151
|
Ayyolath A, Kallingal A, Thachan Kundil V, Variyar EJ. Studies on the bioactive properties of Penicillium mallochi ARA-1 pigment isolated from coffee plantation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
152
|
Etayash H, Qian Y, Pletzer D, Zhang Q, Xie J, Cui R, Dai C, Ma P, Qi F, Liu R, Hancock REW. Host Defense Peptide-Mimicking Amphiphilic β-Peptide Polymer (Bu:DM) Exhibiting Anti-Biofilm, Immunomodulatory, and in Vivo Anti-Infective Activity. J Med Chem 2020; 63:12921-12928. [PMID: 33126797 DOI: 10.1021/acs.jmedchem.0c01321] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Therapeutic options to treat multidrug resistant bacteria, especially when present in biofilms, are limited due to their high levels of antibiotic resistance. Here, we report the anti-biofilm and immunomodulatory activities of the host defense peptide (HDP)-mimicking β-peptide polymer (20:80 Bu:DM) and investigated its activity in vivo. The polymer outperformed antibiotics in the removal and reduction of the viability of established biofilms, achieving a maximum activity of around 80% reduction in viability. Interestingly the polymer also exhibited HDP-like immunomodulation in inducing chemokines and anti-inflammatory cytokines and suppressing lipopolysaccharide-induced proinflammatory cytokines. When tested in a murine, high-density skin infection model using P. aeruginosa LESB58, the polymer was effective in diminishing abscess size and reducing bacterial load. This study demonstrates the dual functionality of HDP-mimicking β-peptide polymers in inhibiting biofilms and modulating innate immunity, as well as reducing tissue dermonecrosis.
Collapse
Affiliation(s)
- Hashem Etayash
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yuxin Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Qiang Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayang Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ruxin Cui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengzhi Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengcheng Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Qi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
153
|
Bystrianský L, Hujslová M, Gryndler M. Study of the effects of mineral salts on the biofilm formation on polypropylene fibers using three quantification methods. Folia Microbiol (Praha) 2020; 66:133-143. [PMID: 33104976 DOI: 10.1007/s12223-020-00833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
The microbial biofilms are ubiquitous in nature and represent important biological entities that affect various aspects of human life. As such, they attracted considerable attention during last decades, with the factors affecting the biofilm development being among the frequently studied topics. In our work, the biofilm was cultivated on the surface of polypropylene fibers in a nutrient medium inoculated by the suspension of two unsterile soils. The effects of ionic strength and valence of salt on the amount of the produced biofilm and on composition of biofilm microbial communities were investigated. The effect of valence was significant in some OTUs: Arthrobacter/Pseudarthrobacter/Paenarthrobacter and Bacillus with positive response to monovalent salt (KCl) and Streptomyces, Lysinibacillus, Pseudomonas, and Ensifer with positive response to divalent salt (MgSO4). The significant preference for a certain concentration of salts was observed in the case of OTUs Agrobacterium, Bacillus (both 100 mM), and Brevundimonas (30 mM). A new quantification method based on measuring of oxidizable organic carbon in biofilm biomass, based on dichromate oxidation, was used. We compared the results obtained using this method with results of crystal violet destaining and measuring of extracted DNA concentration as proxies of the biofilm biomass. The dichromate oxidation is simple, inexpensive, and fast, and our results show that it may be more sensitive than crystal violet destaining. The highest biomass values tended to associate with high concentrations of the divalent salt. This trend was not observed in treatments where the monovalent salt was added. Our data confirm the importance of inorganic ions for biofilm composition and biomass accumulation.
Collapse
Affiliation(s)
- Lukáš Bystrianský
- Department of Biology, Faculty of Science, J. E. Purkyně University in Ústí nad Labem, Pasteurova 15, CZ40096, Ústí nad Labem, Czech Republic.
| | - Martina Hujslová
- Laboratory of Fungal Biology, Institute of Microbiology ASCR, v.v.i., Vídeňská 1083, CZ14220, Prague 4, Czech Republic
| | - Milan Gryndler
- Department of Biology, Faculty of Science, J. E. Purkyně University in Ústí nad Labem, Pasteurova 15, CZ40096, Ústí nad Labem, Czech Republic
| |
Collapse
|
154
|
Johnson A, Kong F, Miao S, Lin HTV, Thomas S, Huang YC, Kong ZL. Therapeutic effects of antibiotics loaded cellulose nanofiber and κ-carrageenan oligosaccharide composite hydrogels for periodontitis treatment. Sci Rep 2020; 10:18037. [PMID: 33093521 PMCID: PMC7581766 DOI: 10.1038/s41598-020-74845-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is an inflammatory disease that can lead to the periodontal pocket formation and tooth loss. This study was aimed to develop antimicrobials loaded hydrogels composed of cellulose nanofibers (CNF) and κ-carrageenan oligosaccharides (CO) nanoparticles for the treatment of periodontitis. Two antimicrobial agents such as surfactin and Herbmedotcin were selected as the therapeutic agents and the hydrogels were formulated based on the increasing concentration of surfactin. The proposed material has high thermal stability, controlled release, and water absorption capacity. This study was proceeded by investigating the in vitro antibacterial and anti-inflammatory properties of the hydrogels. This material has strong antibacterial activity against periodontal pathogens such as Streptococcus mutans, Porphyromonas gingivalis, Fusobacterium nucleatum, and Pseudomonas aeruginosa. Moreover, a significant increase in malondialdehyde (MDA) production and a decrease in biofilm formation and metabolic activity of the bacteria was observed in the presence of hydrogel. Besides, it reduced the reactive oxygen species (ROS) generation, transcription factor, and cytokines production in human gingival fibroblast cells (HGF) under inflammatory conditions. In conclusion, the hydrogels were successfully developed and proven to have antibacterial and anti-inflammatory properties for the treatment of periodontitis. Thus, it can be used as an excellent candidate for periodontitis treatment.
Collapse
Affiliation(s)
- Athira Johnson
- Department of Food Science, National Taiwan Ocean University, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, 100 Cedar Street, Athens, GA, 30602, USA
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, P61 C996, Ireland
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Sabu Thomas
- School of Energy Studies and School of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills P.O, Kottayam, Kerala, 686560, India
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Pei-Ning Road, Keelung, 20224, Taiwan, ROC.
| |
Collapse
|
155
|
The Novel Quantitative Assay for Measuring the Antibiofilm Activity of Volatile Compounds (AntiBioVol). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we present a new test, dubbed AntiBioVol, to be used for the quantitative evaluation of antibiofilm activity of volatile compounds in vitro. AntiBioVol is performed in two 24-well plates using a basic microbiological laboratory equipment. To demonstrate AntiBioVol usability, we have scrutinized the activity of volatilized eucalyptus, tea tree, thyme essential oils, and ethanol (used for method suitability testing) against biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. We have also compared AntiBioVol with the standard disc volatilization method, placing a special stress on evaluating the impact of various technical parameters on the outcomes of the latter method. The obtained results indicate that AntiBioVol allows analyzing the antibiofilm activity of volatile compounds in a high number of repeats and provides semi-quantitative or quantitative results of high repeatability. In comparison to disc volatilization, AntiBioVol is a more space- and cost-effective method that allows analyzing various types of microbial aggregates. Moreover, we have indicated that the possible reasons for the discrepancies in the results obtained by means of the standard disc volatilization method may be related to various parameters of the testing dishes used (height, volume, diameter) and to various volumes of the agar medium applied. In turn, the application of a 24-well plate and a strictly defined AntiBioVol protocol provide a higher control of experimental conditions. Therefore, the application of AntiBioVol may enable an optimization of and introduction of volatile compounds to the fight against infective biofilms.
Collapse
|
156
|
Ramamourthy G, Vogel HJ. Antibiofilm activity of lactoferrin-derived synthetic peptides against Pseudomonas aeruginosa PAO1. Biochem Cell Biol 2020; 99:138-148. [PMID: 32871093 DOI: 10.1139/bcb-2020-0253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many pathogenic bacteria can protect themselves from the effects of antibiotics and the host immune response system by forming biofilms. Biofilms are polymer-entrapped bacterial cells, which adhere to each other and are often attached to a surface. Eradication of bacterial biofilms typically requires much higher concentrations of antibiotics than are normally needed to kill cultured planktonic cells, raising serious clinical concerns. In an attempt to prevent the formation of biofilms or to break up existing biofilms of pathogenic bacteria, herein we have used the standard crystal violet assay as well as the Calgary biofilm device to test several lactoferrin- and lactoferricin-derived antimicrobial peptides for their antibiofilm activity against Pseudomonas aeruginosa PAO1. Our results revealed that the short bovine lactoferricin-derived RRWQWR-NH2 (20-25) hexapeptide has no activity against P. aeruginosa PAO1. Moreover, the longer human lactoferricin-derived peptide GRRRRSVQWCA (1-11) and the bovine lactoferrampin (268-284) peptide were also almost devoid of activity. However, several different "mix-and-match" dimeric versions of the two lactoferricin-derived peptides proved quite effective in preventing the formation of biofilms at low concentrations, and in some cases, could even eradicate an existing biofilm. Moreover, the full-length bovine lactoferricinB (17-41) peptide also displayed considerable antimicrobial activity. Some of the longer lactoferricin-derived dimeric peptides acted through a bactericidal mechanism, whereas others seemed to interfere in cell-signalling processes. Taken together, our results indicate that synthetic dimeric peptides comprising short naturally occurring human and bovine lactoferricin constructs could be further developed as antibiofilm agents.
Collapse
Affiliation(s)
- Gopal Ramamourthy
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.,Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.,Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
157
|
Chen X, Thomsen TR, Winkler H, Xu Y. Influence of biofilm growth age, media, antibiotic concentration and exposure time on Staphylococcus aureus and Pseudomonas aeruginosa biofilm removal in vitro. BMC Microbiol 2020; 20:264. [PMID: 32831025 PMCID: PMC7444035 DOI: 10.1186/s12866-020-01947-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Biofilm is known to be tolerant towards antibiotics and difficult to eradicate. Numerous studies have reported minimum biofilm eradication concentration (MBEC) values of antibiotics for many known biofilm pathogens. However, the experimental parameters applied in these studies differ considerably, and often the rationale behind the experimental design are not well described. This makes it difficult to compare the findings. To demonstrate the importance of experimental parameters, we investigated the influence of biofilm growth age, antibiotic concentration and treatment duration, and growth media on biofilm eradication. Additionally, OSTEOmycin™, a clinically used antibiotic containing allograft bone product, was tested for antibiofilm efficacy. RESULTS The commonly used Calgary biofilm device was used to grow 24 h and 72 h biofilms of Staphylococcus aureus and Pseudomonas aeruginosa, which were treated with time-dependent vancomycin (up to 3000 mg L- 1) and concentration-dependent tobramycin (up to 80 mg L- 1), respectively. Two common bacteriological growth media, tryptic soy broth (TSB) and cation-adjusted Mueller Hinton broth (CaMHB), were tested. We found for both species that biofilms were more difficult to kill in TSB than in CaMHB. Furthermore, young biofilms (24 h) were easier to eradicate than old biofilms (72 h). In agreement with vancomycin being time-dependent, extension of the vancomycin exposure increased killing of S. aureus biofilms. Tobramycin treatment of 24 h P. aeruginosa biofilms was found concentration-dependent and time-independent, however, increasing killing was indicated for 72 h P. aeruginosa biofilms. Treatment with tobramycin containing OSTEOmycin T™ removed 72 h and 168 h P. aeruginosa biofilms after 1 day treatment, while few 72 h S. aureus biofilms survived after 2 days treatment with vancomycin containing OSTEOmycin V™. CONCLUSIONS This study demonstrated biofilm removal efficacy was influenced by media, biofilm age and antibiotic concentration and treatment duration. It is therefore necessary to taking these parameters into consideration when designing experiments. The results of OSTEOmycin™ products indicated that simple in vitro biofilm test could be used for initial screening of antibiofilm products. For clinical application, a more clinically relevant biofilm model for the specific biofilm infection in question should be developed to guide the amount of antibiotics used for local antibiofilm treatment.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark
| | - Trine Rolighed Thomsen
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark
- Life Science Division, Danish Technological Institute, Aarhus, Denmark
| | - Heinz Winkler
- Osteitis Centre, Privatklinik Döbling, Vienna, Austria
| | - Yijuan Xu
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark.
- Life Science Division, Danish Technological Institute, Aarhus, Denmark.
| |
Collapse
|
158
|
Etayash H, Pletzer D, Kumar P, Straus SK, Hancock REW. Cyclic Derivative of Host-Defense Peptide IDR-1018 Improves Proteolytic Stability, Suppresses Inflammation, and Enhances In Vivo Activity. J Med Chem 2020; 63:9228-9236. [PMID: 32787088 DOI: 10.1021/acs.jmedchem.0c00303] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Host-defense peptides have drawn significant attention as new drugs or drug adjuvants to combat multidrug-resistant bacteria. In this study, we report the development of cyclic derivatives of the immunomodulatory and antibiofilm innate defense regulator peptide (IDR)-1018 based on three different synthetic strategies including head-to-tail cyclization (C1), side-chain-to-tail cyclization (C2), and a disulfide bond cross-linkage (C3). The generated mimetics showed enhanced proteolytic stability and reduced aggregation in vitro and in vivo. The C2 derivative exhibited exceptional ability to suppress inflammation and significantly reduce bacterial loads in a high-density Staphylococcus aureus murine skin infection model. The findings describe different routes to the creation of enzymatically stable mimetics of IDR-1018 and identify a promising new cyclic analogue against bacterial infections.
Collapse
Affiliation(s)
- Hashem Etayash
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver V6T 1Z4, British Columbia, Canada
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver V6T 1Z4, British Columbia, Canada.,Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Prashant Kumar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Suzana K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
159
|
Eydou Z, Jad BN, Elsayed Z, Ismail A, Magaogao M, Hossain A. Investigation on the effect of vitamin C on growth & biofilm-forming potential of Streptococcus mutans isolated from patients with dental caries. BMC Microbiol 2020; 20:231. [PMID: 32731889 PMCID: PMC7393720 DOI: 10.1186/s12866-020-01914-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/19/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Streptococcus mutans is a major cause of dental caries. Its capacity to produce biofilm is fundamental in the pathogenesis of this ubiquitous condition. As maintaining a healthy dentition is a genuine goal given the contemporary advance in caries control, researchers are striving to achieve a breakthrough in caries therapy. We are taking the anti-cariogenic properties of vitamin C a step-further, considering the well-known evidence of the inversely proportionate relationship between salivary levels of vitamin C and dental caries. The aim of this study was to determine MIC, MBC, biofilm prevention concentration (BPC), and derivative measures of vitamin C against fresh clinical isolates of S. mutans to evaluate its efficacy as an anti-cariogenic agent. RESULTS Based on the data of four independent experiments done in quadruplicates, we found a concentration-dependent inhibitory effect of vitamin C on all S. mutans strains tested. The average MBC, MIC, and BPC of vitamin C were found to be 10.16, 9.38, and 5.61 mg/ml, respectively. Spectrophotometric quantitation of crystal violet showed diminished biofilm formation in the presence of vitamin C (p < 0.05). When compared with gentamicin, vitamin C produced a zone of inhibition that was three times as large against the clinical isolates. CONCLUSION Our results show that vitamin C has a negative effect on S. mutans growth and biofilm formation. Being the first to meticulously utilize BPC to explore a well-known effect of vitamin C, this report aims to help in the instigation of trials of higher evidence that will ultimately culminate in repurposing vitamin C as a novel anti-cariogenic agent, albeit further studies are required to provide auxiliary evidence in this context.
Collapse
Affiliation(s)
- Zehdi Eydou
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, 11172, Ras Al Khaimah, UAE.
| | - Bader Naser Jad
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, 11172, Ras Al Khaimah, UAE
| | - Zeyad Elsayed
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, 11172, Ras Al Khaimah, UAE
| | - Anas Ismail
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, 11172, Ras Al Khaimah, UAE
| | - Michael Magaogao
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, 11172, Ras Al Khaimah, UAE
| | - Ashfaque Hossain
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, 11172, Ras Al Khaimah, UAE
| |
Collapse
|
160
|
Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Köckritz-Blickwede M, de la Fuente-Nunez C, O'Neil DA, Angeles-Boza AM. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Front Cell Infect Microbiol 2020; 10:326. [PMID: 32733816 PMCID: PMC7358464 DOI: 10.3389/fcimb.2020.00326] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
During the development of antimicrobial peptides (AMP) as potential therapeutics, antimicrobial susceptibility testing (AST) stands as an essential part of the process in identification and optimisation of candidate AMP. Standard methods for AST, developed almost 60 years ago for testing conventional antibiotics, are not necessarily fit for purpose when it comes to determining the susceptibility of microorganisms to AMP. Without careful consideration of the parameters comprising AST there is a risk of failing to identify novel antimicrobials at a time when antimicrobial resistance (AMR) is leading the planet toward a post-antibiotic era. More physiologically/clinically relevant AST will allow better determination of the preclinical activity of drug candidates and allow the identification of lead compounds. An important consideration is the efficacy of AMP in biological matrices replicating sites of infection, e.g., blood/plasma/serum, lung bronchiolar lavage fluid/sputum, urine, biofilms, etc., as this will likely be more predictive of clinical efficacy. Additionally, specific AST for different target microorganisms may help to better predict efficacy of AMP in specific infections. In this manuscript, we describe what we believe are the key considerations for AST of AMP and hope that this information can better guide the preclinical development of AMP toward becoming a new generation of urgently needed antimicrobials.
Collapse
Affiliation(s)
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Searle S. Duay
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| | - Emma Lovie
- NovaBiotics Ltd, Aberdeen, United Kingdom
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Alfredo M. Angeles-Boza
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
161
|
The Impact of EBM-Manufactured Ti6Al4V ELI Alloy Surface Modifications on Cytotoxicity toward Eukaryotic Cells and Microbial Biofilm Formation. MATERIALS 2020; 13:ma13122822. [PMID: 32585940 PMCID: PMC7344637 DOI: 10.3390/ma13122822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
Electron beam melting (EBM) is an additive manufacturing technique, which allows forming customized implants that perfectly fit the loss of the anatomical structure of bone. Implantation efficiency depends not only on the implant's functional or mechanical properties but also on its surface properties, which are of great importance with regard to such biological processes as bone regeneration or microbial contamination. This work presents the impact of surface modifications (mechanical polishing, sandblasting, and acid-polishing) of EBM-produced Ti6Al4V ELI implants on essential biological parameters. These include wettability, cytotoxicity toward fibroblast and osteoblast cell line, and ability to form biofilm by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Obtained results indicated that all prepared surfaces exhibited hydrophilic character and the highest changes of wettability were obtained by chemical modification. All implants displayed no cytotoxicity against osteoblast and fibroblast cell lines regardless of the modification type. In turn, the quantitative microbiological tests and visualization of microbial biofilm by means of electron microscopy showed that type of implant's modification correlated with the species-specific ability of microbes to form biofilm on it. Thus, the results of the presented study confirm the relationship between such technological aspects as surface modification and biological properties. The provided data are useful with regard to applications of the EBM technology and present a significant step towards personalized, customized implantology practice.
Collapse
|
162
|
Johnson A, He JL, Kong F, Huang YC, Thomas S, Lin HTV, Kong ZL. Surfactin-Loaded ĸ-Carrageenan Oligosaccharides Entangled Cellulose Nanofibers as a Versatile Vehicle Against Periodontal Pathogens. Int J Nanomedicine 2020; 15:4021-4047. [PMID: 32606662 PMCID: PMC7293418 DOI: 10.2147/ijn.s238476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Periodontitis is a chronic inflammatory disease associated with microbial accumulation. The purpose of this study was to reuse the agricultural waste to produce cellulose nanofibers (CNF) and further modification of the CNF with κ-carrageenan oligosaccharides (CO) for drug delivery. In addition, this study is focused on the antimicrobial activity of surfactin-loaded CO-CNF towards periodontal pathogens. MATERIALS AND METHODS A chemo-mechanical method was used to extract the CNF and the modification was done by using CO. The studies were further proceeded by adding different quantities of surfactin [50 mg (50 SNPs), 100 mg (100 SNPs), 200 mg (200 SNPs)] into the carrier (CO-CNF). The obtained materials were characterized, and the antimicrobial activity of surfactin-loaded CO-CNF was evaluated. RESULTS The obtained average size of CNF and CO-CNF after ultrasonication was 263 nm and 330 nm, respectively. Microscopic studies suggested that the CNF has a short diameter with long length and CO became cross-linked to form as beads within the CNF network. The addition of CO improved the degradation temperature, crystallinity, and swelling property of CNF. The material has a controlled drug release, and the entrapment efficiency and loading capacity of the drug were 53.15 ± 2.36% and 36.72 ± 1.24%, respectively. It has antioxidant activity and inhibited the growth of periodontal pathogens such as Streptococcus mutans and Porphyromonas gingivalis by preventing the biofilm formation, reducing the metabolic activity, and promoting the oxidative stress. CONCLUSION The study showed the successful extraction of CNF and modification with CO improved the physical parameters of the CNF. In addition, surfactin-loaded CO-CNF has potential antimicrobial activity against periodontal pathogens. The obtained biomaterial is economically valuable and has great potential for biomedical applications.
Collapse
Affiliation(s)
- Athira Johnson
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Jia-Ling He
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, GA30602, U.S.A
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala686560, India
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| |
Collapse
|
163
|
Mendes FSF, Garcia LM, Moraes TDS, Casemiro LA, Alcântara CBD, Ambrósio SR, Veneziani RCS, Miranda MLD, Martins CHG. Antibacterial activity of salvia officinalis L. against periodontopathogens: An in vitro study. Anaerobe 2020; 63:102194. [DOI: 10.1016/j.anaerobe.2020.102194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/20/2020] [Accepted: 03/19/2020] [Indexed: 02/09/2023]
|
164
|
Inhibition of Salmonella enteritidis biofilms by Salmonella invasion protein-targeting aptamer. Biotechnol Lett 2020; 42:1963-1974. [PMID: 32451800 DOI: 10.1007/s10529-020-02920-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Abstract
The current study aimed to assess the inhibitory effect of a DNA aptamer (Apt17) which targeted Salmonella invasion proteinA (SipA). The effect of Apt17, on biofilm formation by two Salmonella enteritidis strains, was tested either separately or in combination with ampicillin at different Sub MIC concentrations. Maximum inhibitory effect equivalent to 24.34% and 26.81% was recorded when Apt17 was co-incubated with S. enteritidis TM 6 and S. enteritidis TM 68 respectively for 13 h. The inhibitory effect of Apt17 was also confirmed with Triphenyl Tetrazolium Chloride. Under Scanning Electron Microscope, the presence of Apt17 resulted in altered three dimensional structure. While the treated cells of S. enteritidis TM 6 were arranged as monolayers, the sessile aggregates of S. enteritidis TM 68 appeared thinner and exhibited less surface coverage when compared to control. Moreover, the treated cells lost their exopolysaccharide matrix. The co-incubation of Apt17 with ampicillin MIC/10 for 24 h, inhibited the biofilms of S. enteritidis TM 6 and S. enteritidis TM 68 by 12.5 and 20.9% respectively. This study demonstrated quantitative and qualitative antibiofilm effect of Apt17 against the biofilms of two Salmonella enteritidis strains. According to our knowledge, this is the first study employing an aptamer that targets SipA protein to inhibit biofilm formation in Salmonella.
Collapse
|
165
|
Kaya E, Grassi L, Benedetti A, Maisetta G, Pileggi C, Di Luca M, Batoni G, Esin S. In vitro Interaction of Pseudomonas aeruginosa Biofilms With Human Peripheral Blood Mononuclear Cells. Front Cell Infect Microbiol 2020; 10:187. [PMID: 32432053 PMCID: PMC7216684 DOI: 10.3389/fcimb.2020.00187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human immune cell response against bacterial biofilms is a crucial, but still poorly investigated area of research. Herein, we aim to establish an in vitro host cell-biofilm interaction model suitable to investigate the peripheral blood mononuclear cell (PBMC) response to Pseudomonas aeruginosa biofilms. P. aeruginosa biofilms were obtained by incubating bacteria in complete RPMI 1640 medium with 10% human plasma for 24 h. PBMC obtained from healthy donors were added to preformed P. aeruginosa biofilms. Following a further 24 h incubation, we assessed (i) PBMC viability and activation; (ii) cytokine profiles in the supernatants; and (iii) CFU counts of biofilm forming bacteria. Cell-death was <10% upon 24 h incubation of PBMC with P. aeruginosa biofilms. PBMC incubated for 24 h with preformed P. aeruginosa biofilms were significantly more activated compared to PBMC incubated alone. Interestingly, a marked activation of CD56+CD3− natural killer (NK) cells was observed that reached 60% of NK cells as an average of different donors. In the culture supernatants of PBMC co-cultured with P. aeruginosa biofilms, not only pro-inflammatory (IL-1β, IFN-γ, IL-6, and TNF-α) but also anti-inflammatory (IL-10) cytokines were significantly increased as compared to PBMC incubated alone. Furthermore, incubation of biofilms with PBMC, caused a statistically significant increase in the CFU number of P. aeruginosa, as compared to biofilms incubated without PBMC. In order to assess whether PBMC products could stimulate the growth of P. aeruginosa biofilms, we incubated preformed P. aeruginosa biofilms with or without supernatants obtained from the co-cultures of PBMC with biofilms. In the presence of the supernatants, the CFU count of biofilm-derived P. aeruginosa, was two to seven times higher than those of biofilms incubated without supernatants (P < 0.01). Overall, the results obtained shed light on the reciprocal interaction between human PBMC and P. aeruginosa biofilms. P. aeruginosa biofilms induced PBMC activation and cytokine secretion but, in turn, the presence of PBMC and/or PBMC-derived components enhanced the number of P. aeruginosa biofilm associated bacteria. This may indicate a successful bacterial defensive/persistence strategy against immune response.
Collapse
Affiliation(s)
- Esingül Kaya
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lucia Grassi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Arianna Benedetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Carolina Pileggi
- Department of Transfusion Medicine and Transplant Biology, Pisa University Hospital, Pisa, Italy
| | | | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
166
|
Alford MA, Baghela A, Yeung ATY, Pletzer D, Hancock REW. NtrBC Regulates Invasiveness and Virulence of Pseudomonas aeruginosa During High-Density Infection. Front Microbiol 2020; 11:773. [PMID: 32431676 PMCID: PMC7214821 DOI: 10.3389/fmicb.2020.00773] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is a major cause of nosocomial and chronic infections contributing to morbidity and mortality in cystic fibrosis patients. One of the reasons for its success as a pathogen is its ability to adapt to a broad range of circumstances. Here, we show the involvement of the general nitrogen regulator NtrBC, which is structurally conserved but functionally diverse across species, in pathogenic and adaptive states of P. aeruginosa. The role of NtrB and NtrC was examined in progressive or chronic infections, which revealed that mutants (ΔntrB, ΔntrC, and ΔntrBC) were reduced in their ability to invade and cause damage in a high-density abscess model in vivo. Progressive infections were established with mutants in the highly virulent PA14 genetic background, whereas chronic infections were established with mutants in the less virulent clinical isolate LESB58 genetic background. Characterization of adaptive lifestyles in vitro confirmed that the double ΔntrBC mutant demonstrated >40% inhibition of biofilm formation, a nearly complete inhibition of swarming motility, and a modest decrease and altered surfing motility colony appearance; with the exception of swarming, single mutants generally had more subtle or no changes. Transcriptional profiles of deletion mutants under swarming conditions were defined using RNA-Seq and unveiled dysregulated expression of hundreds of genes implicated in virulence in PA14 and LESB58 chronic lung infections, as well as carbon and nitrogen metabolism. Thus, transcriptional profiles were validated by testing responsiveness of mutants to several key intermediates of central metabolic pathways. These results indicate that NtrBC is a global regulatory system involved in both pathological and physiological processes relevant to the success of Pseudomonas in high-density infection.
Collapse
Affiliation(s)
- Morgan A Alford
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Arjun Baghela
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | | | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology, University of Otago, Dunedin, New Zealand
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada.,Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
167
|
Lemon Grass Essential Oil Does not Modulate Cancer Cells Multidrug Resistance by Citral-Its Dominant and Strongly Antimicrobial Compound. Foods 2020; 9:foods9050585. [PMID: 32380674 PMCID: PMC7278871 DOI: 10.3390/foods9050585] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
With strong antimicrobial properties, citral has been repeatedly reported to be the dominant component of lemongrass essential oil. Here, we report on a comparison of the antimicrobial and anticancer activity of citral and lemongrass essential oil. The lemongrass essential oil was prepared by the vacuum distillation of fresh Cymbopogon leaves, with a yield of 0.5% (w/w). Citral content was measured by gas chromatography/high-resolution mass spectrometry (GC-HRMS) and determined to be 63%. Antimicrobial activity was tested by the broth dilution method, showing strong activity against all tested bacteria and fungi. Citral was up to 100 times more active than the lemongrass essential oil. Similarly, both citral and essential oils inhibited bacterial communication and adhesion during P. aeruginosa and S. aureus biofilm formation; however, the biofilm prevention activity of citral was significantly higher. Both the essential oil and citral disrupted the maturated P. aeruginosa biofilm with the IC50 7.3 ± 0.4 and 0.1 ± 0.01 mL/L, respectively. Although it may seem that the citral is the main biologically active compound of lemongrass essential oil and the accompanying components have instead antagonistic effects, we determined that the lemongrass essential oil-sensitized methicillin-resistant S. aureus (MRSA) and doxorubicin-resistant ovarian carcinoma cells and that this activity was not caused by citral. A 1 mL/L dose of oil-sensitized MRSA to methicillin up to 9.6 times and a dose of 10 µL/L-sensitized ovarian carcinoma to doxorubicin up to 1.8 times. The mode of multidrug resistance modulation could be due to P-glycoprotein efflux pump inhibition. Therefore, the natural mixture of compounds present in the lemongrass essential oil provides beneficial effects and its direct use may be preferred to its use as a template for citral isolation.
Collapse
|
168
|
Martinez S, Garcia JG, Williams R, Elmassry M, West A, Hamood A, Hurtado D, Gudenkauf B, Ventolini G, Schlabritz-Loutsevitch N. Lactobacilli spp.: real-time evaluation of biofilm growth. BMC Microbiol 2020; 20:64. [PMID: 32209050 PMCID: PMC7092459 DOI: 10.1186/s12866-020-01753-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Biofilm is a fundamental bacterial survival mode which proceeds through three main generalized phases: adhesion, maturation, and dispersion. Lactobacilli spp. (LB) are critical components of gut and reproductive health and are widely used probiotics. Evaluation of time-dependent mechanisms of biofilm formation is important for understanding of host-microbial interaction and development of therapeutic interventions. Time-dependent LB biofilm growth was studied in two systems: large biofilm output in continuous flow system (microfermenter (M), Institute Pasteur, France) and electrical impedance-based real time label-free cell analyzer (C) (xCELLigence, ACEA Bioscience Inc., San Diego, CA). L. plantarum biofilm growth in M system was video-recorded, followed by analyses using IMARIS software (Bitplane, Oxford Instrument Company, Concord, MA, USA). Additionally, whole genome expression and analyses of attached (A) and dispersed (D) biofilm phases at 24 and 48 h were performed. RESULTS The dynamic of biofilm growth of L. plantarum was similar in both systems except for D phases. Comparison of the transcriptome of A and D phases revealed, that 121 transcripts differ between two phases at 24 h. and 35 transcripts - at 48 h. of M growth. The main pathways, down-regulated in A compared to D phases after 24 h. were transcriptional regulation, purine nucleotide biosynthesis, and L-aspartate biosynthesis, and the upregulated pathways were fatty acid and phospholipid metabolism as well as ABC transporters and purine nucleotide biosynthesis. Four LB species differed in the duration and amplitude of attachment phases, while growth phases were similar. CONCLUSION LB spp. biofilm growth and propagation area dynamic, time-dependent processes with species-specific and time specific characteristics. The dynamic of LB biofilm growth agrees with published pathophysiological data and points out that real time evaluation is an important tool in understanding growth of microbial communities.
Collapse
Affiliation(s)
- Stacy Martinez
- Texas Tech University Health Sciences Center at the Permian Basin, 701 W. 5th Street, Odessa, TX, 79763, USA
| | - Jonathan Gomez Garcia
- Texas Tech University Health Sciences Center at the Permian Basin, 701 W. 5th Street, Odessa, TX, 79763, USA.,University of Texas at the Permian Basin, Odessa, TX, USA
| | - Roy Williams
- Texas Tech University Health Sciences Center at the Permian Basin, 701 W. 5th Street, Odessa, TX, 79763, USA.,University of Texas at the Permian Basin, Odessa, TX, USA
| | - Moamen Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Andrew West
- Texas Tech University Health Sciences Center at the Permian Basin, 701 W. 5th Street, Odessa, TX, 79763, USA
| | - Abdul Hamood
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Brent Gudenkauf
- Texas Tech University Health Sciences Center at the Permian Basin, 701 W. 5th Street, Odessa, TX, 79763, USA
| | - Gary Ventolini
- Texas Tech University Health Sciences Center at the Permian Basin, 701 W. 5th Street, Odessa, TX, 79763, USA.
| | - Natalia Schlabritz-Loutsevitch
- Texas Tech University Health Sciences Center at the Permian Basin, 701 W. 5th Street, Odessa, TX, 79763, USA. .,Department of Neurobiology and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
169
|
Effects of Lysozyme, Proteinase K, and Cephalosporins on Biofilm Formation by Clinical Isolates of Pseudomonas aeruginosa. Interdiscip Perspect Infect Dis 2020; 2020:6156720. [PMID: 32089678 PMCID: PMC7031717 DOI: 10.1155/2020/6156720] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/01/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can form biofilms, which confer resistance to immune clearance and antibacterial treatment. Therefore, effective strategies to prevent biofilm formation are warranted. Here, 103 P. aeruginosa clinical isolates were quantitatively screened for biofilm formation ability via the tissue culture plate method. The effects of lysozyme (hydrolytic enzyme) and proteinase K (protease) on biofilm formation were evaluated at different concentrations. Lysozyme (30 μg/mL), but not proteinase K, significantly inhibited biofilm formation (19% inhibition). Treatment of 24-hour-old biofilms of P. aeruginosa isolates with 50 times the minimum inhibitory concentrations (MICs) of ceftazidime and cefepime significantly decreased the biofilm mass by 32.8% and 44%, respectively. Moreover, the exposure of 24-hour-old biofilms of P. aeruginosa isolates to lysozyme (30 μg/mL) and 50 times MICs of ceftazidime or cefepime resulted in a significant reduction in biofilm mass as compared with the exposure to lysozyme or either antibacterial agent alone. The best antibiofilm effect (49.3%) was observed with the combination of lysozyme (30 μg/mL) and 50 times MIC of cefepime. The promising antibiofilm activity observed after treatment with 50 times MIC of ceftazidime or cefepime alone or in combination with lysozyme (30 μg/mL) is indicative of a novel strategy to eradicate pseudomonal biofilms in intravascular devices and contact lenses.
Collapse
|
170
|
de Barros E, Gonçalves RM, Cardoso MH, Santos NC, Franco OL, Cândido ES. Snake Venom Cathelicidins as Natural Antimicrobial Peptides. Front Pharmacol 2019; 10:1415. [PMID: 31849667 PMCID: PMC6895205 DOI: 10.3389/fphar.2019.01415] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023] Open
Abstract
Bioactive small molecules isolated from animals, plants, fungi and bacteria, including natural antimicrobial peptides, have shown great therapeutic potential worldwide. Among these peptides, snake venom cathelicidins are being widely exploited, because the variation in the composition of the venom reflects a range of biological activities that may be of biotechnological interest. Cathelicidins are short, cationic, and amphipathic molecules. They play an important role in host defense against microbial infections. We are currently facing a strong limitation on pharmacological interventions for infection control, which has become increasingly complex due to the lack of effective therapeutic options. In this review, we will focus on natural snake venom cathelicidins as promising candidates for the development of new antibacterial agents to fight antibiotic-resistant bacteria. We will highlight their antibacterial and antibiofilm activities, mechanism of action, and modulation of the innate immune response.
Collapse
Affiliation(s)
- Elizângela de Barros
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Regina M. Gonçalves
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Marlon H. Cardoso
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Nuno C. Santos
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Octávio L. Franco
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Elizabete S. Cândido
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
171
|
Fathallah N, Raafat MM, Issa MY, Abdel-Aziz MM, Bishr M, Abdelkawy MA, Salama O. Bio-Guided Fractionation of Prenylated Benzaldehyde Derivatives as Potent Antimicrobial and Antibiofilm from Ammi majus L. Fruits-Associated Aspergillus amstelodami. Molecules 2019; 24:molecules24224118. [PMID: 31739552 PMCID: PMC6891696 DOI: 10.3390/molecules24224118] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023] Open
Abstract
Ammi majus L.; Family Apiaceae; is a plant indigenous to Egypt. Its fruits contain bioactive compounds such as furanocoumarins and flavonoids of important biological activities. An endophytic fungus was isolated from the fruits and identified as Aspergillus amstelodami (MK215708) by morphology, microscopical characterization, and molecular identification. To our knowledge this is the first time an endophytic fungus has been isolated from the fruits. The antimicrobial activity of the Ammi majus ethanol fruits extract (AME) and fungal ethyl acetate extract (FEA) were investigated, where the FEA showed higher antimicrobial activity, against all the tested standard strains. Phytochemical investigation of the FEA extract yielded five prenylated benzaldehyde derivative compounds isolated for the first time from this species: Dihydroauroglaucin (1), tetrahydroauroglaucin (2), 2-(3,6-dihydroxyhepta-1,4-dien-1-yl)-3,6-dihydroxy-5-(dimethylallyl)benzaldehyde (3), isotetrahydroauroglaucin )4), and flavoglaucin (5). Structure elucidation was carried out using (1H- and 13C-NMR). Fractions and the major isolated compound 1 were evaluated for their antimicrobial and antibiofilm activity. Compound 1 showed high antimicrobial activity against Escherichia coli with minimum inhibitory concentration (MIC) = 1.95 µg/mL, Streptococcus mutans (MIC = 1.95 µg/mL), and Staphylococcus aureus (MIC = 3.9 µg/mL). It exhibited high antibiofilm activity with minimum biofilm inhibitory concentration (MBIC) = 7.81 µg/mL against Staphylococcus aureus and Escherichia coli biofilms and MBIC = 15.63 µg/mL against Streptococcus mutans and Candida albicans and moderate activity (MBIC = 31.25 µg/mL) against Pseudomonas aeruginosa biofilm. This reveals that dihydroauroglaucin, a prenylated benzaldehyde derivative, has a broad spectrum antimicrobial activity. In conclusion, it was observed that the MICs of the FEA are much lower than that of the AME against all susceptible strains, confirming that the antimicrobial activity of Ammi majus may be due to the ability of its endophytic fungi to produce effective secondary metabolites.
Collapse
Affiliation(s)
- Noha Fathallah
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 11835, Egypt; (N.F.); (O.S.)
| | - Marwa M. Raafat
- Microbiology and Immunology Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 11835, Egypt
- Correspondence: ; Tel.: +2-0100-186-0189
| | - Marwa Y. Issa
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.Y.I.); (M.A.A.)
| | - Marwa M. Abdel-Aziz
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo 11651, Egypt; or
| | - Mokhtar Bishr
- Arab Company for Pharmaceuticals and Medicinal Plants, El-Sharkya 11361, Egypt;
| | - Mostafa A. Abdelkawy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.Y.I.); (M.A.A.)
| | - Osama Salama
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 11835, Egypt; (N.F.); (O.S.)
| |
Collapse
|
172
|
Methods Used for the Eradication of Staphylococcal Biofilms. Antibiotics (Basel) 2019; 8:antibiotics8040174. [PMID: 31590240 PMCID: PMC6963202 DOI: 10.3390/antibiotics8040174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is considered one of the leading pathogens responsible for community and healthcare-associated infections. Among them, infections caused by methicillin-resistant strains (MRSA) are connected with ineffective or prolonged treatment. The therapy of staphylococcal infections faces many difficulties, not only because of the bacteria's resistance to antibiotics and the multiplicity of virulence factors it produces, but also due to its ability to form a biofilm. The present review focuses on several approaches used for the assessment of staphylococcal biofilm eradication. The methods described here are successfully applied in research on the prevention of biofilm-associated infections, as well as in their management. They include not only the evaluation of the antimicrobial activity of novel compounds, but also the methods for biomaterial functionalization. Moreover, the advantages and limitations of different dyes and techniques used for biofilm characterization are discussed. Therefore, this review may be helpful for those scientists who work on the development of new antistaphylococcal compounds.
Collapse
|
173
|
Evaluation of Alternative Methods to Assess the Biological Properties of Propolis on Metabolic Activity and Biofilm Formation in Streptococcus mutans. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1524195. [PMID: 31531109 PMCID: PMC6721454 DOI: 10.1155/2019/1524195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/29/2019] [Accepted: 07/17/2019] [Indexed: 01/31/2023]
Abstract
Several biological activities have been reported for the Chilean propolis, among their antimicrobial and antibiofilm properties, due to its high polyphenol content. In this study, we evaluate alternative methods to assess the effect of Chilean propolis on biofilm formation and metabolic activity of Streptococcus mutans (S. mutans), a major cariogenic agent in oral cavity. Biofilm formation was studied by using crystal violet and by confocal microscopy. The metabolic activity of biofilm was evaluated by MTT and by flow cytometry analysis. The results show that propolis reduces biofilm formation and biofilm metabolic activity in S. mutans. When the variability of the methods to measure biofilm formation was compared, the coefficient of variation (CV) fluctuated between 12.8 and 23.1% when using crystal violet methodology. On the other hand, the CV ranged between 2.2 and 3.3% with confocal microscopy analysis. The CV for biofilm's metabolic activity measured by MTT methodology ranged between 5.0 and 11.6%, in comparison with 1.9 to 3.2% when flow cytometry analysis was used. Besides, it is possible to conclude that the methods based on colored compounds presented lower precision to study the effect of propolis on biofilm properties. Therefore, we recommend the use of flow cytometry and confocal microscopy in S. mutans biofilm analysis.
Collapse
|
174
|
Re-Potentiation of β-Lactam Antibiotic by Synergistic Combination with Biogenic Copper Oxide Nanocubes against Biofilm Forming Multidrug-Resistant Bacteria. Molecules 2019; 24:molecules24173055. [PMID: 31443467 PMCID: PMC6749510 DOI: 10.3390/molecules24173055] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022] Open
Abstract
Biofilm-associated tissue and device infection is a major threat to therapy. The present work aims to potentiate β-lactam antibiotics with biologically synthesized copper oxide nanoparticles. The synergistic combination of amoxyclav with copper oxide nanoparticles was investigated by checkerboard assay and time-kill assay against bacteria isolated from a burn wound and a urinary catheter. The control of biofilm formation and extracellular polymeric substance production by the synergistic combination was quantified in well plate assay. The effect of copper oxide nanoparticles on the viability of human dermal fibroblasts was evaluated. The minimum inhibitory concentration and minimum bactericidal concentration of amoxyclav were 70 μg/mL and 140 μg/mL, respectively, against Proteus mirabilis and 50 μg/mL and 100 μg/mL, respectively, against Staphylococcus aureus. The synergistic combination of amoxyclav with copper oxide nanoparticles reduced the minimum inhibitory concentration of amoxyclav by 16-fold against P. mirabilis and 32-fold against S. aureus. Above 17.5 μg/mL, amoxyclav exhibited additive activity with copper oxide nanoparticles against P. mirabilis. The time-kill assay showed the efficacy of the synergistic combination on the complete inhibition of P. mirabilis and S. aureus within 20 h and 24 h, respectively, whereas amoxyclav and copper oxide nanoparticles did not inhibit P. mirabilis and S. aureus until 48 h. The synergistic combination of amoxyclav with copper oxide nanoparticles significantly reduced the biofilm formed by P. mirabilis and S. aureus by 85% and 93%, respectively. The concentration of proteins, carbohydrates, and DNA in extracellular polymeric substances of the biofilm was significantly reduced by the synergistic combination of amoxyclav and copper oxide nanoparticles. The fibroblast cells cultured in the presence of copper oxide nanoparticles showed normal morphology with 99.47% viability. No cytopathic effect was observed. Thus, the study demonstrated the re-potentiation of amoxyclav by copper oxide nanoparticles.
Collapse
|
175
|
Cattò C, Cappitelli F. Testing Anti-Biofilm Polymeric Surfaces: Where to Start? Int J Mol Sci 2019; 20:E3794. [PMID: 31382580 PMCID: PMC6696330 DOI: 10.3390/ijms20153794] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Present day awareness of biofilm colonization on polymeric surfaces has prompted the scientific community to develop an ever-increasing number of new materials with anti-biofilm features. However, compared to the large amount of work put into discovering potent biofilm inhibitors, only a small number of papers deal with their validation, a critical step in the translation of research into practical applications. This is due to the lack of standardized testing methods and/or of well-controlled in vivo studies that show biofilm prevention on polymeric surfaces; furthermore, there has been little correlation with the reduced incidence of material deterioration. Here an overview of the most common methods for studying biofilms and for testing the anti-biofilm properties of new surfaces is provided.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
176
|
Saporito P, Biljana M, Løbner Olesen A, Jenssen H. Antibacterial mechanisms of GN-2 derived peptides and peptoids against Escherichia coli. Biopolymers 2019; 110:e23275. [PMID: 30951211 DOI: 10.1002/bip.23275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/30/2022]
Abstract
Escherichia coli is the main etiological agent of urinary trait infections, able to form biofilms in indwelling devices, resulting in chronic infections which are refractory to antibiotics treatment. In this study, we investigated the antimicrobial and anti-biofilm properties exerted against E. coli ATCC 25922, by a set of peptoids and peptides modeled upon the peptide GN-2, previously reported as a valid antimicrobial agent. The putative antimicrobials were designed to evaluate the effect of cationicity, hydrophobicity and their partitioning on the overall properties against planktonic cells and biofilms as well as on LPS binding, permeabilization of Gram-negative bacteria membranes and hemolysis. The data demonstrated that peptides are stronger antimicrobials than the analogue peptoids which in return have superior anti-biofilm properties. In this study, we present evidence that peptides antimicrobial activity correlates with enhanced LPS binding and hydrophobicity but is not affected by partitioning. The data demonstrated that the enhanced anti-biofilm properties of the peptoids are associated with decreased hydrophobicity and increased penetration of the inner membrane, compared to that of their peptide counterpart, suggesting that the characteristic flexibility of peptoids or their lack of H-bonding donors in their backbone, would play a role in their ability to penetrate bacterial membranes.
Collapse
Affiliation(s)
- Paola Saporito
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mojsoska Biljana
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anders Løbner Olesen
- Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
177
|
Isayenko OY, Knysh OV, Babych YM, Ryzhkova TN, Dyukareva GI. Effect of disintegrates and metabolites of Lactobacillus rhamnosus and Saccharomyces boulardii on biofilms of antibiotic resistant conditionally pathogenic and pathogenic bacteria. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The work presented here is the first to examine the impact of Lactobacillus rhamnosus GG ATCC 53103 and Saccharomyces boulardii metabolites obtained using the author`s method on the formation of biofilm forms of bacteria. The structural components of the probiotic microorganisms were obtained using the method of physical disintegration – low frequency ultrasound waves produced by a G3-109 generator. Metabolites were obtained by cultivating L. rhamnosus and S. boulardii in ultrasound disintegrates of lactobacteria and Saccharomycetes. The impact of biologically active substances on the formation of biofilm of Corynebacterium ulcerans tox+ 112, C. diphtheriae gravis tox+ 108, by antibiotic-resistant Pseudomonas aeruginosa PR, Klebsiella pneumoniae PR, Lelliottia amnigena (Enterobacter amnigenus) PR and P. aeruginosa AТСС 27853 reference strain was studied using the spectrophotometric method. For the first time, we proved that L. rhamnosus GG and S. boulardii metabolites and combinations of metabolites of Saccharomycetes and lactobacteria, obtained by cultivating primary producers in their disintegrates, damage preformed 24-hour biofilms of gram-positive and gram-negative bacteria. The representatives of Corynebacterium exhibited higher sensitivity to the filtrates of disintegrates and products of vital activity of lactobacteria and Saccharomycetes than gram-negative pathogens. High parameters of decrease in optical density of preformed biofilms of Corynebacterium and antibiotic-resistant gram-negative bacteria were observed under the influence of combination of L. rhamnosus GG and S. boulardii metabolites (by 1.3–2.6 times). However, the largest reduction of the optical density of the formed biofilm of all studied strains was observed under the influence of metabolites of lactobacteria (by 1.5–5.3 times). Biologically active substances of L. rhamnosus GG and S. boulardii obtained using the author’s method can be used as candidate preparations which could have a strong influence on the process of the formation of the biofilms and preformed biofilms, and also as a preparations of substitution/addition of therapeutic prescription.
Collapse
|
178
|
Kumar P, Pletzer D, Haney EF, Rahanjam N, Cheng JTJ, Yue M, Aljehani W, Hancock REW, Kizhakkedathu JN, Straus SK. Aurein-Derived Antimicrobial Peptides Formulated with Pegylated Phospholipid Micelles to Target Methicillin-Resistant Staphylococcus aureus Skin Infections. ACS Infect Dis 2019; 5:443-453. [PMID: 30565465 DOI: 10.1021/acsinfecdis.8b00319] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antimicrobial peptides have been the focus of considerable research; however, issues associated with toxicity and aggregation have the potential to limit clinical applications. Here, a derivative of a truncated version of aurein 2.2 (aurein 2.2Δ3), namely peptide 73, was investigated, along with its d-amino acid counterpart (D-73) and a retro-inverso version (RI-73). A version that incorporated a cysteine residue to the C-terminus (73c) was also generated, as this form is required to covalently attach antimicrobial peptides to polymers (e.g., polyethylene glycol (PEG) or hyperbranched polyglycerol (HPG)). The antimicrobial activity of the 73-derived peptides was enhanced 2- to 8-fold, and all the derivatives eradicated preformed Staphylococcus aureus biofilms. Formulation of the peptides with compatible polyethylene glycol (PEG)-modified phospholipid micelles alleviated toxicity toward human cells and reduced aggregation. When evaluated in vivo, the unformulated d-enantiomers aggregated when injected under the skin of mice, but micelle encapsulated peptides were well absorbed. Pegylated micelle formulated peptides were investigated for their potential as therapeutic agents for treating high-density infections in a murine cutaneous abscess model. Formulated peptide 73 reduced abscess size by 36% and bacterial loads by 2.2-fold compared to the parent peptide aurein 2.2Δ3. Micelle encapsulated peptides 73c and D-73 exhibited superior activity, further reducing abscess sizes by 85% and 63% and lowering bacterial loads by 510- and 9-fold compared to peptide 73.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Evan F. Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Negin Rahanjam
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia, Canada, V6T 1Z4
| | - John T. J. Cheng
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Marty Yue
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Waleed Aljehani
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Jayachandran N. Kizhakkedathu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| |
Collapse
|