151
|
Anastasiev A, Kadone H, Marushima A, Watanabe H, Zaboronok A, Watanabe S, Matsumura A, Suzuki K, Matsumaru Y, Ishikawa E. Supervised Myoelectrical Hand Gesture Recognition in Post-Acute Stroke Patients with Upper Limb Paresis on Affected and Non-Affected Sides. SENSORS (BASEL, SWITZERLAND) 2022; 22:8733. [PMID: 36433330 PMCID: PMC9692557 DOI: 10.3390/s22228733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
In clinical practice, acute post-stroke paresis of the extremities fundamentally complicates timely rehabilitation of motor functions; however, recently, residual and distorted musculoskeletal signals have been used to initiate feedback-driven solutions for establishing motor rehabilitation. Here, we investigate the possibilities of basic hand gesture recognition in acute stroke patients with hand paresis using a novel, acute stroke, four-component multidomain feature set (ASF-4) with feature vector weight additions (ASF-14NP, ASF-24P) and supervised learning algorithms trained only by surface electromyography (sEMG). A total of 19 (65.9 ± 12.4 years old; 12 men, seven women) acute stroke survivors (12.4 ± 6.3 days since onset) with hand paresis (Brunnstrom stage 4 ± 1/4 ± 1, SIAS 3 ± 1/3 ± 2, FMA-UE 40 ± 20) performed 10 repetitive hand movements reflecting basic activities of daily living (ADLs): rest, fist, pinch, wrist flexion, wrist extension, finger spread, and thumb up. Signals were recorded using an eight-channel, portable sEMG device with electrode placement on the forearms and thenar areas of both limbs (four sensors on each extremity). Using data preprocessing, semi-automatic segmentation, and a set of extracted feature vectors, support vector machine (SVM), linear discriminant analysis (LDA), and k-nearest neighbors (k-NN) classifiers for statistical comparison and validity (paired t-tests, p-value < 0.05), we were able to discriminate myoelectrical patterns for each gesture on both paretic and non-paretic sides. Despite any post-stroke conditions, the evaluated total accuracy rate by the 10-fold cross-validation using SVM among four-, five-, six-, and seven-gesture models were 96.62%, 94.20%, 94.45%, and 95.57% for non-paretic and 90.37%, 88.48%, 88.60%, and 89.75% for paretic limbs, respectively. LDA had competitive results using PCA whereas k-NN was a less efficient classifier in gesture prediction. Thus, we demonstrate partial efficacy of the combination of sEMG and supervised learning for upper-limb rehabilitation procedures for early acute stroke motor recovery and various treatment applications.
Collapse
Affiliation(s)
- Alexey Anastasiev
- Department of Neurosurgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Hideki Kadone
- Center for Cybernics Research, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Aiki Marushima
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Hiroki Watanabe
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Alexander Zaboronok
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Shinya Watanabe
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Akira Matsumura
- Ibaraki Prefectural University of Health Sciences, 4669-2 Amicho, Inashiki 300-0394, Ibaraki, Japan
| | - Kenji Suzuki
- Center for Cybernics Research, Artificial Intelligence Laboratory, Faculty of Engineering Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Yuji Matsumaru
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
152
|
Naro A, Calabrò RS. Improving Upper Limb and Gait Rehabilitation Outcomes in Post-Stroke Patients: A Scoping Review on the Additional Effects of Non-Invasive Brain Stimulation When Combined with Robot-Aided Rehabilitation. Brain Sci 2022; 12:1511. [PMID: 36358437 PMCID: PMC9688385 DOI: 10.3390/brainsci12111511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 07/03/2024] Open
Abstract
Robot-aided rehabilitation (RAR) and non-invasive brain stimulation (NIBS) are the two main interventions for post-stroke rehabilitation. The efficacy of both approaches in combination has not been well established yet. The importance of coupling these interventions, which both enhance brain plasticity to promote recovery, lies in augmenting the rehabilitation potential to constrain the limitation in daily living activities and the quality of life following stroke. This review aimed to evaluate the evidence of NIBS coupled with RAR in improving rehabilitation outcomes of upper limb and gait motor impairment in adult individuals with stroke. We included 18 clinical trials in this review. All studies were highly heterogeneous concerning the technical characteristics of robotic devices and NIBS protocols. However, the studies reported a global improvement in body structure and function and activity limitation for the upper limb, which were non-significant between the active and control groups. Concerning gait training protocols, the active group outperformed the control group in improving walking capacity and recovery. According to this review, NIBS and RAR in combination are promising but not yet largely recommendable as a systematic approach for stroke rehabilitation as there is not enough data about this. Therefore, more homogenous clinical trials are required, pointing out the best characteristics of the combined therapeutic protocols.
Collapse
Affiliation(s)
- Antonino Naro
- Stroke Unit, AOU Policlinico G. Martino, 98122 Messina, Italy
| | | |
Collapse
|
153
|
Restoring After Central Nervous System Injuries: Neural Mechanisms and Translational Applications of Motor Recovery. Neurosci Bull 2022; 38:1569-1587. [DOI: 10.1007/s12264-022-00959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/29/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractCentral nervous system (CNS) injuries, including stroke, traumatic brain injury, and spinal cord injury, are leading causes of long-term disability. It is estimated that more than half of the survivors of severe unilateral injury are unable to use the denervated limb. Previous studies have focused on neuroprotective interventions in the affected hemisphere to limit brain lesions and neurorepair measures to promote recovery. However, the ability to increase plasticity in the injured brain is restricted and difficult to improve. Therefore, over several decades, researchers have been prompted to enhance the compensation by the unaffected hemisphere. Animal experiments have revealed that regrowth of ipsilateral descending fibers from the unaffected hemisphere to denervated motor neurons plays a significant role in the restoration of motor function. In addition, several clinical treatments have been designed to restore ipsilateral motor control, including brain stimulation, nerve transfer surgery, and brain–computer interface systems. Here, we comprehensively review the neural mechanisms as well as translational applications of ipsilateral motor control upon rehabilitation after CNS injuries.
Collapse
|
154
|
Hu J, Zou J, Wan Y, Yao Q, Dong P, Li G, Wu X, Zhang L, Liang D, Zeng Q, Huang G. Rehabilitation of motor function after stroke: A bibliometric analysis of global research from 2004 to 2022. Front Aging Neurosci 2022; 14:1024163. [PMID: 36408095 PMCID: PMC9667945 DOI: 10.3389/fnagi.2022.1024163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND AIMS The mortality rate of stroke has been increasing worldwide. Poststroke somatic dysfunctions are common. Motor function rehabilitation of patients with such somatic dysfunctions enhances the quality of life and has long been the primary practice to achieve functional recovery. In this regard, we aimed to delineate the new trends and frontiers in stroke motor function rehabilitation literature published from 2004 to 2022 using a bibliometric software. METHODS All documents related to stroke rehabilitation and published from 2004 to 2022 were retrieved from the Web of Science Core Collection. Publication output, research categories, countries/institutions, authors/cocited authors, journals/cocited journals, cocited references, and keywords were assessed using VOSviewer v.1.6.15.0 and CiteSpace version 5.8. The cocitation map was plotted according to the analysis results to intuitively observe the research hotspots. RESULTS Overall, 3,302 articles were retrieved from 78 countries or regions and 564 institutions. Over time, the publication outputs increased annually. In terms of national contribution, the United States published the most papers, followed by China, Japan, South Korea, and Canada. Yeungnam University had the most articles among all institutions, followed by Emory University, Fudan University, and National Taiwan University. Jang Sung Ho and Wolf S.L. were the most productive (56 published articles) and influential (cited 1,121 times) authors, respectively. "Effect of constraint-induced movement therapy on upper extremity function 3-9 months after stroke: the Extremity Constraint Induced Therapy Evaluation randomized clinical trial" was the most frequently cited reference. Analysis of keywords showed that upper limbs, Fugl-Meyer assessment, electromyography, virtual reality, telerehabilitation, exoskeleton, and brain-computer interface were the research development trends and focus areas for this topic. CONCLUSION Publications regarding motor function rehabilitation following stroke are likely to continuously increase. Research on virtual reality, telemedicine, electroacupuncture, the brain-computer interface, and rehabilitation robots has attracted increasing attention, with these topics becoming the hotspots of present research and the trends of future research.
Collapse
Affiliation(s)
- Jinjing Hu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Yantong Wan
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Qiuru Yao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Peng Dong
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Gege Li
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Xuan Wu
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Lijie Zhang
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Donghui Liang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
155
|
Virtual reality and serious game therapy for post-stroke individuals: A preliminary study with humanized rehabilitation approach protocol humanized rehabilitation approach. Complement Ther Clin Pract 2022; 49:101681. [DOI: 10.1016/j.ctcp.2022.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
156
|
Hsu HY, Yang KC, Yeh CH, Lin YC, Lin KR, Su FC, Kuo LC. A Tenodesis-Induced-Grip exoskeleton robot (TIGER) for assisting upper extremity functions in stroke patients: a randomized control study. Disabil Rehabil 2022; 44:7078-7086. [PMID: 34586927 DOI: 10.1080/09638288.2021.1980915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE This study was aimed toward developing a lightweight assisting tenodesis-induced-grip exoskeleton robot (TIGER) and to examine the performance of the TIGER in stroke patients with hemiplegia. METHODS This was a single-blinded, randomized control trial with pre-treatment, immediate post-treatment, and 12-week follow-up assessments. Thirty-four stroke patients were recruited and randomized to either an experimental or control group, where each participant in both groups underwent 40 min of training. In addition to a 20-min bout of regular task-specific motor training, each participant in the experimental group received 20 min of TIGER training, and the controls received 20 min of traditional occupational therapy in each treatment session. Primary outcomes based on the Fugl-Meyer Motor Assessment of Upper Extremity (FMA-UE) were recorded. RESULTS Thirty-two patients (94.1%) completed the study: 17 and 15 patients in the experimental and control groups, respectively. Significant beneficial effects were found on the total score (ANCOVA, p = 0.006), the wrist score (ANCOVA, p = 0.037), and the hand score (ANCOVA, p = 0.006) for the FMA-UE in the immediate post-treatment assessment of the participants receiving the TIGER training. CONCLUSION The TIGER has beneficial effects on remediating upper limb impairments in chronic stroke patients. Clinical trial registration: ClinicalTrials.gov; identifier NCT03713476Implications for rehabilitationBased on use-dependent plasticity concepts, robot training with the more distal segments of the upper extremities has a beneficial effect in patients with chronic stroke.A novel lightweight assisting tenodesis-induced-grip exoskeleton robot (TIGER) system using a mechanism involving musculotendinous coordination of the wrist and hand was proposed in this study.Between-group differences in changes in the upper limb motor performance were observed in the experimental group as compared to patients in the control group. For patients with chronic stroke, receiving 20 min of TIGER training in conjunction with 20 min of task-specific motor training led to clinically important changes in motor control and functioning of the affected upper limb.
Collapse
Affiliation(s)
- Hsiu-Yun Hsu
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kang-Chin Yang
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Hsien Yeh
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ching Lin
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Keng-Ren Lin
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Fong-Chin Su
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.,Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Li-Chieh Kuo
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.,Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
157
|
Sharif H, Eslaminia A, Chembrammel P, Kesavadas T. Classification of Activities of Daily Living Based on Grasp Dynamics Obtained from a Leap Motion Controller. SENSORS (BASEL, SWITZERLAND) 2022; 22:8273. [PMID: 36365969 PMCID: PMC9656805 DOI: 10.3390/s22218273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Stroke is one of the leading causes of mortality and disability worldwide. Several evaluation methods have been used to assess the effects of stroke on the performance of activities of daily living (ADL). However, these methods are qualitative. A first step toward developing a quantitative evaluation method is to classify different ADL tasks based on the hand grasp. In this paper, a dataset is presented that includes data collected by a leap motion controller on the hand grasps of healthy adults performing eight common ADL tasks. Then, a set of features with time and frequency domains is combined with two well-known classifiers, i.e., the support vector machine and convolutional neural network, to classify the tasks, and a classification accuracy of over 99% is achieved.
Collapse
|
158
|
Martono M, Isnaeni A, Hartono H. Assessment of the Effectiveness of Facial Expression Exercises Stimulation Using Mirror Media in Increasing Facial Muscle Strength in Hemiparetic Stroke Patients. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND: Stroke can cause facial muscle weakness that can affect mobility, limitations in daily activities, and quality of life. One alternative solution that is non-invasive to restore facial muscle paralysis in post-stroke patients is facial expression exercises using mirror media.
AIM: This study aimed to assess the effectiveness of facial muscle expression exercises stimulation using mirror media and without a mirror as media in increasing facial muscle strength in hemiparetic stroke patients.
METHODS: This study used an experimental quantitative design, in which two groups of subjects who met the inclusion criteria were randomly assigned. The number of subjects who participated in this research was 60 samples divided into the intervention group (n = 30) with a mirror for facial muscle expression exercises and the control group (n = 30) without a mirror for five weeks. The research data were collected using the Fisch Facial Grading System sheet. The statistical analysis procedure of the data consisted of One-Way ANOVA, paired-samples T-test, and N-Gain score test with 95% significance.
RESULTS: The difference in facial muscle strength increase was significantly greater in the intervention group (mean difference 19.4; p = 0.000). The intervention group was more effective in increasing facial muscle strength than the control group (N-Gain score 56.31%).
CONCLUSION: The facial muscle expression exercise procedure using a mirror was more effective in increasing muscle strength than the group without a mirror.
Collapse
|
159
|
Jacinto J, Camões-Barbosa A, Carda S, Hoad D, Wissel J. A practical guide to botulinum neurotoxin treatment of shoulder spasticity 1: Anatomy, physiology, and goal setting. Front Neurol 2022; 13:1004629. [PMID: 36324373 PMCID: PMC9618862 DOI: 10.3389/fneur.2022.1004629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 09/26/2023] Open
Abstract
Botulinum neurotoxin type A (BoNT-A) is a first-line treatment option for post-stroke spasticity, reducing pain and involuntary movements and helping to restore function. BoNT-A is frequently injected into the arm, wrist, hand and/or finger muscles, but less often into the shoulder muscles, despite clinical trials demonstrating improvements in pain and function after shoulder BoNT-A injection. In part 1 of this two-part practical guide, we present an experts' consensus on the use of BoNT-A injections in the multi-pattern treatment of shoulder spasticity to increase awareness of shoulder muscle injection with BoNT-A, alongside the more commonly injected upper limb muscles. Expert consensus was obtained from five European experts with a cumulative experience of more than 100 years of BoNT-A use in post-stroke spasticity. A patient-centered approach was proposed by the expert consensus: to identify which activities are limited by the spastic shoulder and consider treating the muscles that are involved in hindering those activities. Two patterns of shoulder spasticity were identified: for Pattern A (adduction, elevation, flexion and internal rotation of the shoulder), the expert panel recommended injecting the pectoralis major, teres major and subscapularis muscles; in most cases injecting only the pectoralis major and the teres major is sufficient for the first injection cycle; for Pattern B (abduction or adduction, extension and internal rotation of the shoulder), the panel recommended injecting the posterior part of the deltoid, the teres major and the latissimus dorsi in most cases. It is important to consider the local guidelines and product labels, as well as discussions within the multidisciplinary, multiprofessional team when deciding to inject shoulder muscles with BoNT-A. The choice of shoulder muscles for BoNT-A injection can be based on spastic pattern, but ideally should also firstly consider the functional limitation and patient expectations in order to establish better patient-centered treatment goals. These recommendations will be of benefit for clinicians who may not be experienced in evaluating and treating spastic shoulders.
Collapse
Affiliation(s)
- Jorge Jacinto
- Centro de Medicina de Reabilitação de Alcoitão, Serviço de Reabilitação de Adultos 3, Alcabideche, Portugal
| | | | - Stefano Carda
- Centre Hospitalier Universitaire Vaudois (CHUV), Neuropsychology and Neurorehabilitation, Lausanne, Switzerland
| | - Damon Hoad
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jörg Wissel
- Department of Neurorehabilitation and Physical Therapy, Vivantes Hospital Spandau, Berlin, Germany
| |
Collapse
|
160
|
Giovannini S, Iacovelli C, Brau F, Loreti C, Fusco A, Caliandro P, Biscotti L, Padua L, Bernabei R, Castelli L. RObotic-Assisted Rehabilitation for balance and gait in Stroke patients (ROAR-S): study protocol for a preliminary randomized controlled trial. Trials 2022; 23:872. [PMID: 36224575 PMCID: PMC9558956 DOI: 10.1186/s13063-022-06812-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Stroke, the incidence of which increases with age, has a negative impact on motor and cognitive performance, quality of life, and the independence of the person and his or her family, leading to a number of direct and indirect costs. Motor recovery is essential, especially in elderly patients, to enable the patient to be independent in activities of daily living and to prevent falls. Several studies have shown how robotic training associated with physical therapy influenced functional and motor outcomes of walking after stroke by improving endurance and walking strategies. Considering data from previous studies and patients' needs in gait and balance control, we hypothesized that robot-assisted balance treatment associated with physical therapy may be more effective than usual therapy performed by a physical therapist in terms of improving static, dynamic balance and gait, on fatigue and cognitive performance. METHODS This is an interventional, single-blinded, preliminary randomized control trial. Twenty-four patients of both sexes will be recruited, evaluated, and treated at the UOC Rehabilitation and Physical Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS in Rome from January to December 2022. Patients will be randomized into two groups: the experimental group will perform specific rehabilitation for balance disorder using the Hunova® robotic platform (Movendo Technology srl, Genoa, IT) for 3 times a week, for 4 weeks (12 total sessions), and for 45 min of treatment, in addition to conventional treatment, while the conventional group (GC) will perform only conventional treatment as per daily routine. All patients will undergo clinical and instrumental evaluation at the beginning and end of the 4 weeks of treatment. CONCLUSIONS The study aims to evaluate the improvement in balance, fatigue, quality of life, and motor and cognitive performance after combined conventional and robotic balance treatment with Hunova® (Movendo Technology srl, Genoa, IT) compared with conventional therapy alone. Robotic assessment to identify the most appropriate and individualized rehabilitation treatment may allow reducing disability and improving quality of life in the frail population. This would reduce direct and indirect social costs of care and treatment for the National Health Service and caregivers. TRIAL REGISTRATION ClinicalTrials.gov NCT05280587. Registered on March 15, 2022.
Collapse
Affiliation(s)
- Silvia Giovannini
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 8, 00168, Rome, Italy.
- UOS Riabilitazione Post-Acuzie, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.
| | - Chiara Iacovelli
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Fabrizio Brau
- UOS Riabilitazione Post-Acuzie, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Claudia Loreti
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Augusto Fusco
- UOC Neuroriabilitazione Ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Pietro Caliandro
- UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Lorenzo Biscotti
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Geriatric Care Promotion and Development Centre (C.E.P.S.A.G), Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Padua
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 8, 00168, Rome, Italy
- UOC Neuroriabilitazione Ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Roberto Bernabei
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 8, 00168, Rome, Italy
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Letizia Castelli
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
161
|
Liao Y, Zheng Q, Huang P, Xie Q, Wang G, Lai Y, Jiang X, Ge L. Actual experience of the training effect of Baduanjin on patients with hemiplegic limb dysfunctions after cerebral infarction: A qualitative study. Nurs Open 2022; 10:861-868. [PMID: 36161708 PMCID: PMC9834197 DOI: 10.1002/nop2.1354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/30/2022] [Accepted: 08/22/2022] [Indexed: 01/16/2023] Open
Abstract
AIM To explore the actual experience of training effect of Baduanjin on patients with hemiplegic limb dysfunctions after cerebral infarction through semistructured interviews and promote Baduanjin training application in clinical and community settings. DESIGN This qualitative study was conducted using the conventional content analysis approach. METHODS Twenty-five patients with hemiplegic limb dysfunctions after cerebral infarction were recruited as participants by applying purposive sampling method between September 2017-December 2020 in the physical therapy department of a rehabilitation hospital affiliated with Fujian University of Traditional Chinese Medicine in China. Semistructured interviews were conducted after patients participated in Baduanjin training for 6 weeks. Data were analysed using qualitative content analysis method of Graneheim and Lundman. RESULTS Three major themes were identified after analysis, namely improving functions of hemiplegic limbs, improving the condition of the entire body and the feelings of practice. The participants indicated that Baduanjin could improve the limb functions and general conditions of hemiplegic patients. Their experience in practicing Baduanjin was generally positive, and they were willing to continue practicing.
Collapse
Affiliation(s)
- Yan‐tan Liao
- Rehabilitation Hospital Affiliated with Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Qing‐Xiang Zheng
- Fujian Maternity and Child Health Hospital Affiliated to Fujian Medical UniversityFuzhouChina
| | - Ping‐ping Huang
- School of NursingFujian University of Traditional Chinese MedicineFuzhouChina
| | - Qiu‐lin Xie
- Health Science CenterYangtze UniversityJingzhouChina
| | - Guan‐dong Wang
- Department of Respiratory Intensive Care UnitHenan Provincial People’s HospitalHenanChina
| | - Yu‐ting Lai
- School of NursingFujian University of Traditional Chinese MedicineFuzhouChina
| | - Xin‐yong Jiang
- School of NursingFujian University of Traditional Chinese MedicineFuzhouChina
| | - Li Ge
- School of NursingFujian University of Traditional Chinese MedicineFuzhouChina
| |
Collapse
|
162
|
Rieger C, Desai J. A Preliminary Study to Design and Evaluate Pneumatically Controlled Soft Robotic Actuators for a Repetitive Hand Rehabilitation Task. Biomimetics (Basel) 2022; 7:biomimetics7040139. [PMID: 36278696 PMCID: PMC9590083 DOI: 10.3390/biomimetics7040139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
A stroke is an infarction in the cortical region of the brain that often leads to isolated hand paresis. This common side effect renders individuals compromised in their ability to actively flex or extend the fingers of the affected hand. While there are currently published soft robotic glove designs, this article proposed a unique design that allows users to self-actuate their therapy due to the ability to re-extend the hand using a layer of resistive flexible steel. The results showed a consistently achieved average peak of 75° or greater for each finger while the subjects’ hands were at rest during multiple trials of pneumatic assisted flexion. During passive assisted testing, human subject testing on 10 participants showed that these participants were able to accomplish 80.75% of their normal active finger flexion range with the steel-layer-lined pneumatic glove and 87.07% with the unlined pneumatic glove on average when neglecting outliers. An addition of the steel layer lowered the blocked tip force by an average of 18.13% for all five fingers. These data show strong evidence that this glove would be appropriate to advance to human subject testing on those who do have post stroke hand impairments.
Collapse
|
163
|
Chockalingam M, Vasanthan LT, Balasubramanian S, Sriram V. Experiences of patients who had a stroke and rehabilitation professionals with upper limb rehabilitation robots: a qualitative systematic review protocol. BMJ Open 2022; 12:e065177. [PMID: 36123077 PMCID: PMC9486398 DOI: 10.1136/bmjopen-2022-065177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Emerging evidence suggests that robotic devices for upper limb rehabilitation after a stroke may improve upper limb function. For robotic upper limb rehabilitation in stroke to be successful, patients' experiences and those of the rehabilitation professionals must be considered. Therefore, this review aims to synthesise the available evidence on experiences of patients after a stroke with rehabilitation robots for upper limb rehabilitation and the experiences of rehabilitation professionals with rehabilitation robots for upper limb stroke rehabilitation. METHODS AND ANALYSIS Database search will include MEDLINE (Ovid), EMBASE (Elsevier), Cochrane CENTRAL, PsycINFO, Scopus, Web of Science, IEEE and CINAHL (EBSCOhost). Grey literature from Open Grey, PsyArXiv, bioRxiv, medRxiv and Google Scholar will also be searched. Qualitative studies or results from mixed-method studies that include adult patients after a stroke who use upper limb rehabilitation robots, either supervised by rehabilitation professionals or by patients themselves, at any stage of their rehabilitation and/or stroke professionals who use upper limb rehabilitation robots will be included. Robotic upper limb rehabilitation provided by students, healthcare assistants, technicians, non-professional caregivers, family caregivers, volunteer caregivers or other informal caregivers will be excluded. Articles published in English will be considered regardless of date of publication. Studies will be screened and critically appraised for methodological quality by two independent reviewers. A standardised tool from JBI System for the Unified Management, Assessment and Review of Information for data extraction, the meta-aggregation approach for data synthesis and the ConQual approach for confidence evaluation will be followed. ETHICS AND DISSEMINATION As this systematic review is based on previously published research, no informed consent or ethical approval is required. It is anticipated that this systematic review will highlight the experiences of patients after a stroke and perceived facilitators and barriers for rehabilitation professionals on this topic, which will be disseminated through peer-reviewed publications and national and international conferences. PROSPERO REGISTRATION NUMBER CRD42022321402.
Collapse
Affiliation(s)
| | - Lenny Thinagaran Vasanthan
- Physiotherapy, Physical Medicine and Rehabilitation, Christian Medical College Vellore, Vellore, Tamil Nadu, India
| | | | - Vimal Sriram
- Head of Allied Health Professionals, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| |
Collapse
|
164
|
Geng H, Li M, Tang J, Lv Q, Li R, Wang L. Early Rehabilitation Exercise after Stroke Improves Neurological Recovery through Enhancing Angiogenesis in Patients and Cerebral Ischemia Rat Model. Int J Mol Sci 2022; 23:ijms231810508. [PMID: 36142421 PMCID: PMC9499642 DOI: 10.3390/ijms231810508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Among cerebrovascular diseases, ischemic stroke is a leading cause of mortality and disability. Thrombolytic therapy with tissue plasminogen activator is the first choice for clinical treatment, but its use is limited due to the high requirements of patient characteristics. Therefore, the choice of neurological rehabilitation strategies after stroke is an important prevention and treatment strategy to promote the recovery of neurological function in patients. This study shows that rehabilitation exercise 24 h after stroke can significantly improve the neurological function (6.47 ± 1.589 vs. 3.21 ± 1.069 and 0.76 ± 0.852), exercise ability (15.68 ± 5.95 vs. 162.32 ± 9.286 and 91.18 ± 7.377), daily living ability (23.37 ± 5.196 vs. 66.95 ± 4.707 and 6.55 ± 2.873), and quality of life (114.39 ± 7.772 vs. 168.61 ± 6.323 and 215.95 ± 10.977) of patients after 1 month and 3 months, and its ability to promote rehabilitation is better than that of rehabilitation exercise administered to patients 72 h after stroke (p < 0.001). Animal experiments show that treadmill exercise 24 h after middle cerebral artery occlusion and reperfusion can inhibit neuronal apoptosis, reduce the volume of cerebral infarction on the third (15.04 ± 1.07% vs. 30.67 ± 3.06%) and fifth (8.33 ± 1.53% vs. 30.67 ± 3.06%) days, and promote the recovery of neurological function on the third (7.22 ± 1.478 vs. 8.28 ± 1.018) and fifth (4.44 ± 0.784 vs. 6.00 ± 0.767) days. Mechanistic studies have shown that treadmill exercise increases the density of microvessels, regulates angiogenesis, and promotes the recovery of nerve function by upregulating the expression of vascular endothelial growth factor and laminin. This study shows that rehabilitation exercise 24 h after stroke is conducive to promoting the recovery of patients’ neurological function, and provides a scientific reference for the clinical rehabilitation of stroke patients.
Collapse
Affiliation(s)
- Huixia Geng
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng 475004, China
| | - Min Li
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng 475004, China
| | - Jing Tang
- The School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Qing Lv
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng 475004, China
| | - Ruiling Li
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng 475004, China
- Correspondence: (R.L.); (L.W.); Tel.: +86-371-2388-7799 (R.L. & L.W.)
| | - Lai Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng 475004, China
- The School of Life Sciences, Henan University, Kaifeng 475000, China
- Correspondence: (R.L.); (L.W.); Tel.: +86-371-2388-7799 (R.L. & L.W.)
| |
Collapse
|
165
|
Krishna S, Hervey-Jumper SL. Neural Regulation of Cancer: Cancer-Induced Remodeling of the Central Nervous System. Adv Biol (Weinh) 2022; 6:e2200047. [PMID: 35802914 PMCID: PMC10182823 DOI: 10.1002/adbi.202200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/01/2022] [Indexed: 01/28/2023]
Abstract
In recent years, there have been significant advances in understanding the neuronal influence on the biology of solid tumors such as prostate, pancreatic, gastric, and brain cancers. An increasing amount of experimental evidence across multiple tumor types strongly suggests the existence of bidirectional crosstalk between cancer cells and the neural microenvironment. However, unlike cancers affecting many solid organs, brain tumors, namely gliomas, can synaptically integrate into neural circuits and thus can exert a greater potential to induce dynamic remodeling of functional circuits resulting in long-lasting behavioral changes. The first part of the review describes dynamic changes in language, sensory, and motor networks following glioma development and presents evidence focused on how different patterns of glioma-induced cortical reorganization may predict the degree and time course of functional recovery in brain tumor patients. The second part focuses on the network and cellular-level mechanisms underlying glioma-induced cerebral reorganization. Finally, oncological and clinical factors influencing glioma-induced network remodeling in glioma patients are reviewed.
Collapse
Affiliation(s)
- Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA
- Weill Neurosciences Institute, University of California, San Francisco, CA, 94143, USA
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
166
|
Perez-Corredor PA, Oluwatomilayo-Ojo P, Gutierrez-Vargas JA, Cardona-Gómez GP. Obesity induces extracellular vesicle release from the endothelium as a contributor to brain damage after cerebral ischemia in rats. Nutr Neurosci 2022:1-16. [PMID: 36039918 DOI: 10.1080/1028415x.2022.2078173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
OBJECTIVES Cerebral ischemia is the most common cause of disability, the second most common cause of dementia, and the fourth most common cause of death in the developed world [Sveinsson OA, Kjartansson O, Valdimarsson EM. Heilablóðþurrð/heiladrep: Faraldsfræði, orsakir og einkenni [Cerebral ischemia/infarction - epidemiology, causes and symptoms]. Laeknabladid. 2014 May;100(5):271-9. Icelandic. doi:10.17992/lbl.2014.05.543]. Obesity has been associated with worse outcomes after ischemia in rats, triggering proinflammatory cytokine production related to the brain microvasculature. The way obesity triggers these effects remains mostly unknown. Therefore, the aim of this study was to elucidate the cellular mechanisms of damage triggered by obesity in the context of cerebral ischemia. METHODS We used a rat model of obesity induced by a 20% high fructose diet (HFD) and evaluated peripheral alterations in plasma (lipid and cytokine profiles). Then, we performed cerebral ischemia surgery using two-vessel occlusion (2VO) and analyzed neurological/motor performance and glial activation. Next, we treated endothelial cell line cultures with glutamate in vitro to simulate an excitotoxic environment, and we added 20% plasma from obese rats. Subsequently, we isolated EVs released from endothelial cells and treated primary cultures of astrocytes with them. RESULTS Rats fed a HFD had an increased BMI with dyslipidemia and high levels of proinflammatory cytokines. Glia from the obese rats exhibited altered morphology, suggesting hyperreactivity related to neurological and motor deficits. Plasma from obese rats induced activation of endothelial cells, increasing proinflammatory signals and releasing more EVs. Similarly, these EVs caused an increase in NF-κB and astrocyte cytotoxicity. Together, the results suggest that obesity activates proinflammatory signals in endothelial cells, resulting in the release of EVs that simultaneously contribute to astrocyte activation.
Collapse
Affiliation(s)
- P A Perez-Corredor
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellin, Colombia
| | - P Oluwatomilayo-Ojo
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellin, Colombia.,Division of Neuroendocrinology, Department of Anatomy, Faculty of Basic Medical Science, University of Ilorin, Ilorin, Nigeria
| | - J A Gutierrez-Vargas
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellin, Colombia.,Grupo de Investigación de Neurociencias y Envejecimiento (GISAM), Corporación Universitaria Remington, Medellín, Colombia
| | - G P Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellin, Colombia
| |
Collapse
|
167
|
Moulaei K, Sheikhtaheri A, Nezhad MS, Haghdoost A, Gheysari M, Bahaadinbeigy K. Telerehabilitation for upper limb disabilities: a scoping review on functions, outcomes, and evaluation methods. Arch Public Health 2022; 80:196. [PMID: 35999548 PMCID: PMC9400266 DOI: 10.1186/s13690-022-00952-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Upper limb (UL) disabilities have attracted worldwide attention due to the high economic costs of health care and the negative effects on the quality of life of patients with these disabilities. Telerehabilitation technologies are one of the most important ways to reduce rehabilitation costs and increase the quality of life of patients. Therefore, the aim of this study was to investigate the role of telerehabilitation in improving the health status of patients with upper limb disabilities. METHODS This scoping review was conducted by searching the Web of Science, PubMed, and Scopus until July 30, 2021. We used a data extraction form with 18 fields to extract data from primary studies. The selection of articles and data extraction was made by four researchers using a data collection form based on inclusion and exclusion criteria. Disagreements were resolved through consultation with the fifth and sixth researchers.Inclusion criteria were studies published in English, studies on upper limb disability, and telerehabilitation based on any technology (synchronous telerehabilitation, asynchronous, or both). Exclusion criteria were articles that did not focus on telerehabilitation and upper limb disabilities. Also, books, book chapters, letters to the editor, and conference abstracts were also removed. RESULTS A total of 458 articles were retrieved, and after removing irrelevant and duplicate articles, 29 articles were finally included in this review. Most telerehabilitation was performed for patients with stroke (65%). Among the 15 different services provided with telerehabilitation technologies, "Evaluation of exercises and also a musculoskeletal function of patients by the therapist","Recording of patients' rehabilitation exercises and sending them to the therapist" and "Prescribing new rehabilitation exercises by the therapist" were the most widely used services, respectively. Virtual reality technologies, smart wearables, and robots were used to provide telerehabilitation services. Among the 13 types of evaluation used for telerehabilitation systems, "Evaluation and measurement of upper limb function" was the most used evaluation in the studies. "Improvement in musculoskeletal functions", "Increasing patients' interest and motivation to perform rehabilitation exercises", and "Increasing adherence to rehabilitation exercises and greater participation in treatment processes" were the most important outcomes, respectively. CONCLUSION Our findings indicate that telerehabilitation provides individuals with equitable access to rehabilitation services, improves musculoskeletal function, and empowers individuals by providing a variety of rehabilitation capabilities.
Collapse
Affiliation(s)
- Khadijeh Moulaei
- Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Sheikhtaheri
- Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mansour Shahabi Nezhad
- Department of Physical Therapy, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - AliAkbar Haghdoost
- HIV/STI Surveillance Research Center and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Gheysari
- Business Administration Management (Digital Transformation), Faculty of Management, Tehran University, Tehran, Iran
| | - Kambiz Bahaadinbeigy
- Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
168
|
Wei X, Xia N, Li YA, Gu M, Zhang T, Gao W, Liu Y. Immediate and short-term effects of continuous theta burst transcranial magnetic stimulation over contralesional premotor area on post-stroke spasticity in patients with severe hemiplegia: Study protocol for a randomized controlled trial. Front Neurol 2022; 13:895580. [PMID: 36081877 PMCID: PMC9445437 DOI: 10.3389/fneur.2022.895580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background Post-stroke spasticity is an important complication that greatly affects survivors' functional prognosis and daily activities. Increasing evidence points to aberrant contralesional neuromodulation compensation after brain injury as a possible culprit for increased spasticity in patients with severe stroke. Hyperactivity of the contralesional premotor area (cPMA) was supposed to be highly correlated with this progression. This study aims to demonstrate the immediate and short-term efficacy of continuous theta-burst stimulation (cTBS) targeting cPMA on upper limb spasticity in severe subacute stroke patients. Methods This trial is a single-center, prospective, three-group randomized controlled trial. Forty-five eligible patients will be recruited and randomized into three groups: the sham-cTBS group (sham cTBS targeting contralesional PMA), the cTBS-cM1 group (cTBS targeting contralesional M1), and the cTBS-cPMA group (cTBS targeting contralesional PMA). All subjects will undergo comprehensive rehabilitation and the corresponding cTBS interventions once a day, five times a week for 4 weeks. Clinical scales, neurophysiological examinations, and neuroimaging will be used as evaluation tools in this study. As the primary outcome, clinical performance on muscle spasticity of elbow/wrist flexor/extensors and upper-limb motor function will be evaluated with the modified Ashworth scale and the Fugl-Meyer Assessment of Upper Extremity Scale, respectively. These scale scores will be collected at baseline, after 4 weeks of treatment, and at follow-up. The secondary outcomes were neurophysiological examinations and Neuroimaging. In neurophysiological examinations, motor evoked potentials, startle reflex, and H reflexes will be used to assess the excitability of the subject's motor cortex, reticulospinal pathway, and spinal motor neurons, respectively. Results of them will be recorded before and after the first cTBS treatment, at post-intervention (at 4 weeks), and at follow-up (at 8 weeks). Neuroimaging tests with diffusion tensor imaging for all participants will be evaluated at baseline and after the 4-week treatment. Discussion Based on the latest research progress on post-stroke spasticity, we innovatively propose a new neuromodulation target for improving post-stroke spasticity via cTBS. We expected that cTBS targeting cPMA would have significant immediate and short-term effects on spasticity and related neural pathways. The effect of cTBS-cPMA may be better than that of cTBS via conventional cM1. The results of our study will provide robust support for the application of cTBS neuromodulation in post-stroke spasticity after a severe stroke. Clinical trial registration This trial was registered with chictr.org.cn on June 13, 2022 (protocol version). http://www.chictr.org.cn/showproj.aspx?proj=171759.
Collapse
Affiliation(s)
- Xiupan Wei
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Nan Xia
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Yang-An Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Minghui Gu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Tongming Zhang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Wei Gao
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wei Gao
| | - Yali Liu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
- *Correspondence: Yali Liu
| |
Collapse
|
169
|
Liang J, Song Y, Belkacem AN, Li F, Liu S, Chen X, Wang X, Wang Y, Wan C. Prediction of balance function for stroke based on EEG and fNIRS features during ankle dorsiflexion. Front Neurosci 2022; 16:968928. [PMID: 36061607 PMCID: PMC9433808 DOI: 10.3389/fnins.2022.968928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Balance rehabilitation is exceedingly crucial during stroke rehabilitation and is highly related to the stroke patients’ secondary injuries (caused by falling). Stroke patients focus on walking ability rehabilitation during the early stage. Ankle dorsiflexion can activate the brain areas of stroke patients, similar to walking. The combination of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) was a new method, providing more beneficial information. We extracted the event-related desynchronization (ERD), oxygenated hemoglobin (HBO), and Phase Synchronization Index (PSI) features during ankle dorsiflexion from EEG and fNIRS. Moreover, we established a linear regression model to predict Berg Balance Scale (BBS) values and used an eightfold cross validation to test the model. The results showed that ERD, HBO, PSI, and age were critical biomarkers in predicting BBS. ERD and HBO during ankle dorsiflexion and age were promising biomarkers for stroke motor recovery.
Collapse
Affiliation(s)
- Jun Liang
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | | | - Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Abdelkader Nasreddine Belkacem,
| | - Fengmin Li
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Shizhong Liu
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaona Chen
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinrui Wang
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Yueyun Wang
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunxiao Wan
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
- Chunxiao Wan,
| |
Collapse
|
170
|
Fruchter D, Feingold Polak R, Berman S, Levy-Tzedek S. Automating provision of feedback to stroke patients with and without information on compensatory movements: A pilot study. Front Hum Neurosci 2022; 16:918804. [PMID: 36003313 PMCID: PMC9393297 DOI: 10.3389/fnhum.2022.918804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Providing effective feedback to patients in a rehabilitation training program is essential. As technologies are being developed to support patient training, they need to be able to provide the users with feedback on their performance. As there are various aspects on which feedback can be given (e.g., task success and presence of compensatory movements), it is important to ensure that users are not overwhelmed by too much information given too frequently by the assistive technology. We created a rule-based set of guidelines for the desired hierarchy, timing, and content of feedback to be used when stroke patients train with an upper-limb exercise platform which we developed. The feedback applies to both success on task completion and to the execution of compensatory movements, and is based on input collected from clinicians in a previous study. We recruited 11 stroke patients 1–72 months from injury onset. Ten participants completed the training; each trained with the rehabilitation platform in two configurations: with motor feedback (MF) and with no motor feedback (control condition) (CT). The two conditions were identical, except for the feedback content provided: in both conditions they received feedback on task success; in the MF condition they also received feedback on making undesired compensatory movements during the task. Participants preferred the configuration that provided feedback on both task success and quality of movement (MF). This pilot experiment demonstrates the feasibility of a system providing both task-success and movement-quality feedback to patients based on a decision tree which we developed.
Collapse
Affiliation(s)
- Daphne Fruchter
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronit Feingold Polak
- Recanati School for Community Health Professions, Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Herzog Medical Center, Jerusalem, Israel
| | - Sigal Berman
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
| | - Shelly Levy-Tzedek
- Recanati School for Community Health Professions, Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
- *Correspondence: Shelly Levy-Tzedek,
| |
Collapse
|
171
|
Leonardi G, Ciurleo R, Cucinotta F, Fonti B, Borzelli D, Costa L, Tisano A, Portaro S, Alito A. The role of brain oscillations in post-stroke motor recovery: An overview. Front Syst Neurosci 2022; 16:947421. [PMID: 35965998 PMCID: PMC9373799 DOI: 10.3389/fnsys.2022.947421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
Stroke is the second cause of disability and death worldwide, highly impacting patient’s quality of life. Several changes in brain architecture and function led by stroke can be disclosed by neurophysiological techniques. Specifically, electroencephalogram (EEG) can disclose brain oscillatory rhythms, which can be considered as a possible outcome measure for stroke recovery, and potentially shaped by neuromodulation techniques. We performed a review of randomized controlled trials on the role of brain oscillations in patients with post-stroke searching the following databases: Pubmed, Scopus, and the Web of Science, from 2012 to 2022. Thirteen studies involving 346 patients in total were included. Patients in the control groups received various treatments (sham or different stimulation modalities) in different post-stroke phases. This review describes the state of the art in the existing randomized controlled trials evaluating post-stroke motor function recovery after conventional rehabilitation treatment associated with neuromodulation techniques. Moreover, the role of brain pattern rhythms to modulate cortical excitability has been analyzed. To date, neuromodulation approaches could be considered a valid tool to improve stroke rehabilitation outcomes, despite more high-quality, and homogeneous randomized clinical trials are needed to determine to which extent motor functional impairment after stroke can be improved by neuromodulation approaches and which one could provide better functional outcomes. However, the high reproducibility of brain oscillatory rhythms could be considered a promising predictive outcome measure applicable to evaluate patients with stroke recovery after rehabilitation.
Collapse
Affiliation(s)
- Giulia Leonardi
- Department of Physical and Rehabilitation Medicine and Sports Medicine, Policlinico “G. Martino,”Messina, Italy
| | | | | | - Bartolo Fonti
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - Daniele Borzelli
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Lara Costa
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Adriana Tisano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Simona Portaro
- Department of Physical and Rehabilitation Medicine and Sports Medicine, Policlinico “G. Martino,”Messina, Italy
| | - Angelo Alito
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
- *Correspondence: Angelo Alito,
| |
Collapse
|
172
|
Cha TH, Hwang HS. Rehabilitation Interventions Combined with Noninvasive Brain Stimulation on Upper Limb Motor Function in Stroke Patients. Brain Sci 2022; 12:brainsci12080994. [PMID: 35892435 PMCID: PMC9332761 DOI: 10.3390/brainsci12080994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: This systematic review aimed to focus on the effects of rehabilitation interventions combined with noninvasive brain stimulation on upper limb motor function in stroke patients. (2) Methods: PubMed, MEDLINE, and CINAHL were used for the literature research. Articles were searched using the following terms: "Stroke OR CVA OR cerebrovascular accident" AND "upper limb OR upper extremity" AND "NIBS OR Non-Invasive Brain Stimulation" OR "rTMS" OR "repetitive transcranial magnetic stimulation" OR "tDCS" OR "transcranial direct current stimulation" AND "RCT" OR randomized control trial." In total, 12 studies were included in the final analysis. (3) Results: Analysis using the Physiotherapy Evidence Database scale for qualitative evaluation of the literature rated eight articles as "excellent" and four as "good." Combined rehabilitation interventions included robotic therapy, motor imagery using brain-computer interaction, sensory control, occupational therapy, physiotherapy, task-oriented approach, task-oriented mirror therapy, neuromuscular electrical stimulation, and behavior observation therapy. (4) Conclusions: Although it is difficult to estimate the recovery of upper limb motor function in stroke patients treated with noninvasive brain stimulation alone, a combination of a task-oriented approach, occupational therapy, action observation, wrist robot-assisted rehabilitation, and physical therapy can be effective.
Collapse
|
173
|
A multicenter study to compare the effectiveness of the inpatient post acute care program versus traditional rehabilitation for stroke survivors. Sci Rep 2022; 12:12811. [PMID: 35896786 PMCID: PMC9329354 DOI: 10.1038/s41598-022-16984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
There is insufficient evidence to prove the effect of the Post-acute Care (PAC) program on post-stroke recovery. This study aimed to determine the effectiveness of the PAC versus traditional inpatient rehabilitation (non-PAC) for middle- and old-aged stroke survivors. This multicenter cohort study enrolled 334 stroke patients admitted for post-stroke rehabilitation. The outcome variables included the Barthel Index (BI), Functional Oral Intake Scale (FOIS), Mini Nutritional Assessment-Short Form (MNA-SF), EuroQoL-5D (EQ-5D), Lawton–Brody Instrumental Activities of Daily Living (ADL) Scale, and Mini-Mental State Examination (MMSE). The inverse-probability-of-treatment-weighting method was used to analyze the differences in outcomes between the PAC and non-PAC groups. The PAC group showed better improvements in BI, MNA-SF, EQ-5D, Instrumental ADL, and MMSE compared to the non-PAC group, with differences in effect sizes of 0.54 (95% confidence interval [CI] 0.38–0.71), 0.26 (95% CI 0.10–0.42), 0.50 (95% CI 0.33–0.66), 0.44 (95% CI 0.28–0.60) and 0.34 (95% CI 0.17–0.50), respectively. The PAC project showed more improvement in basic and instrumental ADL and status of swallowing, nutrition, and cognition than those of non-PAC, which had less length of stay restricted by the National Health Insurance. More studies are warranted to investigate the influence of hospital stay and duration from stroke onset on the PAC’s effectiveness.
Collapse
|
174
|
Abbasian S, Ravasi AA, Haghighi AH, Aydin S, Delbari A, Aydın S. Preconditioning intensive training ameliorates reduction of transcription biofactors of PGC1α-pathway in paretic muscle due to cerebral ischemia. Biotech Histochem 2022; 98:46-53. [PMID: 35892280 DOI: 10.1080/10520295.2022.2098535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Exercise training increases fibronectin type III domain-containing protein 5 (FNDC5/irisin) via the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)-pathway. The PGC1α pathway induced FNDC5/irisin changes in response to exercise training and ischemic stroke are not entirely understood. We investigated the relation of the PGC-1α/FNDC5/irisin pathway to exercise training and to the pathophysiology of ischemic stroke in paretic muscles of stroke-induced rat models. We induced cerebral ischemia following completion of high-intensity interval training (HIIT) to evaluate PGC1α-pathway biofactors in paretic muscles. To define the underlying molecular mechanisms for improvement in paretic muscles following cerebral ischemia, we evaluated PCG-1α-pathway factors using immunofluorescence tracking and enzyme-linked immunosorbent assay (ELISA) immunoassay. We found that HIIT for 3 weeks produced increased expression and release of PGC-1α-pathway biomarkers in both the serum and paretic muscle of stroke-induced rats. We also found a close relation between the expression of PCG-1α-pathway factors in skeletal muscle and their concentration in blood. We found that PGC-1α-pathway biomarkers cause irisin up-regulation following induction of cerebral ischemia. The reduction in neurofunctional deficits following increased PGC-1α-pathway biomarkers suggests that these factors may act as markers of improvement in paretic muscle healing following cerebral ischemia.
Collapse
Affiliation(s)
| | | | | | | | - Ahmad Delbari
- University of Social Welfare and Rehabilitation Sciences, Iran
| | | |
Collapse
|
175
|
Bigoni C, Zandvliet SB, Beanato E, Crema A, Coscia M, Espinosa A, Henneken T, Hervé J, Oflar M, Evangelista GG, Morishita T, Wessel MJ, Bonvin C, Turlan JL, Birbaumer N, Hummel FC. A Novel Patient-Tailored, Cumulative Neurotechnology-Based Therapy for Upper-Limb Rehabilitation in Severely Impaired Chronic Stroke Patients: The AVANCER Study Protocol. Front Neurol 2022; 13:919511. [PMID: 35873764 PMCID: PMC9301337 DOI: 10.3389/fneur.2022.919511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Effective, patient-tailored rehabilitation to restore upper-limb motor function in severely impaired stroke patients is still missing. If suitably combined and administered in a personalized fashion, neurotechnologies offer a large potential to assist rehabilitative therapies to enhance individual treatment effects. AVANCER (clinicaltrials.gov NCT04448483) is a two-center proof-of-concept trial with an individual based cumulative longitudinal intervention design aiming at reducing upper-limb motor impairment in severely affected stroke patients with the help of multiple neurotechnologies. AVANCER will determine feasibility, safety, and effectivity of this innovative intervention. Thirty chronic stroke patients with a Fugl-Meyer assessment of the upper limb (FM-UE) <20 will be recruited at two centers. All patients will undergo the cumulative personalized intervention within two phases: the first uses an EEG-based brain-computer interface to trigger a variety of patient-tailored movements supported by multi-channel functional electrical stimulation in combination with a hand exoskeleton. This phase will be continued until patients do not improve anymore according to a quantitative threshold based on the FM-UE. The second interventional phase will add non-invasive brain stimulation by means of anodal transcranial direct current stimulation to the motor cortex to the initial approach. Each phase will last for a minimum of 11 sessions. Clinical and multimodal assessments are longitudinally acquired, before the first interventional phase, at the switch to the second interventional phase and at the end of the second interventional phase. The primary outcome measure is the 66-point FM-UE, a significant improvement of at least four points is hypothesized and considered clinically relevant. Several clinical and system neuroscience secondary outcome measures are additionally evaluated. AVANCER aims to provide evidence for a safe, effective, personalized, adjuvant treatment for patients with severe upper-extremity impairment for whom to date there is no efficient treatment available.
Collapse
Affiliation(s)
- Claudia Bigoni
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Sarah B. Zandvliet
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Andrea Crema
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Martina Coscia
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
- confinis AG, Sursee, Switzerland
| | - Arnau Espinosa
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Tina Henneken
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Julie Hervé
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Meltem Oflar
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Giorgia G. Evangelista
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Maximilian J. Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Clinique Romande de Réadaptation, Sion, Switzerland
| | | | - Jean-Luc Turlan
- Department of Neurological Rehabilitation, Clinique Romande de Réadaptation Suva, Sion, Switzerland
| | - Niels Birbaumer
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Friedhelm C. Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
- *Correspondence: Friedhelm C. Hummel
| |
Collapse
|
176
|
Humphries JB, Mattos DJS, Rutlin J, Daniel AGS, Rybczynski K, Notestine T, Shimony JS, Burton H, Carter A, Leuthardt EC. Motor Network Reorganization Induced in Chronic Stroke Patients with the Use of a Contralesionally-Controlled Brain Computer Interface. BRAIN-COMPUTER INTERFACES 2022. [DOI: 10.1080/2326263x.2022.2057757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Joseph B. Humphries
- Departments of Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Jerrel Rutlin
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Andy G. S. Daniel
- Departments of Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Theresa Notestine
- Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Harold Burton
- Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Alexandre Carter
- Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric C. Leuthardt
- Departments of Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
- Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
- Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
177
|
Baishya B, Varathan K. Outcomes of Combined Visual and Auditive Stimulation on Functions of Hand and Grip Strengths in Patients with Hemiplegia. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2022. [DOI: 10.1055/s-0042-1749422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Background Stroke is a major ailment that results from hypoxia, ischemia, blockage, or hemorrhage. The recovery of hand functions is an essential goal in stroke patients' recovery.
Aim This study aimed to analyze the outcomes of rhythmic auditory stimulation (RAS) and mirror therapy on hand functions, as well as grip strength, in stroke patients.
Materials and Methods A quasiexperimental study has been used based on criteria of inclusion, 30 patients were enrolled. The participants were assigned to two groups, 15 patients each. Group A (control group) underwent traditional physiotherapy. Group B (experimental group) underwent RAS and mirror therapy. Both the groups received 20 minutes of treatment, 20 sessions in 1 month. The Action Research Arm Test (ARAT) and hand-held dynamometer were used to evaluate results. Paired t-test has been used to analyze the data with the SPSS software tool.
Results The paired t-test results showed that notable distinctions in ARAT mean pretest scores between two groups were not found. A notable change in ARAT results was present between the two groups with mean posttest score and difference in pretest to posttest. No notable distinctions in grip strength results were seen with mean pretest results. But a notable change was found in grip strength results among two groups with mean posttest scores.
Conclusion Combining RAS and mirror therapy programs has shown beneficial effects on hand functions, as well as grip strength of stroke patients and can be used as adjunct interventions along with conventional physiotherapy to encourage restoration of hand functions in hemiparetic patients.
Collapse
Affiliation(s)
- Bhaswati Baishya
- Krupanidhi College of Physiotherapy, Bengaluru, Karnataka, India
| | | |
Collapse
|
178
|
Minelli C, Luvizutto GJ, Cacho RDO, Neves LDO, Magalhães SCSA, Pedatella MTA, de Mendonça LIZ, Ortiz KZ, Lange MC, Ribeiro PW, de Souza LAPS, Milani C, da Cruz DMC, da Costa RDM, Conforto AB, Carvalho FMM, Ciarlini BS, Frota NAF, Almeida KJ, Schochat E, Oliveira TDP, Miranda C, Piemonte MEP, Lopes LCG, Lopes CG, Tosin MHDS, Oliveira BC, de Oliveira BGRB, de Castro SS, de Andrade JBC, Silva GS, Pontes-Neto OM, de Carvalho JJF, Martins SCO, Bazan R. Brazilian practice guidelines for stroke rehabilitation: Part II. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:741-758. [PMID: 36254447 PMCID: PMC9685826 DOI: 10.1055/s-0042-1757692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/18/2022] [Indexed: 10/14/2022]
Abstract
The Brazilian Practice Guidelines for Stroke Rehabilitation - Part II, developed by the Scientific Department of Neurological Rehabilitation of the Brazilian Academy of Neurology (Academia Brasileira de Neurologia, in Portuguese), focuses on specific rehabilitation techniques to aid recovery from impairment and disability after stroke. As in Part I, Part II is also based on recently available evidence from randomized controlled trials, systematic reviews, meta-analyses, and other guidelines. Part II covers disorders of communication, dysphagia, postural control and balance, ataxias, spasticity, upper limb rehabilitation, gait, cognition, unilateral spatial neglect, sensory impairments, home rehabilitation, medication adherence, palliative care, cerebrovascular events related to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the future of stroke rehabilitation, and stroke websites to support patients and caregivers. Our goal is to provide health professionals with more recent knowledge and recommendations for better rehabilitation care after stroke.
Collapse
Affiliation(s)
- Cesar Minelli
- Hospital Carlos Fernando Malzoni, Matão SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil
- Instituto Você sem AVC, Matão SP, Brazil
| | - Gustavo José Luvizutto
- Universidade Federal do Triângulo Mineiro, Departamento de Fisioterapia Aplicada, Uberaba MG, Brazil
| | - Roberta de Oliveira Cacho
- Universidade Federal do Rio Grande do Norte, Faculdade de Ciências da Saúde do Trairi, Santa Cruz RN, Brazil
| | | | | | - Marco Túlio Araújo Pedatella
- Hospital Israelita Albert Einstein, Unidade Goiânia, Goiânia GO, Brazil
- Hospital Santa Helena, Goiânia GO, Brazil
- Hospital Encore, Goiânia GO, Brazil
- Hospital Estadual Geral de Goiânia Dr. Alberto Rassi, Goiânia GO, Brazil
- Hospital de Urgência de Goiânia, Goiânia, GO, Brazil
| | - Lucia Iracema Zanotto de Mendonça
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Divisão de Neurologia, São Paulo SP, Brazil
- Pontíficia Universidade Católica de São Paulo, Faculdade de Ciências Humanas e da Saúde, São Paulo SP, Brazil
| | - Karin Zazo Ortiz
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Fala, Linguagem e Ciências Auditivas, São Paulo SP, Brazil
| | | | | | | | - Cristiano Milani
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hospital das Clínicas, Serviço de Neurologia Vascular e Emergências Neurológicas, Ribeirão Preto SP, Brazil
| | | | | | - Adriana Bastos Conforto
- Universidade de São Paulo, Hospital das Clínicas, Divisão de Neurologia Clínica, São Paulo SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo SP, Brazil
| | | | - Bruna Silva Ciarlini
- Universidade de Fortaleza, Programa de Pos-Graduação em Ciências Médicas, Fortaleza CE, Brazil
| | | | | | - Eliane Schochat
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, São Paulo SP, Brazil
| | - Tatiana de Paula Oliveira
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, São Paulo SP, Brazil
| | - Camila Miranda
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, São Paulo SP, Brazil
| | - Maria Elisa Pimentel Piemonte
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, São Paulo SP, Brazil
| | - Laura Cardia Gomes Lopes
- Universidade Estadual de São Paulo, Faculdade de Medicina de Botucatu, Hospital das Clínicas, Departamento de Neurologia, Psicologia e Psiquiatria, São Paulo SP, Brazil
| | | | | | | | | | | | | | | | - Octávio Marques Pontes-Neto
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil
| | | | - Sheila C. Ouriques Martins
- Rede Brasil AVC, Porto Alegre RS, Brazil
- Hospital Moinhos de Vento, Departamento de Neurologia, Porto Alegre RS, Brazil
- Hospital de Clínicas de Porto Alegre, Departamento de Neurologia, Porto Alegre RS, Brazil
| | - Rodrigo Bazan
- Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Botucatu SP, Brazil
| |
Collapse
|
179
|
Lau SCL, Judycki S, Mix M, DePaul O, Tomazin R, Hardi A, Wong AWK, Baum C. Theory-Based Self-Management Interventions for Community-Dwelling Stroke Survivors: A Systematic Review and Meta-Analysis. Am J Occup Ther 2022; 76:7603393030. [PMID: 35772070 PMCID: PMC9563084 DOI: 10.5014/ajot.2022.049117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IMPORTANCE Self-management is a critical component of stroke rehabilitation. A better understanding of the use of theory and behavior change techniques (BCTs) informs the development of more effective stroke self-management interventions. OBJECTIVE To examine what theories and BCTs have been applied in stroke self-management interventions; investigate the extent to which these interventions encourage implementation of behavior changes; and appraise their effectiveness to enhance self-efficacy, quality of life, and functional independence. DATA SOURCES Ovid MEDLINE, Embase, Scopus, CINAHL, Cochrane Library, and ClinicalTrials.gov were searched from inception to May 26, 2020. STUDY SELECTION AND DATA COLLECTION Randomized controlled trials (RCTs) in six databases were reviewed for inclusion and analysis. We included trials that involved community-dwelling adult stroke survivors, assessed the effectiveness of self-management interventions, and explicitly mentioned the use of theory in the development of the intervention. We assessed use of theory and BCTs using the Theory Coding Scheme and BCT taxonomy v1, respectively. FINDINGS A total of 3,049 studies were screened, and 13 RCTs were included. The predominant theory and BCT categories were Social Cognitive Theory (7 studies) and goals and planning (12 studies), respectively. Significant and small effect sizes were found for self-efficacy (0.27) and functional independence (0.19). CONCLUSIONS AND RELEVANCE Theory-based self-management interventions have the potential to enhance stroke outcomes. Systematic reporting on the use of theory and BCTs is recommended to enhance clarity and facilitate evaluations of future interventions. What This Article Adds: This review supports and guides occupational therapy practitioners to use theory-based self-management intervention as a routine part of stroke rehabilitation to improve stroke survivors' experience in the community.
Collapse
Affiliation(s)
- Stephen C L Lau
- Stephen C. L. Lau, BS, is Student, Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO
| | - Stephanie Judycki
- Stephanie Judycki, BS, is Student, Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO
| | - Mikayla Mix
- Mikayla Mix, BS, is Student, Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO
| | - Olivia DePaul
- Olivia DePaul, BS, is Student, Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO
| | - Rachel Tomazin
- Rachel Tomazin, BS, is Student, Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO
| | - Angela Hardi
- Angela Hardi, MLIS, is Librarian, Becker Medical Library, Washington University School of Medicine, St. Louis, MO
| | - Alex W K Wong
- Alex W. K. Wong, PhD, DPhil, is Assistant Professor, Program in Occupational Therapy, Department of Neurology, and Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Carolyn Baum
- Carolyn Baum, PhD, is Professor, Program in Occupational Therapy and Department of Neurology, Washington University School of Medicine, St. Louis, MO;
| |
Collapse
|
180
|
Gonçalves RS, de Souza MRSB, Carbone G. Analysis of the Leap Motion Controller's Performance in Measuring Wrist Rehabilitation Tasks Using an Industrial Robot Arm Reference. SENSORS (BASEL, SWITZERLAND) 2022; 22:4880. [PMID: 35808379 PMCID: PMC9269845 DOI: 10.3390/s22134880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/19/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
Abstract
The Leap Motion Controller (LMC) is a low-cost markerless optical sensor that performs measurements of various parameters of the hands that has been investigated for a wide range of different applications. Research attention still needs to focus on the evaluation of its precision and accuracy to fully understand its limitations and widen its range of applications. This paper presents the experimental validation of the LMC device to verify the feasibility of its use in assessing and tailoring wrist rehabilitation therapy for the treatment of physical disabilities through continuous exercises and integration with serious gaming environments. An experimental set up and analysis is proposed using an industrial robot as motion reference. The high repeatability of the selected robot is used for comparisons with the measurements obtained via a leap motion controller while performing the basic movements needed for rehabilitation exercises of the human wrist. Experimental tests are analyzed and discussed to demonstrate the feasibility of using the leap motion controller for wrist rehabilitation.
Collapse
Affiliation(s)
- Rogério S. Gonçalves
- School of Mechanical Engineering, Federal University of Uberlândia, Uberlândia 38408-016, Brazil
| | | | - Giuseppe Carbone
- Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
181
|
刘 蒙, 徐 桂, 于 洪, 王 春, 孙 长, 郭 磊. [Research on electroencephalogram power spectral density of stroke patients under transcranial direct current stimulation]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2022; 39:498-506. [PMID: 35788519 PMCID: PMC10950774 DOI: 10.7507/1001-5515.202110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/19/2022] [Indexed: 06/15/2023]
Abstract
Transcranial direct current stimulation (tDCS) has become a new method of post-stroke rehabilitation treatment and is gradually accepted by people. However, the neurophysiological mechanism of tDCS in the treatment of stroke still needs further study. In this study, we recruited 30 stroke patients with damage to the left side of the brain and randomly divided them into a real tDCS group (15 cases) and a sham tDCS group (15 cases). The resting EEG signals of the two groups of subjects before and after stimulation were collected, then the difference of power spectral density was analyzed and compared in the band of delta, theta, alpha and beta, and the delta/alpha power ratio (DAR) was calculated. The results showed that after real tDCS, delta band energy decreased significantly in the left temporal lobes, and the difference was statistically significant ( P < 0.05); alpha band energy enhanced significantly in the occipital lobes, and the difference was statistically significant ( P < 0.05); the difference of theta and beta band energy was not statistically significant in the whole brain region ( P > 0.05). Furthermore, the difference of delta, theta, alpha and beta band energy was not statistically significant after sham tDCS ( P > 0.05). On the other hand, the DAR value of stroke patients decreased significantly after real tDCS, and the difference was statistically significant ( P < 0.05), and there was no significant difference in sham tDCS ( P > 0.05). This study reveals to a certain extent the neurophysiological mechanism of tDCS in the treatment of stroke.
Collapse
Affiliation(s)
- 蒙蒙 刘
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 电气工程学院 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 桂芝 徐
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 电气工程学院 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 洪丽 于
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 电气工程学院 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 春方 王
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 长城 孙
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 磊 郭
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 电气工程学院 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
182
|
Cho KH, Hong MR, Song WK. Upper-Limb Robot-Assisted Therapy Based on Visual Error Augmentation in Virtual Reality for Motor Recovery and Kinematics after Chronic Hemiparetic Stroke: A Feasibility Study. Healthcare (Basel) 2022; 10:healthcare10071186. [PMID: 35885713 PMCID: PMC9316043 DOI: 10.3390/healthcare10071186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the effect of upper-limb robot-assisted therapy based on visual error augmentation in virtual reality (UL-RAT-VEAVR) for motor recovery and kinematics after chronic hemiparetic stroke. This study applied a single-group pre- and post-intervention study design. A total of 27 stroke survivors (20 males and 7 females; mean age 54.51 years, mean onset duration 12.7 months) volunteered to participate in this study. UL-RAT-VEAVR was performed three times a week for four weeks, amounting to a total of twelve sessions, in which an end-effector-based robotic arm was used with a visual display environment in virtual reality. Each subject performed a total of 480 point-to-point movements toward 3 direction targets (medial, ipsilateral, and contralateral side) in the visual display environment system while holding the handle of the end-effector-based robotic arm. The visual error (distance to the targets on the monitor) in virtual reality was increased by 5% every week based on the subject’s maximum point-to-point reaching trajectory. Upper-limb motor recovery was measured in all subjects using the Fugl−Meyer Assessment (FMA) upper-limb subscale, the Box and Block Test (BBT), and the Action Research Arm Test (ARAT), before and after training. In addition, a kinematic assessment was also performed before and after training and consisted of time, speed, distance, and curvilinear ratio for point-to-point movement. There were significant improvements in both upper-limb motor function and kinematics after 4 weeks of UL-RAT-VEAVR (p < 0.05). Our results showed that the UL-RAT-VEAVR may have the potential to be used as one of the upper-limb rehabilitation strategies in chronic stroke survivors. Future studies should investigate the clinical effects of the error-augmentation paradigm using an RCT design.
Collapse
Affiliation(s)
- Ki-Hun Cho
- Department of Physical Therapy, Korea National University of Transportation, Jeungpyeong 27909, Korea;
| | - Mi-Ran Hong
- Department of Rehabilitative & Assistive Technology, National Rehabilitation Research Institute, National Rehabilitation Center, 58 Samgaksan-ro, Gangbuk-gu, Seoul 01022, Korea;
| | - Won-Kyung Song
- Department of Rehabilitative & Assistive Technology, National Rehabilitation Research Institute, National Rehabilitation Center, 58 Samgaksan-ro, Gangbuk-gu, Seoul 01022, Korea;
- Correspondence: ; Tel.: +82-2-901-1901; Fax: +82-2-901-1910
| |
Collapse
|
183
|
Wlodarek L, Alibhai FJ, Wu J, Li SH, Li RK. Stroke-Induced Neurological Dysfunction in Aged Mice Is Attenuated by Preconditioning with Young Sca-1+ Stem Cells. Stem Cells 2022; 40:564-576. [PMID: 35291015 PMCID: PMC9216491 DOI: 10.1093/stmcls/sxac019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022]
Abstract
AIMS To date, stroke remains one of the leading causes of death and disability worldwide. Nearly three-quarters of all strokes occur in the elderly (>65 years old), and a vast majority of these individuals develop debilitating cognitive impairments that can later progress into dementia. Currently, there are no therapies capable of reversing the cognitive complications which arise following a stroke. Instead, current treatment options focus on preventing secondary injuries, as opposed to improving functional recovery. METHODS We reconstituted aged (20-month old) mice with Sca-1+ bone marrow (BM) hematopoietic stem cells isolated from aged or young (2-month old) EGFP+ donor mice. Three months later the chimeric aged mice underwent cerebral ischemia/reperfusion by bilateral common carotid artery occlusion (BCCAO), after which cognitive function was evaluated. Immunohistochemical analysis was performed to evaluate host and recipient cells in the brain following BCCAO. RESULTS Young Sca-1+ cells migrate to the aged brain and give rise to beneficial microglial-like cells that ameliorate stroke-induced loss of cognitive function on tasks targeting the hippocampus and cerebellum. We also found that young Sca-1+ cell-derived microglial-like cells possess neuroprotective properties as they do not undergo microgliosis upon migrating to the ischemic hippocampus, whereas the cells originating from old Sca-1+ cells proliferate extensively and skew toward a pro-inflammatory phenotype following injury. CONCLUSIONS This study provides a proof-of-principle demonstrating that young BM Sca-1+ cells play a pivotal role in reversing stroke-induced cognitive impairments and protect the aged brain against secondary injury by attenuating the host cell response to injury.
Collapse
Affiliation(s)
- Lukasz Wlodarek
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Faculty of Medicine, Department weof Physiology, University of Toronto, Toronto, ON, Canada
| | - Faisal J Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jun Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Shu-Hong Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Faculty of Medicine, Department weof Physiology, University of Toronto, Toronto, ON, Canada.,Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
184
|
Guo N, Wang X, Duanmu D, Huang X, Li X, Fan Y, Li H, Liu Y, Yeung EHK, To MKT, Gu J, Wan F, Hu Y. SSVEP-Based Brain Computer Interface Controlled Soft Robotic Glove for Post-Stroke Hand Function Rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1737-1744. [PMID: 35731756 DOI: 10.1109/tnsre.2022.3185262] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Soft robotic glove with brain computer interfaces (BCI) control has been used for post-stroke hand function rehabilitation. Motor imagery (MI) based BCI with robotic aided devices has been demonstrated as an effective neural rehabilitation tool to improve post-stroke hand function. It is necessary for a user of MI-BCI to receive a long time training, while the user usually suffers unsuccessful and unsatisfying results in the beginning. To propose another non-invasive BCI paradigm rather than MI-BCI, steady-state visually evoked potentials (SSVEP) based BCI was proposed as user intension detection to trigger the soft robotic glove for post-stroke hand function rehabilitation. Thirty post-stroke patients with impaired hand function were randomly and equally divided into three groups to receive conventional, robotic, and BCI-robotic therapy in this randomized control trial (RCT). Clinical assessment of Fugl-Meyer Motor Assessment of Upper Limb (FMA-UL), Wolf Motor Function Test (WMFT) and Modified Ashworth Scale (MAS) were performed at pre-training, post-training and three months follow-up. In comparing to other groups, The BCI-robotic group showed significant improvement after training in FMA full score (10.05±8.03, p=0.001), FMA shoulder/elbow (6.2±5.94, p=0.0004) and FMA wrist/hand (4.3±2.83, p=0.007), and WMFT (5.1±5.53, p=0.037). The improvement of FMA was significantly correlated with BCI accuracy (r=0.714, p=0.032). Recovery of hand function after rehabilitation of SSVEP-BCI controlled soft robotic glove showed better result than solely robotic glove rehabilitation, equivalent efficacy as results from previous reported MI-BCI robotic hand rehabilitation. It proved the feasibility of SSVEP-BCI controlled soft robotic glove in post-stroke hand function rehabilitation.
Collapse
|
185
|
Adjustable Stiffness-Based Supination–Pronation Forearm Physical Rehabilitator. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This paper reports a new medical device together with a control strategy that focuses on the following tasks: (1) a trajectory tracking problem associated with the supination–pronation motion of the wrist–forearm for purposes of rehabilitation and (2) the adjustment of the system’s stiffness associated with the applied torque guaranteeing the angular motion of the rehabilitator as well as the resistance that potential users must overcome. These two tasks are oriented to regain the range of motion (ROM) of the wrist–forearm and to improve the strength of the associated muscles. It is worth mentioning that this device has not been clinically validated. However, the performance of the closed-loop medical device is validated with preliminary experiments with a healthy subject based on movement patterns involving passive, assisted-resisted, and active phases of rehabilitation protocols.
Collapse
|
186
|
Munoz-Novoa M, Kristoffersen MB, Sunnerhagen KS, Naber A, Alt Murphy M, Ortiz-Catalan M. Upper Limb Stroke Rehabilitation Using Surface Electromyography: A Systematic Review and Meta-Analysis. Front Hum Neurosci 2022; 16:897870. [PMID: 35669202 PMCID: PMC9163806 DOI: 10.3389/fnhum.2022.897870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background Upper limb impairment is common after stroke, and many will not regain full upper limb function. Different technologies based on surface electromyography (sEMG) have been used in stroke rehabilitation, but there is no collated evidence on the different sEMG-driven interventions and their effect on upper limb function in people with stroke. Aim Synthesize existing evidence and perform a meta-analysis on the effect of different types of sEMG-driven interventions on upper limb function in people with stroke. Methods PubMed, SCOPUS, and PEDro databases were systematically searched for eligible randomized clinical trials that utilize sEMG-driven interventions to improve upper limb function assessed by Fugl-Meyer Assessment (FMA-UE) in stroke. The PEDro scale was used to evaluate the methodological quality and the risk of bias of the included studies. In addition, a meta-analysis utilizing a random effect model was performed for studies comparing sEMG interventions to non-sEMG interventions and for studies comparing different sEMG interventions protocols. Results Twenty-four studies comprising 808 participants were included in this review. The methodological quality was good to fair. The meta-analysis showed no differences in the total effect, assessed by total FMA-UE score, comparing sEMG interventions to non-sEMG interventions (14 studies, 509 participants, SMD 0.14, P 0.37, 95% CI –0.18 to 0.46, I2 55%). Similarly, no difference in the overall effect was found for the meta-analysis comparing different types of sEMG interventions (7 studies, 213 participants, SMD 0.42, P 0.23, 95% CI –0.34 to 1.18, I2 73%). Twenty out of the twenty-four studies, including participants with varying impairment levels at all stages of stroke recovery, reported statistically significant improvements in upper limb function at post-sEMG intervention compared to baseline. Conclusion This review and meta-analysis could not discern the effect of sEMG in comparison to a non-sEMG intervention or the most effective type of sEMG intervention for improving upper limb function in stroke populations. Current evidence suggests that sEMG is a promising tool to further improve functional recovery, but randomized clinical trials with larger sample sizes are needed to verify whether the effect on upper extremity function of a specific sEMG intervention is superior compared to other non-sEMG or other type of sEMG interventions.
Collapse
Affiliation(s)
- Maria Munoz-Novoa
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center for Bionics and Pain Research, Mölndal, Sweden
| | - Morten B Kristoffersen
- Center for Bionics and Pain Research, Mölndal, Sweden.,Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Katharina S Sunnerhagen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Section of Neurocare, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Autumn Naber
- Center for Bionics and Pain Research, Mölndal, Sweden
| | - Margit Alt Murphy
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Occupational Therapy and Physiotherapy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Max Ortiz-Catalan
- Center for Bionics and Pain Research, Mölndal, Sweden.,Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Operational Area 3, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
187
|
Dimyan MA, Harcum S, Ermer E, Boos AF, Conroy SS, Liu F, Horn LB, Xu H, Zhan M, Chen H, Whitall J, Wittenberg GF. Baseline Predictors of Response to Repetitive Task Practice in Chronic Stroke. Neurorehabil Neural Repair 2022; 36:426-436. [PMID: 35616437 DOI: 10.1177/15459683221095171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Repetitive task practice reduces mean upper extremity motor impairment in populations of patients with chronic stroke, but individual response is highly variable. A method to predict meaningful reduction in impairment in response to training based on biomarkers and other data collected prior to an intervention is needed to establish realistic rehabilitation goals and to effectively allocate resources. OBJECTIVES To identify prognostic factors and better understand the biological substrate for reductions in arm impairment in response to repetitive task practice among patients with chronic (≥6 months) post-stroke hemiparesis. METHODS The intervention is a form of repetitive task practice using a combination of robot-assisted therapy and functional arm use in real-world tasks. Baseline measures include the Fugl-Meyer Assessment, Wolf Motor Function Test, Action Research Arm Test, Stroke Impact Scale, questionnaires on pain and expectancy, MRI, transcranial magnetic stimulation, kinematics, accelerometry, and genomic testing. RESULTS Mean increase in FM-UE was 4.6 ± 1.0 SE, median 2.5. Approximately one-third of participants had a clinically meaningful response to the intervention, defined as an increase in FM ≥ 5. The selected logistic regression model had a receiver operating curve with AUC = .988 (Std Error = .011, 95% Wald confidence limits: .967-1) showed little evidence of overfitting. Six variables that predicted response represented impairment, functional, and genomic measures. CONCLUSION A simple weighted sum of 6 baseline factors can accurately predict clinically meaningful impairment reduction after outpatient intensive practice intervention in chronic stroke. Reduction of impairment may be a critical first step to functional improvement. Further validation and generalization of this model will increase its utility in clinical decision-making.
Collapse
Affiliation(s)
- Michael A Dimyan
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.,Geriatrics Research, Education and Clinical Center and Maryland Exercise and Robotics Center of Excellence, Veterans Affairs Medical Center, Older Americans Independence Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stacey Harcum
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Elsa Ermer
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy F Boos
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan S Conroy
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Fang Liu
- Rehab & Neural Engineering Labs, Department of Physical Medicine & Rehabilitation, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Linda B Horn
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Huichun Xu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Min Zhan
- Department of Epidemiology and Preventative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hegang Chen
- Department of Epidemiology and Preventative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jill Whitall
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George F Wittenberg
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.,Geriatrics Research, Education and Clinical Center and Maryland Exercise and Robotics Center of Excellence, Veterans Affairs Medical Center, Older Americans Independence Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA.,Geriatrics Research, Education and Clinical Center, Human Engineering Research Laboratory, VA Maryland Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
188
|
Rustamov N, Humphries J, Carter A, Leuthardt EC. Theta-gamma coupling as a cortical biomarker of brain-computer interface-mediated motor recovery in chronic stroke. Brain Commun 2022; 4:fcac136. [PMID: 35702730 PMCID: PMC9188323 DOI: 10.1093/braincomms/fcac136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic stroke patients with upper-limb motor disabilities are now beginning to see treatment options that were not previously available. To date, the two options recently approved by the United States Food and Drug Administration include vagus nerve stimulation and brain-computer interface therapy. While the mechanisms for vagus nerve stimulation have been well defined, the mechanisms underlying brain-computer interface-driven motor rehabilitation are largely unknown. Given that cross-frequency coupling has been associated with a wide variety of higher-order functions involved in learning and memory, we hypothesized this rhythm-specific mechanism would correlate with the functional improvements effected by a brain-computer interface. This study investigated whether the motor improvements in chronic stroke patients induced with a brain-computer interface therapy are associated with alterations in phase-amplitude coupling, a type of cross-frequency coupling. Seventeen chronic hemiparetic stroke patients used a robotic hand orthosis controlled with contralesional motor cortical signals measured with EEG. Patients regularly performed a therapeutic brain-computer interface task for 12 weeks. Resting-state EEG recordings and motor function data were acquired before initiating brain-computer interface therapy and once every 4 weeks after the therapy. Changes in phase-amplitude coupling values were assessed and correlated with motor function improvements. To establish whether coupling between two different frequency bands was more functionally important than either of those rhythms alone, we calculated power spectra as well. We found that theta-gamma coupling was enhanced bilaterally at the motor areas and showed significant correlations across brain-computer interface therapy sessions. Importantly, an increase in theta-gamma coupling positively correlated with motor recovery over the course of rehabilitation. The sources of theta-gamma coupling increase following brain-computer interface therapy were mostly located in the hand regions of the primary motor cortex on the left and right cerebral hemispheres. Beta-gamma coupling decreased bilaterally at the frontal areas following the therapy, but these effects did not correlate with motor recovery. Alpha-gamma coupling was not altered by brain-computer interface therapy. Power spectra did not change significantly over the course of the brain-computer interface therapy. The significant functional improvement in chronic stroke patients induced by brain-computer interface therapy was strongly correlated with increased theta-gamma coupling in bihemispheric motor regions. These findings support the notion that specific cross-frequency coupling dynamics in the brain likely play a mechanistic role in mediating motor recovery in the chronic phase of stroke recovery.
Collapse
Affiliation(s)
- Nabi Rustamov
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St Louis, MO, USA
| | - Joseph Humphries
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Alexandre Carter
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Eric C. Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
189
|
Kumar A, Gao L, Li J, Ma J, Fu J, Gu X, Mahmoud SS, Fang Q. Error-Related Negativity-Based Robot-Assisted Stroke Rehabilitation System: Design and Proof-of-Concept. Front Neurorobot 2022; 16:837119. [PMID: 35548781 PMCID: PMC9085417 DOI: 10.3389/fnbot.2022.837119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
Conventional rehabilitation systems typically execute a fixed set of programs that most motor-impaired stroke patients undergo. In these systems, the brain, which is embodied in the body, is often left out. Including the brains of stroke patients in the control loop of a rehabilitation system can be worthwhile as the system can be tailored to each participant and, thus, be more effective. Here, we propose a novel brain-computer interface (BCI)-based robot-assisted stroke rehabilitation system (RASRS), which takes inputs from the patient's intrinsic feedback mechanism to adapt the assistance level of the RASRS. The proposed system will utilize the patients' consciousness about their performance decoded through their error-related negativity signals. As a proof-of-concept, we experimented on 12 healthy people in which we recorded their electroencephalogram (EEG) signals while performing a standard rehabilitation exercise. We set the performance requirements beforehand and observed participants' neural responses when they failed/met the set requirements and found a statistically significant (p < 0.05) difference in their neural responses in the two conditions. The feasibility of the proposed BCI-based RASRS was demonstrated through a use-case description with a timing diagram and meeting the crucial requirements for developing the proposed rehabilitation system. The use of a patient's intrinsic feedback mechanism will have significant implications for the development of human-in-the-loop stroke rehabilitation systems.
Collapse
Affiliation(s)
- Akshay Kumar
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, China
| | - Lin Gao
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, China
| | - Jiaming Li
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, China
| | - Jiaxin Ma
- OMRON SINIC X Corporation, Tokyo, Japan
| | | | - Xudong Gu
- 2nd Hospital of Jiaxing, Jiaxing, China
| | - Seedahmed S. Mahmoud
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, China
| | - Qiang Fang
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, China
- *Correspondence: Qiang Fang
| |
Collapse
|
190
|
Chen S, Qiu Y, Bassile CC, Lee A, Chen R, Xu D. Effectiveness and Success Factors of Bilateral Arm Training After Stroke: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2022; 14:875794. [PMID: 35547621 PMCID: PMC9082277 DOI: 10.3389/fnagi.2022.875794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
Bilateral arm training (BAT) presents as a promising approach in upper extremity (UE) rehabilitation after a stroke as it may facilitate neuroplasticity. However, the effectiveness of BAT is inconclusive, and no systematic reviews and meta-analyses have investigated the impact of different factors on the outcomes of BAT. This systematic review and meta-analysis aimed to (1) compare the effects of bilateral arm training (BAT) with unilateral arm training (UAT) and conventional therapy (CT) on the upper limb (UL) motor impairments and functional performance post-stroke, and (2) investigate the different contributing factors that may influence the success of BAT. A comprehensive literature search was performed in five databases. Randomized control trials (RCTs) that met inclusion criteria were selected and assessed for methodological qualities. Data relating to outcome measures, characteristics of participants (stroke chronicity and severity), and features of intervention (type of BAT and dose) were extracted for meta-analysis. With 25 RCTs meeting the inclusion criteria, BAT demonstrated significantly greater improvements in motor impairments as measured by Fugl-Meyer Assessment of Upper Extremity (FMA-UE) than CT (MD = 3.94, p = < 0.001), but not in functional performance as measured by the pooled outcomes of Action Research Arm Test (ARAT), Box and Block Test (BBT), and the time component of Motor Function Test (WMFT-time) (SMD = 0.28, p = 0.313). The superior motor impairment effects of BAT were associated with recruiting mildly impaired individuals in the chronic phase of stroke (MD = 6.71, p < 0.001), and applying a higher dose of intervention (MD = 6.52, p < 0.001). Subgroup analysis showed that bilateral functional task training (BFTT) improves both motor impairments (MD = 7.84, p < 0.001) and functional performance (SMD = 1.02, p = 0.049). No significant differences were detected between BAT and UAT for motor impairment (MD = -0.90, p = 0.681) or functional performance (SMD = -0.09, p = 0.457). Thus, our meta-analysis indicates that BAT may be more beneficial than CT in addressing post-stroke UL motor impairment, particularly in the chronic phase with mild UL paresis. The success of BAT may be dose-dependent, and higher doses of intervention may be required. BFTT appears to be a valuable form of BAT that could be integrated into stroke rehabilitation programs. BAT and UAT are generally equivalent in improving UL motor impairments and functional performance.
Collapse
Affiliation(s)
- Siyun Chen
- College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation and Regenerative Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Yuqi Qiu
- School of Statistics, East China Normal University, Shanghai, China
- Division of Biostatistics and Bioinformatics, University of California, San Diego, La Jolla, CA, United States
| | - Clare C. Bassile
- Department of Rehabilitation and Regenerative Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Anita Lee
- Department of Rehabilitation and Regenerative Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Ruifeng Chen
- Division of Biostatistics and Bioinformatics, University of California, San Diego, La Jolla, CA, United States
| | - Dongsheng Xu
- College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
191
|
Choo WT, Jiang Y, Chan KGF, Ramachandran HJ, Teo JYC, Seah CWA, Wang W. Effectiveness of caregiver-mediated exercise interventions on activities of daily living, anxiety and depression post-stroke rehabilitation: A systematic review and meta-analysis. J Adv Nurs 2022; 78:1870-1882. [PMID: 35451521 DOI: 10.1111/jan.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/21/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022]
Abstract
AIMS This review aims to examine updated evidence to evaluate the effectiveness of caregiver-mediated exercise interventions on basic and extended activities of daily living (ADL), anxiety and depression of post-stroke rehabilitation individuals. DESIGN A systematic review and meta-analysis. DATA SOURCES Six electronic databases, including CINAHL, CENTRAL, Embase, PubMed, PsycINFO and Scopus, grey literature and trial registry were searched from inception until February 2021. METHODS Only randomized controlled trials written in English were included. Meta-analyses were conducted for basic and extended ADL, anxiety and depression outcomes using RevMan software. Overall quality of evidence was assessed using Grading of Recommendations, Assessment, Development and Evaluation framework. RESULTS A total of 11 randomized controlled trials comprising 2120 participants were identified, with 10 trials meta-analysed. Meta-analyses indicated statistically significant effects favouring caregiver-mediated exercise interventions for basic ADL. Subgroup analyses revealed significant effects for exercise-only interventions mediated by caregivers for basic ADL. No significant effects were found for extended ADL, anxiety and depression for stroke survivors. CONCLUSION Caregiver-mediated exercise interventions appear to have beneficial impacts on basic ADL for stroke survivors, suggesting caregiver-mediated exercise interventions as a potentially feasible way to improve functional independence. IMPACT Caregiver-mediated intervention with exercises as a major component could be a promising approach to augment stroke rehabilitation. Future research should include high-quality studies with focus on specific intervention components or to explore caregiver outcomes.
Collapse
Affiliation(s)
- Wen Ting Choo
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ying Jiang
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kendy Gui Fang Chan
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hadassah Joann Ramachandran
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jun Yi Claire Teo
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chuen Wei Alvin Seah
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wenru Wang
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
192
|
Burdea G, Kim N, Polistico K, Kadaru A, Grampurohit N, Hundal J, Pollack S. Robotic Table and Serious Games for Integrative Rehabilitation in the Early Poststroke Phase: Two Case Reports. JMIR Rehabil Assist Technol 2022; 9:e26990. [PMID: 35416787 PMCID: PMC9047881 DOI: 10.2196/26990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/16/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND BrightArm Compact is a new rehabilitation system for the upper extremities. It provides bimanual training with gradated gravity loading and mediates interactions with cognitively challenging serious games. OBJECTIVE The aim of this study is to design and test a robotic rehabilitation table-based virtual rehabilitation system for functional impact of the integrative training in the early poststroke phase. METHODS A new robotic rehabilitation table, controllers, and adaptive games were developed. The 2 participants underwent 12 experimental sessions in addition to the standard of care. Standardized measures of upper extremity function (primary outcome), depression, and cognition were administered before and after the intervention. Nonstandardized measures included game variables and subjective evaluations. RESULTS The 2 case study participants attained high total arm repetitions per session (504 and 957) and achieved high grasp and finger-extension counts. Training intensity contributed to marked improvements in affected shoulder strength (225% and 100% increase), grasp strength (27% and 16% increase), and pinch strength (31% and 15% increase). The shoulder flexion range increased by 17% and 18% and elbow supination range by 75% and 58%. Improvements in motor function were at or above minimal clinically important difference for the Fugl-Meyer Assessment (11 and 10 points), Chedoke Arm and Hand Activity Inventory (11 and 14 points), and Upper Extremity Functional Index (19 and 23 points). Cognitive and emotive outcomes were mixed. Subjective rating by participants and training therapists were positive (average 4, SD 0.22, on a 5-point Likert scale). CONCLUSIONS The design of the robotic rehabilitation table was tested on 2 participants in the early poststroke phase, and results are encouraging for upper extremity functional gains and technology acceptance. TRIAL REGISTRATION ClinicalTrials.gov NCT04252170; https://clinicaltrials.gov/ct2/show/NCT04252170.
Collapse
Affiliation(s)
- Grigore Burdea
- Corporate Laboratories, Bright Cloud International Corp, North Brunswick, NJ, United States
- Electrical and Computer Engineering Department, Rutgers-The State University of New Jersey, Piscataway, NJ, United States
| | - Nam Kim
- Corporate Laboratories, Bright Cloud International Corp, North Brunswick, NJ, United States
| | - Kevin Polistico
- Corporate Laboratories, Bright Cloud International Corp, North Brunswick, NJ, United States
| | - Ashwin Kadaru
- Corporate Laboratories, Bright Cloud International Corp, North Brunswick, NJ, United States
| | - Namrata Grampurohit
- Corporate Laboratories, Bright Cloud International Corp, North Brunswick, NJ, United States
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jasdeep Hundal
- Hundal Neuropsychology Group, Hillsborough, NJ, United States
- Robert Wood Johnson Medical School, Rutgers-The State University of New Jersey, Department of Neurology, New Brunswick, NJ, United States
| | - Simcha Pollack
- Computer Information Systems and Decision Sciences, St John's University, New York City, NY, United States
| |
Collapse
|
193
|
de Freitas Zanona A, Romeiro da Silva AC, do Rego Maciel AB, Gomes do Nascimento LS, Bezerra da Silva A, Bolognini N, Monte-Silva K. Somatosensory Cortex Repetitive Transcranial Magnetic Stimulation and Associative Sensory Stimulation of Peripheral Nerves Could Assist Motor and Sensory Recovery After Stroke. Front Hum Neurosci 2022; 16:860965. [PMID: 35479184 PMCID: PMC9036089 DOI: 10.3389/fnhum.2022.860965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Background We investigated whether transcranial magnetic stimulation (rTMS) over the primary somatosensory cortex (S1) and sensory stimulation (SS) could promote upper limb recovery in participants with subacute stroke. Methods Participants were randomized into four groups: rTMS/Sham SS, Sham rTMS/SS, rTMS/SS, and control group (Sham rTMS/Sham SS). Participants underwent ten sessions of sham or active rTMS over S1 (10 Hz, 1,500 pulses, 120% of resting motor threshold, 20 min), followed by sham or active SS. The SS involved active sensory training (exploring features of objects and graphesthesia, proprioception exercises), mirror therapy, and Transcutaneous electrical nerve stimulation (TENS) in the region of the median nerve in the wrist (stimulation intensity as the minimum intensity at which the participants reported paresthesia; five electrical pulses of 1 ms duration each at 10 Hz were delivered every second over 45 min). Sham stimulations occurred as follows: Sham rTMS, coil was held while disconnected from the stimulator, and rTMS noise was presented with computer loudspeakers with recorded sound from a real stimulation. The Sham SS received therapy in the unaffected upper limb, did not use the mirror and received TENS stimulation for only 60 seconds. The primary outcome was the Body Structure/Function: Fugl-Meyer Assessment (FMA) and Nottingham Sensory Assessment (NSA); the secondary outcome was the Activity/Participation domains, assessed with Box and Block Test, Motor Activity Log scale, Jebsen-Taylor Test, and Functional Independence Measure. Results Forty participants with stroke ischemic (n = 38) and hemorrhagic (n = 2), men (n = 19) and women (n = 21), in the subacute stage (10.6 ± 6 weeks) had a mean age of 62.2 ± 9.6 years, were equally divided into four groups (10 participants in each group). Significant somatosensory improvements were found in participants receiving active rTMS and active SS, compared with those in the control group (sham rTMS with sham SS). Motor function improved only in participants who received active rTMS, with greater effects when active rTMS was combined with active SS. Conclusion The combined use of SS with rTMS over S1 represents a more effective therapy for increasing sensory and motor recovery, as well as functional independence, in participants with subacute stroke. Clinical Trial Registration [clinicaltrials.gov], identifier [NCT03329807].
Collapse
Affiliation(s)
| | | | | | | | | | - Nadia Bolognini
- Department of Psychology, University of Milano Bicocca, Milan, Italy
- Neuropsychological Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Katia Monte-Silva
- Applied Neuroscience Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
194
|
Hsu HY, Kuo LC, Lin YC, Su FC, Yang TH, Lin CW. Effects of a Virtual Reality-Based Mirror Therapy Program on Improving Sensorimotor Function of Hands in Chronic Stroke Patients: A Randomized Controlled Trial. Neurorehabil Neural Repair 2022; 36:335-345. [PMID: 35341360 DOI: 10.1177/15459683221081430] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Embedding mirror therapy within a virtual reality (VR) system may have a superior effect on motor remediation for chronic stroke patients. Objective. The objective is to investigate the differences in the effects of using conventional occupational therapy (COT), mirror therapy (MT), and VR-based MT (VR-MT) training on the sensorimotor function of the upper limb in chronic stroke patients. Methods. This was a single-blinded randomized controlled trial. A total of 54 participants, including chronic stroke patients, were randomized into a COT, MT, or VR-MT group. In addition to 20-minute sessions of task-specific training, patients received programs of 30 minutes of VR-MT, 30 minutes of MT, and 30 minutes of COT, respectively, in the VR-MT, MT, and COT groups twice a week for 9 weeks. The Fugl-Meyer motor assessment for the upper extremities (FM-UE; primary outcome), Semmes-Weinstein monofilament, motor activity log, modified Ashworth scale, and the box and block test were recorded at pre-treatment, post-intervention, and 12-week follow-up. Results. Fifty-two participants completed the study. There was no statistically significant group-by-time interaction effects on the FM-UE score (generalized estimating equations, (GEE), P = .075). Meanwhile, there were statistically significant group-by-time interaction effects on the wrist sub-score of the FM-UE (GEE, P = .012) and the result of box and block test (GEE, P = .044). Conclusions. VR-MT seemed to have potential effects on restoring the upper extremity motor function for chronic stroke patients. However, further confirmatory studies are warranted for the rather weak evidence of adding VR to MT on improving primary outcome of this study. Clinical trial registration: NCT03329417.
Collapse
Affiliation(s)
- Hsiu-Yun Hsu
- Department of Physical Medicine and Rehabilitation, 63461National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Occupational Therapy, College of Medicine, 38026National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, 34912National Cheng Kung University, Tainan, Taiwan
| | - Li-Chieh Kuo
- Department of Occupational Therapy, College of Medicine, 38026National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, 34912National Cheng Kung University, Tainan, Taiwan.,Institute of Allied Health Sciences, College of Medicine, 38026National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ching Lin
- Department of Physical Medicine and Rehabilitation, 63461National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Physical Medicine and Rehabilitation, College of Medicine, 38026National Cheng Kung University, Tainan, Taiwan
| | - Fong-Chin Su
- Medical Device Innovation Center, 34912National Cheng Kung University, Tainan, Taiwan.,Department of Biomedical Engineering, College of Engineering, 201908National Cheng Kung University, Tainan, Taiwan
| | - Tai-Hua Yang
- Medical Device Innovation Center, 34912National Cheng Kung University, Tainan, Taiwan.,Department of Biomedical Engineering, College of Engineering, 201908National Cheng Kung University, Tainan, Taiwan.,Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, 63461National Cheng Kung University, Tainan, Taiwan
| | - Che-Wei Lin
- Medical Device Innovation Center, 34912National Cheng Kung University, Tainan, Taiwan.,Department of Biomedical Engineering, College of Engineering, 201908National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
195
|
Michalettos G, Ruscher K. Crosstalk Between GABAergic Neurotransmission and Inflammatory Cascades in the Post-ischemic Brain: Relevance for Stroke Recovery. Front Cell Neurosci 2022; 16:807911. [PMID: 35401118 PMCID: PMC8983863 DOI: 10.3389/fncel.2022.807911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Adaptive plasticity processes are required involving neurons as well as non-neuronal cells to recover lost brain functions after an ischemic stroke. Recent studies show that gamma-Aminobutyric acid (GABA) has profound effects on glial and immune cell functions in addition to its inhibitory actions on neuronal circuits in the post-ischemic brain. Here, we provide an overview of how GABAergic neurotransmission changes during the first weeks after stroke and how GABA affects functions of astroglial and microglial cells as well as peripheral immune cell populations accumulating in the ischemic territory and brain regions remote to the lesion. Moreover, we will summarize recent studies providing data on the immunomodulatory actions of GABA of relevance for stroke recovery. Interestingly, the activation of GABA receptors on immune cells exerts a downregulation of detrimental anti-inflammatory cascades. Conversely, we will discuss studies addressing how specific inflammatory cascades affect GABAergic neurotransmission on the level of GABA receptor composition, GABA synthesis, and release. In particular, the chemokines CXCR4 and CX3CR1 pathways have been demonstrated to modulate receptor composition and synthesis. Together, the actual view on the interactions between GABAergic neurotransmission and inflammatory cascades points towards a specific crosstalk in the post-ischemic brain. Similar to what has been shown in experimental models, specific therapeutic modulation of GABAergic neurotransmission and inflammatory pathways may synergistically promote neuronal plasticity to enhance stroke recovery.
Collapse
Affiliation(s)
- Georgios Michalettos
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- LUBIN Lab—Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- *Correspondence: Karsten Ruscher
| |
Collapse
|
196
|
Li J, Cheng L, Chen S, Zhang J, Liu D, Liang Z, Li H. Functional Connectivity Changes in Multiple-Frequency Bands in Acute Basal Ganglia Ischemic Stroke Patients: A Machine Learning Approach. Neural Plast 2022; 2022:1560748. [PMID: 35356364 PMCID: PMC8958111 DOI: 10.1155/2022/1560748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Several functional magnetic resonance imaging (fMRI) studies have investigated the resting-state functional connectivity (rs-FC) changes in the primary motor cortex (M1) in patients with acute basal ganglia ischemic stroke (BGIS). However, the frequency-specific FC changes of M1 in acute BGIS patients are still unclear. Our study was aimed at exploring the altered FC of M1 in three frequency bands and the potential features as biomarkers for the identification by using a support vector machine (SVM). Methods We included 28 acute BGIS patients and 42 healthy controls (HCs). Seed-based FC of two regions of interest (ROI, bilateral M1s) were calculated in conventional, slow-5, and slow-4 frequency bands. The abnormal voxel-wise FC values were defined as the features for SVM in different frequency bands. Results In the ipsilesional M1, the acute BGIS patients exhibited decreased FC with the right lingual gyrus in the conventional and slow-4 frequency band. Besides, the acute BGIS patients showed increased FC with the right medial superior frontal gyrus (SFGmed) in the conventional and slow-5 frequency band and decreased FC with the left lingual gyrus in the slow-5 frequency band. In the contralesional M1, the BGIS patients showed lower FC with the right SFGmed in the conventional frequency band. The higher FC values with the right lingual gyrus and left SFGmed were detected in the slow-4 frequency band. In the slow-5 frequency band, the BGIS patients showed decreased FC with the left calcarine sulcus. SVM results showed that the combined features (slow-4+slow-5) had the highest accuracy in classification prediction of acute BGIS patients, with an area under curve (AUC) of 0.86. Conclusion Acute BGIS patients had frequency-specific alterations in FC; SVM is a promising method for exploring these frequency-dependent FC alterations. The abnormal brain regions might be potential targets for future researchers in the rehabilitation and treatment of stroke patients.
Collapse
Affiliation(s)
- Jie Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Shijian Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongqiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, China
| | - Zhijian Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huayun Li
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
197
|
Chow AMD, Shin J, Wang H, Kellawan JM, Pereira HM. Influence of Transcranial Direct Current Stimulation Dosage and Associated Therapy on Motor Recovery Post-stroke: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2022; 14:821915. [PMID: 35370603 PMCID: PMC8972130 DOI: 10.3389/fnagi.2022.821915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose (1) To determine the impact of transcranial direct current stimulation (tDCS) applied alone or combined with other therapies on the recovery of motor function after stroke and (2) To determine tDCS dosage effect. Methods Randomized controlled trials comparing the effects of tDCS with sham, using the Barthel Index (BI), the upper and lower extremity Fugl–Meyer Assessment (FMA), and the Modified Ashworth Scale (MAS), were retrieved from PubMed, Medline (EBSCO), and Cumulative Index to Nursing and Allied Health Literature (CINAHL) from their inception to June 2021. Calculations for each assessment were done for the overall effect and associated therapy accounting for the influence of stroke severity or stimulation parameters. Results A total of 31 studies involving metrics of the BI, the upper extremity FMA, the lower extremity FMA, and the MAS were included. tDCS combined with other therapies was beneficial when assessed by the BI (mean difference: 6.8; P < 0.01) and these studies typically had participants in the acute stage. tDCS effects on the upper and lower extremity FMA are unclear and differences between the sham and tDCS groups as well as differences in the associated therapy type combined with tDCS potentially influenced the FMA results. tDCS was not effective compared to sham for the MAS. Stimulation types (e.g., anodal vs. cathodal) did not influence these results and dosage parameters were not associated with the obtained effect sizes. Conventional therapy associated with tDCS typically produced greater effect size than assisted therapy. The influence of stroke severity is unclear. Conclusion Potential benefits of tDCS can vary depending on assessment tool used, duration of stroke, and associated therapy. Mechanistic studies are needed to understand the potential role of stimulation type and dosage effect after stroke. Future studies should carefully conduct group randomization, control for duration of stroke, and report different motor recovery assessments types. Systematic Review Registration [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42021290670].
Collapse
Affiliation(s)
- Alan-Michael D. Chow
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Jeonghwa Shin
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Hongwu Wang
- Department of Occupational Therapy, University of Florida, Gainesville, FL, United States
| | - Jeremy Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Hugo M. Pereira
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
- *Correspondence: Hugo M. Pereira,
| |
Collapse
|
198
|
Wang R, An Q, Yang N, Kogami H, Yoshida K, Yamakawa H, Hamada H, Shimoda S, Yamasaki HR, Yokoyama M, Alnajjar F, Hattori N, Takahashi K, Fujii T, Otomune H, Miyai I, Yamashita A, Asama H. Clarify Sit-to-Stand Muscle Synergy and Tension Changes in Subacute Stroke Rehabilitation by Musculoskeletal Modeling. Front Syst Neurosci 2022; 16:785143. [PMID: 35359620 PMCID: PMC8963921 DOI: 10.3389/fnsys.2022.785143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/15/2022] [Indexed: 12/01/2022] Open
Abstract
Post-stroke patients exhibit distinct muscle activation electromyography (EMG) features in sit-to-stand (STS) due to motor deficiency. Muscle activation amplitude, related to muscle tension and muscle synergy activation levels, is one of the defining EMG features that reflects post-stroke motor functioning and motor impairment. Although some qualitative findings are available, it is not clear if and how muscle activation amplitude-related biomechanical attributes may quantitatively reflect during subacute stroke rehabilitation. To better enable a longitudinal investigation into a patient's muscle activation changes during rehabilitation or an inter-subject comparison, EMG normalization is usually applied. However, current normalization methods using maximum voluntary contraction (MVC) or within-task peak/mean EMG may not be feasible when MVC cannot be obtained from stroke survivors due to motor paralysis and the subject of comparison is EMG amplitude. Here, focusing on the paretic side, we first propose a novel, joint torque-based normalization method that incorporates musculoskeletal modeling, forward dynamics simulation, and mathematical optimization. Next, upon method validation, we apply it to quantify changes in muscle tension and muscle synergy activation levels in STS motor control units for patients in subacute stroke rehabilitation. The novel method was validated against MVC-normalized EMG data from eight healthy participants, and it retained muscle activation amplitude differences for inter- and intra-subject comparisons. The proposed joint torque-based method was also compared with the common static optimization based on squared muscle activation and showed higher simulation accuracy overall. Serial STS measurements were conducted with four post-stroke patients during their subacute rehabilitation stay (137 ± 22 days) in the hospital. Quantitative results of patients suggest that maximum muscle tension and activation level of muscle synergy temporal patterns may reflect the effectiveness of subacute stroke rehabilitation. A quality comparison between muscle synergies computed with the conventional within-task peak/mean EMG normalization and our proposed method showed that the conventional was prone to activation amplitude overestimation and underestimation. The contributed method and findings help recapitulate and understand the post-stroke motor recovery process, which may facilitate developing more effective rehabilitation strategies for future stroke survivors.
Collapse
Affiliation(s)
- Ruoxi Wang
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Qi An
- Department of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
- *Correspondence: Qi An
| | | | - Hiroki Kogami
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Kazunori Yoshida
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yamakawa
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Hamada
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Hiroshi R. Yamasaki
- Department of Physical Therapy, Saitama Prefectural University, Saitama, Japan
| | | | - Fady Alnajjar
- RIKEN Center for Brain Science, Aichi, Japan
- College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Noriaki Hattori
- Department of Rehabilitation, University of Toyama, Toyama, Japan
| | | | | | | | | | - Atsushi Yamashita
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Hajime Asama
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
199
|
Aguilera-Rubio Á, Cuesta-Gómez A, Mallo-López A, Jardón-Huete A, Oña-Simbaña ED, Alguacil-Diego IM. Feasibility and Efficacy of a Virtual Reality Game-Based Upper Extremity Motor Function Rehabilitation Therapy in Patients with Chronic Stroke: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3381. [PMID: 35329069 PMCID: PMC8948798 DOI: 10.3390/ijerph19063381] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND The objective of the present study was to develop a virtual reality protocol based on activities of daily living and conventional rehabilitation, using Leap Motion Controller to improve motor function in upper extremity rehabilitation in stroke patients. At the same time, the purpose was to explore its efficacy in the recovery of upper extremity motor function in chronic stroke survivors, and to determine feasibility, satisfaction and attendance rate; Methods: A prospective pilot experimental clinical trial was conducted. The outcome measures used were the grip strength, the Action Research Arm Test (ARAT), the Block and Box Test (BBT), the Short Form Health Survey-36 Questionnaire, a satisfaction questionnaire and attendance rate; Results: Our results showed statistically significant changes in the variables grip strength, BBT and ARAT as well as high levels of satisfaction and attendance; Conclusions: This virtual reality platform represents an effective tool in aspects of upper extremity functionality rehabilitation in patients with chronic stroke, demonstrating feasibility and high levels of attendance and satisfaction.
Collapse
Affiliation(s)
- Ángela Aguilera-Rubio
- International PhD School, Rey Juan Carlos University, 28008 Madrid, Spain; (Á.A.-R.); (A.M.-L.)
- NeuroAvanza Neurological Physiotherapy Center, 28022 Madrid, Spain
| | - Alicia Cuesta-Gómez
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain;
| | - Ana Mallo-López
- International PhD School, Rey Juan Carlos University, 28008 Madrid, Spain; (Á.A.-R.); (A.M.-L.)
- NeuroAvanza Neurological Physiotherapy Center, 28022 Madrid, Spain
| | - Alberto Jardón-Huete
- Robotics Lab, University Carlos III of Madrid, Leganés, 28911 Madrid, Spain; (A.J.-H.); (E.D.O.-S.)
| | - Edwin Daniel Oña-Simbaña
- Robotics Lab, University Carlos III of Madrid, Leganés, 28911 Madrid, Spain; (A.J.-H.); (E.D.O.-S.)
| | - Isabel Mª Alguacil-Diego
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain;
| |
Collapse
|
200
|
DiBella EVR, Sharma A, Richards L, Prabhakaran V, Majersik JJ, HashemizadehKolowri SK. Beyond Diffusion Tensor MRI Methods for Improved Characterization of the Brain after Ischemic Stroke: A Review. AJNR Am J Neuroradiol 2022; 43:661-669. [PMID: 35272983 PMCID: PMC9089249 DOI: 10.3174/ajnr.a7414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022]
Abstract
Ischemic stroke is a worldwide problem, with 15 million people experiencing a stroke annually. MR imaging is a valuable tool for understanding and assessing brain changes after stroke and predicting recovery. Of particular interest is the use of diffusion MR imaging in the nonacute stage 1-30 days poststroke. Thousands of articles have been published on the use of diffusion MR imaging in stroke, including several recent articles reviewing the use of DTI for stroke. The goal of this work was to survey and put into context the recent use of diffusion MR imaging methods beyond DTI, including diffusional kurtosis, generalized fractional anisotropy, spherical harmonics methods, and neurite orientation and dispersion models, in patients poststroke. Early studies report that these types of beyond-DTI methods outperform DTI metrics either in being more sensitive to poststroke changes or by better predicting outcome motor scores. More and larger studies are needed to confirm the improved prediction of stroke recovery with the beyond-DTI methods.
Collapse
Affiliation(s)
- E V R DiBella
- From the Departments of Radiology and Imaging Sciences (E.V.R.D., A.S., S.K.H.)
| | - A Sharma
- From the Departments of Radiology and Imaging Sciences (E.V.R.D., A.S., S.K.H.)
| | - L Richards
- Occupational and Recreational Therapies (L.R.)
| | - V Prabhakaran
- Department of Radiology (V.P.), University of Wisconsin, Madison, Wisconsin
| | - J J Majersik
- Neurology (J.J.M.), University of Utah, Salt Lake City, Utah
| | | |
Collapse
|