its high content in the atmosphere, plants are not able to assimilate it directly in the N2 form. During symbiosis, rhizobia infect host root and trigger the development of specific plant organ, the nodule. The aim of root nodule formation is to ensure a microaerobic environment, which is essential for proper activity of nitrogenase, i.e., a key enzyme facilitating N2 fixation. To adapt to various lifestyles and environmental stresses, rhizobia have developed several regulatory mechanisms, e.g., reversible phosphorylation. This key mechanism regulates many processes in both prokaryotic and eukaryotic cells. In microorganisms, signal transduction includes two-component systems (TCSs), which involve membrane sensor histidine kinases (HKs) and cognate DNA-binding response regulators (RRs). Furthermore, regulatory mechanisms based on phosphoenolopyruvate-dependent phosphotranspherase systems (PTSs), as well as alternative regulatory pathways controlled by Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) play an important role in regulation of many cellular processes in both free-living bacteria and during symbiosis with the host plant (e.g., growth and cell division, envelope biogenesis, biofilm formation, response to stress conditions, and regulation of metabolism). In this review, we summarize the current knowledge of phosphorylation systems in symbiotic nitrogen-fixing bacteria, and their role in the physiology of rhizobial cells and adaptation to various environmental conditions.
Collapse
Affiliation(s)
- Paulina Lipa
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University Lublin, Lublin, Poland
| | - Monika Janczarek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University Lublin, Lublin, Poland
| |
Collapse
|
160
|
Kumru S, Tekedar HC, Blom J, Lawrence ML, Karsi A. Genomic diversity in flavobacterial pathogens of aquatic origin. Microb Pathog 2020; 142:104053. [PMID: 32058022 DOI: 10.1016/j.micpath.2020.104053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022]
Abstract
Flavobacterium species are considered important fish pathogens in wild and cultured fish throughout the world. They can cause acute, subacute, and chronic infections, which are mainly characterized by gill damage, skin lesions, and deep necrotic ulcerations. Primarily, three Flavobacterium species, F. branchiophilum, F. columnare, and F. psychrophilum, have been reported to cause substantial losses to freshwater fish. In this study, we evaluated genomes of 86 Flavobacterium species isolated from aquatic hosts (mainly fish) to identify their unique and shared genome features. Our results showed that F. columnare genomes cluster into four different genetic groups. In silico secretion system analysis identified that all genomes carry type I (T1SS) and type IX (T9SS) secretion systems, but the number of type I secretion system genes shows diversity between species. F. branchiophilum, F. araucananum, F. chilense, F. spartansii, and F. tructae genomes have full type VI secretion system (T6SS). F. columnare, F. hydatis, and F. plurextorum carry partial T6SS with some of the T6SS genes missing. F. columnare, F. araucananum, F. chilense, F. spartansii, F. araucananum, F. tructae, Flavobacterium sp., F. crassostreae, F. succinicans, F. hydatis, and F. plurextorum carry most of the type IV secretion system genes (T4SS). F. columnare genetic groups 1 and 2, Flavobacterium sp., and F. crassostreae encode the least number of antibiotic resistance elements. F. hydatis, F. chilense, and F. plurextorum encode the greatest number of antibiotic resistance genes. Additionally, F. spartansii, F. araucananum, and chilense encode the greatest number of virulence genes while Flavobacterium sp. and F. crassostreae encode the least number of virulence genes. In conclusion, comparative genomics of Flavobacterium species of aquatic origin will help our understanding of Flavobacterium pathogenesis.
Collapse
Affiliation(s)
- Salih Kumru
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Turkey
| | - Hasan C Tekedar
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Hesse, Germany
| | - Mark L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States.
| |
Collapse
|
161
|
Martín JF, Liras P. The Balance Metabolism Safety Net: Integration of Stress Signals by Interacting Transcriptional Factors in Streptomyces and Related Actinobacteria. Front Microbiol 2020; 10:3120. [PMID: 32038560 PMCID: PMC6988585 DOI: 10.3389/fmicb.2019.03120] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Soil dwelling Streptomyces species are faced with large variations in carbon or nitrogen sources, phosphate, oxygen, iron, sulfur, and other nutrients. These drastic changes in key nutrients result in an unbalanced metabolism that have undesirable consequences for growth, cell differentiation, reproduction, and secondary metabolites biosynthesis. In the last decades evidence has accumulated indicating that mechanisms to correct metabolic unbalances in Streptomyces species take place at the transcriptional level, mediated by different transcriptional factors. For example, the master regulator PhoP and the large SARP-type regulator AfsR bind to overlapping sequences in the afsS promoter and, therefore, compete in the integration of signals of phosphate starvation and S-adenosylmethionine (SAM) concentrations. The cross-talk between phosphate control of metabolism, mediated by the PhoR-PhoP system, and the pleiotropic orphan nitrogen regulator GlnR, is very interesting; PhoP represses GlnR and other nitrogen metabolism genes. The mechanisms of control by GlnR of several promoters of ATP binding cassettes (ABC) sugar transporters and carbon metabolism are highly elaborated. Another important cross-talk that governs nitrogen metabolism involves the competition between GlnR and the transcriptional factor MtrA. GlnR and MtrA exert opposite effects on expression of nitrogen metabolism genes. MtrA, under nitrogen rich conditions, represses expression of nitrogen assimilation and regulatory genes, including GlnR, and competes with GlnR for the GlnR binding sites. Strikingly, these sites also bind to PhoP. Novel examples of interacting transcriptional factors, discovered recently, are discussed to provide a broad view of this interactions. Altogether, these findings indicate that cross-talks between the major transcriptional factors protect the cell metabolic balance. A detailed analysis of the transcriptional factors binding sequences suggests that the transcriptional factors interact with specific regions, either by overlapping the recognition sequence of other factors or by binding to adjacent sites in those regions. Additional interactions on the regulatory backbone are provided by sigma factors, highly phosphorylated nucleotides, cyclic dinucleotides, and small ligands that interact with cognate receptor proteins and with TetR-type transcriptional regulators. We propose to define the signal integration DNA regions (so called integrator sites) that assemble responses to different stress, nutritional or environmental signals. These integrator sites constitute nodes recognized by two, three, or more transcriptional factors to compensate the unbalances produced by metabolic stresses. This interplay mechanism acts as a safety net to prevent major damage to the metabolism under extreme nutritional and environmental conditions.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Paloma Liras
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| |
Collapse
|
162
|
Tahon G, Lebbe L, De Troch M, Sabbe K, Willems A. Leeuwenhoekiella aestuarii sp. nov., isolated from salt-water sediment and first insights in the genomes of Leeuwenhoekiella species. Int J Syst Evol Microbiol 2020; 70:1706-1719. [PMID: 31909708 DOI: 10.1099/ijsem.0.003959] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Four Gram-negative, aerobic, rod-shaped and yellow-orange pigmented bacteria (R-46770, R-48165T, R-50232 and R-50233) were isolated from intertidal sediment and water of the Westerschelde estuary between 2006 and 2012. Analysis of their 16S rRNA gene sequences revealed that the four strains form a separate cluster between validly described type strains of the genus Leeuwenhoekiella. DNA-DNA reassociation values of two representative strains (i.e. R-48165T and R-50232) of the new group with type strains of Leeuwenhoekiella species ranged from 18.7 to 56.6 %. A comparative genome analysis of the two strains and the type strains confirmed average nucleotide identity values from 75.6 to 94.4 %. The G+C contents of the genomic DNA of strains R-48165T and R-50232 were 37.80 and 37.83 mol%, respectively. The predominant cellular fatty acids of the four novel strains were summed feature 3 (i.e. C16 : 1ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH. The four new Leeuwenhoekiella-like strains grew with 0.5-12 % (w/v) NaCl, at pH 5.5-9.0 and displayed optimum growth between 20 and 30 °C. Based on the results of phenotypic, genomic, phylogenetic and chemotaxonomic analyses, the four new strains represent a novel species of the genus Leeuwenhoekiella for which the name Leeuwenhoekiella aestuarii sp. nov. is proposed. The type strain is LMG 30908T (=R-48165T=CECT 9775T=DSM 107866T). Genome analysis of type strains of the genus Leeuwenhoekiella revealed a large number of glycosyl hydrolases, peptidases and carboxyl esterases per Mb, whereas the number of transporters per Mb was low compared to other bacteria. This confirmed the environmental role of Leeuwenhoekiella species as (bio)polymer degraders, with a specialization on degrading proteins and high molecular weight compounds. Additionally, the presence of a large number of genes involved in gliding motility and surface adhesion, and large numbers of glycosyl transferases per Mb confirmed the importance of these features for Leeuwenhoekiella species.
Collapse
Affiliation(s)
- Guillaume Tahon
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Liesbeth Lebbe
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Marleen De Troch
- Marine Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Koen Sabbe
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
163
|
Oliveira-Filho ER, Silva JGP, de Macedo MA, Taciro MK, Gomez JGC, Silva LF. Investigating Nutrient Limitation Role on Improvement of Growth and Poly(3-Hydroxybutyrate) Accumulation by Burkholderia sacchari LMG 19450 From Xylose as the Sole Carbon Source. Front Bioeng Biotechnol 2020; 7:416. [PMID: 31970153 PMCID: PMC6960187 DOI: 10.3389/fbioe.2019.00416] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/29/2019] [Indexed: 01/15/2023] Open
Abstract
Burkholderia sacchari LMG19450, a non-model organism and a promising microbial platform, was studied to determine nutrient limitation impact on poly(3-hydroxybutyrate) [P(3HB)] production and bacterial growth from xylose, a major hemicellulosic residue. Nitrogen and phosphorus limitations have been studied in a number of cases to enhance PHA accumulation, but not combining xylose and B. sacchari. Within this strategy, it was sought to understand how to control PHA production and even modulate monomer composition. Nitrogen-limited and phosphorus-limited fed-batch experiments in bioreactors were performed to evaluate each one's influence on cell growth and poly(3-hydroxybutyrate) production. The mineral medium composition was defined based on yields calculated from typical results so that nitrogen was available during phosphorus limitation and residual phosphorus was available when limiting nitrogen. Sets of experiments were performed so as to promote cell growth in the first stage (supplied with initial xylose 15 g/L), followed by an accumulation phase, where N or P was the limiting nutrient when xylose was fed in pulses to avoid concentrations lower than 5 g/L. N-limited fed-batch specific cell growth (around 0.19 1/h) and substrate consumption (around 0.24 1/h) rates were higher when compared to phosphorus-limited ones. Xylose to PHA yield was similar in both conditions [0.37 gP(3HB)/gxyl]. We also described pst gene cluster in B. sacchari, responsible for high-affinity phosphate uptake. Obtained phosphorus to biomass yields might evidence polyphosphate accumulation. Results were compared with studies with B. sacchari and other PHA-producing microorganisms. Since it is the first report of the mentioned kinetic parameters for LMG 19450 growing on xylose solely, our results open exciting perspectives to develop an efficient bioprocess strategy with increased P(3HB) production from xylose or xylose-rich substrates.
Collapse
Affiliation(s)
- Edmar R Oliveira-Filho
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jefferson G P Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matheus Arjona de Macedo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marilda K Taciro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Gregório C Gomez
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luiziana F Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
164
|
You M, Fang S, MacDonald J, Xu J, Yuan ZC. Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth. Microbiol Res 2019; 233:126395. [PMID: 31865096 DOI: 10.1016/j.micres.2019.126395] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/06/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
Plant-growth promoting rhizobacteria benefit crop health and growth through various mechanisms including phosphate and potassium solubilisation, and antimicrobial activity. Previously, we sequenced the genome of bacterial strain Burkholderia cenocepacia CR318, which was isolated from the roots of the starch corn (Zea mays L.) in London, Ontario, Canada. In this work, the species identity of this isolate is confirmed by recA phylogeny and in silico DNA-DNA hybridization (isDDH), and its plant-growth promoting characteristics are described. B. cenocepacia CR318 exhibited strong activity of inorganic phosphate and potassium solubilization. It significantly promoted the growth of corn plants and roots by solubilizing inorganic tricalcium phosphate under greenhouse conditions. Functional analysis of the complete B. cenocepacia CR318 genome revealed genes associated with phosphate metabolism such as pstSCAB encoding a high affinity inorganic phosphate-specific transporter, and the pqqABCDE gene cluster involved in the biosynthesis of pyrroloquinoline quinone (PQQ), which is a required cofactor for quinoprotein glucose dehydrogenase (Gdh). However, it appears that B. cenocepacia CR318 lacks the quinoprotein Gdh which can produce gluconic acid to solubilize inorganic phosphate. Overall, these findings provide an important step in understanding the molecular mechanisms underlying the plant growth promotion trait of B. cenocepacia CR318.
Collapse
Affiliation(s)
- Man You
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada; Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Shumei Fang
- Life Science and Technology College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Jacqueline MacDonald
- Department of Microbiology and Immunology, University of Western Ontario, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Ze-Chun Yuan
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada; Department of Microbiology and Immunology, University of Western Ontario, Canada.
| |
Collapse
|
165
|
Mukherjee C, Chowdhury R, Begam MM, Ganguli S, Basak R, Chaudhuri B, Ray K. Effect of Varying Nitrate Concentrations on Denitrifying Phosphorus Uptake by DPAOs With a Molecular Insight Into Pho Regulon Gene Expression. Front Microbiol 2019; 10:2586. [PMID: 31787959 PMCID: PMC6856094 DOI: 10.3389/fmicb.2019.02586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/25/2019] [Indexed: 11/16/2022] Open
Abstract
Bacterial Pho regulon is a key regulator component in biological phosphorus-uptake. Poly-phosphate accumulating bacteria used in enhanced biological phosphorus removal (EBPR) system encounter negative regulation of the Pho regulon, resulting in reduced phosphorus-uptake from phosphorus-replete waste effluents. This study demonstrates possible trends of overcoming the PhoU negative regulation, resulting in excessive PO4 3--P uptake at varying concentrations of NO3 --N through denitrifying phosphorus removal process. We investigated the Pho regulon gene expression pattern and kinetic studies of P-removal by denitrifying phosphate accumulating organisms (DPAOs) which are able to remove both PO4 3--P and NO3 --N in single anoxic stage with the utilization of external carbon sources, without the use of stored polyhydroxyalkanoate (PHA) and without any anaerobic-aerobic or anaerobic-anoxic switches. Our study establishes that a minimum addition of 100 ppm NO3 --N leads to the withdrawal of the negative regulation of Pho regulon and results in ∼100% P-removal with concomitant escalated poly-phosphate accumulation by our established DPAO isolates and their artificially made consortium, isolated from sludge sample of PO4 3- -rich parboiled rice mill effluent, in a settling tank within 12 h of treatment. The same results were obtained when a phosphate rich effluent (stillage from distillery) mixed with a nitrate rich effluent (from explosive industry) was treated together in a single phase anoxic batch reactor, eliminating the need for alternating anaerobic/aerobic or anaerobic/anoxic switches for removing both the pollutants simultaneously. The highest poly-phosphate accumulation was observed to be more than 17% of cell dry weight. Our studies unequivocally establish that nitrate induction of Pho regulon is parallely associated with the repression of PhoU gene transcription, which is the negative regulator of Pho regulon. Based on earlier observations where similar nitrate mediated transcriptional repression was cited, we hypothesize the possible involvement of NarL/NarP transcriptional regulator proteins in PhoU repression. At present, we propose this denitrifying phosphorus removal endeavor as an innovative methodology to overcome the negative regulation of Pho regulon for accelerated unhindered phosphorus remediation from phosphate rich wastewater in India and the developing world where the stringency of EBPR and other reactors prevent their use due to financial reasons.
Collapse
Affiliation(s)
- Chandan Mukherjee
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Rajojit Chowdhury
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Mst. Momtaj Begam
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Sayak Ganguli
- Theoretical and Computational Biology Division, AIIST and The Biome, Kolkata, India
| | - Ritabrata Basak
- Department of Biochemistry, Ballygunge Science College, University of Calcutta, Kolkata, India
| | | | - Krishna Ray
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| |
Collapse
|
166
|
Dong J, Ma G, Sui L, Wei M, Satheesh V, Zhang R, Ge S, Li J, Zhang TE, Wittwer C, Jessen HJ, Zhang H, An GY, Chao DY, Liu D, Lei M. Inositol Pyrophosphate InsP 8 Acts as an Intracellular Phosphate Signal in Arabidopsis. MOLECULAR PLANT 2019; 12:1463-1473. [PMID: 31419530 DOI: 10.1016/j.molp.2019.08.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 05/21/2023]
Abstract
The maintenance of cellular phosphate (Pi) homeostasis is of great importance in living organisms. The SPX domain-containing protein 1 (SPX1) proteins from both Arabidopsis and rice have been proposed to act as sensors of Pi status. The molecular signal indicating the cellular Pi status and regulating Pi homeostasis in plants, however, remains to be identified, as Pi itself does not bind to the SPX domain. Here, we report the identification of the inositol pyrophosphate InsP8 as a signaling molecule that regulates Pi homeostasis in Arabidopsis. Polyacrylamide gel electrophoresis profiling of InsPs revealed that InsP8 level positively correlates with cellular Pi concentration. We demonstrated that the homologs of diphosphoinositol pentakisphosphate kinase (PPIP5K), VIH1 and VIH2, function redundantly to synthesize InsP8, and that the vih1 vih2 double mutant overaccumulates Pi. SPX1 directly interacts with PHR1, the central regulator of Pi starvation responses, to inhibit its function under Pi-replete conditions. However, this interaction is compromised in the vih1 vih2 double mutant, resulting in the constitutive induction of Pi starvation-induced genes, indicating that plant cells cannot sense cellular Pi status without InsP8. Furthermore, we showed that InsP8 could directly bind to the SPX domain of SPX1 and is essential for the interaction between SPX1 and PHR1. Collectively, our study suggests that InsP8 is the intracellular Pi signaling molecule serving as the ligand of SPX1 for controlling Pi homeostasis in plants.
Collapse
Affiliation(s)
- Jinsong Dong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guojie Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academic of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqian Sui
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mengwei Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruyue Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenghong Ge
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinkai Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong-En Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Christopher Wittwer
- Institute of Organic Chemistry, Albert-Ludwigs University, Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert-Ludwigs University, Freiburg, Albertstrasse 21, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Yong An
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academic of Sciences, Shanghai 200032, China
| | - Dong Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
167
|
Behera S, Pattnaik S. Persister cell development among Enterobacteriaceae, Pseudomonadaceae, Mycobacteriaceae and Staphylococcaceae biotypes: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
168
|
Gottesman ME, Mustaev A. Change in inorganic phosphate physical state can regulate transcription. Transcription 2019; 10:187-194. [PMID: 31668122 DOI: 10.1080/21541264.2019.1682454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Inorganic phosphate (Pi), a ubiquitous metabolite, is involved in all major biochemical pathways. We demonstrate that, in vitro, MgHPO4 (the intracellular Pi form) at physiological concentrations can exist in a metastable supersaturated dissolved state or as a precipitate. We have shown that in solution, MgHPO4 strongly stimulates exonuclease nascent transcript cleavage by RNA polymerase. We report here that MgHPO4 precipitate selectively and efficiently inhibits transcription initiation in vitro. In view of the MgHPO4 solubility and in vitro sensitivity of RNA synthesis to MgHPO4 precipitate, at physiological concentrations, MgHPO4 should cause a 50-98% inhibition of cellular RNA synthesis, thus exerting a strong regulatory action. The effects of Pi on transcription in vivo will, therefore, reflect the physical state of intracellular Pi.
Collapse
Affiliation(s)
- Max E Gottesman
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Arkady Mustaev
- Public Health Research Institute & Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| |
Collapse
|
169
|
Ansorge R, Romano S, Sayavedra L, Porras MÁG, Kupczok A, Tegetmeyer HE, Dubilier N, Petersen J. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat Microbiol 2019; 4:2487-2497. [DOI: 10.1038/s41564-019-0572-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
|
170
|
Abstract
Phosphorus is required for many biological molecules and essential functions, including DNA replication, transcription of RNA, protein translation, posttranslational modifications, and numerous facets of metabolism. In order to maintain the proper level of phosphate for these processes, many bacteria adapt to changes in environmental phosphate levels. The mechanisms for sensing phosphate levels and adapting to changes have been extensively studied for multiple organisms. The phosphate response of Escherichia coli alters the expression of numerous genes, many of which are involved in the acquisition and scavenging of phosphate more efficiently. This review shares findings on the mechanisms by which E. coli cells sense and respond to changes in environmental inorganic phosphate concentrations by reviewing the genes and proteins that regulate this response. The PhoR/PhoB two-component signal transduction system is central to this process and works in association with the high-affinity phosphate transporter encoded by the pstSCAB genes and the PhoU protein. Multiple models to explain how this process is regulated are discussed.
Collapse
Affiliation(s)
- Stewart G Gardner
- Department of Biological Sciences, Emporia State University, Emporia, KS 66801
| | - William R McCleary
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602
| |
Collapse
|
171
|
Fernández-Juárez V, Bennasar-Figueras A, Tovar-Sanchez A, Agawin NSR. The Role of Iron in the P-Acquisition Mechanisms of the Unicellular N 2-Fixing Cyanobacteria Halothece sp., Found in Association With the Mediterranean Seagrass Posidonia oceanica. Front Microbiol 2019; 10:1903. [PMID: 31507547 PMCID: PMC6713934 DOI: 10.3389/fmicb.2019.01903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022] Open
Abstract
Posidonia oceanica, an endemic seagrass of the Mediterranean Sea harbors a high diversity of N2-fixing prokaryotes. One of these is Halothece sp., a unicellular N2-fixing cyanobacteria detected through nifH analysis from the epiphytes of P. oceanica. The most related strain in culture is Halothece sp. PCC 7418 and this was used as the test organism in this study. In the Mediterranean Sea, phosphorus (P) and iron (Fe) can be the major limiting nutrients for N2 fixation. However, information about the mechanisms of P-acquisition and the role of metals (i.e., Fe) in these processes for N2-fixing bacteria is scarce. From our genomic analyses of the test organism and other phylogenetically related N2-fixing strains, Halothece sp. PCC 7418 is one of the strains with the greatest number of gene copies (eight copies) of alkaline phosphatases (APases). Our structural analysis of PhoD (alkaline phosphatase type D) and PhoU (phosphate acquisition regulator) of Halothece sp. PCC 7418 showed the connection among metals (Ca2+ and Fe3+), and the P-acquisition mechanisms. Here, we measured the rates of alkaline phosphatase activity (APA) through MUF-P hydrolysis under different combinations of concentrations of inorganic P (PO43−) and Fe in experiments under N2-fixing (low NO3− availability) and non-N2 fixing (high NO3− availability) conditions. Our results showed that APA rates were enhanced by the increase in Fe availability under low levels of PO43−, especially under N2-fixing conditions. Moreover, the increased PO43−-uptake was reflected in the increased of the P-cellular content of the cells under N2 fixation conditions. We also found a positive significant relationship between cellular P and cellular Fe content of the cells (r2 = 0.71, p < 0.05). Our results also indicated that Fe-uptake in Halothece sp. PCC 7418 was P and Fe-dependent. This study gives first insights of P-acquisition mechanisms in the N2-fixing cyanobacteria (Halothece sp.) found in P. oceanica and highlights the role of Fe in these processes.
Collapse
Affiliation(s)
- Víctor Fernández-Juárez
- Marine Ecology and Systematics (MarEs), Department of Biology, Universitat de les Illes Balears (UIB), Palma, Spain
| | - Antoni Bennasar-Figueras
- Grup de Recerca en Microbiologia, Departament de Biologia, Universitat de les Illes Balears (UIB), Palma, Spain
| | - Antonio Tovar-Sanchez
- Department of Ecology and Coastal Management, Andalusian Institute for Marine Sciences, ICMAN (CSIC), Cádiz, Spain
| | - Nona Sheila R Agawin
- Marine Ecology and Systematics (MarEs), Department of Biology, Universitat de les Illes Balears (UIB), Palma, Spain
| |
Collapse
|
172
|
Regulatory rewiring through global gene regulations by PhoB and alarmone (p)ppGpp under various stress conditions. Microbiol Res 2019; 227:126309. [PMID: 31421713 DOI: 10.1016/j.micres.2019.126309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022]
Abstract
The phosphorus availability in soil ranged from <0.01 to 1 ppm and found limiting for the utilization by plants. Hence, phosphate solubilizing bacteria (PSB) proficiently fulfill the phosphorus requirement of plants in an eco-friendly manner. The PSB encounter dynamic and challenging environmental conditions viz., high temperature, osmotic, acid, and climatic changes often hamper their activity and proficiency. The modern trend is shifting from isolation of the PSB to their genetic potentials and genome annotation not only for their better performance in the field trials but also to study their ability to cope up with stresses. In order to withstand environmental stress, bacteria need to restructure its metabolic network to ensure its survival. Pi starving condition response regulator (PhoB) and the mediator of stringent stress response alarmone (p)ppGpp known to regulate the global regulatory network of bacteria to provide balanced physiology under various stress condition. The current review discusses the global regulation and crosstalk of genes involved in phosphorus homeostasis, solubilization, and various stress response to fine tune the bacterial physiology. The knowledge of these network crosstalk help bacteria to respond efficiently to the challenging environmental parameters, and their physiological plasticity lead us to develop proficient long-lasting consortia for plant growth promotion.
Collapse
|
173
|
Li H, Mei X, Liu B, Li Z, Wang B, Ren N, Xing D. Insights on acetate-ethanol fermentation by hydrogen-producing Ethanoligenens under acetic acid accumulation based on quantitative proteomics. ENVIRONMENT INTERNATIONAL 2019; 129:1-9. [PMID: 31085357 DOI: 10.1016/j.envint.2019.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Ethanoligenens, a novel ethanologenic hydrogen-producing genus, is a representative fermenter in its unique acetate-ethanol fermentation and physiology. Acetic acid accumulation is one of major factors that affect H2-ethanol co-production. However, sufficient information is unavailable on the tolerance mechanisms of hydrogen-producing bacterium in acetic acid stress. The fermentation process of Ethanoligenens harbinense YUAN-3 was significantly slowed down in the selection stress of exogenous acetic acid. The maximum gas production rate of strain YUAN-3 decreased from 192.15 mL·(L-culture)-1·h-1 to 75.2 mL·(L-culture)-1·h-1 with increasing exogenous acetic acid from 0 mM to 30 mM, the batch fermentation period was correspondingly expanded from 66 h to 136 h. Through iTRAQ-based quantitative proteomic approach, 78, 121 and 216 proteins were differentially expressed after strain YUAN-3 was cultured in the medium supplemented with exogenous acetic acid of 10 mM, 20 mM and 30 mM. The up-regulated proteins were mainly involved in β-alanine and pyrimidine metabolism, oxidative stress response, while the down-regulated proteins mainly participated in phosphotransferase system (PTS), fructose and mannose metabolism, phosphate uptake, ribosome, and flagellar assembly. These proteins help to maintain balance between fermentation process and alleviation of intracellular acidification in strain YUAN-3. The study indicated that response to acetic acid stress in strain YUAN-3 was a complex process, which involved multiple metabolic pathways. Reductive pyrimidine catabolic pathway played an important role in the acetic acid resistance of E. harbinense.
Collapse
Affiliation(s)
- Huahua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoxue Mei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhen Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baichen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
174
|
Regulation of antimonite oxidation and resistance by the phosphate regulator PhoB in Agrobacterium tumefaciens GW4. Microbiol Res 2019; 226:10-18. [PMID: 31284939 DOI: 10.1016/j.micres.2019.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/13/2019] [Accepted: 04/24/2019] [Indexed: 11/21/2022]
Abstract
Microbial oxidation of antimonite [Sb(III)] to antimonate [Sb(V)] is a detoxification process which contributes to Sb(III) resistance. Antimonite oxidase AnoA is essential for Sb(III) oxidation, however, the regulation mechanism is still unknown. Recently, we found that the expressions of phosphate transporters were induced by Sb(III) using proteomics analysis in Agrobacterium tumefaciens GW4, thus, we predicted that the phosphate regulator PhoB may regulate bacterial Sb(III) oxidation and resistance. In this study, comprehensive analyses were performed and the results showed that (1) Genomic analysis revealed two phoB (named as phoB1 and phoB2) and one phoR gene in strain GW4; (2) Reporter gene assay showed that both phoB1 and phoB2 were induced in low phosphate condition (50 μM), but only phoB2 was induced by Sb(III); (3) Genes knock-out/complementation, Sb(III) oxidation and Sb(III) resistance tests showed that deletion of phoB2 significantly inhibited the expression of anoA and decreased bacterial Sb(III) oxidation efficiency and Sb(III) resistant. In contrast, deletion of phoB1 did not obviously affect anoA's expression level and Sb(III) oxidation/resistance; (4) A putative Pho motif was predicted in several A. tumefaciens strains and electrophoretic mobility shift assay (EMSA) showed that PhoB2 could bind with the promoter sequence of anoA; (5) Site-directed mutagenesis and short fragment EMSA revealed the exact DNA binding sequence for the protein-DNA interaction. These results showed that PhoB2 positively regulates Sb(III) oxidation and PhoB2 is also associated with Sb(III) resistance. Such regulation mechanism may provide a great contribution for bacterial survival in the environment with Sb and for bioremediation application.
Collapse
|
175
|
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2019; 35:575-604. [PMID: 29721572 DOI: 10.1039/c8np00012c] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2018 The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.
Collapse
|
176
|
Stasi R, Neves HI, Spira B. Phosphate uptake by the phosphonate transport system PhnCDE. BMC Microbiol 2019; 19:79. [PMID: 30991951 PMCID: PMC6469041 DOI: 10.1186/s12866-019-1445-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/26/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Phosphate is a fundamental nutrient for all creatures. It is thus not surprising that a single bacterium carries different transport systems for this molecule, each usually operating under different environmental conditions. The phosphonate transport system of E. coli K-12 is cryptic due to an 8 bp insertion in the phnE ORF. RESULTS Here we report that an E. coli K-12 strain carrying the triple knockout ΔpitA Δpst Δugp reverted the phnE mutation when plated on complex medium containing phosphate as the main phosphorus source. It is also shown that PhnCDE takes up orthophosphate with transport kinetics compatible with that of the canonical transport system PitA and that Pi-uptake via PhnCDE is sufficient to enable bacterial growth. Ugp, a glycerol phosphate transporter, is unable to take up phosphate. CONCLUSIONS The phosphonate transport system, which is normally cryptic in E. coli laboratory strains is activated upon selection in rich medium and takes up orthophosphate in the absence of the two canonical phosphate-uptake systems. Based on these findings, the PhnCDE system can be considered a genuine phosphate transport system.
Collapse
Affiliation(s)
- Raffaele Stasi
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo-SP, Brazil
| | - Henrique Iglesias Neves
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo-SP, Brazil
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo-SP, Brazil.
| |
Collapse
|
177
|
Pagano GJ, Arsenault RJ. Advances, challenges and tools in characterizing bacterial serine, threonine and tyrosine kinases and phosphorylation target sites. Expert Rev Proteomics 2019; 16:431-441. [DOI: 10.1080/14789450.2019.1601015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Giovanni J. Pagano
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, USA
| | - Ryan J. Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
178
|
Xu L, Sun C, Huang M, Wu YH, Yuan CQ, Dai WH, Ye K, Han B, Xu XW. Complete genome sequence of Euzebya sp. DY32-46, a marine Actinobacteria isolated from the Pacific Ocean. Mar Genomics 2019. [DOI: 10.1016/j.margen.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
179
|
Yu T, Chen Y. Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:865-879. [PMID: 30481713 DOI: 10.1016/j.scitotenv.2018.11.301] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 05/24/2023]
Abstract
Before the industrial revolution, the atmospheric CO2 concentration was 180-330 ppm; however, fossil-fuel combustion and forest destruction have led to increased atmospheric CO2 concentration. CO2 capture and storage is regarded as a promising strategy to prevent global warming and ocean acidification and to alleviate elevated atmospheric CO2 concentration, but the leakage of CO2 from storage system can lead to rapid acidification of the surrounding circumstance, which might cause negative influence on environmental microbes. The effects of elevated CO2 on microbes have been reported extensively, but the review regarding CO2 affecting different environmental microorganisms has never been done previously. Also, the mechanisms of CO2 affecting environmental microorganisms are usually contributed to the change of pH values, while the direct influences of CO2 on microorganisms were often neglected. This paper aimed to provide a systematic review of elevated CO2 affecting environmental microbes and its mechanisms. Firstly, the influences of elevated CO2 and potential leakage of CO2 from storage sites on community structures and diversity of different surrounding environmental microbes were assessed and compared. Secondly, the adverse impacts of CO2 on microbial growth, cell morphology and membranes, bacterial spores, and microbial metabolism were introduced. Then, based on biochemical principles and knowledge of microbiology and molecular biology, the fundamental mechanisms of the influences of carbon dioxide on environmental microbes were discussed from the aspects of enzyme activity, electron generation and transfer, and key gene and protein expressions. Finally, key questions relevant to the environmental effect of CO2 that need to be answered in the future were addressed.
Collapse
Affiliation(s)
- Tong Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
180
|
Dipta B, Bhardwaj S, Kaushal M, Kirti S, Sharma R. Obliteration of phosphorus deficiency in plants by microbial interceded approach. Symbiosis 2019. [DOI: 10.1007/s13199-019-00600-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
181
|
Gautam LK, Sharma P, Capalash N. Bacterial Polyphosphate Kinases Revisited: Role in Pathogenesis and Therapeutic Potential. Curr Drug Targets 2019; 20:292-301. [DOI: 10.2174/1389450119666180801120231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/02/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022]
Abstract
Bacterial infections have always been an unrestrained challenge to the medical community due to the rise of multi-drug tolerant and resistant strains. Pioneering work on Escherichia coli polyphosphate kinase (PPK) by Arthur Kornberg has generated great interest in this polyphosphate (PolyP) synthesizing enzyme. PPK has wide distribution among pathogens and is involved in promoting pathogenesis, stress management and susceptibility to antibiotics. Further, the absence of a PPK orthologue in humans makes it a potential drug target. This review covers the functional and structural aspects of polyphosphate kinases in bacterial pathogens. A description of molecules being designed against PPKs has been provided, challenges associated with PPK inhibitor design are highlighted and the strategies to enable development of efficient drug against this enzyme have also been discussed.
Collapse
Affiliation(s)
- Lalit Kumar Gautam
- Department of Biotechnology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India
| |
Collapse
|
182
|
Soto W, Travisano M, Tolleson AR, Nishiguchi MK. Symbiont evolution during the free-living phase can improve host colonization. MICROBIOLOGY-SGM 2019; 165:174-187. [PMID: 30648935 PMCID: PMC7003651 DOI: 10.1099/mic.0.000756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For micro-organisms cycling between free-living and host-associated stages, where reproduction occurs in both of these lifestyles, an interesting inquiry is whether evolution during the free-living stage can be positively pleiotropic to microbial fitness in a host environment. To address this topic, the squid host Euprymna tasmanica and the marine bioluminescent bacterium Vibrio fischeri were utilized. Microbial ecological diversification in static liquid microcosms was used to simulate symbiont evolution during the free-living stage. Thirteen genetically distinct V. fischeri strains from a broad diversity of ecological sources (e.g. squid light organs, fish light organs and seawater) were examined to see if the results were reproducible in many different genetic settings. Genetic backgrounds that are closely related can be predisposed to considerable differences in how they respond to similar selection pressures. For all strains examined, new mutations with striking and facilitating effects on host colonization arose quickly during microbial evolution in the free-living stage, regardless of the ecological context under consideration for a strain’s genetic background. Microbial evolution outside a host environment promoted host range expansion, improved host colonization for a micro-organism, and diminished the negative correlation between biofilm formation and motility.
Collapse
Affiliation(s)
- William Soto
- 1College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr Williamsburg, VA 23185, USA
| | - Michael Travisano
- 2Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, 100 Ecology Building, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA.,3BioTechnology Institute, University of Minnesota-Twin Cities, 140 Gortner Labs, 1479 Gortner Avenue, St Paul, MN 55108, USA
| | - Alexandra Rose Tolleson
- 1College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr Williamsburg, VA 23185, USA
| | | |
Collapse
|
183
|
Barreiro C, Martínez-Castro M. Regulation of the phosphate metabolism in Streptomyces genus: impact on the secondary metabolites. Appl Microbiol Biotechnol 2019; 103:1643-1658. [DOI: 10.1007/s00253-018-09600-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022]
|
184
|
Concórdio-Reis P, Pereira JR, Torres CA, Sevrin C, Grandfils C, Freitas F. Effect of mono- and dipotassium phosphate concentration on extracellular polysaccharide production by the bacterium Enterobacter A47. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
185
|
Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources. Appl Microbiol Biotechnol 2018; 103:1043-1057. [PMID: 30488284 DOI: 10.1007/s00253-018-9526-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
Abstract
In an era of environmental degradation, and water, and mineral scarcity, enhancing microbial function in sustainable mining has become a prerequisite for the future of the green economy. In recent years, the extensive use of rare earth elements (REEs) in green and smart technologies has led to an increase in the focus on recovery and separation of REEs from ore matrices. However, the recovery of REEs using traditional methods is complex and energy intensive, leading to the requirement to develop processes which are more economically feasible and environmentally friendly. The use of phosphate solubilizing microorganisms for bioleaching of REEs provides a biotechnical approach for the recovery of REEs from primary and secondary sources. However, managing and understanding the microbial-mineral interactions in order to develop a successful method for bioleaching of REEs still remains a major challenge. This review focuses on the use of microbes for the bioleaching of REEs and highlights the importance of genomic studies in order to narrow down potential microorganisms for the optimal extraction of REEs.
Collapse
|
186
|
Gallo G, Presta L, Perrin E, Gallo M, Marchetto D, Puglia AM, Fani R, Baldi F. Genomic traits of Klebsiella oxytoca DSM 29614, an uncommon metal-nanoparticle producer strain isolated from acid mine drainages. BMC Microbiol 2018; 18:198. [PMID: 30482178 PMCID: PMC6258164 DOI: 10.1186/s12866-018-1330-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022] Open
Abstract
Background Klebsiella oxytoca DSM 29614 - isolated from acid mine drainages - grows anaerobically using Fe(III)-citrate as sole carbon and energy source, unlike other enterobacteria and K. oxytoca clinical isolates. The DSM 29614 strain is multi metal resistant and produces metal nanoparticles that are embedded in its very peculiar capsular exopolysaccharide. These metal nanoparticles were effective as antimicrobial and anticancer compounds, chemical catalysts and nano-fertilizers. Results The DSM 29614 strain genome was sequenced and analysed by a combination of in silico procedures. Comparative genomics, performed between 85 K. oxytoca representatives and K. oxytoca DSM 29614, revealed that this bacterial group has an open pangenome, characterized by a very small core genome (1009 genes, about 2%), a high fraction of unique (43,808 genes, about 87%) and accessory genes (5559 genes, about 11%). Proteins belonging to COG categories “Carbohydrate transport and metabolism” (G), “Amino acid transport and metabolism” (E), “Coenzyme transport and metabolism” (H), “Inorganic ion transport and metabolism” (P), and “membrane biogenesis-related proteins” (M) are particularly abundant in the predicted proteome of DSM 29614 strain. The results of a protein functional enrichment analysis - based on a previous proteomic analysis – revealed metabolic optimization during Fe(III)-citrate anaerobic utilization. In this growth condition, the observed high levels of Fe(II) may be due to different flavin metal reductases and siderophores as inferred form genome analysis. The presence of genes responsible for the synthesis of exopolysaccharide and for the tolerance to heavy metals was highlighted too. The inferred genomic insights were confirmed by a set of phenotypic tests showing specific metabolic capability in terms of i) Fe2+ and exopolysaccharide production and ii) phosphatase activity involved in precipitation of metal ion-phosphate salts. Conclusion The K. oxytoca DSM 29614 unique capabilities of using Fe(III)-citrate as sole carbon and energy source in anaerobiosis and tolerating diverse metals coincides with the presence at the genomic level of specific genes that can support i) energy metabolism optimization, ii) cell protection by the biosynthesis of a peculiar exopolysaccharide armour entrapping metal ions and iii) general and metal-specific detoxifying activities by different proteins and metabolites. Electronic supplementary material The online version of this article (10.1186/s12866-018-1330-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giuseppe Gallo
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Viale delle Scienze, ed. 16, 90128, Palermo, Italy.
| | - Luana Presta
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto F.no, Florence, Italy
| | - Elena Perrin
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto F.no, Florence, Italy
| | - Michele Gallo
- Dipartimento di Scienze Molecolari e Nanosistemi, University Cà Foscari Venezia, Via Torino 155, 30172, Mestre, Venezia, Italy
| | - Davide Marchetto
- Dipartimento di Scienze Molecolari e Nanosistemi, University Cà Foscari Venezia, Via Torino 155, 30172, Mestre, Venezia, Italy
| | - Anna Maria Puglia
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto F.no, Florence, Italy
| | - Franco Baldi
- Dipartimento di Scienze Molecolari e Nanosistemi, University Cà Foscari Venezia, Via Torino 155, 30172, Mestre, Venezia, Italy
| |
Collapse
|
187
|
Jha V, Tikariha H, Dafale NA, Purohit HJ. Exploring the rearrangement of sensory intelligence in proteobacteria: insight of Pho regulon. World J Microbiol Biotechnol 2018; 34:172. [DOI: 10.1007/s11274-018-2551-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
|
188
|
Devine KM. Activation of the PhoPR-Mediated Response to Phosphate Limitation Is Regulated by Wall Teichoic Acid Metabolism in Bacillus subtilis. Front Microbiol 2018; 9:2678. [PMID: 30459743 PMCID: PMC6232261 DOI: 10.3389/fmicb.2018.02678] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/19/2018] [Indexed: 01/06/2023] Open
Abstract
Phosphorous is essential for cell viability. To ensure an adequate supply under phosphate limiting conditions, bacteria induce a cohort of enzymes to scavenge for phosphate, and a high affinity transporter for its uptake into the cell. This response is controlled by a two-component signal transduction system named PhoBR in Escherichia coli and PhoPR in Bacillus subtilis. PhoR is a sensor kinase whose activity is responsive to phosphate availability. Under phosphate limiting conditions, PhoR exists in kinase mode that phosphorylates its cognate response regulator (PhoB, PhoP). When activated, PhoB∼P/PhoP∼P execute changes in gene expression that adapt cells to the phosphate limited state. Under phosphate replete conditions, PhoR exists in phosphatase mode that maintains PhoB/PhoP in an inactive, non-phosphorylated state. The mechanism by which phosphate availability is sensed and how it controls the balance between PhoR kinase and phosphatase activities has been studied in E. coli and B. subtilis. Two different mechanisms have emerged. In the most common mechanism, PhoR activity is responsive to phosphate transport through a PstSCAB/PhoU signaling complex that relays the conformational status of the transporter to PhoR. In the second mechanism currently confined to B. subtilis, PhoR activity is responsive to wall teichoic acid metabolism whereby biosynthetic intermediates can promote or inhibit PhoR autokinase activity. Variations of both mechanisms are found that allow each bacterial species to adapt to phosphate availability in their particular environmental niche.
Collapse
Affiliation(s)
- Kevin M Devine
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
189
|
Lu W, Alanzi AR, Abugrain ME, Ito T, Mahmud T. Global and pathway-specific transcriptional regulations of pactamycin biosynthesis in Streptomyces pactum. Appl Microbiol Biotechnol 2018; 102:10589-10601. [PMID: 30276712 DOI: 10.1007/s00253-018-9375-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 11/26/2022]
Abstract
Pactamycin, a structurally unique aminocyclitol natural product isolated from Streptomyces pactum, has potent antibacterial, antitumor, and anti-protozoa activities. However, its production yields under currently used culture conditions are generally low. To understand how pactamycin biosynthesis is regulated and explore the possibility of improving pactamycin production in S. pactum, we investigated the transcription regulations of pactamycin biosynthesis. In vivo inactivation of two putative pathway-specific regulatory genes, ptmE and ptmF, resulted in mutant strains that are not able to produce pactamycin. Genetic complementation using a cassette containing ptmE and ptmF integrated into the S. pactum chromosome rescued the production of pactamycin. Transcriptional analysis of the ΔptmE and ΔptmF strains suggests that both genes control the expression of the whole pactamycin biosynthetic gene cluster. However, attempts to overexpress these regulatory genes by introducing a second copy of the genes in S. pactum did not improve the production yield of pactamycin. We discovered that pactamycin biosynthesis is sensitive to phosphate regulation. Concentration of inorganic phosphate higher than 2 mM abolished both the transcription of the biosynthetic genes and the production of the antibiotic. Draft genome sequencing of S. pactum and bioinformatics studies revealed the existence of global regulatory genes, e.g., genes that encode a two-component PhoR-PhoP system, which are commonly involved in secondary metabolism. Inactivation of phoP did not show any significant effect to pactamycin production. However, in the phoP::aac(3)IV mutant, pactamycin biosynthesis is not affected by external inorganic phosphate concentration.
Collapse
Affiliation(s)
- Wanli Lu
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA
| | - Abdullah R Alanzi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA
| | - Mostafa E Abugrain
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA
| | - Takuya Ito
- Faculty of Pharmacy, Osaka-Ohtani University, 3-11-1 Nisikiorikita, Tondabayashi, Osaka, 584-8540, Japan
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA.
| |
Collapse
|
190
|
Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiol Rev 2018; 98:2317-2348. [DOI: 10.1152/physrev.00022.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Piactivates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Picotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pitransporters and other molecules, such as kinases, to sense the environmental Piavailability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
191
|
Hu Y, Jiao J, Liu LX, Sun YW, Chen WF, Sui XH, Chen WX, Tian CF. Evidence for Phosphate Starvation of Rhizobia without Terminal Differentiation in Legume Nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1060-1068. [PMID: 29663866 DOI: 10.1094/mpmi-02-18-0031-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phosphate homeostasis is tightly modulated in all organisms, including bacteria, which harbor both high- and low-affinity transporters acting under conditions of fluctuating phosphate levels. It was thought that nitrogen-fixing rhizobia, named bacteroids, inhabiting root nodules of legumes are not phosphate limited. Here, we show that the high-affinity phosphate transporter PstSCAB, rather than the low-affinity phosphate transporter Pit, is essential for effective nitrogen fixation of Sinorhizobium fredii in soybean nodules. Symbiotic and growth defects of the pst mutant can be effectively restored by knocking out PhoB, the transcriptional repressor of pit. The pst homologs of representative rhizobia were actively transcribed in bacteroids without terminal differentiation in nodules of diverse legumes (soybean, pigeonpea, cowpea, common bean, and Sophora flavescens) but exhibited a basal expression level in terminally differentiated bacteroids (alfalfa, pea, and peanut). Rhizobium leguminosarum bv. viciae Rlv3841 undergoes characteristic nonterminal and terminal differentiations in nodules of S. flavescens and pea, respectively. The pst mutant of Rlv3841 showed impaired adaptation to the nodule environment of S. flavescens but was indistinguishable from the wild-type strain in pea nodules. Taken together, root nodule rhizobia can be either phosphate limited or nonlimited regarding the rhizobial differentiation fate, which is a host-dependent feature.
Collapse
Affiliation(s)
- Yue Hu
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Li Xue Liu
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Yan Wei Sun
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Wen Feng Chen
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
192
|
PhoPR Contributes to Staphylococcus aureus Growth during Phosphate Starvation and Pathogenesis in an Environment-Specific Manner. Infect Immun 2018; 86:IAI.00371-18. [PMID: 30061377 DOI: 10.1128/iai.00371-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/21/2018] [Indexed: 12/31/2022] Open
Abstract
Microbial pathogens must obtain all essential nutrients, including phosphate, from the host. To optimize phosphate acquisition in diverse and dynamic environments, such as mammalian tissues, many bacteria use the PhoPR two-component system. Despite the necessity of this system for virulence in several species, PhoPR has not been studied in the major human pathogen Staphylococcus aureus To illuminate its role in staphylococcal physiology, we initially assessed whether PhoPR controls the expression of the three inorganic phosphate (Pi) importers (PstSCAB, NptA, and PitA) in S. aureus This analysis revealed that PhoPR is required for the expression of pstSCAB and nptA and can modulate pitA expression. Consistent with a role in phosphate homeostasis, PhoPR-mediated regulation of the transporters is influenced by phosphate availability. Further investigations revealed that PhoPR is necessary for growth under Pi-limiting conditions, and in some environments, its primary role is to induce the expression of pstSCAB or nptA Interestingly, in other environments, PhoPR is necessary for growth independent of Pi transporter expression, indicating that additional PhoPR-regulated factors promote S. aureus adaptation to low-Pi conditions. Together, these data suggest that PhoPR differentially contributes to growth in an environment-specific manner. In a systemic infection model, a mutant of S. aureus lacking PhoPR is highly attenuated. Further investigation revealed that PhoPR-regulated factors, in addition to Pi transporters, are critical for staphylococcal pathogenesis. Cumulatively, these findings point to an important role for PhoPR in orchestrating Pi acquisition as well as transporter-independent mechanisms that contribute to S. aureus virulence.
Collapse
|
193
|
Biogenic Polyphosphate Nanoparticles from a Marine Cyanobacterium Synechococcus sp. PCC 7002: Production, Characterization, and Anti-Inflammatory Properties In Vitro. Mar Drugs 2018; 16:md16090322. [PMID: 30201855 PMCID: PMC6163655 DOI: 10.3390/md16090322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 11/25/2022] Open
Abstract
Probiotic-derived polyphosphates have attracted interest as potential therapeutic agents to improve intestinal health. The current study discovered the intracellular accumulation of polyphosphates in a marine cyanobacterium Synechococcus sp. PCC 7002 as nano-sized granules. The maximum accumulation of polyphosphates in Synechococcus sp. PCC 7002 was found at the late logarithmic growth phase when the medium contained 0.74 mM of KH2PO4, 11.76 mM of NaNO3, and 30.42 mM of Na2SO4. Biogenic polyphosphate nanoparticles (BPNPs) were obtained intact from the algae cells by hot water extraction, and were purified to remove the organic impurities by Sephadex G-100 gel filtration. By using 100 kDa ultrafiltration, BPNPs were fractionated into the larger and smaller populations with diameters ranging between 30–70 nm and 10–30 nm, respectively. 4′,6-diamidino-2-phenylindole fluorescence and orthophosphate production revealed that a minor portion of BPNPs (about 14–18%) were degraded during simulated gastrointestinal digestion. In vitro studies using lipopolysaccharide-activated RAW264.7 cells showed that BPNPs inhibited cyclooxygenase-2, inducible nitric oxide (NO) synthase expression, and the production of proinflammatory mediators, including NO, tumor necrosis factor-α, interleukin-6, and interleukin-1β through suppressing the Toll-like receptor 4/NF-κB signaling pathway. Overall, there is promise in the use of the marine cyanobacterium Synechococcus sp. PCC 7002 to produce BPNPs, an anti-inflammatory postbiotic.
Collapse
|
194
|
Taş N, Brandt BW, Braster M, van Breukelen BM, Röling WFM. Subsurface landfill leachate contamination affects microbial metabolic potential and gene expression in the Banisveld aquifer. FEMS Microbiol Ecol 2018; 94:5074391. [DOI: 10.1093/femsec/fiy156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/13/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Neslihan Taş
- Molecular Cell Physiology, Vrije Universiteit Amsterdam, De Boelelaan 1085 HV Amsterdam, the Netherlands
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 70A-331794720 Berkeley CA, United States of America
- Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 70A-331794720 Berkeley CA, Berkeley, United States of America
| | - Bernd W Brandt
- Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004 1081 LA, Amsterdam, the Netherlands
| | - Martin Braster
- Molecular Cell Physiology, Vrije Universiteit Amsterdam, De Boelelaan 1085 HV Amsterdam, the Netherlands
| | - Boris M van Breukelen
- Department of Water Management, Delft University of Technology, Gebouw 23 Stevinweg 1 2628 CN, Delft, the Netherlands
| | - Wilfred F M Röling
- Molecular Cell Physiology, Vrije Universiteit Amsterdam, De Boelelaan 1085 HV Amsterdam, the Netherlands
| |
Collapse
|
195
|
Jorge AM, Schneider J, Unsleber S, Xia G, Mayer C, Peschel A. Staphylococcus aureus counters phosphate limitation by scavenging wall teichoic acids from other staphylococci via the teichoicase GlpQ. J Biol Chem 2018; 293:14916-14924. [PMID: 30068554 DOI: 10.1074/jbc.ra118.004584] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/26/2018] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is part of the human nasal and skin microbiomes along with other bacterial commensals and opportunistic pathogens. Nutrients are scarce in these habitats, demanding effective nutrient acquisition and competition strategies. How S. aureus copes with phosphate limitation is still unknown. Wall teichoic acid (WTA), a polyol-phosphate polymer, could serve as a phosphate source, but whether S. aureus can utilize it during phosphate starvation remains unknown. S. aureus secretes a glycerophosphodiesterase, GlpQ, that cleaves a broad variety of glycerol-3-phosphate (GroP) headgroups of deacylated phospholipids, providing this bacterium with GroP as a carbon and phosphate source. Here we demonstrate that GlpQ can also use glycerophosphoglycerol derived from GroP WTA from coagulase-negative Staphylococcus lugdunensis, Staphylococcus capitis, and Staphylococcus epidermidis, which share the nasal and skin habitats with S. aureus Therefore, S. aureus GlpQ is the first reported WTA-hydrolyzing enzyme, or teichoicase, from Staphylococcus Activity assays revealed that unmodified WTA is the preferred GlpQ substrate, and the results from MS analysis suggested that GlpQ uses an exolytic cleavage mechanism. Importantly, GlpQ did not hydrolyze the ribitol-5-phosphate WTA polymers of S. aureus, underscoring its role in interspecies competition rather than in S. aureus cell wall homeostasis or WTA recycling. glpQ expression was strongly up-regulated under phosphate limitation, and GlpQ allowed S. aureus to grow in the presence of GroP WTA as the sole phosphate source. Our study reveals a novel and unprecedented strategy of S. aureus for acquiring phosphate from bacterial competitors under the phosphate-limiting conditions in the nasal or skin environments.
Collapse
Affiliation(s)
- Ana Maria Jorge
- From the Infection Biology Department, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany, .,the German Center for Infection Research, Partner Site Tübingen, University of Tübingen, 72076 Tübingen, Germany, and
| | - Jonathan Schneider
- From the Infection Biology Department, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany.,the German Center for Infection Research, Partner Site Tübingen, University of Tübingen, 72076 Tübingen, Germany, and
| | - Sandra Unsleber
- the Microbiology/Biotechnology Department, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Guoqing Xia
- From the Infection Biology Department, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany.,the German Center for Infection Research, Partner Site Tübingen, University of Tübingen, 72076 Tübingen, Germany, and
| | - Christoph Mayer
- the Microbiology/Biotechnology Department, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Peschel
- From the Infection Biology Department, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany.,the German Center for Infection Research, Partner Site Tübingen, University of Tübingen, 72076 Tübingen, Germany, and
| |
Collapse
|
196
|
Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence. PLoS Pathog 2018; 14:e1007076. [PMID: 30059535 PMCID: PMC6085062 DOI: 10.1371/journal.ppat.1007076] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/09/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
Phosphate is an essential macronutrient required for cell growth and division. Pho84 is the major high-affinity cell-surface phosphate importer of Saccharomyces cerevisiae and a crucial element in the phosphate homeostatic system of this model yeast. We found that loss of Candida albicans Pho84 attenuated virulence in Drosophila and murine oropharyngeal and disseminated models of invasive infection, and conferred hypersensitivity to neutrophil killing. Susceptibility of cells lacking Pho84 to neutrophil attack depended on reactive oxygen species (ROS): pho84-/- cells were no more susceptible than wild type C. albicans to neutrophils from a patient with chronic granulomatous disease, or to those whose oxidative burst was pharmacologically inhibited or neutralized. pho84-/- mutants hyperactivated oxidative stress signalling. They accumulated intracellular ROS in the absence of extrinsic oxidative stress, in high as well as low ambient phosphate conditions. ROS accumulation correlated with diminished levels of the unique superoxide dismutase Sod3 in pho84-/- cells, while SOD3 overexpression from a conditional promoter substantially restored these cells’ oxidative stress resistance in vitro. Repression of SOD3 expression sharply increased their oxidative stress hypersensitivity. Neither of these oxidative stress management effects of manipulating SOD3 transcription was observed in PHO84 wild type cells. Sod3 levels were not the only factor driving oxidative stress effects on pho84-/- cells, though, because overexpressing SOD3 did not ameliorate these cells’ hypersensitivity to neutrophil killing ex vivo, indicating Pho84 has further roles in oxidative stress resistance and virulence. Measurement of cellular metal concentrations demonstrated that diminished Sod3 expression was not due to decreased import of its metal cofactor manganese, as predicted from the function of S. cerevisiae Pho84 as a low-affinity manganese transporter. Instead of a role of Pho84 in metal transport, we found its role in TORC1 activation to impact oxidative stress management: overexpression of the TORC1-activating GTPase Gtr1 relieved the Sod3 deficit and ROS excess in pho84-/- null mutant cells, though it did not suppress their hypersensitivity to neutrophil killing or hyphal growth defect. Pharmacologic inhibition of Pho84 by small molecules including the FDA-approved drug foscarnet also induced ROS accumulation. Inhibiting Pho84 could hence support host defenses by sensitizing C. albicans to oxidative stress. Candida albicans is the species most often isolated from patients with invasive fungal disease, and is also a common colonizer of healthy people. It is well equipped to compete for nutrients with bacteria co-inhabiting human gastrointestinal mucous membranes, since it possesses multiple transporters to internalize important nutrients like sugars, nitrogen sources, and phosphate. During infection, the fungus needs to withstand human defense cells that attack it with noxious chemicals, among which reactive oxygen species (ROS) are critical. We found that a high-affinity phosphate transporter, Pho84, is required for C. albicans’ ability to successfully invade animal hosts and to eliminate ROS. Levels of a fungal enzyme that breaks down ROS, Sod3, were decreased in cells lacking Pho84. A connection between this phosphate transporter and the ROS-detoxifying enzyme was identified in the Target of Rapamycin (TOR) pathway, to which Pho84 is known to provide activating signals when phosphate is abundant. Small molecules that block Pho84 activity impair the ability of C. albicans to detoxify ROS. Since humans manage phosphate differently than fungi and have no Pho84 homolog, a drug that inhibits Pho84 could disable the defense of the fungus against the host.
Collapse
|
197
|
Extending the "One Strain Many Compounds" (OSMAC) Principle to Marine Microorganisms. Mar Drugs 2018; 16:md16070244. [PMID: 30041461 PMCID: PMC6070831 DOI: 10.3390/md16070244] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023] Open
Abstract
Genomic data often highlights an inconsistency between the number of gene clusters identified using bioinformatic approaches as potentially producing secondary metabolites and the actual number of chemically characterized secondary metabolites produced by any given microorganism. Such gene clusters are generally considered as “silent”, meaning that they are not expressed under laboratory conditions. Triggering expression of these “silent” clusters could result in unlocking the chemical diversity they control, allowing the discovery of novel molecules of both medical and biotechnological interest. Therefore, both genetic and cultivation-based techniques have been developed aimed at stimulating expression of these “silent” genes. The principles behind the cultivation based approaches have been conceptualized in the “one strain many compounds” (OSMAC) framework, which underlines how a single strain can produce different molecules when grown under different environmental conditions. Parameters such as, nutrient content, temperature, and rate of aeration can be easily changed, altering the global physiology of a microbial strain and in turn significantly affecting its secondary metabolism. As a direct extension of such approaches, co-cultivation strategies and the addition of chemical elicitors have also been used as cues to activate “silent” clusters. In this review, we aim to provide a focused and comprehensive overview of these strategies as they pertain to marine microbes. Moreover, we underline how changes in some parameters which have provided important results in terrestrial microbes, but which have rarely been considered in marine microorganisms, may represent additional strategies to awaken “silent” gene clusters in marine microbes. Unfortunately, the empirical nature of the OSMAC approach forces scientists to perform extensive laboratory experiments. Nevertheless, we believe that some computation and experimental based techniques which are used in other disciplines, and which we discuss; could be effectively employed to help streamline the OSMAC based approaches. We believe that natural products discovery in marine microorganisms would be greatly aided through the integration of basic microbiological approaches, computational methods, and technological innovations, thereby helping unearth much of the as yet untapped potential of these microorganisms.
Collapse
|
198
|
Liu J, Cade-Menun BJ, Yang J, Hu Y, Liu CW, Tremblay J, LaForge K, Schellenberg M, Hamel C, Bainard LD. Long-Term Land Use Affects Phosphorus Speciation and the Composition of Phosphorus Cycling Genes in Agricultural Soils. Front Microbiol 2018; 9:1643. [PMID: 30083148 PMCID: PMC6065304 DOI: 10.3389/fmicb.2018.01643] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/02/2018] [Indexed: 11/24/2022] Open
Abstract
Agriculturally-driven land transformation is increasing globally. Improving phosphorus (P) use efficiency to sustain optimum productivity in diverse ecosystems, based on knowledge of soil P dynamics, is also globally important in light of potential shortages of rock phosphate to manufacture P fertilizer. We investigated P chemical speciation and P cycling with solution 31P nuclear magnetic resonance, P K-edge X-ray absorption near-edge structure spectroscopy, phosphatase activity assays, and shotgun metagenomics in soil samples from long-term agricultural fields containing four different land-use types (native and tame grasslands, annual croplands, and roadside ditches). Across these land use types, native and tame grasslands showed high accumulation of organic P, principally orthophosphate monoesters, and high acid phosphomonoesterase activity but the lowest abundance of P cycling genes. The proportion of inositol hexaphosphates (IHP), especially the neo-IHP stereoisomer that likely originates from microbes rather than plants, was significantly increased in native grasslands than croplands. Annual croplands had the largest variances of soil P composition, and the highest potential capacity for P cycling processes based on the abundance of genes coding for P cycling processes. In contrast, roadside soils had the highest soil Olsen-P concentrations, lowest organic P, and highest tricalcium phosphate concentrations, which were likely facilitated by the neutral pH and high exchangeable Ca of these soils. Redundancy analysis demonstrated that IHP by NMR, potential phosphatase activity, Olsen-P, and pH were important P chemistry predictors of the P cycling bacterial community and functional gene composition. Combining chemical and metagenomics results provides important insights into soil P processes and dynamics in different land-use ecosystems.
Collapse
Affiliation(s)
- Jin Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.,Visiting Scientist, Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, SK, Canada
| | - Barbara J Cade-Menun
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfeng Hu
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK, Canada
| | - Corey W Liu
- Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine and ChEM-H-Stanford University, Stanford, CA, United States
| | - Julien Tremblay
- Energy, Mining and Environment, National Research Council of Canada, Montreal, QC, Canada
| | - Kerry LaForge
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Michael Schellenberg
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Chantal Hamel
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Luke D Bainard
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| |
Collapse
|
199
|
Analysis and validation of the pho regulon in the tacrolimus-producer strain Streptomyces tsukubaensis: differences with the model organism Streptomyces coelicolor. Appl Microbiol Biotechnol 2018; 102:7029-7045. [PMID: 29948118 DOI: 10.1007/s00253-018-9140-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/20/2018] [Accepted: 05/23/2018] [Indexed: 10/14/2022]
Abstract
Inorganic and organic phosphate controls both primary and secondary metabolism in Streptomyces genus. Metabolism regulation by phosphate in Streptomyces species is mediated by the PhoR-PhoP two-component system. Response regulator PhoP binds to conserved sequences of 11 nucleotides called direct repeat units (DRus), whose organization and conservation determine the binding of PhoP to distinct promoters. Streptomyces tsukubaensis is the industrial producer of the clinical immunosuppressant tacrolimus (FK506). A bioinformatic genome analysis detected several genes with conserved PHO boxes involved in phosphate scavenging and transport, nitrogen regulation, and secondary metabolite production. In this article, the PhoP regulation has been confirmed by electrophoretic mobility shift assays (EMSA) of the most relevant members of the traditional pho regulon such as the two-component system PhoR-P or genes involved in high-affinity phosphate transport (pstSCAB) and low-affinity phosphate transport (pit). However, the PhoP control over phosphatase genes in S. tsukubaensis is significantly different from the pattern reported in the model bacteria Streptomyces coelicolor. Thus, neither the alkaline phosphatase PhoA nor PhoD is regulated by PhoP. On the contrary, the binding of PhoP to the promoter of a novel putative phosphatase PhoX was confirmed. A crosstalk of the PhoP and GlnR regulators, which balances phosphate and nitrogen utilization, also occurs in S. tsukubaensis but slightly modified. Finally, PhoP regulates genes, like afsS, that link phosphate control and secondary metabolite production in S. tsukubaensis. In summary, there are notable differences between the regulation of specific genes of the pho regulon in S. tsukubaensis and the model organism S. coelicolor.
Collapse
|
200
|
Teikari JE, Fewer DP, Shrestha R, Hou S, Leikoski N, Mäkelä M, Simojoki A, Hess WR, Sivonen K. Strains of the toxic and bloom-forming Nodularia spumigena (cyanobacteria) can degrade methylphosphonate and release methane. THE ISME JOURNAL 2018; 12:1619-1630. [PMID: 29445131 PMCID: PMC5955973 DOI: 10.1038/s41396-018-0056-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 11/10/2022]
Abstract
Nodularia spumigena is a nitrogen-fixing cyanobacterium that forms toxic blooms in the Baltic Sea each summer and the availability of phosphorous is an important factor limiting the formation of these blooms. Bioinformatic analysis identified a phosphonate degrading (phn) gene cluster in the genome of N. spumigena suggesting that this bacterium may use phosphonates as a phosphorus source. Our results show that strains of N. spumigena could grow in medium containing methylphosphonic acid (MPn) as the sole source of phosphorous and released methane when growing in medium containing MPn. We analyzed the total transcriptomes of N. spumigena UHCC 0039 grown using MPn and compared them with cultures growing in Pi-replete medium. The phnJ, phosphonate lyase gene, was upregulated when MPn was the sole source of phosphorus, suggesting that the expression of this gene could be used to indicate the presence of bioavailable phosphonates. Otherwise, growth on MPn resulted in only a minor reconstruction of the transcriptome and enabled good growth. However, N. spumigena strains were not able to utilize any of the anthropogenic phosphonates tested. The phosphonate utilizing pathway may offer N. spumigena a competitive advantage in the Pi-limited cyanobacterial blooms of the Baltic Sea.
Collapse
Affiliation(s)
- Jonna E Teikari
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland
| | - David P Fewer
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland
| | - Rashmi Shrestha
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland
| | - Shengwei Hou
- Genetics and Experimental Bioinformatics, Institute of Biology III, University Freiburg, Schänzlestraße 1, Freiburg, D-79104, Germany
| | - Niina Leikoski
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland
| | - Minna Mäkelä
- Department of Agricultural Sciences, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland
| | - Asko Simojoki
- Department of Agricultural Sciences, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Institute of Biology III, University Freiburg, Schänzlestraße 1, Freiburg, D-79104, Germany
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland.
| |
Collapse
|