151
|
Avramouli A, Krokidis MG, Exarchos TP, Vlamos P. In Silico Structural Analysis Predicting the Pathogenicity of PLP1 Mutations in Multiple Sclerosis. Brain Sci 2022; 13:42. [PMID: 36672024 PMCID: PMC9856082 DOI: 10.3390/brainsci13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The X chromosome gene PLP1 encodes myelin proteolipid protein (PLP), the most prevalent protein in the myelin sheath surrounding the central nervous system. X-linked dysmyelinating disorders such as Pelizaeus-Merzbacher disease (PMD) or spastic paraplegia type 2 (SPG2) are typically caused by point mutations in PLP1. Nevertheless, numerous case reports have shown individuals with PLP1 missense point mutations which also presented clinical symptoms and indications that were consistent with the diagnostic criteria of multiple sclerosis (MS), a disabling disease of the brain and spinal cord with no current cure. Computational structural biology methods were used to assess the impact of these mutations on the stability and flexibility of PLP structure in order to determine the role of PLP1 mutations in MS pathogenicity. The analysis showed that most of the variants can alter the functionality of the protein structure such as R137W variants which results in loss of helix and H140Y which alters the ordered protein interface. In silico genomic methods were also performed to predict the significance of these mutations associated with impairments in protein functionality and could suggest a better definition for therapeutic strategies and clinical application in MS patients.
Collapse
Affiliation(s)
| | - Marios G. Krokidis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 491 00 Corfu, Greece
| | | | | |
Collapse
|
152
|
McCracken C, Raisi-Estabragh Z, Veldsman M, Raman B, Dennis A, Husain M, Nichols TE, Petersen SE, Neubauer S. Multi-organ imaging demonstrates the heart-brain-liver axis in UK Biobank participants. Nat Commun 2022; 13:7839. [PMID: 36543768 PMCID: PMC9772225 DOI: 10.1038/s41467-022-35321-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Medical imaging provides numerous insights into the subclinical changes that precede serious diseases such as heart disease and dementia. However, most imaging research either describes a single organ system or draws on clinical cohorts with small sample sizes. In this study, we use state-of-the-art multi-organ magnetic resonance imaging phenotypes to investigate cross-sectional relationships across the heart-brain-liver axis in 30,444 UK Biobank participants. Despite controlling for an extensive range of demographic and clinical covariates, we find significant associations between imaging-derived phenotypes of the heart (left ventricular structure, function and aortic distensibility), brain (brain volumes, white matter hyperintensities and white matter microstructure), and liver (liver fat, liver iron and fibroinflammation). Simultaneous three-organ modelling identifies differentially important pathways across the heart-brain-liver axis with evidence of both direct and indirect associations. This study describes a potentially cumulative burden of multiple-organ dysfunction and provides essential insight into multi-organ disease prevention.
Collapse
Affiliation(s)
- Celeste McCracken
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Zahra Raisi-Estabragh
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK.
| | - Michele Veldsman
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Betty Raman
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Andrea Dennis
- Perspectum Ltd, Gemini One, 5520 John Smith Drive, Oxford, OX4 2LL, UK
| | - Masud Husain
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Thomas E Nichols
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford, UK
- Nuffield Department of Population Health, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
- Health Data Research UK, London, UK
- The Alan Turing Institute, London, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| |
Collapse
|
153
|
Senko D, Gorovaya A, Stekolshchikova E, Anikanov N, Fedianin A, Baltin M, Efimova O, Petrova D, Baltina T, Lebedev MA, Khaitovich P, Tkachev A. Time-Dependent Effect of Sciatic Nerve Injury on Rat Plasma Lipidome. Int J Mol Sci 2022; 23:ijms232415544. [PMID: 36555183 PMCID: PMC9778848 DOI: 10.3390/ijms232415544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Neuropathic pain is a condition affecting the quality of life of a substantial part of the population, but biomarkers and treatment options are still limited. While this type of pain is caused by nerve damage, in which lipids play key roles, lipidome alterations related to nerve injury remain poorly studied. Here, we assessed blood lipidome alterations in a common animal model, the rat sciatic nerve crush injury. We analyzed alterations in blood lipid abundances between seven rats with nerve injury (NI) and eight control (CL) rats in a time-course experiment. For these rats, abundances of 377 blood lipid species were assessed at three distinct time points: immediately after, two weeks, and five weeks post injury. Although we did not detect significant differences between NI and CL at the first two time points, 106 lipids were significantly altered in NI five weeks post injury. At this time point, we found increased levels of triglycerides (TGs) and lipids containing esterified palmitic acid (16:0) in the blood plasma of NI animals. Lipids containing arachidonic acid (20:4), by contrast, were significantly decreased after injury, aligning with the crucial role of arachidonic acid reported for NI. Taken together, these results indicate delayed systematic alterations in fatty acid metabolism after nerve injury, potentially reflecting nerve tissue restoration dynamics.
Collapse
Affiliation(s)
- Dmitry Senko
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Anna Gorovaya
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Elena Stekolshchikova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Nickolay Anikanov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Artur Fedianin
- Research Laboratory of Mechanobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Maxim Baltin
- Research Laboratory of Mechanobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Olga Efimova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Daria Petrova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Tatyana Baltina
- Research Laboratory of Mechanobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Mikhail A. Lebedev
- Faculty of Mechanics and Mathematics, Moscow State University, 119991 Moscow, Russia
- Laboratory of Neurotechnology, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, 194223 Saint-Petersburg, Russia
| | - Philipp Khaitovich
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Anna Tkachev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Correspondence:
| |
Collapse
|
154
|
Andronie-Cioară FL, Jurcău A, Jurcău MC, Nistor-Cseppentö DC, Simion A. Cholesterol Management in Neurology: Time for Revised Strategies? J Pers Med 2022; 12:jpm12121981. [PMID: 36556202 PMCID: PMC9784893 DOI: 10.3390/jpm12121981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Statin therapy has been extensively evaluated and shown to reduce the incidence of new or recurrent vascular events, ischemic stroke included. As a consequence, each published guideline pushes for lower low-density cholesterol levels in the population at large, recommending increased statin doses and/or adding new cholesterol-lowering molecules. Neurologists find it sometimes difficult to apply these guidelines, having to confront situations such as (1) ischemic strokes, mainly cardioembolic ones, in patients with already low LDL-cholesterol levels; (2) myasthenic patients, whose lifespan has been extended by available treatment, and whose age and cholesterol levels put them at risk for ischemic stroke; (3) patients with myotonic dystrophy, whose disease often associates diabetes mellitus and heart conduction defects, and in whom blood cholesterol management is also not settled. As such, further trials are needed to address these issues.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioară
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Anamaria Jurcău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Maria Carolina Jurcău
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (M.C.J.); (D.C.N.-C.); Tel.: +40-744-600-833 (M.C.J.)
| | - Delia Carmen Nistor-Cseppentö
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (M.C.J.); (D.C.N.-C.); Tel.: +40-744-600-833 (M.C.J.)
| | - Aurel Simion
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
155
|
Mahony C, O'Ryan C. A molecular framework for autistic experiences: Mitochondrial allostatic load as a mediator between autism and psychopathology. Front Psychiatry 2022; 13:985713. [PMID: 36506457 PMCID: PMC9732262 DOI: 10.3389/fpsyt.2022.985713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Molecular autism research is evolving toward a biopsychosocial framework that is more informed by autistic experiences. In this context, research aims are moving away from correcting external autistic behaviors and toward alleviating internal distress. Autism Spectrum Conditions (ASCs) are associated with high rates of depression, suicidality and other comorbid psychopathologies, but this relationship is poorly understood. Here, we integrate emerging characterizations of internal autistic experiences within a molecular framework to yield insight into the prevalence of psychopathology in ASC. We demonstrate that descriptions of social camouflaging and autistic burnout resonate closely with the accepted definitions for early life stress (ELS) and chronic adolescent stress (CAS). We propose that social camouflaging could be considered a distinct form of CAS that contributes to allostatic overload, culminating in a pathophysiological state that is experienced as autistic burnout. Autistic burnout is thought to contribute to psychopathology via psychological and physiological mechanisms, but these remain largely unexplored by molecular researchers. Building on converging fields in molecular neuroscience, we discuss the substantial evidence implicating mitochondrial dysfunction in ASC to propose a novel role for mitochondrial allostatic load in the relationship between autism and psychopathology. An interplay between mitochondrial, neuroimmune and neuroendocrine signaling is increasingly implicated in stress-related psychopathologies, and these molecular players are also associated with neurodevelopmental, neurophysiological and neurochemical aspects of ASC. Together, this suggests an increased exposure and underlying molecular susceptibility to ELS that increases the risk of psychopathology in ASC. This article describes an integrative framework shaped by autistic experiences that highlights novel avenues for molecular research into mechanisms that directly affect the quality of life and wellbeing of autistic individuals. Moreover, this framework emphasizes the need for increased access to diagnoses, accommodations, and resources to improve mental health outcomes in autism.
Collapse
Affiliation(s)
| | - Colleen O'Ryan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
156
|
Intisar A, Shin HY, Kim W, Kang HG, Kim MY, Kim YS, Cho Y, Mo YJ, Lim H, Lee S, Lu QR, Lee Y, Kim MS. Implantable Electroceutical Approach Improves Myelination by Restoring Membrane Integrity in a Mouse Model of Peripheral Demyelinating Neuropathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201358. [PMID: 35975427 PMCID: PMC9661852 DOI: 10.1002/advs.202201358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Although many efforts are undertaken to treat peripheral demyelinating neuropathies based on biochemical interventions, unfortunately, there is no approved treatment yet. Furthermore, previous studies have not shown improvement of the myelin membrane at the biomolecular level. Here, an electroceutical treatment is introduced as a biophysical intervention to treat Charcot-Marie-Tooth (CMT) disease-the most prevalent peripheral demyelinating neuropathy worldwide-using a mouse model. The specific electrical stimulation (ES) condition (50 mV mm-1 , 20 Hz, 1 h) for optimal myelination is found via an in vitro ES screening system, and its promyelinating effect is validated with ex vivo dorsal root ganglion model. Biomolecular investigation via time-of-flight secondary ion mass spectrometry shows that ES ameliorates distribution abnormalities of peripheral myelin protein 22 and cholesterol in the myelin membrane, revealing the restoration of myelin membrane integrity. ES intervention in vivo via flexible implantable electrodes shows not only gradual rehabilitation of mouse behavioral phenotypes (balance and endurance), but also restored myelin thickness, compactness, and membrane integrity. This study demonstrates, for the first time, that an electroceutical approach with the optimal ES condition has the potential to treat CMT disease and restore impaired myelin membrane integrity, shifting the paradigm toward practical interventions for peripheral demyelinating neuropathies.
Collapse
Affiliation(s)
- Aseer Intisar
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Hyun Young Shin
- CTCELLS Corp.Daegu42988Republic of Korea
- SBCure Corp.Daegu43017Republic of Korea
| | | | - Hyun Gyu Kang
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Min Young Kim
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Yu Seon Kim
- Well Aging Research CenterDGISTDaegu42988Republic of Korea
| | - Youngjun Cho
- Department of Robotics and Mechatronics EngineeringDGISTDaegu42988Republic of Korea
| | - Yun Jeoung Mo
- Well Aging Research CenterDGISTDaegu42988Republic of Korea
| | - Heejin Lim
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Sanghoon Lee
- Department of Robotics and Mechatronics EngineeringDGISTDaegu42988Republic of Korea
| | - Q. Richard Lu
- Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
| | - Yun‐Il Lee
- Well Aging Research CenterDGISTDaegu42988Republic of Korea
| | - Minseok S. Kim
- Department of New BiologyDGISTDaegu42988Republic of Korea
- CTCELLS Corp.Daegu42988Republic of Korea
- Translational Responsive Medicine Center (TRMC)DGISTDaegu42988Republic of Korea
- New Biology Research Center (NBRC)DGISTDaegu42988Republic of Korea
| |
Collapse
|
157
|
Zhou B, Yan X, Yang L, Zheng X, Chen Y, Liu Y, Ren Y, Peng J, Zhang Y, Huang J, Tang L, Wen M. Effects of arginine vasopressin on the transcriptome of prefrontal cortex in autistic rat model. J Cell Mol Med 2022; 26:5493-5505. [PMID: 36239083 PMCID: PMC9639040 DOI: 10.1111/jcmm.17578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/04/2022] [Accepted: 09/25/2022] [Indexed: 11/25/2022] Open
Abstract
Our previous studies have also demonstrated that AVP can significantly improve social interaction disorders and stereotypical behaviours in rats with VPA‐induced autism model. To further explore the mechanisms of action of AVP, we compared the PFC transcriptome changes before and after AVP treatment in VPA‐induced autism rat model. The autism model was induced by intraperitoneally injected with VPA at embryonic day 12.5 and randomly assigned to two groups: the VPA‐induced autism model group and the AVP treatment group. The AVP treatment group were treated with intranasal AVP at postnatal day 21 and for 3 weeks. The gene expression levels and function changes on the prefrontal cortex were measured by RNA‐seq and bioinformatics analysis at PND42 and the mRNA expression levels of synaptic and myelin development related genes were validated by qPCR. Our results confirmed that AVP could significantly improve synaptic and axon dysplasia and promote oligodendrocyte development in the prefrontal cortex in VPA‐induced autism models by regulating multiple signalling pathways.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Xuehui Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Liu Yang
- Department of Neurology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Xiaoli Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Yunhua Chen
- College of Basic Medical, Guizhou Medical University, Guizhou, China
| | - Yibu Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Yibing Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Jingang Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Yi Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Jiayu Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Min Wen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| |
Collapse
|
158
|
Doty M, Yun S, Wang Y, Hu M, Cassidy M, Hall B, Kulkarni AB. Integrative multiomic analyses of dorsal root ganglia in diabetic neuropathic pain using proteomics, phospho-proteomics, and metabolomics. Sci Rep 2022; 12:17012. [PMID: 36220867 PMCID: PMC9553906 DOI: 10.1038/s41598-022-21394-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is characterized by spontaneous pain in the extremities. Incidence of DPN continues to rise with the global diabetes epidemic. However, there remains a lack of safe, effective analgesics to control this chronic painful condition. Dorsal root ganglia (DRG) contain soma of sensory neurons and modulate sensory signal transduction into the central nervous system. In this study, we aimed to gain a deeper understanding of changes in molecular pathways in the DRG of DPN patients with chronic pain. We recently reported transcriptomic changes in the DRG with DPN. Here, we expand upon those results with integrated metabolomic, proteomic, and phospho-proteomic analyses to compare the molecular profiles of DRG from DPN donors and DRG from control donors without diabetes or chronic pain. Our analyses identified decreases of select amino acids and phospholipid metabolites in the DRG from DPN donors, which are important for cellular maintenance. Additionally, our analyses revealed changes suggestive of extracellular matrix (ECM) remodeling and altered mRNA processing. These results reveal new insights into changes in the molecular profiles associated with DPN.
Collapse
Affiliation(s)
- Megan Doty
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sijung Yun
- Predictiv Care, Inc, Mountain View, CA, 94040, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Minghan Hu
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Margaret Cassidy
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bradford Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
159
|
Higher Total Cholesterol Concentration May Be Associated with Better Cognitive Performance among Elderly Females. Nutrients 2022; 14:nu14194198. [PMID: 36235850 PMCID: PMC9571708 DOI: 10.3390/nu14194198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The brain contains the highest level of cholesterol in the body, and the total amount of serum cholesterol in the blood has a huge impact on brain aging and cognitive performance. However, the association of total serum cholesterol with cognitive function remains uncertain. This study determines whether there is an association between the total amount of cholesterol in the blood and cognitive performance in elderly females without a history of stroke. METHODS This population-based cross-sectional study was conducted on elderly (over 60 years old) females and males without a history of stroke from 2011 to 2014 in the US National Health and Nutrition Examination Survey (NHANES). The primary exposure was total blood cholesterol, and the main outcome was cognitive performance; this association was assessed with logistic regression analysis and restricted cubic splines. RESULTS 1309 female and 1272 male participants were included. In females, higher total cholesterol was significantly associated with higher cognitive scores, particularly in the digit symbol substitution test (OR 0.51, 95% CI (0.36-0.72)) and the animal fluency test (OR 0.64, 95% CI (0.45-0.91)). This association remained significant in models adjusted for age, race, smoking status, education level, and chronic conditions (OR 0.40, 95% CI (0.25-0.63)). This association was not significant in males, however. CONCLUSIONS A higher concentration of total cholesterol measured in later life may be a protective factor for cognitive performance among females over 60 years old without a history of stroke. Further, this association was more pronounced among women with higher levels of education than women with lower or no education.
Collapse
|
160
|
Hammel G, Zivkovic S, Ayazi M, Ren Y. Consequences and mechanisms of myelin debris uptake and processing by cells in the central nervous system. Cell Immunol 2022; 380:104591. [PMID: 36030093 DOI: 10.1016/j.cellimm.2022.104591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Central nervous system (CNS) disorders and trauma involving changes to the neuronal myelin sheath have long been a topic of great interest. One common pathological change in these diseases is the generation of myelin debris resulting from the breakdown of the myelin sheath. Myelin debris contains many inflammatory and neurotoxic factors that inhibit remyelination and make its clearance a prerequisite for healing in CNS disorders. Many professional and semiprofessional phagocytes participate in the clearance of myelin debris in the CNS. These cells use various mechanisms for the uptake of myelin debris, and each cell type produces its own unique set of pathologic consequences resulting from the debris uptake. Examining these cells' phagocytosis of myelin debris will contribute to a more complete understanding of CNS disease pathogenesis and help us conceptualize how the necessary clearance of myelin debris must be balanced with the detrimental consequences brought about by its clearance.
Collapse
Affiliation(s)
- Grace Hammel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Sandra Zivkovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Maryam Ayazi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| |
Collapse
|
161
|
Quaternary structure of patient-homogenate amplified α-synuclein fibrils modulates seeding of endogenous α-synuclein. Commun Biol 2022; 5:1040. [PMID: 36180728 PMCID: PMC9525671 DOI: 10.1038/s42003-022-03948-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
Parkinson's disease (PD) and Multiple System Atrophy (MSA) are progressive and unremitting neurological diseases that are neuropathologically characterized by α-synuclein inclusions. Increasing evidence supports the aggregation of α-synuclein in specific brain areas early in the disease course, followed by the spreading of α-synuclein pathology to multiple brain regions. However, little is known about how the structure of α-synuclein fibrils influence its ability to seed endogenous α-synuclein in recipient cells. Here, we aggregated α-synuclein by seeding with homogenates of PD- and MSA-confirmed brain tissue, determined the resulting α-synuclein fibril structures by cryo-electron microscopy, and characterized their seeding potential in mouse primary oligodendroglial cultures. The combined analysis shows that the two patient material-amplified α-synuclein fibrils share a similar protofilament fold but differ in their inter-protofilament interface and their ability to recruit endogenous α-synuclein. Our study indicates that the quaternary structure of α-synuclein fibrils modulates the seeding of α-synuclein pathology inside recipient cells. It thus provides an important advance in the quest to understand the connection between the structure of α-synuclein fibrils, cellular seeding/spreading, and ultimately the clinical manifestations of different synucleinopathies.
Collapse
|
162
|
Bittencourt LO, Matta PPM, Nascimento PC, Eiró-Quirino L, Aragão WAB, Dionizio A, Fernandes LMP, Silva MCF, Buzalaf MAR, Aschner M, Crespo-Lopez ME, Maia CSF, Lima RR. Deciphering the Global Proteomic Profile Involved in Methylmercury-Induced Cerebellar Neurodegeneration and Motor Dysfunction in Adult Rats. TOXICS 2022; 10:531. [PMID: 36136496 PMCID: PMC9500842 DOI: 10.3390/toxics10090531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Mercury is a ubiquitous pollutant in the environment with potential neurotoxic effects. Several populations are susceptible to mercurial exposure, especially methylmercury (MeHg) at low doses for long periods through food consumption. Given this, the present work aimed to assess the effects of long-term MeHg exposure on the cerebellum of rats from a translational perspective using a representative dose, assessing molecular, biochemical, morphological, and behavioral parameters. The model was produced by administering 40 µg/kg of MeHg for 60 days to adult male Wistar rats by oral gavage. As a result of this exposure, the animals presented motor deficits in open field and rotarod tests which were associated with an increase in total mercury content in cerebellar parenchyma, a reduction in antioxidant competence against peroxyl radicals, and increased nitrite and lipid peroxidation levels. The proteomic approach showed 317 modulated proteins. Such findings were associated with reductions in mature neuron and Purkinje cell densities and glial fibrillary acidic protein immunostained areas and increased microglial density. In addition, decreases in myelin basic protein and synaptophysin immunostaining were also observed. The results thus provided new evidence of the mechanisms underlying complex MeHg-induced neurodegeneration, especially the proteins underlying the biochemical and morphological features associated with motor dysfunction.
Collapse
Affiliation(s)
- Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Pedro Philipe Moreira Matta
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Luciana Eiró-Quirino
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-90, SP, Brazil
| | - Luanna Melo Pereira Fernandes
- Department of Morphology and Physiological Sciences, Center of Biological and Health Sciences, State Unversity of Pará, Belém 66087-662, PA, Brazil
| | - Márcia Cristina Freitas Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Cristiane Socorro Ferraz Maia
- Laboratory Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
163
|
Rumora AE, Kim B, Feldman EL. A Role for Fatty Acids in Peripheral Neuropathy Associated with Type 2 Diabetes and Prediabetes. Antioxid Redox Signal 2022; 37:560-577. [PMID: 35152728 PMCID: PMC9499450 DOI: 10.1089/ars.2021.0155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/12/2022]
Abstract
Significance: As the global prevalence of diabetes rises, diabetic complications are also increasing at an alarming rate. Peripheral neuropathy (PN) is the most prevalent complication of diabetes and prediabetes, and is characterized by progressive sensory loss resulting from nerve damage. While hyperglycemia is the major risk factor for PN in type 1 diabetes (T1D), the metabolic syndrome (MetS) underlies the onset and progression of PN in type 2 diabetes (T2D) and prediabetes. Recent Advances: Recent reports show that dyslipidemia, a MetS component, is strongly associated with PN in T2D and prediabetes. Dyslipidemia is characterized by an abnormal plasma lipid profile with uncontrolled lipid levels, and both clinical and preclinical studies implicate a role for dietary fatty acids (FAs) in PN pathogenesis. Molecular studies further show that saturated and unsaturated FAs differentially regulate the nerve lipid profile and nerve function. Critical Issues: We first review the properties of FAs and the neuroanatomy of the peripheral nervous system (PNS). Second, we discuss clinical and preclinical studies that implicate the involvement of FAs in PN. Third, we summarize the potential effects of FAs on nerve function and lipid metabolism within the peripheral nerves, sensory neurons, and Schwann cells. Future Directions: Future directions will focus on identifying molecular pathways in T2D and prediabetes that are modulated by FAs in PN. Determining pathophysiological mechanisms that underlie the injurious effects of saturated FAs and beneficial properties of unsaturated FAs will provide mechanistic targets for developing new targeted therapies to treat PN associated with T2D and prediabetes. Antioxid. Redox Signal. 37, 560-577.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of Neurology, Columbia University, New York, New York, USA
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bhumsoo Kim
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
164
|
Rumora AE, Guo K, Hinder LM, O’Brien PD, Hayes JM, Hur J, Feldman EL. A High-Fat Diet Disrupts Nerve Lipids and Mitochondrial Function in Murine Models of Neuropathy. Front Physiol 2022; 13:921942. [PMID: 36072849 PMCID: PMC9441493 DOI: 10.3389/fphys.2022.921942] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
As the prevalence of prediabetes and type 2 diabetes (T2D) continues to increase worldwide, accompanying complications are also on the rise. The most prevalent complication, peripheral neuropathy (PN), is a complex process which remains incompletely understood. Dyslipidemia is an emerging risk factor for PN in both prediabetes and T2D, suggesting that excess lipids damage peripheral nerves; however, the precise lipid changes that contribute to PN are unknown. To identify specific lipid changes associated with PN, we conducted an untargeted lipidomics analysis comparing the effect of high-fat diet (HFD) feeding on lipids in the plasma, liver, and peripheral nerve from three strains of mice (BL6, BTBR, and BKS). HFD feeding triggered distinct strain- and tissue-specific lipid changes, which correlated with PN in BL6 mice versus less robust murine models of metabolic dysfunction and PN (BTBR and BKS mice). The BL6 mice showed significant changes in neutral lipids, phospholipids, lysophospholipids, and plasmalogens within the nerve. Sphingomyelin (SM) and lysophosphatidylethanolamine (LPE) were two lipid species that were unique to HFD BL6 sciatic nerve compared to other strains (BTBR and BKS). Plasma and liver lipids were significantly altered in all murine strains fed a HFD independent of PN status, suggesting that nerve-specific lipid changes contribute to PN pathogenesis. Many of the identified lipids affect mitochondrial function and mitochondrial bioenergetics, which were significantly impaired in ex vivo sural nerve and dorsal root ganglion sensory neurons. Collectively, our data show that consuming a HFD dysregulates the nerve lipidome and mitochondrial function, which may contribute to PN in prediabetes.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, Columbia University, New York, NY, United States
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Phillipe D. O’Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Junguk Hur
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
165
|
Oliveira M, Koshibu K, Rytz A, Giuffrida F, Sultan S, Patin A, Gaudin M, Tomezyk A, Steiner P, Schneider N. Early Life to Adult Brain Lipidome Dynamic: A Temporospatial Study Investigating Dietary Polar Lipid Supplementation Efficacy. Front Nutr 2022; 9:898655. [PMID: 35967787 PMCID: PMC9364220 DOI: 10.3389/fnut.2022.898655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The lipid composition of the brain is well regulated during development, and the specific temporospatial distribution of various lipid species is essential for the development of optimal neural functions. Dietary lipids are the main source of brain lipids and thus contribute to the brain lipidome. Human milk is the only source of a dietary lipids for exclusively breastfed infant. Notably, it contains milk fat globule membrane (MFGM) enriched in polar lipids (PL). While early life is a key for early brain development, the interplay between dietary intake of polar lipids and spatial dynamics of lipid distribution during brain development is poorly understood. Here, we carried out an exploratory study to assess the early postnatal temporal profiling of brain lipidome between postnatal day (PND) 7 and PND 50 using matrix-assisted laser desorption ionization as a mass spectrometry imaging (MALDI-MSI) in an in vivo preclinical model. We also assessed the effect of chronic supplementation with PL extracted from alpha-lactalbumin-enriched whey protein concentrate (WPC) containing 10% lipids, including major lipid classes found in the brain (37% phospholipids and 15% sphingomyelin). MALDI-MSI of the spatial and temporal accretion of lipid species during brain development showed that the brain lipidome is changing heterogeneously along time during brain development. In addition, increases in 400+ PL supplement-dependent lipids were observed. PL supplementation had significant spatial and temporal effect on specific fatty esters, glycerophosphocholines, glycerophosphoethanolamines, and phosphosphingolipids. Interestingly, the average levels of these lipids per brain area tended to be constant in various brain structures across the age groups, paralleling the general brain growth. In contrast, other lipids, such as cytidine diphosphate diacylglycerol, diacylglycerophosphates, phosphocholines, specific ether-phosphoethanolamines, phosphosphingolipids, glycerophosphoinositols, and glycerophosphoserines showed clear age-dependent changes uncoupled from the general brain growth. These results suggest that the dietary PL supplementation may preferentially provide the building blocks for the general brain growth during development. Our findings add to the understanding of brain-nutrient relations, their temporospatial dynamics, and potential impact on neurodevelopment.
Collapse
Affiliation(s)
- Manuel Oliveira
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Kyoko Koshibu
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Andreas Rytz
- Clinical Research Unit, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Francesca Giuffrida
- Analytical Science Department, Nestlé Institute of Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Sebastien Sultan
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Amaury Patin
- Analytical Science Department, Nestlé Institute of Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | | | | | - Pascal Steiner
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Nora Schneider
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| |
Collapse
|
166
|
Nowacki JC, Fields AM, Fu MM. Emerging cellular themes in leukodystrophies. Front Cell Dev Biol 2022; 10:902261. [PMID: 36003149 PMCID: PMC9393611 DOI: 10.3389/fcell.2022.902261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Leukodystrophies are a broad spectrum of neurological disorders that are characterized primarily by deficiencies in myelin formation. Clinical manifestations of leukodystrophies usually appear during childhood and common symptoms include lack of motor coordination, difficulty with or loss of ambulation, issues with vision and/or hearing, cognitive decline, regression in speech skills, and even seizures. Many cases of leukodystrophy can be attributed to genetic mutations, but they have diverse inheritance patterns (e.g., autosomal recessive, autosomal dominant, or X-linked) and some arise from de novo mutations. In this review, we provide an updated overview of 35 types of leukodystrophies and focus on cellular mechanisms that may underlie these disorders. We find common themes in specialized functions in oligodendrocytes, which are specialized producers of membranes and myelin lipids. These mechanisms include myelin protein defects, lipid processing and peroxisome dysfunction, transcriptional and translational dysregulation, disruptions in cytoskeletal organization, and cell junction defects. In addition, non-cell-autonomous factors in astrocytes and microglia, such as autoimmune reactivity, and intercellular communication, may also play a role in leukodystrophy onset. We hope that highlighting these themes in cellular dysfunction in leukodystrophies may yield conceptual insights on future therapeutic approaches.
Collapse
|
167
|
Woo A, Botta A, Shi SSW, Paus T, Pausova Z. Obesity-Related Neuroinflammation: Magnetic Resonance and Microscopy Imaging of the Brain. Int J Mol Sci 2022; 23:8790. [PMID: 35955925 PMCID: PMC9368789 DOI: 10.3390/ijms23158790] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/01/2022] Open
Abstract
Obesity is a major risk factor of Alzheimer's disease and related dementias. The principal feature of dementia is a loss of neurons and brain atrophy. The mechanistic links between obesity and the neurodegenerative processes of dementias are not fully understood, but recent research suggests that obesity-related systemic inflammation and subsequent neuroinflammation may be involved. Adipose tissues release multiple proinflammatory molecules (fatty acids and cytokines) that impact blood and vessel cells, inducing low-grade systemic inflammation that can transition to tissues, including the brain. Inflammation in the brain-neuroinflammation-is one of key elements of the pathobiology of neurodegenerative disorders; it is characterized by the activation of microglia, the resident immune cells in the brain, and by the structural and functional changes of other cells forming the brain parenchyma, including neurons. Such cellular changes have been shown in animal models with direct methods, such as confocal microscopy. In humans, cellular changes are less tangible, as only indirect methods such as magnetic resonance (MR) imaging are usually used. In these studies, obesity and low-grade systemic inflammation have been associated with lower volumes of the cerebral gray matter, cortex, and hippocampus, as well as altered tissue MR properties (suggesting microstructural variations in cellular and molecular composition). How these structural variations in the human brain observed using MR imaging relate to the cellular variations in the animal brain seen with microscopy is not well understood. This review describes the current understanding of neuroinflammation in the context of obesity-induced systemic inflammation, and it highlights need for the bridge between animal microscopy and human MR imaging studies.
Collapse
Affiliation(s)
- Anita Woo
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Amy Botta
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Sammy S. W. Shi
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Tomas Paus
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC H3T 1C5, Canada
- Departments of Psychiatry of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- ECOGENE-21, Chicoutimi, QC G7H 7K9, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
- ECOGENE-21, Chicoutimi, QC G7H 7K9, Canada
| |
Collapse
|
168
|
Naffaa V, Magny R, Regazzetti A, Van Steenwinckel J, Gressens P, Laprévote O, Auzeil N, Schang AL. Shift in phospholipid and fatty acid contents accompanies brain myelination. Biochimie 2022; 203:20-31. [DOI: 10.1016/j.biochi.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
|
169
|
Lu F, Ferriero DM, Jiang X. Cholesterol in Brain Development and Perinatal Brain Injury: More than a Building Block. Curr Neuropharmacol 2022; 20:1400-1412. [PMID: 34766894 PMCID: PMC9881076 DOI: 10.2174/1570159x19666211111122311] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
The central nervous system (CNS) is enriched with important classes of lipids, in which cholesterol is known to make up a major portion of myelin sheaths, besides being a structural and functional unit of CNS cell membranes. Unlike in the adult brain, where the cholesterol pool is relatively stable, cholesterol is synthesized and accumulated at the highest rate in the developing brain to meet the needs of rapid brain growth at this stage, which is also a critical period for neuroplasticity. In addition to its biophysical role in membrane organization, cholesterol is crucial for brain development due to its involvement in brain patterning, myelination, neuronal differentiation, and synaptogenesis. Thus any injuries to the immature brain that affect cholesterol homeostasis may have long-term adverse neurological consequences. In this review, we describe the unique features of brain cholesterol biosynthesis and metabolism, cholesterol trafficking between different cell types, and highlight cholesterol-dependent biological processes during brain maturation. We also discuss the association of impaired cholesterol homeostasis with several forms of perinatal brain disorders in term and preterm newborns, including hypoxic-ischemic encephalopathy. Strategies targeting the cholesterol pathways may open new avenues for the diagnosis and treatment of developmental brain injury.
Collapse
Affiliation(s)
- Fuxin Lu
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA;
| | - Donna M. Ferriero
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA; ,Departments of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Xiangning Jiang
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA; ,Address correspondence to this author at the Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane Room 494, San Francisco, CA 94158, USA; Tel/Fax: 415-502-7285; E-mail:
| |
Collapse
|
170
|
The role of NURR1 in metabolic abnormalities of Parkinson's disease. Mol Neurodegener 2022; 17:46. [PMID: 35761385 PMCID: PMC9235236 DOI: 10.1186/s13024-022-00544-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/21/2022] [Indexed: 11/30/2022] Open
Abstract
A constant metabolism and energy supply are crucial to all organs, particularly the brain. Age-dependent neurodegenerative diseases, such as Parkinson’s disease (PD), are associated with alterations in cellular metabolism. These changes have been recognized as a novel hot topic that may provide new insights to help identify risk in the pre-symptomatic phase of the disease, understand disease pathogenesis, track disease progression, and determine critical endpoints. Nuclear receptor-related factor 1 (NURR1), an orphan member of the nuclear receptor superfamily of transcription factors, is a major risk factor in the pathogenesis of PD, and changes in NURR1 expression can have a detrimental effect on cellular metabolism. In this review, we discuss recent evidence that suggests a vital role of NURR1 in dopaminergic (DAergic) neuron development and the pathogenesis of PD. The association between NURR1 and cellular metabolic abnormalities and its implications for PD therapy have been further highlighted.
Collapse
|
171
|
Sadler GL, Lewis KN, Narayana VK, De Souza DP, Mason J, McLean C, Gonsalvez DG, Turner BJ, Barton SK. Lipid Metabolism Is Dysregulated in the Motor Cortex White Matter in Amyotrophic Lateral Sclerosis. Metabolites 2022; 12:metabo12060554. [PMID: 35736487 PMCID: PMC9230865 DOI: 10.3390/metabo12060554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism is profoundly dysregulated in amyotrophic lateral sclerosis (ALS), yet the lipid composition of the white matter, where the myelinated axons of motor neurons are located, remains uncharacterised. We aimed to comprehensively characterise how myelin is altered in ALS by assessing its lipid and protein composition. We isolated white matter from the motor cortex from post-mortem tissue of ALS patients (n = 8 sporadic ALS cases and n = 6 familial ALS cases) and age- and sex-matched controls (n = 8) and conducted targeted lipidomic analyses, qPCR for gene expression of relevant lipid metabolising enzymes and Western blotting for myelin proteins. We also quantified myelin density by using spectral confocal reflectance microscopy (SCoRe). Whilst myelin protein composition was similar in ALS and control tissue, both the lipid levels and the expression of their corresponding enzymes were dysregulated, highlighting altered lipid metabolism in the white matter as well as a likely change in myelin composition. Altered myelin composition could contribute to motor neuron dysfunction, and this highlights how oligodendrocytes may play a critical role in ALS pathogenesis.
Collapse
Affiliation(s)
- Gemma L. Sadler
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Katherine N. Lewis
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Vinod K. Narayana
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne 3052, Australia; (V.K.N.); (D.P.D.S.)
| | - David P. De Souza
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne 3052, Australia; (V.K.N.); (D.P.D.S.)
| | - Joel Mason
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Catriona McLean
- Victorian Brain Bank, Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia;
| | - David G. Gonsalvez
- Department of Anatomy and Developmental Biology, Monash University, Melbourne 3168, Australia;
| | - Bradley J. Turner
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Samantha K. Barton
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
- Correspondence:
| |
Collapse
|
172
|
Beger AW, Hauther KA, Dudzik B, Woltjer RL, Wood PL. Human Brain Lipidomics: Investigation of Formalin Fixed Brains. Front Mol Neurosci 2022; 15:835628. [PMID: 35782380 PMCID: PMC9245516 DOI: 10.3389/fnmol.2022.835628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Human brain lipidomics have elucidated structural lipids and lipid signal transduction pathways in neurologic diseases. Such studies have traditionally sourced tissue exclusively from brain bank biorepositories, however, limited inventories signal that these facilities may not be able to keep pace with this growing research domain. Formalin fixed, whole body donors willed to academic institutions offer a potential supplemental tissue source, the lipid profiles of which have yet to be described. To determine the potential of these subjects in lipid analysis, the lipid levels of fresh and fixed frontal cortical gray matter of human donors were compared using high resolution electrospray ionization mass spectrometry. Results revealed commensurate levels of specific triacylglycerols, diacylglycerols, hexosyl ceramides, and hydroxy hexosyl ceramides. Baseline levels of these lipid families in human fixed tissue were identified via a broader survey study covering six brain regions: cerebellar gray matter, superior cerebellar peduncle, gray and subcortical white matter of the precentral gyrus, periventricular white matter, and internal capsule. Whole body donors may therefore serve as supplemental tissue sources for lipid analysis in a variety of clinical contexts, including Parkinson's disease, Alzheimer's disease, Lewy body dementia, multiple sclerosis, and Gaucher's disease.
Collapse
Affiliation(s)
- Aaron W. Beger
- Department of Anatomy, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Kathleen A. Hauther
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Beatrix Dudzik
- Department of Anatomy, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Randall L. Woltjer
- Department of Neurology, Oregon Health Science University, Portland, OR, United States
- Portland VA Medical Center, Portland, OR, United States
| | - Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| |
Collapse
|
173
|
Application of the adverse outcome pathway concept for investigating developmental neurotoxicity potential of Chinese herbal medicines by using human neural progenitor cells in vitro. Cell Biol Toxicol 2022; 39:319-343. [PMID: 35701726 PMCID: PMC10042984 DOI: 10.1007/s10565-022-09730-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/10/2022] [Indexed: 12/16/2022]
Abstract
Adverse outcome pathways (AOPs) are organized sequences of key events (KEs) that are triggered by a xenobiotic-induced molecular initiating event (MIE) and summit in an adverse outcome (AO) relevant to human or ecological health. The AOP framework causally connects toxicological mechanistic information with apical endpoints for application in regulatory sciences. AOPs are very useful to link endophenotypic, cellular endpoints in vitro to adverse health effects in vivo. In the field of in vitro developmental neurotoxicity (DNT), such cellular endpoints can be assessed using the human "Neurosphere Assay," which depicts different endophenotypes for a broad variety of neurodevelopmental KEs. Combining this model with large-scale transcriptomics, we evaluated DNT hazards of two selected Chinese herbal medicines (CHMs) Lei Gong Teng (LGT) and Tian Ma (TM), and provided further insight into their modes-of-action (MoA). LGT disrupted hNPC migration eliciting an exceptional migration endophenotype. Time-lapse microscopy and intervention studies indicated that LGT disturbs laminin-dependent cell adhesion. TM impaired oligodendrocyte differentiation in human but not rat NPCs and activated a gene expression network related to oxidative stress. The LGT results supported a previously published AOP on radial glia cell adhesion due to interference with integrin-laminin binding, while the results of TM exposure were incorporated into a novel putative, stressor-based AOP. This study demonstrates that the combination of phenotypic and transcriptomic analyses is a powerful tool to elucidate compounds' MoA and incorporate the results into novel or existing AOPs for a better perception of the DNT hazard in a regulatory context.
Collapse
|
174
|
Creswell R, Dombrowski Y. Innate and adaptive immune mechanisms regulating central nervous system remyelination. Curr Opin Pharmacol 2022; 63:102175. [DOI: 10.1016/j.coph.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
|
175
|
Naffaa V, Hochar I, Lama C, Magny R, Regazzetti A, Gressens P, Laprévote O, Auzeil N, Schang AL. Bisphenol A Impairs Lipid Remodeling Accompanying Cell Differentiation in the Oligodendroglial Cell Line Oli-Neu. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072274. [PMID: 35408676 PMCID: PMC9000593 DOI: 10.3390/molecules27072274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022]
Abstract
In the central nervous system, the process of myelination involves oligodendrocytes that wrap myelin around axons. Myelin sheaths are mainly composed of lipids and ensure efficient conduction of action potentials. Oligodendrocyte differentiation is an essential preliminary step to myelination which, in turn, is a key event of neurodevelopment. Bisphenol A (BPA), a ubiquitous endocrine disruptor, is suspected to disrupt this developmental process and may, thus, contribute to several neurodevelopmental disorders. In this study, we assessed the effect of BPA on oligodendrocyte differentiation through a comprehensive analysis of cell lipidome by UHPLC-HRMS. For this purpose, we exposed the oligodendroglial cell line Oli-neu to several BPA concentrations for 72 h of proliferation and another 72 h of differentiation. In unexposed cells, significant changes occurred in lipid distribution during Oli-neu differentiation, including an increase in characteristic myelin lipids, sulfatides, and ethanolamine plasmalogens, and a marked remodeling of phospholipid subclasses and fatty acid contents. Moreover, BPA induced a decrease in sulfatide and phosphatidylinositol plasmalogen contents and modified monounsaturated/polyunsaturated fatty acid relative contents in phospholipids. These effects counteracted the lipid remodeling accompanying differentiation and were confirmed by gene expression changes. Altogether, our results suggest that BPA disrupts lipid remodeling accompanying early oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Vanessa Naffaa
- CiTCoM, CNRS, Université Paris Cité, 75006 Paris, France; (V.N.); (I.H.); (C.L.); (R.M.); (A.R.); (O.L.); (N.A.)
| | - Isabelle Hochar
- CiTCoM, CNRS, Université Paris Cité, 75006 Paris, France; (V.N.); (I.H.); (C.L.); (R.M.); (A.R.); (O.L.); (N.A.)
| | - Chéryane Lama
- CiTCoM, CNRS, Université Paris Cité, 75006 Paris, France; (V.N.); (I.H.); (C.L.); (R.M.); (A.R.); (O.L.); (N.A.)
| | - Romain Magny
- CiTCoM, CNRS, Université Paris Cité, 75006 Paris, France; (V.N.); (I.H.); (C.L.); (R.M.); (A.R.); (O.L.); (N.A.)
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU ForeSight, Sorbonne Université UM80, 75012 Paris, France
| | - Anne Regazzetti
- CiTCoM, CNRS, Université Paris Cité, 75006 Paris, France; (V.N.); (I.H.); (C.L.); (R.M.); (A.R.); (O.L.); (N.A.)
| | - Pierre Gressens
- NeuroDiderot, Inserm, Université Paris Cité, 75019 Paris, France;
| | - Olivier Laprévote
- CiTCoM, CNRS, Université Paris Cité, 75006 Paris, France; (V.N.); (I.H.); (C.L.); (R.M.); (A.R.); (O.L.); (N.A.)
- Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 75015 Paris, France
| | - Nicolas Auzeil
- CiTCoM, CNRS, Université Paris Cité, 75006 Paris, France; (V.N.); (I.H.); (C.L.); (R.M.); (A.R.); (O.L.); (N.A.)
| | - Anne-Laure Schang
- UMR 1153 CRESS, Université Paris Cité, 75004 Paris, France
- Correspondence:
| |
Collapse
|
176
|
Changes in the Cerebrospinal Fluid and Plasma Lipidome in Patients with Rett Syndrome. Metabolites 2022; 12:metabo12040291. [PMID: 35448478 PMCID: PMC9026385 DOI: 10.3390/metabo12040291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Rett syndrome (RTT) is defined as a rare disease caused by mutations of the methyl-CpG binding protein 2 (MECP2). It is one of the most common causes of genetic mental retardation in girls, characterized by normal early psychomotor development, followed by severe neurologic regression. Hitherto, RTT lacks a specific biomarker, but altered lipid homeostasis has been found in RTT model mice as well as in RTT patients. We performed LC-MS/MS lipidomics analysis to investigate the cerebrospinal fluid (CSF) and plasma composition of patients with RTT for biochemical variations compared to healthy controls. In all seven RTT patients, we found decreased CSF cholesterol levels compared to age-matched controls (n = 13), whereas plasma cholesterol levels were within the normal range in all 13 RTT patients compared to 18 controls. Levels of phospholipid (PL) and sphingomyelin (SM) species were decreased in CSF of RTT patients, whereas the lipidomics profile of plasma samples was unaltered in RTT patients compared to healthy controls. This study shows that the CSF lipidomics profile is altered in RTT, which is the basis for future (functional) studies to validate selected lipid species as CSF biomarkers for RTT.
Collapse
|
177
|
Chasapis CT, Kelaidonis K, Ridgway H, Apostolopoulos V, Matsoukas JM. The Human Myelin Proteome and Sub-Metalloproteome Interaction Map: Relevance to Myelin-Related Neurological Diseases. Brain Sci 2022; 12:brainsci12040434. [PMID: 35447967 PMCID: PMC9029312 DOI: 10.3390/brainsci12040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Myelin in humans is composed of about 80% lipids and 20% protein. Initially, myelin protein composition was considered low, but various recent proteome analyses have identified additional myelin proteins. Although, the myelin proteome is qualitatively and quantitatively identified through complementary proteomic approaches, the corresponding Protein–Protein Interaction (PPI) network of myelin is not yet available. In the present work, the PPI network was constructed based on available experimentally supported protein interactions of myelin in PPI databases. The network comprised 2017 PPIs between 567 myelin proteins. Interestingly, structure-based in silico analysis revealed that 20% of the myelin proteins that are interconnected in the proposed PPI network are metal-binding proteins/enzymes that construct the main sub-PPI network of myelin proteome. Finally, the PPI networks of the myelin proteome and sub-metalloproteome were analyzed ontologically to identify the biochemical processes of the myelin proteins and the interconnectivity of myelin-associated diseases in the interactomes. The presented PPI dataset could provide a useful resource to the scientific community to further our understanding of human myelin biology and serve as a basis for future studies of myelin-related neurological diseases and particular autoimmune diseases such as multiple sclerosis where myelin epitopes are implicated.
Collapse
Affiliation(s)
- Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 26504 Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 26504 Patras, Greece
- Correspondence: (C.T.C.); (J.M.M.)
| | | | - Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 3030, Australia;
- AquaMem Scientific Consultants, Rodeo, NM 88056, USA
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - John M. Matsoukas
- NewDrug PC, Patras Science Park, 26504 Patras, Greece;
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence: (C.T.C.); (J.M.M.)
| |
Collapse
|
178
|
Halperin ST, ’t Hart BA, Luchicchi A, Schenk GJ. The Forgotten Brother: The Innate-like B1 Cell in Multiple Sclerosis. Biomedicines 2022; 10:606. [PMID: 35327408 PMCID: PMC8945227 DOI: 10.3390/biomedicines10030606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS), traditionally considered a chronic autoimmune attack against the insulating myelin sheaths around axons. However, the exact etiology has not been identified and is likely multi-factorial. Recently, evidence has been accumulating that implies that autoimmune processes underlying MS may, in fact, be triggered by pathological processes initiated within the CNS. This review focuses on a relatively unexplored immune cell-the "innate-like" B1 lymphocyte. The B1 cell is a primary-natural-antibody- and anti-inflammatory-cytokine-producing cell present in the healthy brain. It has been recently shown that its frequency and function may differ between MS patients and healthy controls, but its exact involvement in the MS pathogenic process remains obscure. In this review, we propose that this enigmatic cell may play a more prominent role in MS pathology than ever imagined. We aim to shed light on the human B1 cell in health and disease, and how dysregulation in its delicate homeostatic role could impact MS. Furthermore, novel therapeutic avenues to restore B1 cells' beneficial functions will be proposed.
Collapse
Affiliation(s)
| | | | - Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| | - Geert J. Schenk
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| |
Collapse
|
179
|
Gu J, Chen L, Sun R, Wang JL, Wang J, Lin Y, Lei S, Zhang Y, Lv D, Jiang F, Deng Y, Collman JP, Fu L. Plasmalogens Eliminate Aging-Associated Synaptic Defects and Microglia-Mediated Neuroinflammation in Mice. Front Mol Biosci 2022; 9:815320. [PMID: 35281262 PMCID: PMC8906368 DOI: 10.3389/fmolb.2022.815320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/02/2022] [Indexed: 12/31/2022] Open
Abstract
Neurodegeneration is a pathological condition in which nervous system or neuron losses its structure, function, or both leading to progressive neural degeneration. Growing evidence strongly suggests that reduction of plasmalogens (Pls), one of the key brain lipids, might be associated with multiple neurodegenerative diseases, including Alzheimer’s disease (AD). Plasmalogens are abundant members of ether-phospholipids. Approximately 1 in 5 phospholipids are plasmalogens in human tissue where they are particularly enriched in brain, heart and immune cells. In this study, we employed a scheme of 2-months Pls intragastric administration to aged female C57BL/6J mice, starting at the age of 16 months old. Noticeably, the aged Pls-fed mice exhibited a better cognitive performance, thicker and glossier body hair in appearance than that of aged control mice. The transmission electron microscopic (TEM) data showed that 2-months Pls supplementations surprisingly alleviate age-associated hippocampal synaptic loss and also promote synaptogenesis and synaptic vesicles formation in aged murine brain. Further RNA-sequencing, immunoblotting and immunofluorescence analyses confirmed that plasmalogens remarkably enhanced both the synaptic plasticity and neurogenesis in aged murine hippocampus. In addition, we have demonstrated that Pls treatment inhibited the age-related microglia activation and attenuated the neuroinflammation in the murine brain. These findings suggest for the first time that Pls administration might be a potential intervention strategy for halting neurodegeneration and promoting neuroregeneration.
Collapse
Affiliation(s)
- Jinxin Gu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lixue Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ran Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jie-Li Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Juntao Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yingjun Lin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shuwen Lei
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Lv
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Faqin Jiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - James P. Collman
- Department of Chemistry, Stanford University, Stanford, CA, United States
| | - Lei Fu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
- *Correspondence: Lei Fu,
| |
Collapse
|
180
|
Valdés-Tovar M, Rodríguez-Ramírez AM, Rodríguez-Cárdenas L, Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, Solís-Chagoyán H, Argueta J, López-Riquelme GO. Insights into myelin dysfunction in schizophrenia and bipolar disorder. World J Psychiatry 2022; 12:264-285. [PMID: 35317338 PMCID: PMC8900585 DOI: 10.5498/wjp.v12.i2.264] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia and bipolar disorder are disabling psychiatric disorders with a worldwide prevalence of approximately 1%. Both disorders present chronic and deteriorating prognoses that impose a large burden, not only on patients but also on society and health systems. These mental illnesses share several clinical and neurobiological traits; of these traits, oligodendroglial dysfunction and alterations to white matter (WM) tracts could underlie the disconnection between brain regions related to their symptomatic domains. WM is mainly composed of heavily myelinated axons and glial cells. Myelin internodes are discrete axon-wrapping membrane sheaths formed by oligodendrocyte processes. Myelin ensheathment allows fast and efficient conduction of nerve impulses through the nodes of Ranvier, improving the overall function of neuronal circuits. Rapid and precisely synchronized nerve impulse conduction through fibers that connect distant brain structures is crucial for higher-level functions, such as cognition, memory, mood, and language. Several cellular and subcellular anomalies related to myelin and oligodendrocytes have been found in postmortem samples from patients with schizophrenia or bipolar disorder, and neuroimaging techniques have revealed consistent alterations at the macroscale connectomic level in both disorders. In this work, evidence regarding these multilevel alterations in oligodendrocytes and myelinated tracts is discussed, and the involvement of proteins in key functions of the oligodendroglial lineage, such as oligodendrogenesis and myelination, is highlighted. The molecular components of the axo-myelin unit could be important targets for novel therapeutic approaches to schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Marcela Valdés-Tovar
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Leslye Rodríguez-Cárdenas
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Carlo E Sotelo-Ramírez
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Beatriz Camarena
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Jesús Argueta
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Germán Octavio López-Riquelme
- Laboratorio de Socioneurobiología, Centro de Investigación en Ciencias Cognitivas, Universidad del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
181
|
Pappaianni E, Borsarini B, Doucet GE, Hochman A, Frangou S, Micali N. Initial evidence of abnormal brain plasticity in anorexia nervosa: an ultra-high field study. Sci Rep 2022; 12:2589. [PMID: 35173174 PMCID: PMC8850617 DOI: 10.1038/s41598-022-06113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Anorexia Nervosa has been associated with white matter abnormalities implicating subcortical abnormal myelination. Extending these findings to intracortical myelin has been challenging but ultra-high field neuroimaging offers new methodological opportunities. To test the integrity of intracortical myelin in AN we used 7 T neuroimaging to acquire T1-weighted images optimized for intracortical myelin from seven females with AN (age range: 18-33) and 11 healthy females (age range: 23-32). Intracortical T1 values (inverse index of myelin concentration) were extracted from 148 cortical regions at ten depth-levels across the cortical ribbon. Across all cortical regions, these levels were averaged to generate estimates of total intracortical myelin concentration and were clustered using principal component analyses into two clusters; the outer cluster comprised T1 values across depth-levels ranging from the CSF boundary to the middle of the cortical regions and the inner cluster comprised T1 values across depth-levels ranging from the middle of the cortical regions to the gray/white matter boundary. Individuals with AN exhibited higher T1 values (i.e., decreased intracortical myelin concentration) in all three metrics. It remains to be established if these abnormalities result from undernutrition or specific lipid nutritional imbalances, or are trait markers; and whether they may contribute to neurobiological deficits seen in AN.
Collapse
Affiliation(s)
- Edoardo Pappaianni
- Department of Psychiatry, Faculty of Medicine, University of Geneva, 2 Rue Verte, 1205, Geneva, Switzerland
| | - Bianca Borsarini
- Department of Psychiatry, Faculty of Medicine, University of Geneva, 2 Rue Verte, 1205, Geneva, Switzerland
| | | | - Ayelet Hochman
- Department of Psychology, St. John's University, Queens, NY, USA
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Nadia Micali
- Department of Psychiatry, Faculty of Medicine, University of Geneva, 2 Rue Verte, 1205, Geneva, Switzerland. .,Great Ormond Street Institute of Child Health, University College London, London, UK. .,Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
182
|
Ali H, Morito K, Hasi RY, Aihara M, Hayashi J, Kawakami R, Kanemaru K, Tsuchiya K, Sango K, Tanaka T. Characterization of uptake and metabolism of very long-chain fatty acids in peroxisome-deficient CHO cells. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159088. [PMID: 34848380 DOI: 10.1016/j.bbalip.2021.159088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 11/24/2022]
Abstract
Fatty acids (FAs) longer than C20 are classified as very long-chain fatty acids (VLCFAs). Although biosynthesis and degradation of VLCFAs are important for the development and integrity of the myelin sheath, knowledge on the incorporation of extracellular VLCFAs into the cells is limited due to the experimental difficulty of solubilizing them. In this study, we found that a small amount of isopropanol solubilized VLCFAs in aqueous medium by facilitating the formation of the VLCFA/albumin complex. Using this solubilizing technique, we examined the role of the peroxisome in the uptake and metabolism of VLCFAs in Chinese hamster ovary (CHO) cells. When wild-type CHO cells were incubated with saturated VLCFAs (S-VLCFAs), such as C23:0 FA, C24:0 FA, and C26:0 FA, extensive uptake was observed. Most of the incorporated S-VLCFAs were oxidatively degraded without acylation into cellular lipids. In contrast, in peroxisome-deficient CHO cells uptake of S-VLCFAs was marginal and oxidative metabolism was not observed. Extensive uptake and acylation of monounsaturated (MU)-VLCFAs, such as C24:1 FA and C22:1 FA, were observed in both types of CHO cells. However, oxidative metabolism was evident only in wild-type cells. Similar manners of uptake and metabolism of S-VLCFAs and MU-VLCFAs were observed in IFRS1, a Schwan cell-derived cell line. These results indicate that peroxisome-deficient cells limit intracellular S-VLCFAs at a low level by halting uptake, and as a result, peroxisome-deficient cells almost completely lose the clearance ability of S-VLCFAs accumulated outside of the cells.
Collapse
Affiliation(s)
- Hanif Ali
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Katsuya Morito
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Rumana Yesmin Hasi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Mutsumi Aihara
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Junji Hayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Kaori Kanemaru
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Koichiro Tsuchiya
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan.
| |
Collapse
|
183
|
Velasco-Aviles S, Patel N, Casillas-Bajo A, Frutos-Rincón L, Velasco E, Gallar J, Arthur-Farraj P, Gomez-Sanchez JA, Cabedo H. A genetic compensatory mechanism regulated by Jun and Mef2d modulates the expression of distinct class IIa Hdacs to ensure peripheral nerve myelination and repair. eLife 2022; 11:e72917. [PMID: 35076395 PMCID: PMC8853665 DOI: 10.7554/elife.72917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
The class IIa histone deacetylases (HDACs) have pivotal roles in the development of different tissues. Of this family, Schwann cells express Hdac4, 5, and 7 but not Hdac9. Here, we show that a transcription factor regulated genetic compensatory mechanism within this family of proteins, blocks negative regulators of myelination ensuring peripheral nerve developmental myelination and remyelination after injury. Thus, when Hdac4 and 5 are knocked-out from Schwann cells in mice, a JUN-dependent mechanism induces the compensatory overexpression of Hdac7 permitting, although with a delay, the formation of the myelin sheath. When Hdac4, 5, and 7 are simultaneously removed, the myocyte-specific enhancer-factor d (MEF2D) binds to the promoter and induces the de novo expression of Hdac9, and although several melanocytic lineage genes are misexpressed and Remak bundle structure is disrupted, myelination proceeds after a long delay. Thus, our data unveil a finely tuned compensatory mechanism within the class IIa Hdac family, coordinated by distinct transcription factors, that guarantees the ability of Schwann cells to myelinate during development and remyelinate after nerve injury.
Collapse
Affiliation(s)
- Sergio Velasco-Aviles
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
| | - Nikiben Patel
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
| | - Angeles Casillas-Bajo
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
| | - Laura Frutos-Rincón
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- The European University of Brain and Technology-NeurotechEUAlicanteSpain
| | - Enrique Velasco
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- The European University of Brain and Technology-NeurotechEUAlicanteSpain
| | - Juana Gallar
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
- The European University of Brain and Technology-NeurotechEUAlicanteSpain
- RICORS en enfermedades inflamatoriasSant Joan d'AlacantSpain
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | | | - Hugo Cabedo
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
| |
Collapse
|
184
|
Cruz-Méndez JS, Herrera-Sánchez MP, Céspedes-Rubio ÁE, Rondón-Barragán IS. Molecular characterization of myelin basic protein a (mbpa) gene from red-bellied pacu (Piaractus brachypomus). JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2022; 20:8. [PMID: 35024999 PMCID: PMC8758815 DOI: 10.1186/s43141-022-00296-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
Background Myelin basic protein (MBP) is one of the most important structural components of the myelin sheaths in both central and peripheral nervous systems. MBP has several functions including organization of the myelin membranes, reorganization of the cytoskeleton during the myelination process, and interaction with the SH3 domain in signaling pathways. Likewise, MBP has been proposed as a marker of demyelination in traumatic brain injury and chemical exposure. Methods The aim of this study was to molecularly characterize the myelin basic protein a (mbpa) gene from the Colombian native fish, red-bellied pacu, Piaractus brachypomus. Bioinformatic tools were used to identify the phylogenetic relationships, physicochemical characteristics, exons, intrinsically disordered regions, and conserved domains of the protein. Gene expression was assessed by qPCR in three models corresponding to sublethal chlorpyrifos exposure, acute brain injury, and anesthesia experiments. Results mbpa complete open reading frame was identified with 414 nucleotides distributed in 7 exons that encode 137 amino acids. MBPa was recognized as belonging to the myelin basic protein family, closely related with orthologous proteins, and two intrinsically disordered regions were established within the sequence. Gene expression of mbpa was upregulated in the optic chiasm of the chlorpyrifos exposed fish in contrast to the control group. Conclusions The physicochemical computed features agree with the biological functions of MBP, and basal gene expression was according to the anatomical distribution in the tissues analyzed. This study is the first molecular characterization of mbpa from the native species Piaractus brachypomus.
Collapse
Affiliation(s)
- Juan Sebastian Cruz-Méndez
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, 730006299, Ibague, Tolima, Colombia
| | - María Paula Herrera-Sánchez
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, 730006299, Ibague, Tolima, Colombia
| | - Ángel Enrique Céspedes-Rubio
- Research Group in Neurodegenerative Diseases, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, 730006299, Ibague, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, 730006299, Ibague, Tolima, Colombia. .,Research Group in Neurodegenerative Diseases, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, 730006299, Ibague, Tolima, Colombia. .,Laboratory of Immunology and Molecular Biology, Department of Animal Health, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Ibague, 730006299, Colombia.
| |
Collapse
|
185
|
Becktel DA, Zbesko JC, Frye JB, Chung AG, Hayes M, Calderon K, Grover JW, Li A, Garcia FG, Tavera-Garcia MA, Schnellmann RG, Wu HJJ, Nguyen TVV, Doyle KP. Repeated Administration of 2-Hydroxypropyl-β-Cyclodextrin (HPβCD) Attenuates the Chronic Inflammatory Response to Experimental Stroke. J Neurosci 2022; 42:325-348. [PMID: 34819339 PMCID: PMC8802936 DOI: 10.1523/jneurosci.0933-21.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/24/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Globally, more than 67 million people are living with the effects of ischemic stroke. Importantly, many stroke survivors develop a chronic inflammatory response that may contribute to cognitive impairment, a common and debilitating sequela of stroke that is insufficiently studied and currently untreatable. 2-Hydroxypropyl-β-cyclodextrin (HPβCD) is an FDA-approved cyclic oligosaccharide that can solubilize and entrap lipophilic substances. The goal of the present study was to determine whether the repeated administration of HPβCD curtails the chronic inflammatory response to stroke by reducing lipid accumulation within stroke infarcts in a distal middle cerebral artery occlusion mouse model of stroke. To achieve this goal, we subcutaneously injected young adult and aged male mice with vehicle or HPβCD 3 times per week, with treatment beginning 1 week after stroke. We evaluated mice at 7 weeks following stroke using immunostaining, RNA sequencing, lipidomic, and behavioral analyses. Chronic stroke infarct and peri-infarct regions of HPβCD-treated mice were characterized by an upregulation of genes involved in lipid metabolism and a downregulation of genes involved in innate and adaptive immunity, reactive astrogliosis, and chemotaxis. Correspondingly, HPβCD reduced the accumulation of lipid droplets, T lymphocytes, B lymphocytes, and plasma cells in stroke infarcts. Repeated administration of HPβCD also preserved NeuN immunoreactivity in the striatum and thalamus and c-Fos immunoreactivity in hippocampal regions. Additionally, HPβCD improved recovery through the protection of hippocampal-dependent spatial working memory and reduction of impulsivity. These results indicate that systemic HPβCD treatment following stroke attenuates chronic inflammation and secondary neurodegeneration and prevents poststroke cognitive decline.SIGNIFICANCE STATEMENT Dementia is a common and debilitating sequela of stroke. Currently, there are no available treatments for poststroke dementia. Our study shows that lipid metabolism is disrupted in chronic stroke infarcts, which causes an accumulation of uncleared lipid debris and correlates with a chronic inflammatory response. To our knowledge, these substantial changes in lipid homeostasis have not been previously recognized or investigated in the context of ischemic stroke. We also provide a proof of principle that solubilizing and entrapping lipophilic substances using HPβCD could be an effective strategy for treating chronic inflammation after stroke and other CNS injuries. We propose that using HPβCD for the prevention of poststroke dementia could improve recovery and increase long-term quality of life in stroke sufferers.
Collapse
Affiliation(s)
- Danielle A Becktel
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
| | - Jacob C Zbesko
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
| | - Jennifer B Frye
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
| | - Amanda G Chung
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
| | - Megan Hayes
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
| | - Kylie Calderon
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
| | - Jeffrey W Grover
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85719
| | - Anna Li
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
- Arizona Arthritis Center, University of Arizona, Tucson, Arizona 85719
| | - Frankie G Garcia
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
| | | | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85719
| | - Hsin-Jung Joyce Wu
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
- Arizona Arthritis Center, University of Arizona, Tucson, Arizona 85719
| | - Thuy-Vi V Nguyen
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
- Department of Neurology, University of Arizona, Tucson, Arizona 85719
| | - Kristian P Doyle
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
- Department of Neurology, University of Arizona, Tucson, Arizona 85719
- BIO5 Institute, University of Arizona, Tucson, Arizona 85719
- Arizona Center on Aging, University of Arizona, Tucson, Arizona 85719
- Department of Psychology, University of Arizona, Tucson, Arizona 85719
- Department of Neurosurgery, University of Arizona, Tucson, Arizona 85719
| |
Collapse
|
186
|
Saitoh SS, Tanabe S, Muramatsu R. Circulating factors that influence the central nervous system remyelination. Curr Opin Pharmacol 2022; 62:130-136. [PMID: 34995894 DOI: 10.1016/j.coph.2021.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022]
Abstract
Injury in the central nervous system leads to neurological deficits, depending on the disruption of neural networks. Remyelination, which occurs partially and spontaneously, is a critical process in the regeneration of neural networks to recover from neurological deficits. Remyelination depends on the development of oligodendrocytes, including the proliferation of oligodendrocyte precursor cells (OPCs) and the differentiation of OPCs into mature oligodendrocytes to form myelin. OPC proliferation and differentiation are regulated by intracellular and extracellular mechanisms, and recent studies have demonstrated that circulating factors secreted from peripheral organs or infiltrated immune cells play a key role in controlling oligodendrocyte development following remyelination in adult mammals. In this review, we describe the beneficial and detrimental effects of systemic environments, such as circulating factors derived from peripheral organs and immune cells, on CNS remyelination.
Collapse
Affiliation(s)
- Steve S Saitoh
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shogo Tanabe
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan.
| |
Collapse
|
187
|
Baryła I, Kośla K, Bednarek AK. WWOX and metabolic regulation in normal and pathological conditions. J Mol Med (Berl) 2022; 100:1691-1702. [PMID: 36271927 PMCID: PMC9691486 DOI: 10.1007/s00109-022-02265-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023]
Abstract
WW domain-containing oxidoreductase (WWOX) spans the common fragile site FRA16D. There is evidence that translocations and deletions affecting WWOX accompanied by loss of expression are frequent in many cancers and often correlate with a worse prognosis. Additionally, WWOX germline mutations were also found to be the cause of pathologies of brain development. Because WWOX binds to some transcription factors, it is a modulator of many cellular processes, including metabolic processes. Recently, studies have linked WWOX to familial dyslipidemias, osteopenia, metabolic syndrome, and gestational diabetes, confirming its role as a regulator of steroid, cholesterol, glucose, and normal bone metabolism. The WW domain of WWOX is directly engaged in the control of the activity of transcription factors such as HIF1α and RUNX2; therefore, WWOX gene alterations are associated with some metabolic abnormalities. Presently, most interest is devoted to the associations between WWOX and glucose and basic energy metabolism disturbances. In particular, its involvement in the initiation of the Warburg effect in cancer or gestational diabetes and type II diabetes is of interest. This review is aimed at systematically and comprehensively presenting the current state of knowledge about the participation of WWOX in the metabolism of healthy and diseased organisms.
Collapse
Affiliation(s)
- Izabela Baryła
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K. Bednarek
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
188
|
Kister A, Kister I. Overview of myelin, major myelin lipids, and myelin-associated proteins. Front Chem 2022; 10:1041961. [PMID: 36896314 PMCID: PMC9989179 DOI: 10.3389/fchem.2022.1041961] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/23/2022] [Indexed: 02/23/2023] Open
Abstract
Myelin is a modified cell membrane that forms a multilayer sheath around the axon. It retains the main characteristics of biological membranes, such as lipid bilayer, but differs from them in several important respects. In this review, we focus on aspects of myelin composition that are peculiar to this structure and differentiate it from the more conventional cell membranes, with special attention to its constituent lipid components and several of the most common and important myelin proteins: myelin basic protein, proteolipid protein, and myelin protein zero. We also discuss the many-fold functions of myelin, which include reliable electrical insulation of axons to ensure rapid propagation of nerve impulses, provision of trophic support along the axon and organization of the unmyelinated nodes of Ranvier, as well as the relationship between myelin biology and neurologic disease such as multiple sclerosis. We conclude with a brief history of discovery in the field and outline questions for future research.
Collapse
Affiliation(s)
- Alexander Kister
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Ilya Kister
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
189
|
Rodgers G, Tanner C, Schulz G, Migga A, Kuo W, Bikis C, Scheel M, Kurtcuoglu V, Weitkamp T, Müller B. Virtual histology of an entire mouse brain from formalin fixation to paraffin embedding. Part 2: Volumetric strain fields and local contrast changes. J Neurosci Methods 2022; 365:109385. [PMID: 34637810 DOI: 10.1016/j.jneumeth.2021.109385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/07/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Fixation and embedding of post mortem brain tissue is a pre-requisite for both gold-standard conventional histology and X-ray virtual histology. This process alters the morphology and density of the brain microanatomy. NEW METHOD To quantify these changes, we employed synchrotron radiation-based hard X-ray tomography with 3 μm voxel length to visualize the same mouse brain after fixation in 4% formalin, immersion in ethanol solutions (50%, 70%, 80%, 90%, and 100%), xylene, and finally after embedding in a paraffin block. The volumetric data were non-rigidly registered to the initial formalin-fixed state to align the microanatomy within the entire mouse brain. RESULTS Volumetric strain fields were used to characterize local shrinkage, which was found to depend on the anatomical region and distance to external surface. X-ray contrast was altered and enhanced by preparation-induced inter-tissue density changes. The preparation step can be selected to highlight specific anatomical features. For example, fiber tract contrast is amplified in 100% ethanol. COMPARISON WITH EXISTING METHODS Our method provides volumetric strain fields, unlike approaches based on feature-to-feature or volume measurements. Volumetric strain fields are produced by non-rigid registration, which is less labor-intensive and observer-dependent than volume change measurements based on manual segmentations. X-ray microtomography provides spatial resolution at least an order of magnitude higher than magnetic resonance microscopy, allowing for analysis of morphology and density changes within the brain's microanatomy. CONCLUSION Our approach belongs to three-dimensional virtual histology with isotropic micrometer spatial resolution and therefore complements atlases based on a combination of magnetic resonance microscopy and optical micrographs of serial histological sections.
Collapse
Affiliation(s)
- Griffin Rodgers
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Christine Tanner
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland.
| | - Georg Schulz
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Alexandra Migga
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Willy Kuo
- The Interface Group, Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; National Centre of Competence in Research, Kidney.CH, 8057 Zurich, Switzerland
| | - Christos Bikis
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland; Integrierte Psychiatrie Winterthur - Zürcher Unterland, 8408 Winterthur, Switzerland
| | - Mario Scheel
- Synchrotron Soleil, 91192 Gif-sur-Yvette, France
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; National Centre of Competence in Research, Kidney.CH, 8057 Zurich, Switzerland
| | | | - Bert Müller
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
190
|
Baumann A, Denninger AR, Domin M, Demé B, Kirschner DA. Metabolically-incorporated deuterium in myelin localized by neutron diffraction and identified by mass spectrometry. Curr Res Struct Biol 2022; 4:231-245. [PMID: 35941866 PMCID: PMC9356250 DOI: 10.1016/j.crstbi.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Myelin is a natural and dynamic multilamellar membrane structure that continues to be of significant biological and neurological interest, especially with respect to its biosynthesis and assembly during its normal formation, maintenance, and pathological breakdown. To explore the usefulness of neutron diffraction in the structural analysis of myelin, we investigated the use of in vivo labeling by metabolically incorporating non-toxic levels of deuterium (2H; D) via drinking water into a pregnant dam (D-dam) and her developing embryos. All of the mice were sacrificed when the pups (D-pups) were 55 days old. Myelinated sciatic nerves were dissected, fixed in glutaraldehyde and examined by neutron diffraction. Parallel samples that were unfixed (trigeminal nerves) were frozen for mass spectrometry (MS). The diffraction patterns of the nerves from deuterium-fed mice (D-mice) vs. the controls (H-mice) had major differences in the intensities of the Bragg peaks but no appreciable differences in myelin periodicity. Neutron scattering density profiles showed an appreciable increase in density at the center of the lipid-rich membrane bilayer. This increase was greater in D-pups than in D-dam, and its localization was consistent with deuteration of lipid hydrocarbon, which predominates over transmembrane protein in myelin. MS analysis of the lipids isolated from the trigeminal nerves demonstrated that in the pups the percentage of lipids that had one or more deuterium atoms was uniformly high across lipid species (97.6% ± 2.0%), whereas in the mother the lipids were substantially less deuterated (60.6% ± 26.4%) with levels varying among lipid species and subspecies. The mass distribution pattern of deuterium-containing isotopologues indicated the fraction (in %) of each lipid (sub-)species having one or more deuteriums incorporated: in the D-pups, the pattern was always bell-shaped, and the average number of D atoms ranged from a low of ∼4 in fatty acid to a high of ∼9 in cerebroside. By contrast, in D-dam most lipids had more complex, overlapping distributions that were weighted toward a lower average number of deuteriums, which ranged from a low of ∼3–4 in fatty acid and in one species of sulfatide to a high of 6–7 in cerebroside and sphingomyelin. The consistently high level of deuteration in D-pups can be attributed to their de novo lipogenesis during gestation and rapid, postnatal myelination. The widely varying levels of deuteration in D-dam, by contrast, likely depends on the relative metabolic stability of the particular lipid species during myelin maintenance. Our current findings demonstrate that stably-incorporated D label can be detected and localized using neutron diffraction in a complex tissue such as myelin; and moreover, that MS can be used to screen a broad range of deuterated lipid species to monitor differential rates of lipid turnover. In addition to helping to develop a comprehensive understanding of the de novo synthesis and turnover of specific lipids in normal and abnormal myelin, our results also suggest application to studies on myelin proteins (which constitute only 20–30% by dry mass of the myelin, vs. 70–80% for lipid), as well as more broadly to the molecular constituents of other biological tissues. Deuterium metabolically assimilated into gestating mouse pups via drinking water. Neutron diffraction localized deuterium to middle of myelin membrane bilayers. Mass spectrometry identified 26 deuterated lipid species as myelinic. Myelin of pups substantially more deuterated than that of their dam. Deuterium differentially distributed among lipid species and subspecies. De novo lipid biogenesis vs. steady-state maintenance readily distinguished. Novel paradigm suggests application to animal models of human myelinopathies.
Collapse
|
191
|
Nguyen YTK, Ha HTT, Nguyen TH, Nguyen LN. The role of SLC transporters for brain health and disease. Cell Mol Life Sci 2021; 79:20. [PMID: 34971415 PMCID: PMC11071821 DOI: 10.1007/s00018-021-04074-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/05/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
The brain exchanges nutrients and small molecules with blood via the blood-brain barrier (BBB). Approximately 20% energy intake for the body is consumed by the brain. Glucose is known for its critical roles for energy production and provides substrates for biogenesis in neurons. The brain takes up glucose via glucose transporters GLUT1 and 3, which are expressed in several neural cell types. The brain is also equipped with various transport systems for acquiring amino acids, lactate, ketone bodies, lipids, and cofactors for neuronal functions. Unraveling the mechanisms by which the brain takes up and metabolizes these nutrients will be key in understanding the nutritional requirements in the brain. This could also offer opportunities for therapeutic interventions in several neurological disorders. For instance, emerging evidence suggests a critical role of lactate as an alternative energy source for neurons. Neuronal cells express monocarboxylic transporters to acquire lactate. As such, treatment of GLUT1-deficient patients with ketogenic diets to provide the brain with alternative sources of energy has been shown to improve the health of the patients. Many transporters are present in the brain, but only a small number has been characterized. In this review, we will discuss about the roles of solute carrier (SLC) transporters at the blood brain barrier (BBB) and neural cells, in transport of nutrients and metabolites in the brain.
Collapse
Affiliation(s)
- Yen T K Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Hoa T T Ha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Tra H Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
- SLING/Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- Immunology Translational and Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
192
|
Intisar A, Kim WH, Shin HY, Kim MY, Kim YS, Lim H, Kang HG, Mo YJ, Aly MAS, Lee YI, Kim MS. An electroceutical approach enhances myelination via upregulation of lipid biosynthesis in the dorsal root ganglion. Biofabrication 2021; 14. [PMID: 34933294 DOI: 10.1088/1758-5090/ac457c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
As the myelin sheath is crucial for neuronal saltatory conduction, loss of myelin in the peripheral nervous system (PNS) leads to demyelinating neuropathies causing muscular atrophy, numbness, foot deformities and paralysis. Unfortunately, few interventions are available for such neuropathies, because previous pharmaceuticals have shown severe side effects and failed in clinical trials. Therefore, exploring new strategies to enhance PNS myelination is critical to provide solution for such intractable diseases. This study aimed to investigate the effectiveness of electrical stimulation (ES) to enhance myelination in the mouse dorsal root ganglion (DRG) - an ex vivo model of the PNS. Mouse embryonic DRGs were extracted at E13 and seeded onto Matrigel-coated surfaces. After sufficient growth and differentiation, screening was carried out by applying ES in the 1-100 Hz range at the beginning of the myelination process. DRG myelination was evaluated via immunostaining at the intermediate (19 DIV) and mature (30 DIV) stages. Further biochemical analyses were carried out by utilizing RNA sequencing, qPCR and biochemical assays at both intermediate and mature myelination stages. Imaging of DRG myelin lipids was carried out via time-of-flight secondary ion mass spectrometry (ToF-SIMS). With screening ES conditions, optimal condition was identified at 20 Hz, which enhanced the percentage of myelinated neurons and average myelin length not only at intermediate (129% and 61%) but also at mature (72% and 17%) myelination stages. Further biochemical analyses elucidated that ES promoted lipid biosynthesis in the DRG. ToF-SIMS imaging showed higher abundance of the structural lipids, cholesterol and sphingomyelin, in the myelin membrane. Therefore, promotion of lipid biosynthesis and higher abundance of myelin lipids led to ES-mediated myelination enhancement. Given that myelin lipid deficiency is culpable for most demyelinating PNS neuropathies, the results might pave a new way to treat such diseases via electroceuticals.
Collapse
Affiliation(s)
- Aseer Intisar
- New Biology, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Woon-Hae Kim
- CTCELLS Corp., 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Hyun Young Shin
- CTCELLS Corp., 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Min Young Kim
- New Biology, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Yu Seon Kim
- Well Aging Research Center, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Heejin Lim
- New Biology, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Hyun Gyu Kang
- New Biology, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Yun Jeoung Mo
- Well Aging Research Center, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Mohamed Aly Saad Aly
- New Biology, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Yun-Il Lee
- Well Aging Research Center, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Minseok S Kim
- New Biology, DGIST, Room 313, Building E5, DGIST, Daegu, 42988, Korea (the Republic of)
| |
Collapse
|
193
|
Sultan S, Hauser J, Oliveira M, Rytz A, Preitner N, Schneider N. Effects of Post-natal Dietary Milk Fat Globule Membrane Polar Lipid Supplementation on Motor Skills, Anxiety, and Long-Term Memory in Adulthood. Front Nutr 2021; 8:737731. [PMID: 34869518 PMCID: PMC8637295 DOI: 10.3389/fnut.2021.737731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Early life nutrition critically impacts post-natal brain maturation and cognitive development. Post-natal dietary deficits in specific nutrients, such as lipids, minerals or vitamins are associated with brain maturation and cognitive impairments. Specifically, polar lipids (PL), such as sphingolipids and phospholipids, are important cellular membrane building blocks and are critical for brain connectivity due to their role in neurite outgrowth, synaptic formation, and myelination. In this preclinical study, we assessed the effects of a chronic supplementation with a source of PL extracted from an alpha-lactalbumin enriched whey protein containing 10% lipids from early life (post-natal day (PND) 7) to adulthood (PND 72) on adult motor skills, anxiety, and long-term memory. The motor skills were assessed using open field and rotarod test. Anxiety was assessed using elevated plus maze (EPM). Long-term object and spatial memory were assessed using novel object recognition (NOR) and Morris water maze (MWM). Our results suggest that chronic PL supplementation improved measures of spatial long-term memory accuracy and cognitive flexibility in the MWM in adulthood, with no change in general mobility, anxiety and exploratory behavior. Our results indicate memory specific functional benefits of long-term dietary PL during post-natal brain development.
Collapse
Affiliation(s)
- Sébastien Sultan
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Jonas Hauser
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Manuel Oliveira
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Andreas Rytz
- Clinical Research Unit, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Nicolas Preitner
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Nora Schneider
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| |
Collapse
|
194
|
Shang X, Hill E, Zhu Z, Liu J, Ge Z, Wang W, He M. Macronutrient Intake and Risk of Dementia in Community-Dwelling Older Adults: A Nine-Year Follow-Up Cohort Study. J Alzheimers Dis 2021; 85:791-804. [PMID: 34864666 DOI: 10.3233/jad-215042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Little is known about the association between macronutrient intake and incident dementia. OBJECTIVE To identify an optimal range of macronutrient intake associated with reduced risk of dementia. METHODS Our analysis included 93,389 adults aged 60-75 years from the UK Biobank. Diet was assessed using a web-based 24-h recall questionnaire between 2009-2012. Dementia was ascertained using hospital inpatient, death records, and self-reported data up to January 2021. We calculated a macronutrient score based on associations between an individual's macronutrient intake and incident dementia. RESULTS During a median follow-up of 8.7 years, 1,171 incident dementia cases were documented. We found U-shape relationships for carbohydrate, fat, and protein intake with incident dementia. Compared to individuals with optimal carbohydrate intake, those with high intake (HR (95%CI): 1.48(1.15-1.91)) but not low intake (1.19(0.89-1.57)) had a higher risk of dementia. In the multivariable analysis, a low-fat intake (HR (95%CI): 1.42(1.11-1.82)) was associated with a higher risk of all-cause dementia. After adjustment for covariates, a high (HR (95%CI): 1.41(1.09-1.83)) but not low protein intake (1.22(0.94-1.57)) was associated with an increased risk of dementia. Individuals in quintiles 3-5 of optimal macronutrient score had a lower risk of dementia compared with those in quintile 1 (HR (95%CI): 0.76(0.64-0.91) for quintile 3, 0.71(0.60-0.85) for quintile 4, 0.74(0.61-0.91) for quintile 5). The association between macronutrient score and incident dementia was significant across subgroups of age, gender, education, and smoking. CONCLUSION Moderate intakes of carbohydrate, fat, and protein were associated with the lowest risk of incident dementia.
Collapse
Affiliation(s)
- Xianwen Shang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangzhou, China.,Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, VIC, Australia
| | - Edward Hill
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, VIC, Australia.,Wicking Dementia Research and Education Centre, University of Tasmania, TAS, Australia
| | - Zhuoting Zhu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangzhou, China
| | - Jiahao Liu
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Zongyuan Ge
- Monash e-Research Center, Faculty of Engineering, Airdoc Research, Nvidia AI Technology Research Center, Monash University, Melbourne, VIC, Australia
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mingguang He
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| |
Collapse
|
195
|
Intraepineurial fat quantification and cross-sectional area analysis of the sciatic nerve using MRI in Charcot-Marie-Tooth disease type 1A patients. Sci Rep 2021; 11:21535. [PMID: 34728674 PMCID: PMC8563983 DOI: 10.1038/s41598-021-00819-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
The objectives of this study were to assess the fat fraction (FF) and cross-sectional area (CSA) of the sciatic nerve in Charcot-Marie-Tooth disease type 1A (CMT1A) patients using Dixon-based proton density fat quantification MRI and to elucidate its potential association with clinical parameters. Thigh MRIs of 18 CMT1A patients and 18 age- and sex-matched volunteers enrolled for a previous study were reviewed. Analyses for FF and CSA of the sciatic nerve were performed at three levels (proximal to distal). CSA and FF were compared between the two groups and among the different levels within each group. The relationship between the MRI parameters and clinical data were assessed in the CMT1A patients. The CMT1A patients showed significantly higher FF at level 3 (p = 0.0217) and significantly larger CSA at all three levels compared with the control participants (p < 0.0001). Comparisons among levels showed significantly higher FF for levels 2 and 3 than for level 1 and significantly larger CSA for level 2 compared with level 1 in CMT1A patients. CSA at level 3 correlated positively with the CMT neuropathy score version 2 (CMTNSv2). In conclusion, the sciatic nerve FF of CMT1A patients was significantly higher on level 3 compared with both the controls and the measurements taken on more proximal levels, suggesting the possibility of increased intraepineurial fat within the sciatic nerves of CMT1A patients, with a possible distal tendency. Sciatic nerve CSA at level 3 correlated significantly and positively with CMTNSv2, suggesting its potential value as an imaging marker for clinical severity.
Collapse
|
196
|
Xu Q, Li S, Tang W, Yan J, Wei X, Zhou M, Diao H. The Effect of Ellagic Acid on Hepatic Lipid Metabolism and Antioxidant Activity in Mice. Front Physiol 2021; 12:751501. [PMID: 34690819 PMCID: PMC8529006 DOI: 10.3389/fphys.2021.751501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence has demonstrated that the imbalance of lipid metabolism and antioxidant capacity leads to damage to liver. The present study aimed to investigate the effects of ellagic acid (EA), a phenolic compound, on hepatic lipid metabolism and antioxidant activity in mice. In our study, 24 C57BL/6J mice were divided into three groups: (1) control (CON); (2) basal diet+0.1% EA (EA1); and (3) basal diet+0.3% EA (EA2). After the 14-day experiment, the liver was sampled for analysis. The results showed that 0.3% EA administration increased the liver weight. Total cholesterol and low-density lipoprotein cholesterol activities decreased and high-density lipoprotein cholesterol activity increased by EA supplementation. Meanwhile, dietary supplementation with EA dose-dependently decreased the acetyl-CoA carboxylase protein abundance and increased the phospho-hormone-sensitive lipase, carnitine palmitoyltransferase 1B, and peroxisome proliferator-activated receptor alpha protein abundances. Moreover, EA supplementation reduced the malonaldehyde concentration and increased the superoxide dismutase and catalase concentrations. The protein abundances of phospho-nuclear factor-E2-related factor 2, heme oxygenase-1, and NAD(P)H: quinone oxidoreductase 1 increased by EA supplementation in a dose-dependent manner. Taken together, EA supplementation promoted the lipid metabolism and antioxidant capacity to maintain the liver health in mice.
Collapse
Affiliation(s)
- Qiuying Xu
- Sichuan Nursing Vocational College, Chengdu, China
| | - Shuwei Li
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, Chengdu, China.,Sichuan Animtech Biology Development Co., Ltd, Chengdu, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, Chengdu, China.,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Feed Co. Ltd, Chengdu, China
| | - Jiayou Yan
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, Chengdu, China.,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Feed Co. Ltd, Chengdu, China
| | - Xiaolan Wei
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, Chengdu, China.,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Feed Co. Ltd, Chengdu, China
| | - Mengjia Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, Chengdu, China.,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Feed Co. Ltd, Chengdu, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, Chengdu, China
| |
Collapse
|
197
|
Fatty acid dysregulation in the anterior cingulate cortex of depressed suicides with a history of child abuse. Transl Psychiatry 2021; 11:535. [PMID: 34663786 PMCID: PMC8523684 DOI: 10.1038/s41398-021-01657-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Child abuse (CA) strongly increases the lifetime risk of suffering from major depression and predicts an unfavorable course for the illness. Severe CA has been associated with a specific dysregulation of oligodendrocyte function and thinner myelin sheaths in the human anterior cingulate cortex (ACC) white matter. Given that myelin is extremely lipid-rich, it is plausible that these findings may be accompanied by a disruption of the lipid profile that composes the myelin sheath. This is important to explore since the composition of fatty acids (FA) in myelin phospholipids can influence its stability, permeability, and compactness. Therefore, the objective of this study was to quantify and compare FA concentrations in postmortem ACC white matter in the choline glycerophospholipid pool (ChoGpl), a key myelin phospholipid pool, between adult depressed suicides with a history of CA (DS-CA) matched depressed suicides without CA (DS) and healthy non-psychiatric controls (CTRL). Total lipids were extracted from 101 subjects according to the Folch method and separated into respective classes using thin-layer chromatography. FA methyl esters from the ChoGpl fraction were quantified using gas chromatography. Our analysis revealed specific effects of CA in FAs from the arachidonic acid synthesis pathway, which was further validated with RNA-sequencing data. Furthermore, the concentration of most FAs was found to decrease with age. By extending the previous molecular level findings linking CA with altered myelination in the ACC, these results provide further insights regarding white matter alterations associated with early-life adversity.
Collapse
|
198
|
Ding J, Ji J, Rabow Z, Shen T, Folz J, Brydges CR, Fan S, Lu X, Mehta S, Showalter MR, Zhang Y, Araiza R, Bower LR, Lloyd KCK, Fiehn O. A metabolome atlas of the aging mouse brain. Nat Commun 2021; 12:6021. [PMID: 34654818 PMCID: PMC8519999 DOI: 10.1038/s41467-021-26310-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/24/2021] [Indexed: 12/30/2022] Open
Abstract
The mammalian brain relies on neurochemistry to fulfill its functions. Yet, the complexity of the brain metabolome and its changes during diseases or aging remain poorly understood. Here, we generate a metabolome atlas of the aging wildtype mouse brain from 10 anatomical regions spanning from adolescence to old age. We combine data from three assays and structurally annotate 1,547 metabolites. Almost all metabolites significantly differ between brain regions or age groups, but not by sex. A shift in sphingolipid patterns during aging related to myelin remodeling is accompanied by large changes in other metabolic pathways. Functionally related brain regions (brain stem, cerebrum and cerebellum) are also metabolically similar. In cerebrum, metabolic correlations markedly weaken between adolescence and adulthood, whereas at old age, cross-region correlation patterns reflect decreased brain segregation. We show that metabolic changes can be mapped to existing gene and protein brain atlases. The brain metabolome atlas is publicly available ( https://mouse.atlas.metabolomics.us/ ) and serves as a foundation dataset for future metabolomic studies.
Collapse
Affiliation(s)
- Jun Ding
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
- Department of Chemistry, Wuhan University, 430072, Wuhan, Hubei, P.R. China
| | - Jian Ji
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 214122, Wuxi, Jiangsu, P.R. China
| | - Zachary Rabow
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Tong Shen
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Jacob Folz
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Christopher R Brydges
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Sili Fan
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Xinchen Lu
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Sajjan Mehta
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Megan R Showalter
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Ying Zhang
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Renee Araiza
- Mouse Biology Program, and Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, 95618, USA
| | - Lynette R Bower
- Mouse Biology Program, and Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, 95618, USA
| | - K C Kent Lloyd
- Mouse Biology Program, and Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, 95618, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA.
| |
Collapse
|
199
|
Pan Z, Wei CC, Peng X, Zhang Q, Xu L, Yang H, Wei WB, Wang YX, Jonas JB. Myelinated Retinal Nerve Fiber Progression in a 10-Year Follow-Up. The Beijing Eye Study 2001/2011. Am J Ophthalmol 2021; 230:68-74. [PMID: 33951445 DOI: 10.1016/j.ajo.2021.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/06/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To assess the prevalence of myelinated retinal nerve fibers (MRNFs), the rate of their change in a 10-year follow-up, and associations with ocular and systematic parameters in a population-based cohort. DESIGN Longitudinal population-based cohort study. METHODS The Beijing Eye study including 4,439 participants aged 40+ years in 2001 and was repeated in 2011, with 2,695 individuals (66.4% of the surviving) being re-examined in 2011. All participants underwent detailed physical and ocular examinations. MRNFs were diagnosed on fundus photographs and their change was assessed using a flicker method of fundus photographs. RESULTS Out of 35 eyes (29 participants) with detected MRNFs at baseline (mean prevalence: 0.4% ± 0.26% per eye or 0.7% ± 0.41% per individual), 23 eyes from 20 individuals (17 [85%] participants with unilateral MRNFs) were re-examined in 2011. MRNF enlargement was detected in all 19 eyes (100%) with clear fundus photographs. The mean MRNF area increased from 4,233 ± 3,670 µm2 (range: 178-11,643 µm2) at baseline to 5,243 ± 4,092 µm2 (range: 196-13,297 µm2) at follow-up (P < .001), by 1,010 ± 1,026 µm2 (18-3,967 µm2) or by 47% ± 74% (9%-315%). A larger MRNF increase was associated with an MRNF location distant from the optic disc as compared to a juxtapapillary location (P = .001, standardized regression coefficient beta: -0.53), smaller MRNF area at baseline (P = .006, beta: -0.34), and higher serum concentration of low-density lipoproteins (LDL) (P < .001, beta: 0.57). CONCLUSIONS MRNFs (mean prevalence per eye: 0.4%) showed, in association with higher LDL serum concentration and peripheral located MRNF, an enlargement during a 10-year follow-up, while in the same period no new MRNFs were detected in the total study cohort.
Collapse
|
200
|
Enriched Environment Enhances the Myelin Regulatory Factor by mTOR Signaling and Protects the Myelin Membrane Against Oxidative Damage in Rats Exposed to Chronic Immobilization Stress. Neurochem Res 2021; 46:3314-3324. [PMID: 34449011 DOI: 10.1007/s11064-021-03433-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/31/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Long-term consequences of stress intervene in normal signaling of the brain leading to many psychological complications. The enriched environment (EE) may potentially ameliorate the stress response in rats. However, the mechanistic understanding of the enriched environment in protecting the myelin membrane from oxidative damage after prolonged exposure to immobilization stress (IS) remains vague. In the current study, we examined the impact of EE by exposing the rats to IS (4 h/day) followed by EE treatment (2 h/day) for 28 days and the activities of ROS, lipid peroxides, and phospholipids were studied, and its influence on the myelin regulatory factor (MyRF) and enzymes linked to sphingolipid was assessed in the forebrain region of myelin membrane. The ROS and lipid peroxidation was increased, and a significant decrease in the antioxidant activities was found in the IS group. IS + EE could reduce oxidative damage and increase the levels of antioxidant activities. The individual phospholipids including sphingomyelin (SM), phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidic acid (PA) were decreased in the IS group, while IS + EE exhibited significant increase in the phospholipid classes regardless of the exposure to IS. There was down-regulation in the mRNA levels of MyRF, CERS2, SPLTC2, UGT8, and GLTP, while IS + EE could mitigate the up-regulation in the levels of mRNA of MyRF, CERS2, SPLTC2, UGT8, and GLTP. The protein expression of MOG, PLP1, and mTOR was found to be reduced in the IS group of rats, however, IS + EE revealed significant increase in the expression of these signaling molecules. These results suggest that EE had a positive effect on chronic stress response by protecting the myelin membrane against oxidative damage and increasing the protein synthesis required for myelin membrane plasticity via activation of MyRF and mTOR signaling in the forebrain region of IS exposed rats.
Collapse
|