151
|
Zhao Z, Cai Q, Zhang P, He B, Peng X, Tu G, Peng W, Wang L, Yu F, Wang X. N6-Methyladenosine RNA Methylation Regulator-Related Alternative Splicing (AS) Gene Signature Predicts Non-Small Cell Lung Cancer Prognosis. Front Mol Biosci 2021; 8:657087. [PMID: 34179079 PMCID: PMC8226009 DOI: 10.3389/fmolb.2021.657087] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Aberrant N6-methyladenosine (m6A) RNA methylation regulatory genes and related gene alternative splicing (AS) could be used to predict the prognosis of non-small cell lung carcinoma. This study focused on 13 m6A regulatory genes (METTL3, METTL14, WTAP, KIAA1429, RBM15, ZC3H13, YTHDC1, YTHDC2, YTHDF1, YTHDF2, HNRNPC, FTO, and ALKBH5) and expression profiles in TCGA-LUAD (n = 504) and TCGA-LUSC (n = 479) datasets from the Cancer Genome Atlas database. The data were downloaded and bioinformatically and statistically analyzed, including the gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. There were 43,948 mRNA splicing events in lung adenocarcinoma (LUAD) and 46,020 in lung squamous cell carcinoma (LUSC), and the data suggested that m6A regulators could regulate mRNA splicing. Differential HNRNPC and RBM15 expression was associated with overall survival (OS) of LUAD and HNRNPC and METTL3 expression with the OS of LUSC patients. Furthermore, the non-small cell lung cancer prognosis-related AS events signature was constructed and divided patients into high- vs. low-risk groups using seven and 14 AS genes in LUAD and LUSC, respectively. The LUAD risk signature was associated with gender and T, N, and TNM stages, but the LUSC risk signature was not associated with any clinical features. In addition, the risk signature and TNM stage were independent prognostic predictors in LUAD and the risk signature and T stage were independent prognostic predictors in LUSC after the multivariate Cox regression and receiver operating characteristic analyses. In conclusion, this study revealed the AS prognostic signature in the prediction of LUAD and LUSC prognosis.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qidong Cai
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Boxue He
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiong Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guangxu Tu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Xiang Wang,
| |
Collapse
|
152
|
Yuan D, Chen Y, Li X, Li J, Zhao Y, Shen J, Du F, Kaboli PJ, Li M, Wu X, Ji H, Cho CH, Wen Q, Li W, Xiao Z, Chen B. Long Non-Coding RNAs: Potential Biomarkers and Targets for Hepatocellular Carcinoma Therapy and Diagnosis. Int J Biol Sci 2021; 17:220-235. [PMID: 33390845 PMCID: PMC7757045 DOI: 10.7150/ijbs.50730] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Increasing studies showed that long non-coding RNAs (lncRNAs), a novel class of RNAs that are greater than 200 nucleotides in length but lack the ability to encode proteins, exert crucial roles in the occurrence and progression of HCC. LncRNAs promote the proliferation, migration, invasion, autophagy, and apoptosis of tumor cells by regulating downstream target gene expression and cancer-related signaling pathways. Meanwhile, lncRNA can be used as biomarkers to predict the efficacy of HCC treatment strategies, such as surgery, radiotherapy, chemotherapy, and immunotherapy, and as a potential individualized tool for HCC diagnosis and treatment. In this review, we overview up-to-date findings on lncRNAs as potential biomarkers for HCC surgery, radiotherapy, chemotherapy resistance, target therapy, and immunotherapy, and discuss the potential clinical application of lncRNA as tools for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Donghong Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Huijiao Ji
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Qinglian Wen
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Bo Chen
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
153
|
Abstract
While the processing of mRNA is essential for gene expression, recent findings have highlighted that RNA processing is systematically altered in cancer. Mutations in RNA splicing factor genes and the shortening of 3' untranslated regions are widely observed. Moreover, evidence is accumulating that other types of RNAs, including circular RNAs, can contribute to tumorigenesis. In this Review, we highlight how altered processing or activity of coding and non-coding RNAs contributes to cancer. We introduce the regulation of gene expression by coding and non-coding RNA and discuss both established roles (microRNAs and long non-coding RNAs) and emerging roles (selective mRNA processing and circular RNAs) for RNAs, highlighting the potential mechanisms by which these RNA subtypes contribute to cancer. The widespread alteration of coding and non-coding RNA demonstrates that altered RNA biogenesis contributes to multiple hallmarks of cancer.
Collapse
Affiliation(s)
- Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia.
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia.
| | - Vihandha O Wickramasinghe
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
154
|
Ono K, Horie T, Baba O, Kimura M, Tsuji S, Rodriguez RR, Miyagawa S, Kimura T. Functional non-coding RNAs in vascular diseases. FEBS J 2020; 288:6315-6330. [PMID: 33340430 PMCID: PMC9292203 DOI: 10.1111/febs.15678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/01/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
Recently, advances in genomic technology such as RNA sequencing and genome‐wide profiling have enabled the identification of considerable numbers of non‐coding RNAs (ncRNAs). MicroRNAs have been studied for decades, leading to the identification of those with disease‐causing and/or protective effects in vascular disease. Although other ncRNAs such as long ncRNAs have not been fully described yet, recent studies have indicated their important functions in the development of vascular diseases. Here, we summarize the current understanding of the mechanisms and functions of ncRNAs, focusing on microRNAs, circular RNAs and long ncRNAs in vascular diseases.
Collapse
Affiliation(s)
- Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Masahiro Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Shuhei Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | | | - Sawa Miyagawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
155
|
Olivero CE, Dimitrova N. Identification and characterization of functional long noncoding RNAs in cancer. FASEB J 2020; 34:15630-15646. [PMID: 33058262 PMCID: PMC7756267 DOI: 10.1096/fj.202001951r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as key regulators in a variety of cellular processes that influence disease states. In particular, many lncRNAs are genetically or epigenetically deregulated in cancer. However, whether lncRNA alterations are passengers acquired during cancer progression or can act as tumorigenic drivers is a topic of ongoing investigation. In this review, we examine the current methodologies underlying the identification of cancer-associated lncRNAs and highlight important considerations for evaluating their biological significance as cancer drivers.
Collapse
Affiliation(s)
- Christiane E. Olivero
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenCTUSA
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenCTUSA
| |
Collapse
|
156
|
Non-coding RNAs underlying chemoresistance in gastric cancer. Cell Oncol (Dordr) 2020; 43:961-988. [PMID: 32495294 DOI: 10.1007/s13402-020-00528-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major health issue in the Western world. Current clinical imperatives for this disease include the identification of more effective biomarkers to detect GC at early stages and enhance the prevention and treatment of metastatic and chemoresistant GC. The advent of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long-non coding RNAs (lncRNAs), has led to a better understanding of the mechanisms by which GC cells acquire features of therapy resistance. ncRNAs play critical roles in normal physiology, but their dysregulation has been detected in a variety of cancers, including GC. A subset of ncRNAs is GC-specific, implying their potential application as biomarkers and/or therapeutic targets. Hence, evaluating the specific functions of ncRNAs will help to expand novel treatment options for GC. CONCLUSIONS In this review, we summarize some of the well-known ncRNAs that play a role in the development and progression of GC. We also review the application of such ncRNAs in clinical diagnostics and trials as potential biomarkers. Obviously, a deeper understanding of the biology and function of ncRNAs underlying chemoresistance can broaden horizons toward the development of personalized therapy against GC.
Collapse
|
157
|
Shiyanbola O, Hardin H, Hu R, Eickhoff JC, Lloyd RV. Long Noncoding RNA Expression in Adrenal Cortical Neoplasms. Endocr Pathol 2020; 31:385-391. [PMID: 32725507 DOI: 10.1007/s12022-020-09642-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 12/29/2022]
Abstract
Long noncoding RNAs (lncRNAs) consist of nucleic acid molecules that are greater than 200 nucleotides in length and they do not code for specific proteins. A growing body of evidence indicates that these lncRNAs have important roles in tumorigenesis. Separating adrenal cortical adenomas from carcinomas is often a difficult problem for the surgical pathologist. This is especially true when only small needle biopsies are available for examination. We used in situ hybridization (ISH) analysis to study normal adrenal cortical tissues and adrenal cortical tumors to determine the role of specific lncRNAs in tumor development and classification. The lncRNAS studied included metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), psoriasis susceptibility-related RNA gene induced by stress (PRINS), and HOX antisense intergenic RNA myeloid 1 (HAM1). We constructed a tissue microarray (TMA) for the studies and also analyzed a subset of cases by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Two 1-mm duplicate cores of normal adrenal cortex (NAC) (n = 23), adrenal cortical adenomas (ACAs) (n = 95), and adrenal cortical carcinomas (ACCs), (n = 20) were used on the TMA. The results of ISH were analyzed by image analysis. ISH showed predominantly nuclear expression of lncRNAs in adrenal cortical tissues. MALAT1 showed more expression in ACCs than in NAC and ACA (p < 0.05). PRINS had higher expression in NACs and ACAs than in ACCs. The lncRNAs MALAT1, PRINS, and HAM1 are all expressed in normal and neoplastic adrenal cortical tissues. MALAT1 had the highest expression in ACC compared to ACAs and may have a role in ACC development.
Collapse
Affiliation(s)
- Oyewale Shiyanbola
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
158
|
Dong B, Qiu Z, Wu Y. Tackle Epithelial-Mesenchymal Transition With Epigenetic Drugs in Cancer. Front Pharmacol 2020; 11:596239. [PMID: 33343366 PMCID: PMC7746977 DOI: 10.3389/fphar.2020.596239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Epithelial-mesenchymal Transition (EMT) is a de-differentiation process in which epithelial cells lose their epithelial properties to acquire mesenchymal features. EMT is essential for embryogenesis and wound healing but is aberrantly activated in pathological conditions like fibrosis and cancer. Tumor-associated EMT contributes to cancer cell initiation, invasion, metastasis, drug resistance and recurrence. This dynamic and reversible event is governed by EMT-transcription factors (EMT-TFs) with epigenetic complexes. In this review, we discuss recent advances regarding the mechanisms that modulate EMT in the context of epigenetic regulation, with emphasis on epigenetic drugs, such as DNA demethylating reagents, inhibitors of histone modifiers and non-coding RNA medication. Therapeutic contributions that improve epigenetic regulation of EMT will translate the clinical manifestation as treating cancer progression more efficiently.
Collapse
Affiliation(s)
- Bo Dong
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, United States
| | - Zhaoping Qiu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, United States
| | - Yadi Wu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, United States,*Correspondence: Yadi Wu,
| |
Collapse
|
159
|
Vishwakarma S, Pandey R, Singh R, Gothalwal R, Kumar A. Expression of H19 long non-coding RNA is down-regulated in oral squamous cell carcinoma. J Biosci 2020. [DOI: 10.1007/s12038-020-00118-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
160
|
Marzano F, Caratozzolo MF, Consiglio A, Licciulli F, Liuni S, Sbisà E, D'Elia D, Tullo A, Catalano D. Plant miRNAs Reduce Cancer Cell Proliferation by Targeting MALAT1 and NEAT1: A Beneficial Cross-Kingdom Interaction. Front Genet 2020; 11:552490. [PMID: 33193626 PMCID: PMC7531330 DOI: 10.3389/fgene.2020.552490] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are ubiquitous regulators of gene expression, evolutionarily conserved in plants and mammals. In recent years, although a growing number of papers debate the role of plant miRNAs on human gene expression, the molecular mechanisms through which this effect is achieved are still not completely elucidated. Some evidence suggest that this interaction might be sequence specific, and in this work, we investigated this possibility by transcriptomic and bioinformatics approaches. Plant and human miRNA sequences from primary databases were collected and compared for their similarities (global or local alignments). Out of 2,588 human miRNAs, 1,606 showed a perfect match of their seed sequence with the 5′ end of 3,172 plant miRNAs. Further selections were applied based on the role of the human target genes or of the miRNA in cell cycle regulation (as an oncogene, tumor suppressor, or a biomarker for prognosis, or diagnosis in cancer). Based on these criteria, 20 human miRNAs were selected as potential functional analogous of 7 plant miRNAs, which were in turn transfected in different cell lines to evaluate their effect on cell proliferation. A significant decrease was observed in colorectal carcinoma HCT116 cell line. RNA-Seq demonstrated that 446 genes were differentially expressed 72 h after transfection. Noteworthy, we demonstrated that the plant mtr-miR-5754 and gma-miR4995 directly target the tumor-associated long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and nuclear paraspeckle assembly transcript 1 (NEAT1) in a sequence-specific manner. In conclusion, according to other recent discoveries, our study strengthens and expands the hypothesis that plant miRNAs can have a regulatory effect in mammals by targeting both protein-coding and non-coding RNA, thus suggesting new biotechnological applications.
Collapse
Affiliation(s)
- Flaviana Marzano
- Department of Biomedical Sciences, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Mariano Francesco Caratozzolo
- Department of Biomedical Sciences, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Arianna Consiglio
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| | - Flavio Licciulli
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| | - Sabino Liuni
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| | - Elisabetta Sbisà
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| | - Domenica D'Elia
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| | - Apollonia Tullo
- Department of Biomedical Sciences, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Domenico Catalano
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| |
Collapse
|
161
|
Wang K, Zhao Y, Wang YM. LncRNA MALAT1 Promotes Survival of Epithelial Ovarian Cancer Cells by Downregulating miR-145-5p. Cancer Manag Res 2020; 12:11359-11369. [PMID: 33192095 PMCID: PMC7654532 DOI: 10.2147/cmar.s267355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/06/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose This paper was aimed at investigating the regulatory mechanism of long non-coding RNA metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) in epithelial ovarian cancer (EOC). Materials and Methods MALAT1 and miR-145-5p expression in the tissues, serum, and EOC cell lines (TOV-112D, TOV-21G) of patients with EOC were detected. The two genes were transfected into the cells via upregulating or downregulating their expression. Levels of apoptosis-related proteins (Caspase-3, Bax, Bcl-2) were analyzed. Mechanisms of cell proliferation, invasion, and apoptosis were studied. Results MALAT1 was high expressed in EOC tissues, while miR-145-5p was poorly expressed in them. The areas under the curves (AUCs) of the two genes for diagnosing EOC were greater than 0.850, and the two had a significantly negative correlation. According to multivariate Cox regression analysis, high MALAT1 expression, tumor size, degree of differentiation, case staging, and lymph node metastasis were the independent risk factors affecting prognosis. The 5-year overall survival rate (OSR) of patients with low MALAT1 expression was remarkably higher than that of those with high expression. Overexpressing miR-145-5p and silencing MALAT1 could inhibit EOC cells from proliferating and invading, increase their apoptotic rate, and improve levels of the apoptosis-related proteins. After co-transfection with MALAT1-inhibitor + miR-145-5p-inhibitor, the proliferation and invasion of TOV-112D and TOV-21G cells were inhibited and the apoptotic rate rose more obviously. Inhibiting MALAT1 could increase miR-145-5p expression, thus inhibiting EOC cells from proliferating and invading and thereby increasing their apoptotic rate. Conclusion MALAT1 promotes EOC cells’ survival by downregulating miR-145-5p so it may become a new direction for EOC diagnosis and gene therapy.
Collapse
Affiliation(s)
- Ke Wang
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, People's Republic of China
| | - Ye Zhao
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Yi-Min Wang
- Central Research Room, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, People's Republic of China
| |
Collapse
|
162
|
LncRNA SNHG11 facilitates tumor metastasis by interacting with and stabilizing HIF-1α. Oncogene 2020; 39:7005-7018. [PMID: 33060856 PMCID: PMC7661343 DOI: 10.1038/s41388-020-01512-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Epigenetic alteration is one of the hallmarks of colorectal cancer (CRC). Many driver genes are regulated by DNA methylation in CRC. However, the role of DNA methylation regulating lncRNAs remain elusive. Here, we identify that SNHG11 (small nucleolar RNA host gene 11) is upregulated by promotor hypomethylation in CRC and is associated with poor prognosis in CRC patients. SNHG11 can promote CRC cell migration and metastasis under hypoxia. Interestingly, the DNA-binding motif of SNHG11 is similar to that of HIF-1α. In addition, SNHG11-associated genes are enriched with members of the HIF-1 signaling pathway in CRC. Mechanistically, SNHG11 binds to the pVHLrecognition sites on HIF-1α, thus blocking the interaction of pVHL with HIF-1α and preventing its ubiquitination and degradation. Moreover, SNHG11 upregulates the expression of HIF-1α target genes, i.e., AK4, ENO1, HK2, and Twist1. Notably, SNHG11 can bind to the HRE sites in the promoter of these genes and increase their transcription. In summary, these results identify a SNHG11/ HIF-1α axis that plays a pivotal role in tumor invasion and metastasis.
Collapse
|
163
|
Zhao M, Cui H, Zhao B, Li M, Man H. Long intergenic non‑coding RNA LINC01232 contributes to esophageal squamous cell carcinoma progression by sequestering microRNA‑654‑3p and consequently promoting hepatoma‑derived growth factor expression. Int J Mol Med 2020; 46:2007-2018. [PMID: 33125097 PMCID: PMC7595671 DOI: 10.3892/ijmm.2020.4750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Long intergenic non-coding RNA 01232 (LINC01232) was identified as a critical regulator of the development of pancreatic adenocarcinoma. The present study investigated the expression and regulatory roles of LINC01232 in esophageal squamous cell carcinoma (ESCC). The main aim of the present study was to elucidate the underlying mechanisms through which LINC01232 affects the malignancy of ESCC. Initially, LINC01232 expression in ESCC was analyzed using the TCGA and GTEx databases and was confirmed using reverse transcription-quantitative polymerase chain reaction. ESCC cell proliferation, apoptosis and migration and invasion were assessed using the Cell Counting kit-8 assay, flow cytometric analysis, and migration and invasion assays, respectively. ESCC tumor growth in vivo was examined using a xenograft mouse model. As shown by the results, a high LINC01232 expression was detected in ESCC tissues and cell lines. LINC01232 downregulation suppressed the proliferation, migration and invasion of ESCC cells, and promoted cell apoptosis in vitro. In addition, LINC01232 depletion restricted tumor growth in vivo. Mechanistically, LINC01232 was shown to function as an microRNA-654-3p (miR-654-3p) sponge in ESCC cells, and hepatoma-derived growth factor (HDGF) was identified as a direct target of miR-654-3p. LINC01232 could bind competitively to miR-654-3p and decrease its expression in ESCC cells, thereby promoting HDGF expression. Rescue experiments reconfirmed that the effects of LINC01232 deficiency in ESCC cells were restored by increasing the output of the miR-654-3p/HDGF axis. On the whole, the present study demonstrates that LINC01232 plays a tumor-promoting role during the progression of ESCC by regulating the miR-654-3p/HDGF axis. The LINC01232/miR-654-3p/HDGF pathway may thus provide a novel theoretical basis for the management of ESCC.
Collapse
Affiliation(s)
- Meihua Zhao
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| | - Haishan Cui
- Department of Endoscopy, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| | - Baisui Zhao
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| | - Mei Li
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| | - Haiqing Man
- Department of Endoscopy, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| |
Collapse
|
164
|
Gu H, Zhu Y, Zhou Y, Huang T, Zhang S, Zhao D, Liu F. LncRNA MALAT1 Affects Mycoplasma pneumoniae Pneumonia via NF-κB Regulation. Front Cell Dev Biol 2020; 8:563693. [PMID: 33134293 PMCID: PMC7561720 DOI: 10.3389/fcell.2020.563693] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Our aim was to determine whether the long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is involved in Mycoplasma pneumoniae pneumonia (MPP), and its possible mechanism of action. MALAT1 expression in the bronchoalveolar lavage fluid of 50 hospitalized children with MPP was compared to its expression in 30 children with intrabronchial foreign bodies. MALAT1 expression was higher in children with MPP, accompanied by increased inflammatory mediators interleukin 8 (IL-8) and tumor necrosis factor alpha (TNF-α), compared to the controls. In human airway epithelial cells infected with wild-type Mycoplasma pneumoniae (strain M129), MALAT1, IL-8, and TNF-α expression significantly increased, and increased expression of IL-8 and TNF-α could be suppressed by MALAT1 knockdown. Luciferase reporter gene assay and western blot showed that knockdown of MALAT1 reduced nuclear factor-κB (NF-κB) activation. In vivo, RNAi packaged with adenovirus (Adv) was nasally transfected into BALB/c mice to silence MALAT1, and an MP-infected mouse pneumonia model was prepared. The results demonstrated that the degree of pulmonary inflammatory injury, vascular permeability, secretion of inflammatory factors, and expression of phosphorylated p65 (pp65) in MP-infected mice were partly reversed after MALAT1 knockdown compared to those in the controls. In conclusion, MALAT1 is involved in the regulation of airway and pulmonary inflammation caused by MP infection via NF-κB regulation.
Collapse
Affiliation(s)
- Haiyan Gu
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yifan Zhu
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Zhou
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Tianyu Huang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Siqing Zhang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Deyu Zhao
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Liu
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
165
|
Commentary on: The potency of lncRNA MALAT1/miR-155 in altering asthmatic Th1/Th2 balance by modulation of CTLA4. Biosci Rep 2020; 40:222656. [PMID: 32292999 PMCID: PMC7199447 DOI: 10.1042/bsr20190768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 01/14/2023] Open
Abstract
Asthma is a common, allergic respiratory disorder affecting over 350 million people worldwide. One of the key features of asthma is skewing of CD4+ cells toward Th2 responses. This promotes the production of cytokines like IL-4 that induce IgE production resulting in the hypersecretion of mucus and airway smooth muscle contraction. Understanding the factors that favor Th2 expansion in asthma would provide important insights into the underlying pathogenesis of this disorder. Asthma research has focused on signaling pathways that control the transcription of key asthma-related genes. However, increasing evidence shows that post-transcriptional factors also determine CD4+ cell fate and the enhancement of allergic airway responses. A recent paper published by Liang et al. (Bioscience Reports (2020) 40, https://doi.org/10.1042/BSR20190397) highlights a novel role for the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in Th2 development in asthma. MALAT1 modulates several biological processes including alternative splicing, epigenetic modification and gene expression. It is one of the most highly expressed lncRNAs in normal tissues and MALAT1 levels correlate with poor clinical outcomes in cancer. The mechanisms of action of MALAT1 in tumor progression and metastasis remain unclear and even less is known about its effects in inflammatory disease states like asthma. The work of Liang et al. demonstrates heightened MALAT1 expression in asthma and further shows that this lncRNA targets miR-155 to promote Th2 differentiation in this disease. This insight sets the stage for future studies to examine how MALAT1 manipulation could deter allergic immune responses in asthmatic airways.
Collapse
|
166
|
Long non-coding RNAs as epigenetic mediator and predictor of glioma progression, invasiveness, and prognosis. Semin Cancer Biol 2020; 83:536-542. [PMID: 32920124 DOI: 10.1016/j.semcancer.2020.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
Gliomas are aggressive brain tumors with high mortality rate. Over the past several years, non-coding RNAs, specifically the long non-coding RNAs (lncRNAs), have emerged as biomarkers of considerable interest. Emerging data reveals distinct patterns of expressions of several lncRNAs in the glioma tissues, relative to their expression in normal brains. This has led to the speculation for putative exploitation of lncRNAs as diagnostic biomarkers as well as biomarkers for targeted therapy. With a focus on lncRNAs that have shown promise as epigenetic biomarkers in the proliferation, migration, invasion, angiogenesis and metastasis in various glioma models, we discuss several such lncRNAs. The data from cell line / animal model-based studies as well as analysis from human patient samples is presented for the most up-to-date information on the topic. Overall, the information provided herein makes a compelling case for further evaluation of lncRNAs in clinical settings.
Collapse
|
167
|
Toraih EA, El-Wazir A, Ageeli EA, Hussein MH, Eltoukhy MM, Killackey MT, Kandil E, Fawzy MS. Unleash multifunctional role of long noncoding RNAs biomarker panel in breast cancer: a predictor classification model. Epigenomics 2020; 12:1215-1237. [PMID: 32812439 DOI: 10.2217/epi-2019-0291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: We aimed to explore the circulating expression profile of nine lncRNAs (MALAT1, HOTAIR, PVT1, H19, ROR, GAS5, ANRIL, BANCR, MIAT) in breast cancer (BC) patients relative to normal and risky individuals. Methods: Serum relative expressions of the specified long non-coding RNAs were quantified in 155 consecutive women, using quantitative reverse-transcription PCR. Random Forest (RF) and decision tree were also applied. Results: Significant MALAT1 upregulation and GAS5 downregulation could discriminate risky women from healthy controls. Overexpression of the other genes showed good diagnostic performances. Lower GAS5 levels were associated with metastasis and recurrence. RF model revealed a better performance when combining gene expression patterns with risk factors. Conclusion: The studied panel could be utilized as diagnostic/prognostic biomarkers in BC, providing promising epigenetic-based therapeutic targets.
Collapse
Affiliation(s)
- Eman A Toraih
- Department of Histology & Cell Biology, Genetics Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA
| | - Aya El-Wazir
- Department of Histology & Cell Biology, Genetics Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 82911, Saudi Arabia
| | - Mohammad H Hussein
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA
| | - Mohamed M Eltoukhy
- College of Computing and Information Technology, Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia.,Department of Computer Science, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt
| | - Mary T Killackey
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA
| | - Emad Kandil
- Department of Surgery, Division of Endocrine & Oncologic Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA
| | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| |
Collapse
|
168
|
Glaß M, Dorn A, Hüttelmaier S, Haemmerle M, Gutschner T. Comprehensive Analysis of LincRNAs in Classical and Basal-Like Subtypes of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12082077. [PMID: 32727085 PMCID: PMC7464731 DOI: 10.3390/cancers12082077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinomas (PDAC) belong to the deadliest malignancies in the western world. Mutations in TP53 and KRAS genes along with some other frequent polymorphisms occur almost universally and are major drivers of tumour initiation. However, these mutations cannot explain the heterogeneity in therapeutic responses and differences in overall survival observed in PDAC patients. Thus, recent classifications of PDAC tumour samples have leveraged transcriptome-wide gene expression data to account for epigenetic, transcriptional and post-transcriptional mechanisms that may contribute to this deadly disease. Intriguingly, long intervening RNAs (lincRNAs) are a special class of long non-coding RNAs (lncRNAs) that can control gene expression programs on multiple levels thereby contributing to cancer progression. However, their subtype-specific expression and function as well as molecular interactions in PDAC are not fully understood yet. In this study, we systematically investigated the expression of lincRNAs in pancreatic cancer and its molecular subtypes using publicly available data from large-scale studies. We identified 27 deregulated lincRNAs that showed a significant different expression pattern in PDAC subtypes suggesting context-dependent roles. We further analyzed these lincRNAs regarding their common expression patterns. Moreover, we inferred clues on their functions based on correlation analyses and predicted interactions with RNA-binding proteins, microRNAs, and mRNAs. In summary, we identified several PDAC-associated lincRNAs of prognostic relevance and potential context-dependent functions and molecular interactions. Hence, our study provides a valuable resource for future investigations to decipher the role of lincRNAs in pancreatic cancer.
Collapse
Affiliation(s)
- Markus Glaß
- Institute of Molecular Medicine, Section for Cell Biology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (M.G.); (S.H.)
| | - Agnes Dorn
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Cell Biology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (M.G.); (S.H.)
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
- Correspondence: (M.H.); (T.G.)
| | - Tony Gutschner
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
- Correspondence: (M.H.); (T.G.)
| |
Collapse
|
169
|
Chen ZH, Chen TQ, Zeng ZC, Wang D, Han C, Sun YM, Huang W, Sun LY, Fang K, Chen YQ, Luo XQ, Wang WT. Nuclear export of chimeric mRNAs depends on an lncRNA-triggered autoregulatory loop in blood malignancies. Cell Death Dis 2020; 11:566. [PMID: 32703936 PMCID: PMC7378249 DOI: 10.1038/s41419-020-02795-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
Aberrant chromosomal translocations leading to tumorigenesis have been ascribed to the heterogeneously oncogenic functions. However, how fusion transcripts exporting remains to be declared. Here, we showed that the nuclear speckle-specific long noncoding RNA MALAT1 controls chimeric mRNA export processes and regulates myeloid progenitor cell differentiation in malignant hematopoiesis. We demonstrated that MALAT1 regulates chimeric mRNAs export in an m6A-dependent manner and thus controls hematopoietic cell differentiation. Specifically, reducing MALAT1 or m6A methyltransferases and the 'reader' YTHDC1 result in the universal retention of distinct oncogenic gene mRNAs in nucleus. Mechanically, MALAT1 hijacks both the chimeric mRNAs and fusion proteins in nuclear speckles during chromosomal translocations and mediates the colocalization of oncogenic fusion proteins with METTL14. MALAT1 and fusion protein complexes serve as a functional loading bridge for the interaction of chimeric mRNA and METTL14. This study demonstrated a universal mechanism of chimeric mRNA transport that involves lncRNA-fusion protein-m6A autoregulatory loop for controlling myeloid cell differentiation. Targeting the lncRNA-triggered autoregulatory loop to disrupt chimeric mRNA transport might represent a new common paradigm for treating blood malignancies.
Collapse
Affiliation(s)
- Zhen-Hua Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Tian-Qi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Zhan-Cheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Dan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, 510060, Guangzhou, Guangdong, China
| | - Cai Han
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Lin-Yu Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xue-Qun Luo
- The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, China
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
170
|
Zottel A, Šamec N, Videtič Paska A, Jovčevska I. Coding of Glioblastoma Progression and Therapy Resistance through Long Noncoding RNAs. Cancers (Basel) 2020; 12:1842. [PMID: 32650527 PMCID: PMC7409010 DOI: 10.3390/cancers12071842] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is the most aggressive and lethal primary brain malignancy, with an average patient survival from diagnosis of 14 months. Glioblastoma also usually progresses as a more invasive phenotype after initial treatment. A major step forward in our understanding of the nature of glioblastoma was achieved with large-scale expression analysis. However, due to genomic complexity and heterogeneity, transcriptomics alone is not enough to define the glioblastoma "fingerprint", so epigenetic mechanisms are being examined, including the noncoding genome. On the basis of their tissue specificity, long noncoding RNAs (lncRNAs) are being explored as new diagnostic and therapeutic targets. In addition, growing evidence indicates that lncRNAs have various roles in resistance to glioblastoma therapies (e.g., MALAT1, H19) and in glioblastoma progression (e.g., CRNDE, HOTAIRM1, ASLNC22381, ASLNC20819). Investigations have also focused on the prognostic value of lncRNAs, as well as the definition of the molecular signatures of glioma, to provide more precise tumor classification. This review discusses the potential that lncRNAs hold for the development of novel diagnostic and, hopefully, therapeutic targets that can contribute to prolonged survival and improved quality of life for patients with glioblastoma.
Collapse
Affiliation(s)
| | | | - Alja Videtič Paska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.)
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.)
| |
Collapse
|
171
|
Long-Noncoding RNA (lncRNA) in the Regulation of Hypoxia-Inducible Factor (HIF) in Cancer. Noncoding RNA 2020; 6:ncrna6030027. [PMID: 32640630 PMCID: PMC7549355 DOI: 10.3390/ncrna6030027] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is dangerous for oxygen-dependent cells, therefore, physiological adaption to cellular hypoxic conditions is essential. The transcription factor hypoxia-inducible factor (HIF) is the main regulator of hypoxic metabolic adaption reducing oxygen consumption and is regulated by gradual von Hippel-Lindau (VHL)-dependent proteasomal degradation. Beyond physiology, hypoxia is frequently encountered within solid tumors and first drugs are in clinical trials to tackle this pathway in cancer. Besides hypoxia, cancer cells may promote HIF expression under normoxic conditions by altering various upstream regulators, cumulating in HIF upregulation and enhanced glycolysis and angiogenesis, altogether promoting tumor proliferation and progression. Therefore, understanding the underlying molecular mechanisms is crucial to discover potential future therapeutic targets to evolve cancer therapy. Long non-coding RNAs (lncRNA) are a class of non-protein coding RNA molecules with a length of over 200 nucleotides. They participate in cancer development and progression and might act as either oncogenic or tumor suppressive factors. Additionally, a growing body of evidence supports the role of lncRNAs in the hypoxic and normoxic regulation of HIF and its subunits HIF-1α and HIF-2α in cancer. This review provides a comprehensive update and overview of lncRNAs as regulators of HIFs expression and activation and discusses and highlights potential involved pathways.
Collapse
|
172
|
Bu L, Zhang L, Tian M, Zheng Z, Tang H, Yang Q. LncRNA MIR210HG Facilitates Non-Small Cell Lung Cancer Progression Through Directly Regulation of miR-874/STAT3 Axis. Dose Response 2020; 18:1559325820918052. [PMID: 32699535 PMCID: PMC7357071 DOI: 10.1177/1559325820918052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Long noncoding RNAs are involved in the progression of multiple cancers. However, the expression and mechanism of microRNA (miR)210HG in non-small cell lung cancer (NSCLC) remain unclear. METHODS The levels of miR210HG and miR-874 were measured by quantitative real-time polymerase chain reaction in NSCLC tissue samples and cells. Non-small cell lung cancer cell proliferation, migration, and invasion were measured by Cell Counting Kit-8 and transwell assays. Luciferase analysis confirmed the interaction between miR210HG and miR-874. RESULTS Here, our data showed that miR210HG was overexpressed in NSCLC tissue samples and cells. In vitro functional assays showed that silencing miR210HG blocked NSCLC cell proliferation, migration, and invasion while promoting NSCLC cell radiosensitivity and chemoresistance. Mechanistically, miR-874 was directly regulated by miR210HG. Furthermore, miR-874 expression was reduced in NSCLC tissues and cells. The miR-874 mimic could mitigate the promoting effect of miR210HG on NSCLC cell progression. The data also showed that miR210HG promoted NSCLC cell progression through miR-181a expression by targeting STAT3. CONCLUSIONS Our observations suggest that miR210HG is associated with NSCLC cell progression by regulating the miR-874/STAT3 axis.
Collapse
Affiliation(s)
- Liang Bu
- The First People’s Hospital of Yunnan Province, Medical School of Kunming University of Science and Technology, Kunming, China
| | - Libin Zhang
- The First People’s Hospital of Yunnan Province, Medical School of Kunming University of Science and Technology, Kunming, China
| | - Mei Tian
- The First People’s Hospital of Yunnan Province, Medical School of Kunming University of Science and Technology, Kunming, China
| | - Zhoubin Zheng
- The First People’s Hospital of Yunnan Province, Medical School of Kunming University of Science and Technology, Kunming, China
| | - Huijie Tang
- Anesthesiology Department, No.1 People’s General Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Qiuju Yang
- Anesthesiology Department, No.1 People’s General Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
173
|
Ou X, Gao G, Bazhabayi M, Zhang K, Liu F, Xiao X. MALAT1 and BACH1 are prognostic biomarkers for triple-negative breast cancer. J Cancer Res Ther 2020; 15:1597-1602. [PMID: 31939443 DOI: 10.4103/jcrt.jcrt_282_19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aims The purpose of this study was to investigate the potential correlation between metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and the transcription factor BTB and CNC homology 1 (BACH1) and their clinicopathological significance in triple-negative breast cancer (TNBC). Subjects and Methods MALAT1 and BACH1 were detected by immunohistochemistry using TNBC tissue microarrays of 240 patients. The association between MALAT1 and BACH1 expression levels was statistically analyzed. Moreover, the prognostic roles as well as clinical and pathological significance of MALAT1 and BACH1 expression in TNBC were determined. Statistical Analysis Used Two-tailed Pearson correlation was used to examine the correlation of BACH1 and MALA1 expression. Comparisons of clinicopathological variables between different BACH1 and MALA1 expression groups were performed using χ2 tests. Overall survival (OS) and disease-free survival (DFS) curves were plotted with the Kaplan-Meier method and the differences in OS and DFS between three groups were compared by the log-rank test. Multiple comparisons were performed using χ2 tests for subsequent individual group comparisons. Results MALAT1 and BACH1 expression was significantly correlated with tumor-node-metastasis stage, distant metastasis, pathological stage, and survival outcomes of patients. Patients with high MALAT1 and BACH1 expression exhibited shorter overall survival and disease-free survival. Conclusions These findings provide further insight into the expression pattern of MALAT1 and BACH1 in TNBC and suggest them as prognostic biomarkers for TNBC.
Collapse
Affiliation(s)
- Xueqi Ou
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Guanfeng Gao
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Meiheban Bazhabayi
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Kaiming Zhang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Feng Liu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiangsheng Xiao
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
174
|
Biasini A, Smith AAT, Abdulkarim B, Ferreira da Silva M, Tan JY, Marques AC. The Contribution of lincRNAs at the Interface between Cell Cycle Regulation and Cell State Maintenance. iScience 2020; 23:101291. [PMID: 32619701 PMCID: PMC7334372 DOI: 10.1016/j.isci.2020.101291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022] Open
Abstract
Cell cycle progression is controlled by the interplay of established cell cycle regulators. Changes in these regulators' activity underpin differences in cell cycle kinetics between cell types. We investigated whether long intergenic noncoding RNAs (lincRNAs) contribute to embryonic stem cell cycle adaptations. Using single-cell RNA sequencing data for mouse embryonic stem cells (mESCs) staged as G1, S, or G2/M we found differentially expressed lincRNAs are enriched among cell cycle-regulated genes. These lincRNAs (CC-lincRNAs) are co-expressed with genes involved in cell cycle regulation. We tested the impact of two CC-lincRNA candidates and show using CRISPR activation that increasing their expression is associated with deregulated cell cycle progression. Interestingly, CC-lincRNAs are often differentially expressed between G1 and S, their promoters are enriched in pluripotency transcription factor (TF) binding sites, and their transcripts are frequently co-regulated with genes involved in the maintenance of pluripotency, suggesting a contribution of CC-lincRNAs to mESC cell cycle adaptations. Genes differentially expressed between mESC cell cycle stages are enriched in lincRNAs CC-lincRNAs are co-expressed with cell cycle and pluripotency genes CC-lincRNAs are often mESC specific and their promoters enriched in pluripotency TFs Upregulation of two CC-lincRNAs results in deregulated mESC cell cycle progression
Collapse
Affiliation(s)
- Adriano Biasini
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Baroj Abdulkarim
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Jennifer Yihong Tan
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Ana Claudia Marques
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
175
|
Pan K, Xie Y. LncRNA FOXC2-AS1 enhances FOXC2 mRNA stability to promote colorectal cancer progression via activation of Ca 2+-FAK signal pathway. Cell Death Dis 2020; 11:434. [PMID: 32513911 PMCID: PMC7280533 DOI: 10.1038/s41419-020-2633-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been confirmed, which are involved in tumorigenesis and metastasis in colorectal cancer (CRC). FOXC2 antisense RNA 1 (FOXC2-AS1) was reported, facilitating the proliferation and progression in several cancers. However, the role of FOXC2-AS1 in CRC cell migration and metastasis is not unclear. In this study, we observed that lncRNA FOXC2-AS1 was upregulated in CRC tissues, and its high expression indicated the poor survival in CRC patients. Meanwhile, FOXC2-AS1 was higher in CRC tissues with metastasis than that of nonmetastatic tumor tissues. We found that FOXC2-AS1 was predominately expressed in the nucleus of tissues and cells. FOXC2-AS1 knockdown suppressed CRC cell growth, invasion, and metastasis in vitro and in vivo. Moreover, FOXC2-AS1 could positively regulate the neighboring gene FOXC2 and stabilized FOXC2 mRNA by forming a RNA duplex. Meanwhile, ectopic expression of FOXC2 could obviously alleviate the suppressed effects caused by silencing FOXC2-AS1. For the mechanism, FOXC2-AS1 knockdown could reduce intracellular Ca2+ levels, inhibited FA formation and FAK signaling, and these suppressed effects were mitigated by increasing FOXC2 expression. These results demonstrated that FOXC2-AS1 enhances FOXC2 mRNA stability to promote CRC proliferation, migration, and invasion by activation of Ca2+-FAK signaling, which implicates that FOXC2-AS1 may represent a latent effective therapeutic target for CRC progression.
Collapse
Affiliation(s)
- Ke Pan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yong Xie
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
176
|
Zhao Y, Teng H, Yao F, Yap S, Sun Y, Ma L. Challenges and Strategies in Ascribing Functions to Long Noncoding RNAs. Cancers (Basel) 2020; 12:cancers12061458. [PMID: 32503290 PMCID: PMC7352683 DOI: 10.3390/cancers12061458] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in many physiological and pathological processes, such as development, aging, immunity, and cancer. Mechanistically, lncRNAs exert their functions through interaction with proteins, genomic DNA, and other RNA, leading to transcriptional and post-transcriptional regulation of gene expression, either in cis or in trans; it is often difficult to distinguish between these two regulatory mechanisms. A variety of approaches, including RNA interference, antisense oligonucleotides, CRISPR-based methods, and genetically engineered mouse models, have yielded abundant information about lncRNA functions and underlying mechanisms, albeit with many discrepancies. In this review, we elaborate on the challenges in ascribing functions to lncRNAs based on the features of lncRNAs, including the genomic location, copy number, domain structure, subcellular localization, stability, evolution, and expression pattern. We also describe a framework for the investigation of lncRNA functions and mechanisms of action. Rigorous characterization of cancer-implicated lncRNAs is critical for the identification of bona fide anticancer targets.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (H.T.); (F.Y.); (S.Y.)
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (H.T.); (F.Y.); (S.Y.)
| | - Fan Yao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (H.T.); (F.Y.); (S.Y.)
| | - Shannon Yap
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (H.T.); (F.Y.); (S.Y.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (H.T.); (F.Y.); (S.Y.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-792-6590
| |
Collapse
|
177
|
Lin S, Zhen Y, Guan Y, Yi H. Roles of Wnt/β-Catenin Signaling Pathway Regulatory Long Non-Coding RNAs in the Pathogenesis of Non-Small Cell Lung Cancer. Cancer Manag Res 2020; 12:4181-4191. [PMID: 32581590 PMCID: PMC7280066 DOI: 10.2147/cmar.s241519] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) is the most common pathological type of lung cancer. Long non-coding RNAs (lncRNAs) are promising novel diagnostic and prognostic biomarkers, as well as potential therapeutic targets for lung cancer. Long non-coding RNAs (lncRNAs) have been demonstrated to modulate tumor cells proliferation, cell cycle progression, invasion, and metastasis by regulating gene expression at transcriptional, post-transcriptional, and epigenetic levels. The oncogenic aberrant Wnt/β-catenin signaling is prominent in lung cancer, playing a vital role in tumorigenesis, prognosis, and resistance to therapy. Interestingly, compelling studies have demonstrated that lncRNAs exert either oncogenic or tumor suppressor roles by regulating Wnt/β-catenin signaling. In this review, we aim to present the current accumulated knowledge regarding the roles of Wnt/β-catenin signaling-regulated lncRNAs in the pathogenesis of non-small cell lung cancer (NSCLC). Better understanding of the effects of lncRNAs on Wnt/β-catenin signaling might contribute to the improved understanding of the molecular tumor pathogenesis and to the uncovering of novel therapeutic targets in NSCLC.
Collapse
Affiliation(s)
- Shan Lin
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, People's Republic of China.,Department of Respiratory, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yu Zhen
- Department of Dermatology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yinghui Guan
- Department of Respiratory, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, People's Republic of China
| |
Collapse
|
178
|
Abstract
Specific chemical modifications of biological molecules are an efficient way of regulating molecular function, and a plethora of downstream signalling pathways are influenced by the modification of DNA and proteins. Many of the enzymes responsible for regulating protein and DNA modifications are targets of current cancer therapies. RNA epitranscriptomics, the study of RNA modifications, is the new frontier of this arena. Despite being known since the 1970s, eukaryotic RNA modifications were mostly identified on transfer RNA and ribosomal RNA until the last decade, when they have been identified and characterized on mRNA and various non-coding RNAs. Increasing evidence suggests that RNA modification pathways are also misregulated in human cancers and may be ideal targets of cancer therapy. In this Review we highlight the RNA epitranscriptomic pathways implicated in cancer, describing their biological functions and their connections to the disease.
Collapse
Affiliation(s)
- Isaia Barbieri
- The Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
- Division of Cellular and Molecular Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
179
|
Long Noncoding RNAs Involved in the Endocrine Therapy Resistance of Breast Cancer. Cancers (Basel) 2020; 12:cancers12061424. [PMID: 32486413 PMCID: PMC7353012 DOI: 10.3390/cancers12061424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are defined as RNAs longer than 200 nucleotides that do not encode proteins. Recent studies have demonstrated that numerous lncRNAs are expressed in humans and play key roles in the development of various types of cancers. Intriguingly, some lncRNAs have been demonstrated to be involved in endocrine therapy resistance for breast cancer through their own mechanisms, suggesting that lncRNAs could be promising new biomarkers and therapeutic targets of breast cancer. Here, we summarize the functions and mechanisms of lncRNAs related to the endocrine therapy resistance of breast cancer.
Collapse
|
180
|
Li Y, Zhang X, Zheng Q, Zhang Y, Ma Y, Zhu C, Yang L, Peng X, Wang Q, Wang B, Meng X, Li H, Liu J. YAP1 Inhibition in HUVECs Is Associated with Released Exosomes and Increased Hepatocarcinoma Invasion and Metastasis. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:86-97. [PMID: 32516736 PMCID: PMC7281784 DOI: 10.1016/j.omtn.2020.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma is one of the most common gastrointestinal malignancies. Anti-angiogenesis therapies have recently demonstrated promise in the treatment of malignancies, although early treatment benefits may be accompanied by metastasis over time. Additional and more effective anti-angiogenic treatment modalities are therefore needed. We previously found that Yes-associated protein 1 (YAP1) expression is increased in hepatocellular carcinoma (HCC), particularly around tumor-associated blood vessels, suggesting a role in angiogenesis. The YAP1 inhibitor verteporfin is presently in anti-angiogenic clinical trials for the treatment of various cancers. Depleted YAP1 from vascular endothelial cells effectively reduced proliferation and tube formation, validating its utility as an anti-angiogenesis target. We also showed that YAP1 depletion or inhibition in vascular endothelial cells leads to increased release of exosomes containing the long non-coding RNA (lncRNA) MALAT1 into the tumor microenvironment. Direct exosomal transfer of MALAT1 to hepatic cells leads to increased hepatic cell invasion and migration via activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. These observations may explain the occurrence of distant tumor metastasis with YAP1-associated anti-angiogenic therapy over time. It provides insight into new pathways and treatment paradigms that may be targeted to increase the long-term success of anti-angiogenic therapies.
Collapse
Affiliation(s)
- Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaodong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yijun Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Qi Wang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, Academy of life sciences of China Medical University, Shenyang, China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, Academy of life sciences of China Medical University, Shenyang, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
181
|
Li Y, Li G, Guo X, Yao H, Wang G, Li C. Non-coding RNA in bladder cancer. Cancer Lett 2020; 485:38-44. [PMID: 32437725 DOI: 10.1016/j.canlet.2020.04.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/26/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022]
Abstract
Bladder cancer is the tenth most common cancer worldwide and has been associated with high mortality and morbidity. Although the treatment of bladder cancer is based on well-defined tumor classifications and gradings, patients still experience different clinical response. The heterogeneity of this disease calls for substantial research with more in-depth molecular characterization, with the hope of identifying new diagnostic and treatment options. In recent years, non-coding RNAs (ncRNAs), particularly, microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circRNAs) were found to be associated with bladder cancer occurrence and development. This review highlights the recent findings concerning ncRNAs and their relevance to the pathogenesis of bladder cancer. This may provide a foundation for developing highly specific diagnostic tools and more robust therapeutic strategies in the future.
Collapse
Affiliation(s)
- Yi Li
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, China
| | - Gang Li
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, China
| | - Haochen Yao
- College of Basic Medical Science, Jilin University (JUT), Changchun, Jilin, China
| | - Guoqing Wang
- College of Basic Medical Science, Jilin University (JUT), Changchun, Jilin, China.
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics Chinese Academy of Sciences (IBPCAS), Beijing, China; Beijing Jianlan Institute of Medicine, Beijing, China; Beijing Zhongke Jianlan Biotechnology Co., Ltd., Beijing, China.
| |
Collapse
|
182
|
Merta L, Gandalovičová A, Čermák V, Dibus M, Gutschner T, Diederichs S, Rösel D, Brábek J. Increased Level of Long Non-Coding RNA MALAT1 is a Common Feature of Amoeboid Invasion. Cancers (Basel) 2020; 12:cancers12051136. [PMID: 32369931 PMCID: PMC7281393 DOI: 10.3390/cancers12051136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/20/2020] [Accepted: 04/29/2020] [Indexed: 01/23/2023] Open
Abstract
The ability of cancer cells to adopt various migration modes (the plasticity of cancer cell invasiveness) is a substantive obstacle in the treatment of metastasis, yet still an incompletely understood process. We performed a comparison of publicly available transcriptomic datasets from various cell types undergoing a switch between the mesenchymal and amoeboid migration modes. Strikingly, lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) was one of three genes that were found upregulated in all amoeboid cells analyzed. Accordingly, downregulation of MALAT1 in predominantly amoeboid cell lines A375m2 and A2058 resulted in decrease of active RhoA (Ras homolog family member A) and was accompanied by the amoeboid-mesenchymal transition in A375m2 cells. Moreover, MALAT1 downregulation in amoeboid cells led to increased cell proliferation. Our work is the first to address the role of MALAT1 in MAT/AMT (mesenchymal to amoeboid transition/amoeboid to mesenchymal transition) and suggests that increased MALAT1 expression is a common feature of amoeboid cells.
Collapse
Affiliation(s)
- Ladislav Merta
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (L.M.); (A.G.); (V.Č.); (M.D.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Aneta Gandalovičová
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (L.M.); (A.G.); (V.Č.); (M.D.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Vladimír Čermák
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (L.M.); (A.G.); (V.Č.); (M.D.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Michal Dibus
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (L.M.); (A.G.); (V.Č.); (M.D.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Tony Gutschner
- Medical Faculty, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany;
| | - Sven Diederichs
- Department of Thoracic Surgery, Division of Cancer Research, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK)—Partner Site Freiburg, Breisacher Str. 115, 79106 Freiburg, Germany;
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Daniel Rösel
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (L.M.); (A.G.); (V.Č.); (M.D.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (L.M.); (A.G.); (V.Č.); (M.D.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
- Correspondence:
| |
Collapse
|
183
|
Luan C, Li Y, Liu Z, Zhao C. Long Noncoding RNA MALAT1 Promotes the Development of Colon Cancer by Regulating miR-101-3p/STC1 Axis. Onco Targets Ther 2020; 13:3653-3665. [PMID: 32431516 PMCID: PMC7200234 DOI: 10.2147/ott.s242300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Colon cancer (CC) is a leading cause of cancer-related deaths worldwide. This study aimed to clarify the effect of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on CC progression and the potential mechanism. Methods CC cell lines HCT116 and HT29 were selected for functional analysis. The expression of MALAT1, microRNA (miR)-101-3p, and stanniocalcin 1 (STC1) in CC tissues and cells were measured by quantitative reverse transcription PCR (qRT-PCR). Cell proliferation, apoptosis, migration and invasion were measured by Cell Counting Kit-8 (CCK-8), flow cytometry, wound scratch and transwell assay, respectively. The target relationships (MALAT1 and miR-101-3p, miR-101-3p and STC1) were validated by dual-luciferase reporter and RNA pull-down assay. Results The expression of MALAT1 was elevated in CC tissues compared with adjacent normal tissues and was associated with lymph node metastasis, depth of invasion and tumor-node-metastasis (TNM) stage. Up-regulation of MALAT1 promoted the proliferation, migration, and invasion and inhibited the apoptosis of CC cells; while MALAT1 knockdown exhibited opposite results. MiR-101-3p was a target of MALAT1, which was negatively regulated by MALAT1. Silencing of miR-101-3p reverses the anti-tumor effect of MALAT1 knockdown on CC cells. STC1 was a target of miR-101-3p, which was negatively regulated by miR-101-3p. Silencing of STC1 reverses the tumor promoting effects of MALAT1 up-regulation and miR-101-3p down-regulation on CC cells. Conclusion MALAT1 may function as an oncogene in CC progression by affecting the miR-101-3p/STC1 axis, providing a hopeful therapeutic option for CC.
Collapse
Affiliation(s)
- Chunyan Luan
- Department of Gastroenterology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Yongzhu Li
- Department of Gastroenterology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Zhigang Liu
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Cunxin Zhao
- Department of Gastroenterology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| |
Collapse
|
184
|
Abstract
The advent of deep sequencing technologies led to the identification of a considerable amount of noncoding RNA transcripts, which are increasingly recognized for their functions in controlling cardiovascular diseases. MicroRNAs have already been studied for a decade, leading to the identification of several vasculoprotective and detrimental species, which might be considered for therapeutic targeting. Other noncoding RNAs such as circular RNAs, YRNAs, or long noncoding RNAs are currently gaining increasing attention, and first studies provide insights into their functions as mediators or antagonists of vascular diseases in vivo. The present review article will provide an overview of the different types of noncoding RNAs controlling the vasculature and focus on the developing field of long noncoding RNAs.
Collapse
Affiliation(s)
- Nicolas Jaé
- From the Institute for Cardiovascular Regeneration (N.J., S.D.), Goethe University Frankfurt, Germany
| | - Stefanie Dimmeler
- From the Institute for Cardiovascular Regeneration (N.J., S.D.), Goethe University Frankfurt, Germany.,Cardiopulmonary Institute (S.D.), Goethe University Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK) and Cardiopulmonary Institute (CPI), Partner Site Rhine-Main, Frankfurt (S.D.)
| |
Collapse
|
185
|
Beksac M, Balli S, Akcora Yildiz D. Drug Targeting of Genomic Instability in Multiple Myeloma. Front Genet 2020; 11:228. [PMID: 32373151 PMCID: PMC7179656 DOI: 10.3389/fgene.2020.00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
Genomic instability can be observed at both chromosomal and chromatin levels. Instability at the macro level includes centrosome abnormalities (CA) resulting in numerical as well as structural chromosomal changes, whereas instability at the micro level is characterized by defects in DNA repair pathways resulting in microsatellite instability (MIN) or mutations. Genomic instability occurs during carcinogenesis without impairing survival and growth, though the precise mechanisms remain unclear. Solid tumors arising from most cells of epithelial origin are characterized by genomic instability which renders them resistant to chemotherapy and radiotherapy. This instability is also observed in 25% of myeloma patients and has been shown to be highly prognostic, independently of the international staging system (ISS). However, a biomarker of aberrant DNA repair and loss of heterozygosity (LOH), was only observed at a frequency of 5% in newly diagnosed patients. Several new molecules targeting the pathways involved in genomic instability are under development and some have already entered clinical trials. Poly(ADP-ribose) polymerase-1 (PARP) inhibitors have been FDA-approved for the treatment of breast cancer type 1 susceptibility protein (BRCA1)-mutated metastatic breast cancer, as well as ovarian and lung cancer. Topoisomerase inhibitors and epigenetic histone modification-targeting inhibitors, such as HDAC (Histone Deacetylase) inhibitors which are novel agents that can target genomic instability. Several of the small molecule inhibitors targeting chromosomal level instability such as PARP, Akt, Aurora kinase, cyclin dependent kinase or spindle kinase inhibitors have been tested in mouse models and early phase I/II trials. ATM, ATR kinase inhibitors and DNA helicase inhibitors are also promising novel agents. However, most of these drugs are not effective as single agents but appear to act synergistically with DNA damaging agents such as radiotherapy, platinum derivatives, immunomodulators, and proteasome inhibitors. In this review, new drugs targeting genomic instability and their mechanisms of action will be discussed.
Collapse
Affiliation(s)
- Meral Beksac
- Department of Hematology, School of Medicine, Ankara University, Ankara, Turkey
| | - Sevinc Balli
- Kars Selim Public Hospital, Internal Medicine, Kars, Turkey
| | - Dilara Akcora Yildiz
- Department of Biology, Science & Art Faculty, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
186
|
Smith KP, Hall LL, Lawrence JB. Nuclear hubs built on RNAs and clustered organization of the genome. Curr Opin Cell Biol 2020; 64:67-76. [PMID: 32259767 DOI: 10.1016/j.ceb.2020.02.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
Abstract
RNAs play diverse roles in formation and function of subnuclear compartments, most of which are associated with active genes. NEAT1 and NEAT2/MALAT1 exemplify long non-coding RNAs (lncRNAs) known to function in nuclear bodies; however, we suggest that RNA biogenesis itself may underpin much nuclear compartmentalization. Recent studies show that active genes cluster with nuclear speckles on a genome-wide scale, significantly advancing earlier cytological evidence that speckles (aka SC-35 domains) are hubs of concentrated pre-mRNA metabolism. We propose the 'karyotype to hub' hypothesis to explain this organization: clustering of genes in the human karyotype may have evolved to facilitate the formation of efficient nuclear hubs, driven in part by the propensity of ribonucleoproteins (RNPs) to form large-scale condensates. The special capacity of highly repetitive RNAs to impact architecture is highlighted by recent findings that human satellite II RNA sequesters factors into abnormal nuclear bodies in disease, potentially co-opting a normal developmental mechanism.
Collapse
Affiliation(s)
- Kelly P Smith
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA, 01655, USA
| | - Lisa L Hall
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA, 01655, USA
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA, 01655, USA.
| |
Collapse
|
187
|
Association of long non-coding RNA and leukemia: A systematic review. Gene 2020; 735:144405. [DOI: 10.1016/j.gene.2020.144405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
|
188
|
Yang X, Liu M, Li M, Zhang S, Hiju H, Sun J, Mao Z, Zheng M, Feng B. Epigenetic modulations of noncoding RNA: a novel dimension of Cancer biology. Mol Cancer 2020; 19:64. [PMID: 32209098 PMCID: PMC7092482 DOI: 10.1186/s12943-020-01159-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Empowered by recent advances of sequencing techniques, transcriptome-wide studies have characterized over 150 different types of post-transcriptional chemical modifications of RNA, ranging from methylations of single base to complex installing reactions catalyzed by coordinated actions of multiple modification enzymes. These modifications have been shown to regulate the function and fate of RNAs and further affecting various cellular events. However, the current understanding of their biological functions in human diseases, especially in cancers, is still limited. Once regarded as “junk” or “noise” of the transcriptome, noncoding RNA (ncRNA) has been proved to be involved in a plethora of cellular signaling pathways especially those regulating cancer initiation and progression. Accumulating evidence has demonstrated that ncRNAs manipulate multiple phenotypes of cancer cells including proliferation, metastasis and chemoresistance and may become promising biomarkers and targets for diagnosis and treatment of cancer. Importantly, recent studies have mapped plenty of modified residues in ncRNA transcripts, indicating the existence of epigenetic modulation of ncRNAs and the potential effects of RNA modulation on cancer progression. In this review, we briefly introduced the characteristics of several main epigenetic marks on ncRNAs and summarized their consecutive effects on cancer cells. We found that ncRNAs could act both as regulators and targets of epigenetic enzymes, which indicated a cross-regulating network in cancer cells and unveil a novel dimension of cancer biology. Moreover, by epitomizing the knowledge of RNA epigenetics, our work may pave the way for the design of patient-tailored therapeutics of cancers.
Collapse
Affiliation(s)
- Xiao Yang
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Ming Liu
- Department of genecology and obstetrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Mengmeng Li
- Shanghai tenth People's Hospital, Medical School of Tongji University, Shanghai, 200205, China
| | - Sen Zhang
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Hong Hiju
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Jing Sun
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Zhihai Mao
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China.
| | - Minhua Zheng
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China.
| | - Bo Feng
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China.
| |
Collapse
|
189
|
Gusic M, Prokisch H. ncRNAs: New Players in Mitochondrial Health and Disease? Front Genet 2020; 11:95. [PMID: 32180794 PMCID: PMC7059738 DOI: 10.3389/fgene.2020.00095] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
The regulation of mitochondrial proteome is unique in that its components have origins in both mitochondria and nucleus. With the development of OMICS technologies, emerging evidence indicates an interaction between mitochondria and nucleus based not only on the proteins but also on the non-coding RNAs (ncRNAs). It is now accepted that large parts of the non‐coding genome are transcribed into various ncRNA species. Although their characterization has been a hot topic in recent years, the function of the majority remains unknown. Recently, ncRNA species microRNA (miRNA) and long-non coding RNAs (lncRNA) have been gaining attention as direct or indirect modulators of the mitochondrial proteome homeostasis. These ncRNA can impact mitochondria indirectly by affecting transcripts encoding for mitochondrial proteins in the cytoplasm. Furthermore, reports of mitochondria-localized miRNAs, termed mitomiRs, and lncRNAs directly regulating mitochondrial gene expression suggest the import of RNA to mitochondria, but also transcription from the mitochondrial genome. Interestingly, ncRNAs have been also shown to hide small open reading frames (sORFs) encoding for small functional peptides termed micropeptides, with several examples reported with a role in mitochondria. In this review, we provide a literature overview on ncRNAs and micropeptides found to be associated with mitochondrial biology in the context of both health and disease. Although reported, small study overlap and rare replications by other groups make the presence, transport, and role of ncRNA in mitochondria an attractive, but still challenging subject. Finally, we touch the topic of their potential as prognosis markers and therapeutic targets.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| |
Collapse
|
190
|
Baspinar Y, Elmaci I, Ozpinar A, Altinoz MA. Long non-coding RNA MALAT1 as a key target in pathogenesis of glioblastoma. Janus faces or Achilles' heal? Gene 2020; 739:144518. [PMID: 32119915 DOI: 10.1016/j.gene.2020.144518] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/28/2022]
Abstract
Glioblastomas (GBMs) are primary brain tumors with extremely bad prognosis and therefore; discovery of novel regulators of their pathology is of immense importance. LncRNAs (long noncoding RNAs) regulate nuclear structure, embryonic pluripotency, cell differentiation, development and carcinogenesis. Many lncRNAs have weak evolutionary conservation; however, a nuclear lncRNA, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), is exceptionally conserved and is among the most abundant lncRNAs in benign tissues. The majority of cell culture studies and clinico-epidemiological studies demonstrated that MALAT1 acts a tumor promoter in GBMs and inhibition of MALAT1 suppressed tumor growth in various preclinical models of GBM. MALAT1 involves in stemness of GBM cells by regulating SOX2, nestin and members of WNT pathway. MALAT1 induces protective autophagy and suppresses apoptosis in GBM cells via sponging miRNA-101 and increases temozolomide chemoresistance via enhancing epithelial-mesenchymal transition, suppressing miR-203 and promoting thymidilate synthase. Moreover, knockdown of MALAT1 expression enhances blood-brain tumor barrier permeability via miR-140, which may provide a double benefit of MALAT1 suppression by increasing the delivery of chemotherapy agents into the GBM tissues. On the other hand, there also exist some cell culture and animal studies showing that MALAT1 acts as a tumor suppressor in GBMs by suppression of ERK/MAPK and MMP2 signaling and by repression of miR-155 with subsequent increase of FBXW7. Whether protective or detrimental, MALAT1 seems to be an important component of GBM pathogenesis and hence; novels studies are needed in versatile models, including many different primary GBM cultures, orthotopic and xenogreft in vivo models and transgenic mice.
Collapse
Affiliation(s)
| | - Ilhan Elmaci
- Department of Neurosurgery, Acibadem Maslak Hospital, Istanbul, Turkey
| | - Aysel Ozpinar
- Department of Biochemistry, Acibadem University, Istanbul, Turkey
| | - Meric A Altinoz
- Department of Biochemistry, Acibadem University, Istanbul, Turkey; Department of Psychiatry, Maastricht University, Netherlands.
| |
Collapse
|
191
|
Tornesello ML, Faraonio R, Buonaguro L, Annunziata C, Starita N, Cerasuolo A, Pezzuto F, Tornesello AL, Buonaguro FM. The Role of microRNAs, Long Non-coding RNAs, and Circular RNAs in Cervical Cancer. Front Oncol 2020; 10:150. [PMID: 32154165 PMCID: PMC7044410 DOI: 10.3389/fonc.2020.00150] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
Prolonged infection of uterine cervix epithelium with human papillomavirus (HPV) and constitutive expression of viral oncogenes have been recognized as the main cause of the complex molecular changes leading to transformation of cervical epithelial cells. Deregulated expression of microRNAs (miRNA), long non-coding RNAs (lncRNA), and circular RNAs (circRNA) is involved in the initiation and promotion processes of cervical cancer development. Expression profiling of small RNAs in cervical neoplasia revealed up-regulated "oncogenic" miRNAs, such as miR-10a, miR-21, miR-19, and miR-146a, and down regulated "tumor suppressive" miRNAs, including miR-29a, miR-372, miR-214, and miR-218, associated with cell growth, malignant transformation, cell migration, and invasion. Also several lncRNAs, comprising among others HOTAIR, MALAT1, GAS5, and MEG3, have shown to be associated with various pathogenic processes such as tumor progression, invasion as well as therapeutic resistance and emerged as new diagnostic and prognostic biomarkers in cervical cancer. Moreover, human genes encoded circular RNAs, such as has_circ-0018289, have shown to sponge specific miRNAs and to concur to the deregulation of target genes. Viral encoded circE7 has also demonstrated to overexpress E7 oncoprotein thus contributing to cell transformation. In this review, we summarize current literature on the complex interplay between miRNAs, lncRNAs, and circRNAs and their role in cervical neoplasia.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Naples, Italy
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Naples, Italy
| | - Clorinda Annunziata
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Naples, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Naples, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Naples, Italy
| | - Francesca Pezzuto
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Naples, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Naples, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Naples, Italy
| |
Collapse
|
192
|
Ma L, Gao J. Suppression of lncRNA-MALAT1 activity ameliorates femoral head necrosis by modulating mTOR signaling. Arch Med Sci 2020; 20:612-617. [PMID: 38757012 PMCID: PMC11094837 DOI: 10.5114/aoms.2020.92829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/19/2019] [Indexed: 05/18/2024] Open
Abstract
Introduction Avascular necrosis of the femoral head (ANFH) is one of the most complicated bone disorders; management remains challenging. We evaluated the effect of lncRNA-MALAT1 suppression on ANFH rats. Material and methods Dexamethasone was injected intravenously at 0.5 mg/kg daily for 30 days to induce ANFH; an lncRNA-MALAT1 inhibitor group received the inhibitor for the entire 30 days. LncRNA-MALAT1 suppression was evaluated by measuring blood hexosamine and hydroxyproline levels, and that of circulating endothelial progenitor cells (EPCs). Changes in femoral head bone ultrastructure were assessed via transmission electron microscopy and magnetic resonance imaging (MRI). We used reverse transcription polymerase chain reaction (RT-PCR) and Western blotting to measure gene and protein expression levels in femoral head tissue. Results The blood hexosamine level rose and that of hydroxyproline fell in the LncRNA-MALAT1 inhibitor group compared to the ANFH group. LncRNA-MALAT1 suppression increased the level of circulating EPCs. Ultrastructural changes in the femoral bone head were alleviated by the lncRNA-MALAT1 inhibitor. LncRNA-MALAT1 suppression lowered the levels of AMPK, mTOR, and Beclin-1 in rat tissue homogenates. Conclusions LncRNA-MALAT1 suppression attenuated dexamethasone-induced femoral head necrosis by regulating AMPK/mTOR/Beclin-1 signaling.
Collapse
Affiliation(s)
- Luyao Ma
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jian Gao
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
193
|
Ghafouri-Fard S, Mohammad-Rahimi H, Jazaeri M, Taheri M. Expression and function of long non-coding RNAs in head and neck squamous cell carcinoma. Exp Mol Pathol 2020; 112:104353. [DOI: 10.1016/j.yexmp.2019.104353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
|
194
|
LncRNA CAR10 Upregulates PDPK1 to Promote Cervical Cancer Development by Sponging miR-125b-5p. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4351671. [PMID: 32025520 PMCID: PMC6984746 DOI: 10.1155/2020/4351671] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023]
Abstract
Cervical cancer is one of the malignant tumors that seriously threaten women's health. The mechanism of development needs to be deeply studied. In recent years, lncRNA has been identified as one of the important factors affecting the malignant progression of tumors. In this study, we illustrated the important mechanism of lncRNA CAR10 in the development of cervical cancer. We found that CAR10 is significantly increased in4 cervical cancer tissues and cells, which can promote the proliferation of cervical cancer cells in vitro and in vivo, indicating that CAR10 is involved in the progression of cervical cancer as an oncogene. Further studies showed that CAR10 is a target gene of miR-125b-5p, and miR-125b-5p can inhibit the effect of CAR10 on the proliferation of cervical cancer cells. In addition, we also found that 3-phosphoinositide-dependent protein kinase 1 (PDPK1) is also a target gene of miR-125b-5p, and CAR10 can upregulate the expression level of PDPK1. The results showed that CAR10 acts as a ceRNA to upregulate the expression of PDPK1 by sponging miR-125b-5p. Knockdown of PDPK1 can inhibit the effect of CAR10 on cervical cancer cells. Our study demonstrates that, based on ceRNA mechanism, CAR10/miR-125b-5p/PDPK1 network can regulate the proliferation of cervical cancer cells and play an important role in the development of cervical cancer. In addition, our study also suggests that intervention of CAR10/miR-125b-5p/PDPK1 network may be a new strategy for targeted therapy of cervical cancer.
Collapse
|
195
|
Cao DW, Liu MM, Duan R, Tao YF, Zhou JS, Fang WR, Zhu JR, Niu L, Sun JG. The lncRNA Malat1 functions as a ceRNA to contribute to berberine-mediated inhibition of HMGB1 by sponging miR-181c-5p in poststroke inflammation. Acta Pharmacol Sin 2020; 41:22-33. [PMID: 31431734 PMCID: PMC7471439 DOI: 10.1038/s41401-019-0284-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/30/2019] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as essential mediators in neurological dysfunction. Our previous study shows that berberine (BBR) hampers the nuclear-to-cytosolic translocation of high-mobility group box 1 (HMGB1) in the process of poststroke inflammation. In this study, we explored the role of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1) in the process of BBR-induced inhibition of HMGB1 in ischemic brain. Before the 60-min MCAO surgery, the mice were pretreated with BBR (50 mg· kg-1 per day, ig) for 14 days or ICV injected with specific lentiviral vector or shRNA. We showed that MCAO caused marked increase in the expression Malat1 and HMGB1 in the ipsilateral cortex, which was significantly attenuated by pretreatment with BBR. Knockdown of Malat1 attenuated the inflammatory injury after brain ischemia, whereas overexpression of Malat1 exacerbated ischemic brain inflammation. Overexpression of Malat1 also reversed BBR-induced reduction of HMGB1 and proinflammatory cytokines. The above results suggested a potential correlation between Malat1 and stroke inflammation. Based on informatics analysis we predicted that HMGB1 was a direct downstream target of miR-181c-5p, whereas Malat1 acted as a competitive endogenous RNA (ceRNA) for miR-181c-5p targeted the 3'-UTR of HMGB1 to promote inflammation after ischemic stroke. Knockdown of Malat1 significantly decreased HMGB1 level, which could be abrogated by transfection with miR-181c-5p inhibitors. Taken together, our results demonstrate for the first time that Malat1/miR-181c-5p/HMGB1 axis may be a key pathway of BBR-induced antiinflammation effects in stroke, and they may provide a novel avenue for targeted therapy.
Collapse
|
196
|
Zhang R, Liu Y, Liu H, Chen W, Fan HN, Zhang J, Zhu JS. The long non-coding RNA SNHG12 promotes gastric cancer by activating the phosphatidylinositol 3-kinase/AKT pathway. Aging (Albany NY) 2019; 11:10902-10922. [PMID: 31808752 PMCID: PMC6932881 DOI: 10.18632/aging.102493] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/17/2019] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs contribute to the development of human cancers. We compared the long non-coding RNA levels in gastric cancer (GC) and para-cancerous tissues in the Gene Expression Omnibus, and found that small nucleolar RNA host gene 12 (SNHG12) was upregulated in GC tissues. Fluorescence in situ hybridization confirmed that SNHG12 is overexpressed in GC tissues. We then used data from The Cancer Genome Atlas to assess the association of SNHG12 expression with the clinicopathological characteristics and prognosis of GC patients and found that higher SNHG12 expression was associated with a greater tumor invasion depth and poorer survival. In vitro, silencing SNHG12 suppressed GC cell proliferation, migration and invasion, but induced apoptosis and cell cycle arrest. Overexpressing SNHG12 had the opposite effects. In xenografted mice, knocking down SNHG12 reduced GC tumor growth. Taken together, cancer pathway microarray and bioinformatics analyses, RNA pulldown assays, Western blotting and immunohistochemistry revealed that SNHG12 induces GC tumorigenesis by activating the phosphatidylinositol 3-kinase/AKT pathway. SNHG12 may thus be a useful marker for predicting poor survival in GC patients.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuan Liu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hui Liu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
197
|
Lin M, Xu Y, Gao Y, Pan C, Zhu X, Wang ZW. Regulation of F-box proteins by noncoding RNAs in human cancers. Cancer Lett 2019; 466:61-70. [DOI: 10.1016/j.canlet.2019.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
|
198
|
Ren X. Genome-wide analysis reveals the emerging roles of long non-coding RNAs in cancer. Oncol Lett 2019; 19:588-594. [PMID: 31897174 DOI: 10.3892/ol.2019.11141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer is the most intractable human disease that is primarily caused by genetic alterations. Recently, the general application of microarrays and high-throughput sequencing technology has revealed various important roles of long noncoding RNAs (lncRNAs) in cancer. This review summarizes the function, mechanism, diagnostic and treatment potential of lncRNAs identified through genome-wide analysis in cancer. Cell-, tissue- and development stage-specific expression patterns are major characteristics of cancer-associated lncRNAs, and various genetic alterations are also implicated. Microarray and sequencing analyses serve important roles in mechanistic studies of either nuclear or cytoplasmic lncRNAs. Collectively, genome-wide analysis is the inexorable trend of future studies or clinical applications of lncRNAs and offers a novel perspective regarding the prognosis and treatment of cancer.
Collapse
Affiliation(s)
- Xiaoxia Ren
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
199
|
Wu J, Wang C, Ding H. LncRNA MALAT1 promotes neuropathic pain progression through the miR‑154‑5p/AQP9 axis in CCI rat models. Mol Med Rep 2019; 21:291-303. [PMID: 31746418 PMCID: PMC6896295 DOI: 10.3892/mmr.2019.10829] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 10/15/2019] [Indexed: 01/23/2023] Open
Abstract
The present study investigated the role and molecular mechanism of long non‑coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript (MALAT)1 in neuropathic pain in rat chronic constriction injury (CCI) model. Reverse transcription‑quantitative PCR and western blot analysis were used to detect the expression levels of MALAT1, microRNA (miR)‑154‑5p and aquaporin (AQP)9 in spinal cord tissue and microglia of CCI rats. ELISA and pain behavioral assays were used to observe the effect of MALAT1 on neuropathic pain and neuroinflammation in model rats, and to verify its molecular mechanism through bioinformatics and luciferase experiments. The results of the present study identified that the expression levels of MALAT1 and AQP9 were upregulated, while miR‑154‑5p was downregulated in spinal cord tissue and microglia of CCI rats. MALAT1 knockdown in CCI model rats significantly induced the occurrence of neuropathic pain, while the upregulation of miR‑154‑5p could reverse this process. The present study also identified that miR‑154‑5p was the target gene of MALAT1, and AQP9 was the target gene of miR‑154‑5p. AQP9 knockdown promoted the occurrence of neuropathic pain. In conclusion, lncRNA MALAT1 promotes the progression of neuropathic pain in rats by reducing miR‑154‑5p and increasing AQP9. The MALAT1/miR‑154‑5p/AQP9 axis can be used as a new therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Jianping Wu
- Department of Anesthesia, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Chuanguang Wang
- Department of Anesthesia, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Haiyang Ding
- Department of Anesthesia, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
200
|
Ma B, Li Y, Ren Y. Identification of a 6-lncRNA prognostic signature based on microarray re-annotation in gastric cancer. Cancer Med 2019; 9:335-349. [PMID: 31743579 PMCID: PMC6943089 DOI: 10.1002/cam4.2621] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/17/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) remains an important malignancy worldwide with poor prognosis. Long noncoding RNAs (lncRNAs) can markedly affect cancer progression. Moreover, lncRNAs have been proposed as diagnostic or prognostic biomarkers of GC. Therefore, the current study aimed to explore lncRNA‐based prognostic biomarkers for GC. LncRNA expression profiles from the Gene Expression Omnibus (GEO) database were first downloaded. After re‐annotation of lncRNAs, a univariate Cox analysis identified 177 prognostic lncRNA probes in the training set http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254 (n = 225). Multivariate Cox analysis of each lncRNA with clinical characteristics as covariates identified a total of 46 prognostic lncRNA probes. Robust likelihood‐based survival and least absolute shrinkage and selection operator (LASSO) models were used to establish a 6‐lncRNA signature with prognostic value. Receiver operating characteristic (ROC) curve analyses were employed to compare survival prediction in terms of specificity and sensitivity. Patients with high‐risk scores exhibited a significantly worse overall survival (OS) than patients with low‐risk scores (log‐rank test P‐value <.0001), and the area under the ROC curve (AUC) for 5‐year survival was 0.77. A nomogram and forest plot were constructed to compare the clinical characteristics and risk scores by a multivariable Cox regression analysis, which suggested that the 6‐lncRNA signature can independently make the prognosis evaluation of patients. Single‐sample GSEA (ssGSEA) was used to determine the relationships between the 6‐lncRNA signature and biological functions. The internal validation set http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254 (n = 75) and the external validation set http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57303 (n = 70) were successfully used to validate the robustness of our 6‐lncRNA signature. In conclusion, based on the above results, the 6‐lncRNA signature can effectively make the prognosis evaluation of GC patients.
Collapse
Affiliation(s)
- Bin Ma
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, People's Republic of China
| | - Yongmin Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, People's Republic of China
| | - Yupeng Ren
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|